JPH0373584A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0373584A
JPH0373584A JP21031589A JP21031589A JPH0373584A JP H0373584 A JPH0373584 A JP H0373584A JP 21031589 A JP21031589 A JP 21031589A JP 21031589 A JP21031589 A JP 21031589A JP H0373584 A JPH0373584 A JP H0373584A
Authority
JP
Japan
Prior art keywords
layer
groove
substrate
active layer
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21031589A
Other languages
Japanese (ja)
Inventor
Hideo Kawano
川野 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21031589A priority Critical patent/JPH0373584A/en
Publication of JPH0373584A publication Critical patent/JPH0373584A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32325Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve reproducibility of oscillating wavelength and to oscillate a laser having 660 nm or less by forming an active layer to become a light emitting region on a crystalline surface having a surface index including no crystal plane (100) or (001), and forming an active layer to become a nonlight emitting region on a crystal plane (100) or (001). CONSTITUTION:A stripe V-shaped groove 13 interposed between planes (111) and (111) at an inside parallel to the orientation <001> is formed on an N-type GaAs substrate 1 having a plane orientation (100). Then, an N-type buffer layer 14, an N-type clad layer 15, an active layer 16, a P-type clad layer 17, an etching stop layer 18 and a current blocking layer 19 are sequentially grown on the substrate 11 in which the groove 13 is formed to form a double hetero structure. Then, with an SiO2 film or a photoresist film as a mask a stripelike groove 20 exposed with the layer 18 is formed at a position opposed to the groove 13 through the layer 19. Thereafter, a contact layer 21 is grown. Subsequently, a P side electrode 22 is formed on the layer 21, and an N side electrode 23 is formed on the lower surface of a substrate 12, thereby completing a semiconductor laser device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はPOS、FAシステム等のバーコードリーダー
用および光計測等の光源に用いられる半導体レーザ装置
に関し、発振波長が680nm以下のAt1GaInv
系可視光半導体レーザ装置の構造に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor laser device used for barcode readers such as POS and FA systems and as a light source for optical measurement, etc.
This invention relates to the structure of a system visible light semiconductor laser device.

〔従来の技術〕[Conventional technology]

第3図は従来の利得ガイド型のAlGaInPl可視光
半導体レーザの構造を示す断面図である(例えば、昭和
61年度電子通信学会予稿集。
FIG. 3 is a cross-sectional view showing the structure of a conventional gain-guided AlGaInPl visible light semiconductor laser (for example, Proceedings of the Institute of Electronics and Communication Engineers, 1988).

P、4−92)。P, 4-92).

図中lはn−GaAs基板であり、この基板1上にはn
−GaAsバッファー層2が形成されている。バッファ
ー層2上にはn−AIGaInPクラッド層3.Ga、
InP活性層4.p AffGaInPクラッド層5.
p−GaInPエツチング停止層6.n−GaAs電流
阻止層7及p−GaAsコンタクト層8からなるダブル
ヘテロ接合構造が形成されている。
In the figure, l is an n-GaAs substrate, and on this substrate 1 there is an n-GaAs substrate.
- A GaAs buffer layer 2 is formed. On the buffer layer 2 is an n-AIGaInP cladding layer 3. Ga,
InP active layer 4. p AffGaInP cladding layer 5.
p-GaInP etch stop layer 6. A double heterojunction structure consisting of an n-GaAs current blocking layer 7 and a p-GaAs contact layer 8 is formed.

この構造を有する半導体レーザ装置は通常MOVPE法
又はMBE法によって製造されるが、ここでは量産性に
優れたMOVPE法を用いた場合について述べる。
Semiconductor laser devices having this structure are usually manufactured by the MOVPE method or the MBE method, but here a case will be described in which the MOVPE method, which is excellent in mass production, is used.

先ず、1回目のMOVPE成長によってn−GaAsバ
ッファー層2から゛n−GaAs電流阻止層7までの6
層構造を順次形成し、n−GaAs¥を流阻止層7の一
部にp−GaInPエツチング停止層6が露出するスト
ライブ状の溝9を形成する。
First, by the first MOVPE growth, 6 layers from the n-GaAs buffer layer 2 to the n-GaAs current blocking layer 7 are grown.
A layered structure is formed in sequence, and a striped groove 9 is formed in a part of the n-GaAs\ flow blocking layer 7, in which the p-GaInP etching stop layer 6 is exposed.

続いて2回目のMOVPE成長によって溝9を含むn−
GaAs’![流阻止層7上にp−GaAs:+722
4層8が形成されている。その後、コンタクト層8の上
面にp側電極10が被着され、基板1の下面にはn側電
極11が被着されている。
Subsequently, by a second MOVPE growth, the n-
GaAs'! [p-GaAs on flow prevention layer 7: +722
Four layers 8 are formed. Thereafter, a p-side electrode 10 is attached to the upper surface of the contact layer 8, and an n-side electrode 11 is attached to the lower surface of the substrate 1.

この構造では、電流狭窄はp −G a A sコンタ
クト層8とn−GaAs電流阻止層7により行なわれる
。また、p−GaInPエツチング停止層6はストライ
ブ状の溝9を形成する際にn−GaAs電流阻止層7だ
けが化学エツチングされるためのエツチング停止の役目
をしており、またp −AflGaInPクラッド層5
とp−GaAS:Iンタクト層8との間の電気抵抗低減
を目的とするものである。このようにして利得ガイド型
の半導体レーザ装置が構成される。
In this structure, current confinement is performed by the p-GaAs contact layer 8 and the n-GaAs current blocking layer 7. Furthermore, the p-GaInP etching stop layer 6 serves as an etching stop because only the n-GaAs current blocking layer 7 is chemically etched when forming the striped grooves 9. layer 5
The purpose of this is to reduce the electrical resistance between the p-GaAS:I contact layer 8 and the p-GaAS:I contact layer 8. In this way, a gain-guided semiconductor laser device is constructed.

C発明が解決しようとする課題) 【、かしながら、このような従来の半導体レーザ装置で
は、以下に述べるような結晶成長上の問題点がある。す
なわち、Al2GaInP系の化合物半導体をMOVP
E法によって結晶成長する場合、下地結晶の面方位によ
って、その上に成長されるA、ffGaInPおよびG
aInP層の結晶構造が異なることが知られている。例
えば面方位(100)GaAs基板上に成長させたG 
& o、s I n a、sP結晶(第3図に示すGa
InP活性層4に相当する)には、(111)面にGa
とInが交互に規則配列する自然超格子が形成され、バ
ンドギャップが正常値(約l、9eV)より約50me
V程小さくなる。一方、面方位(111)または(11
0)GaAs基板上には自然超格子は形成されず、約1
.9eVの正常なバンドギャップをとることが知られて
いる。(例えば昭和63年度秋季応用物理学会予稿集、
P、277〜278)。
Problems to be Solved by the Invention) However, such conventional semiconductor laser devices have problems in crystal growth as described below. In other words, an Al2GaInP-based compound semiconductor is MOVP
When crystals are grown by the E method, A, ffGaInP and G grown on it depend on the plane orientation of the underlying crystal.
It is known that the crystal structures of the aInP layers are different. For example, G grown on a (100) GaAs substrate
& o, s I n a, sP crystal (Ga shown in Figure 3)
(corresponding to the InP active layer 4) has Ga on the (111) plane.
A natural superlattice in which In and In are arranged regularly is formed, and the band gap is about 50 me from the normal value (about 1, 9 eV).
It becomes smaller by V. On the other hand, the plane orientation (111) or (11
0) No natural superlattice is formed on the GaAs substrate, and approximately 1
.. It is known to have a normal band gap of 9 eV. (For example, the 1986 Autumn Proceedings of the Japan Society of Applied Physics,
P, 277-278).

従がって、従来の半導体レーザ装置では得られる発振波
長は660〜680nmに限定され、さらなる680n
m以下の短波長域のレーザ発振を得ることが困難であり
、またMOVPE法による成長温度、V1m比、ドーピ
ングによってもGaとInの配列秩序の程度によりバン
ドギャップが変動することも知られており、一定のバン
ドギャップな有する結晶層を再現性良く得ることが困難
である。
Therefore, with conventional semiconductor laser devices, the oscillation wavelength that can be obtained is limited to 660 to 680 nm, and even further than 680 nm.
It is difficult to obtain laser oscillation in the short wavelength range of less than m, and it is also known that the band gap varies depending on the growth temperature, V1m ratio, and doping in the MOVPE method, depending on the degree of arrangement order of Ga and In. However, it is difficult to obtain a crystal layer with a constant bandgap with good reproducibility.

本発明は、このような問題点を解決し、面方位(100
)の基板を用いても発振波長の再現性に優れ、660n
m以下のレーザ発振を可能とするAfGaInP系可視
光半導体レーザ装置を提供するものである。
The present invention solves these problems and improves surface orientation (100
) has excellent reproducibility of the oscillation wavelength even when using a substrate of 660n
The present invention provides an AfGaInP visible light semiconductor laser device that enables laser oscillation of less than m.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体レーザ装置は、AnGaInPnGaI
n−ザ装置において、少なくとも発光領域となる活性層
部は(100)または(001)結晶面を含まない面指
数を有する結晶面、例えば(111)、 (211)結
晶面上に形成されており、非発光領域となる活性層部は
(100)または(001)結晶面上に形成された構造
を有している。
The semiconductor laser device of the present invention includes AnGaInPnGaI
In the n-za device, at least the active layer portion serving as the light emitting region is formed on a crystal plane having a plane index that does not include the (100) or (001) crystal plane, for example, the (111) or (211) crystal plane. The active layer portion serving as a non-emitting region has a structure formed on a (100) or (001) crystal plane.

〔実施例1〕 次に、本発明について図面を参照して説明する。[Example 1] Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の半導体レーザ装置の構造を
示す横断面図である。
FIG. 1 is a cross-sectional view showing the structure of a semiconductor laser device according to an embodiment of the present invention.

まず、面方位(100)のn、 −G a A s基板
12の表面に<011>方向に平行で内側面が(111
)と(111)面ではさまれるストライフ状のV溝13
を形成する。ここで、フォトレジスト膜またはSiO2
膜をマスクとして用い、NH4OHとH20tの混合液
でエツチングすることにより、幅4〜6μm、深さ2μ
mのV溝13を形成できる。
First, the inner surface is parallel to the <011> direction on the surface of the -GaAs substrate 12 with a plane orientation (100) of (111).
) and (111) planes, a strife-shaped V-groove 13
form. Here, photoresist film or SiO2
By using the film as a mask and etching with a mixture of NH4OH and H20t, a width of 4 to 6 μm and a depth of 2 μm is etched.
m V-grooves 13 can be formed.

次に、原料としてメタル系■族有機金属(トリメチルイ
ンジウム、トリエチルガリウム、トリメチルアルミニウ
ム)とV放水素化物(P Hs 、 A 5H3)とを
用いた減圧下でのMOVPE法により、前記V溝13を
施こしたn −G a A s基板12(n濃度2X1
0’″C11l−1)上に厚さ0.5 μmのn−G 
a、 A sバッファー層14(n濃度lXl0”C1
1−”)1厚さ1.iJmのn−(AJ!o、gGaa
i) as I naiPクラ、ド層15(n濃度5 
X 10 ”Cl11−’) 、厚さ0.06,1JI
nのGa1lLII工na、P活性層16.厚さ1μm
のp (AfaaGILwi)wsIn。、sPクラッ
ド層17(P濃度3 X 1017am−’) 、厚さ
0.05pmのp GaasI nasPエツチング停
止層18(p濃度I X 10 ”am−’)、厚さ0
.6 μmのn−Q a A s電流阻止層19(n濃
度I X 10 ”an−’)を順次成長してダブルヘ
テロ構造を形成する。続いて、SiOx膜またはフォト
レジスト膜をマスクとして用い、n−GaAs電流阻止
層18を貫通し、I)  Ga1sInlljP工yチ
ング停止層18が露出したストライブ状の溝20を前記
■溝13に対向した位置に形成する。これは、Hs P
 Ot −H,O,、H20の混合液を用いることによ
り電流阻止層18のみが選択的にエツチングされること
により得られる。
Next, the V groove 13 is formed by the MOVPE method under reduced pressure using metal-based group (I) organic metals (trimethylindium, triethylgallium, trimethylaluminum) and V hydrogen hydrides (PHs, A5H3) as raw materials. The applied n-GaAs substrate 12 (n concentration 2X1
0'''C11l-1) with a thickness of 0.5 μm
a, A s buffer layer 14 (n concentration lXl0''C1
1-”) 1 thickness 1.iJm n-(AJ!o, gGaa
i) as I naiP layer 15 (n concentration 5
X 10 "Cl11-'), thickness 0.06,1JI
n Ga11LII engineering na, P active layer 16. Thickness 1μm
p (AfaaGILwi)wsIn. , sP cladding layer 17 (P concentration 3 x 1017 am-'), p GaasI nasP etch stop layer 18 (p concentration I x 10 'am-'), thickness 0.05 pm, thickness 0
.. A double heterostructure is formed by sequentially growing a 6 μm n-Q a As current blocking layer 19 (n concentration I x 10 ``an-''). Then, using a SiOx film or a photoresist film as a mask, A stripe-shaped groove 20 is formed at a position opposite to the groove 13, passing through the n-GaAs current blocking layer 18 and exposing the I) GalsInlljP processing stopper layer 18.
This is obtained by selectively etching only the current blocking layer 18 by using a mixed solution of Ot-H, O, and H20.

次いで、トリエチルガリウムとA S Hsを原料とし
て用いた減圧下での2回目のMOVPE法により、第1
図に示す如<p−GaAsコンタクト層21を厚さ4μ
m成長する。その後、p −G aAsコンタクト層2
1上にp側電極22.基板12の下面にn側電極23を
形成することによって、第1図に示す構造の半導体レー
ザ装置が完成する。
Next, a second MOVPE method was performed under reduced pressure using triethyl gallium and A S Hs as raw materials to obtain the first
As shown in the figure, the p-GaAs contact layer 21 is formed to a thickness of 4 μm.
m grow. After that, p-GaAs contact layer 2
1 on the p-side electrode 22. By forming the n-side electrode 23 on the lower surface of the substrate 12, the semiconductor laser device having the structure shown in FIG. 1 is completed.

第1図に示すように、MOVPE法によるV溝13上へ
の結晶成長においては、■溝130幅が成長層の厚さが
大きくなるにつれ狭くなり最後には平坦となる性質があ
るが、ここでは活性層16までがV形状になるように半
導体層14,15の成長層厚を制御する。すなわち、活
性層16が(111)と(111)面で構成されるV形
状のn  (All’wgGact)。5InasPク
ラッド層15上に成長されるように層厚を設定する。
As shown in FIG. 1, when crystals are grown on the V-groove 13 by the MOVPE method, the width of the groove 130 narrows as the thickness of the growing layer increases, and eventually becomes flat. Then, the growth layer thicknesses of the semiconductor layers 14 and 15 are controlled so that the layers up to the active layer 16 have a V-shape. That is, the active layer 16 is V-shaped n (All'wgGact) composed of (111) and (111) planes. The layer thickness is set so that it is grown on the 5InasP cladding layer 15.

また、レーザ発振に必要な電流注入が■形状の活性層1
6領域に集中してなされる様に溝20を配置している。
In addition, the current injection necessary for laser oscillation is
The grooves 20 are arranged so as to be concentrated in six areas.

〔実施例2〕 第2図は本発明の実施例2の横断面図である。[Example 2] FIG. 2 is a cross-sectional view of Embodiment 2 of the present invention.

先ず第1図で説明した同様のエツチング工程で面方位(
100)のn−GaAs基板23表面に<011>方向
に平行で外側面が(111)と(111,)面とではさ
まれるストライブ状の突起34を形成する。次に、この
基板23上にMOVPE法によって第1図と同様にバッ
ファー層り4.n−クラ、ド層25.活性層26.p−
クラ、ド層27、エツチング停止層28および電流阻止
層29を順次形成する。その後、電流阻止層29を貫通
しp G&wsIna、sPエツチング停止層28を露
出させたストライブ状の1130を前記突起34に対向
した位置に配置形成する。
First, the surface orientation (
On the surface of the n-GaAs substrate 23 (100), a stripe-like protrusion 34 is formed which is parallel to the <011> direction and whose outer surface is sandwiched between the (111) and (111,) planes. Next, a buffer layer 4. is formed on this substrate 23 by the MOVPE method in the same manner as in FIG. n-kura, do layer 25. Active layer 26. p-
A layer 27, an etching stop layer 28, and a current blocking layer 29 are formed in this order. Thereafter, a striped strip 1130 penetrating the current blocking layer 29 and exposing the pG&wsIna, SP etching stop layer 28 is formed at a position facing the protrusion 34.

次いで、2回目のMOVPE法によって、第1図と同様
にp−GaAsコンタクト層31を形成し、その後電極
32.33を形成してレーザ用ウェハーが完成する。
Next, by a second MOVPE method, a p-GaAs contact layer 31 is formed in the same manner as in FIG. 1, and then electrodes 32 and 33 are formed to complete a laser wafer.

本実施例では、n−GaAsバッファー層24からGa
agInasP活性層26まで、突起形状が維持できる
様に層24,25の厚さを設定する。
In this embodiment, Ga
The thicknesses of the layers 24 and 25 are set so that the protrusion shape can be maintained up to the agInasP active layer 26.

すなわち、活性層26が(111)面と(111)面で
構成される突起状のn−(AIlasG aaa)。
That is, the active layer 26 is a protruding n-(AIlasG aaa) formed of (111) planes and (111) planes.

In。Pクラッド層25上に成長される。また、p(A
na、5Ga14) as I nasPクラッド層1
7、p  GaaaIn。、sPエツチング停止層28
、n−GaAs電流阻止層29の上面は第2図に見るよ
うに台形状となり、次に成長するp−GaAsコンタク
ト層31が4μm程度と厚いために、この台形の幅が広
く形成され、半導体レーザ装置組立上には問題とならな
い。
In. It is grown on the P cladding layer 25. Also, p(A
na, 5Ga14) as I nasP cladding layer 1
7, p GaaaIn. , sP etching stop layer 28
The upper surface of the n-GaAs current blocking layer 29 has a trapezoidal shape as shown in FIG. This does not pose a problem when assembling the laser device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、MOVPE法によ
り成長形成されるGa1lLiIn!lsP活性層16
.26が(111)面と(IIT)面とだけで構成され
るn  (AAasGaa4)waI no、sPクラ
ッド層15.25上に形成されることになり、自然超格
子の形成なしに約1.9 e Vの正常なバンドギャッ
プを有する活性層16.26が得られる。
As explained above, according to the present invention, Ga11LiIn! is grown and formed by the MOVPE method. lsP active layer 16
.. 26 is formed on the n (AAasGaa4)waI no, sP cladding layer 15.25 consisting of only (111) planes and (IIT) planes, and approximately 1.9 An active layer 16.26 with a normal bandgap of eV is obtained.

従って、面方位(100)基板を用いても発振波長が6
60nm以下のレーザ発振を実現でき、MOVPE成長
条件となる成長温度、 V/III比。
Therefore, even if a (100) plane orientation substrate is used, the oscillation wavelength is 6.
Growth temperature and V/III ratio that can realize laser oscillation of 60 nm or less and meet MOVPE growth conditions.

ドーピングによるバンドギャップの変動もなく安定した
発振波長が得られる。
A stable oscillation wavelength can be obtained without fluctuations in bandgap due to doping.

また、本発明では、活性層16.26が発光領酸部で折
れ曲っているため、この両側領域とで作りつけの屈折率
差が生じ、いわゆる屈折率ガイド型構造となり、横モー
ド制御された低発振しきい値、高効率のレーザ発振をも
実現できる。
In addition, in the present invention, since the active layer 16.26 is bent at the light emitting acid region, there is a built-in difference in refractive index between the regions on both sides, resulting in a so-called refractive index guided structure, which allows transverse mode control. Low oscillation threshold and high efficiency laser oscillation can also be achieved.

22.32・・・・・・P側電極、11,23.33・
・・・・・n側電極、13・・・・・・V溝、34・・
・・・・突起を示す。
22.32...P side electrode, 11,23.33.
...N-side electrode, 13...V groove, 34...
...indicates a protrusion.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成したダブルヘテロ接合構造部が(A
l_xGa_1_−_x)_0_._5In_0_._
5P(0≦x≦1)で成る半導体レーザ装置において、
少なくとも発光領域となる活性層部は(100)または
(001)結晶面を含まない面指数を有する結晶面上に
形成されており、非発光領域となる活性層部は(100
)または(001)結晶面上に形成されていることを特
徴とする半導体レーザ装置。
The double heterojunction structure formed on the semiconductor substrate is (A
l_xGa_1_-_x)_0_. _5In_0_. _
In a semiconductor laser device consisting of 5P (0≦x≦1),
At least the active layer portion that becomes a light emitting region is formed on a crystal plane having a plane index that does not include the (100) or (001) crystal plane, and the active layer portion that becomes a non-light emitting region is formed on a crystal plane having a plane index that does not include the (100) or (001) crystal plane.
) or (001) crystal plane.
JP21031589A 1989-08-14 1989-08-14 Semiconductor laser device Pending JPH0373584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21031589A JPH0373584A (en) 1989-08-14 1989-08-14 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21031589A JPH0373584A (en) 1989-08-14 1989-08-14 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH0373584A true JPH0373584A (en) 1991-03-28

Family

ID=16587387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21031589A Pending JPH0373584A (en) 1989-08-14 1989-08-14 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0373584A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4444313A1 (en) * 1993-12-13 1995-06-14 Mitsubishi Electric Corp Laser diode for visible light
US5543470A (en) * 1993-12-08 1996-08-06 Sumitomo Chemical Company, Limited Vulcanized rubber for heat resistant vibration-isolator
JPH10242583A (en) * 1997-02-27 1998-09-11 Sharp Corp Manufacture of semiconductor laser element and semiconductor laser device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543470A (en) * 1993-12-08 1996-08-06 Sumitomo Chemical Company, Limited Vulcanized rubber for heat resistant vibration-isolator
DE4444313A1 (en) * 1993-12-13 1995-06-14 Mitsubishi Electric Corp Laser diode for visible light
JPH10242583A (en) * 1997-02-27 1998-09-11 Sharp Corp Manufacture of semiconductor laser element and semiconductor laser device

Similar Documents

Publication Publication Date Title
JPS60192380A (en) Semiconductor laser device
JPH0373584A (en) Semiconductor laser device
JP2564813B2 (en) A (1) GaInP semiconductor light emitting device
JPH09199791A (en) Optical semiconductor device and its manufacture
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JPH02116187A (en) Semiconductor laser
JPH0548215A (en) Semiconductor laser diode and its manufacture
JP3239528B2 (en) Manufacturing method of semiconductor laser
JPS63302587A (en) Semiconductor laser
JPS6129183A (en) Semiconductor laser
JPH11284276A (en) Semiconductor laser device and its manufacture
JPS62179790A (en) Semiconductor laser
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
JPH05235463A (en) Distributed feedback type semiconductor laser device and fabrication thereof
JPH0472787A (en) Semiconductor laser
JPS62144379A (en) Semiconductor laser element
JPH0443690A (en) Semiconductor laser element
JPH03288489A (en) Distribution feedback semiconductor laser device
JPH02181486A (en) Semiconductor laser element
JPH04120788A (en) Semiconductor laser
JPS59163883A (en) Semiconductor laser device and manufacture thereof
JPH02213183A (en) Semiconductor laser and manufacture thereof
JPS6167285A (en) Semiconductor laser device
JPH0362585A (en) Semiconductor laser device
JPH05121828A (en) Semiconductor laser