JPH0472787A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH0472787A
JPH0472787A JP18633590A JP18633590A JPH0472787A JP H0472787 A JPH0472787 A JP H0472787A JP 18633590 A JP18633590 A JP 18633590A JP 18633590 A JP18633590 A JP 18633590A JP H0472787 A JPH0472787 A JP H0472787A
Authority
JP
Japan
Prior art keywords
layer
type
mesa structure
clad layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18633590A
Other languages
Japanese (ja)
Other versions
JP2611509B2 (en
Inventor
Seiji Kawada
誠治 河田
Akiko Gomyo
明子 五明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18633590A priority Critical patent/JP2611509B2/en
Publication of JPH0472787A publication Critical patent/JPH0472787A/en
Application granted granted Critical
Publication of JP2611509B2 publication Critical patent/JP2611509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent a laser beam from deteriorating in quality keeping it short in wavelength by a method wherein a second conductivity type first clad layer above an active layer is provided with a stripe-like inverted mesa structure which is formed making the clad layer partially large in thickness and made to extend in a [011] direction, and a semiconductor layer is provided to both the sides of the mesa structure to bury the mesa structure. CONSTITUTION:An N-type (Al0.6Ga0.4)0.5In0.5P clad layer 2, a Ga0.5In0.5P active layer 3, a P-type (Al0.6Ga0.4)0.5In0.5P clad layer 4, and a P-type GaInP layer are successively formed on an N-type GaAs substrate 1. A stripe-like Sin. mask 9mum in width is formed in a <011> direction through a photolithography method on the wafer grown as above. The substrate 1 is etched into a mesa shape up to a halfway point of the P-type (Al0.6Ga0.4)0.5In0.5P clad layer 4 using a hydrochloric acid etching solution. In succession, A second growth process us carried out through a vacuum MOVPE keeping the SiO2 mask attached to the surface of the substrate 1 to form an N-type GaAs layer 6. Then, after the SiO2 mask is removed, a third growth process is executed through a vacuum MOVPE to form a P-type GaAs layer 7. Lastly, a P and an N electrode are provided, and the wafer is cleaved so as to be 300mum in cavity length and separated into chips.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単一横モードで発振するAlGaInP系の
半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an AlGaInP semiconductor laser that oscillates in a single transverse mode.

〔従来の技術〕[Conventional technology]

最近、有機金属熱分解法(以後MOVPEと略す)によ
る結晶成長により形成された単一横モードで発振するA
lGaInP系の半導体レーザとして、第3図に示すよ
うな構造が報告されている(エレクトロニクス・レター
ズ(ELECTI(,0NIC8LETTER86th
  July  1989 Mo1.14pp905−
907))。
Recently, a single transverse mode oscillating A
As an lGaInP-based semiconductor laser, the structure shown in Figure 3 has been reported (Electronics Letters (ELECTI), 0NIC8LETTER86th
July 1989 Mo1.14pp905-
907)).

この構造は第1回目の成長で(511)入面のn型Ga
As基板l上に、n型(Alo、s Ga6,4 )o
、5In6,5Pクラッド層2.GaInP活性層3.
  p型(Alo、s Ga6,4 )o、s I r
lo、5 Pクラッド層4.p型層aInP層5.を順
次形成する。次にフォトリングラフイーにより5i01
をマスクとして、メサストライプを形成する。そして5
i02マスクをつけたまま、第2回目の成長を行ない工
、チングしたところをn型GaAs層6で埋め込む。次
に8i01マスクを除去し、p側全面に電極が形成でき
るように第3回目の成長でp型G a A s層7を成
長する。
This structure was formed by (511)-faced n-type Ga in the first growth.
On the As substrate l, n-type (Alo, s Ga6,4) o
, 5In6,5P cladding layer 2. GaInP active layer 3.
p-type (Alo, s Ga6,4 ) o, s I r
lo, 5P cladding layer 4. p-type layer aInP layer5. are formed sequentially. Next, 5i01 was created using photorin graphie.
is used as a mask to form mesa stripes. and 5
A second growth is performed with the i02 mask on, and the etched areas are filled with an n-type GaAs layer 6. Next, the 8i01 mask is removed, and a p-type GaAs layer 7 is grown in a third growth so that an electrode can be formed on the entire p-side surface.

この構造により電流はn型G a A s層6によりブ
ロックされ、メサストライプ部にのみ注入される。
With this structure, current is blocked by the n-type GaAs layer 6 and is injected only into the mesa stripe portion.

また、メサストライプ形成のエツチングのときに、メサ
ストライプ部以外のp型クラッド層4の厚みを光の閉じ
込めには不十分な厚みまでエツチングするのでnmGa
As層6のある部分では、このn型GaAs層6に光が
吸収され、メサストライプ部にのみ光は導波される。こ
のように、この構造では、電流狭窄機槓と光導波機構が
同時に作り付けられる。
Furthermore, during etching to form mesa stripes, the thickness of the p-type cladding layer 4 other than the mesa stripe portion is etched to a thickness insufficient for confining light, so nmGa
In a certain portion of the As layer 6, light is absorbed by the n-type GaAs layer 6, and the light is guided only to the mesa stripe portion. In this way, in this structure, the current confinement mechanism and the optical waveguide mechanism are built at the same time.

さらにMOVPEK!D (100)GaAs基板上に
成長したAlGaInP系結晶ではその成長条件により
■族副格子上に自然格子が形成され、完全な混晶に比べ
てバンドギヤ、プエネルギーが小さくなり発振波長が長
くなるという現象が知られている。そして一般にレーザ
用の結晶を成長する条件はドーピング特性などのかねあ
いから■族副格子上に自然格子が形成され完全な混晶に
比べてバンドギヤ、プエネルギーが小さくなり発振波長
が長くなる条件になってしまう。これに対しく100)
面より〔011)方向へ傾いたG a A s基板上に
成長したAlGaInP系結晶ではその傾きが大きくな
るにつれ自然超格子の形成が阻害され、±10’以上で
は完全な混晶のバンドギャップエネルギーとほぼ等しい
値をしめす。このため光情報処理などへの応用に有利な
波長の短いレーザが得やすくなる。
More MOVPEK! D In the AlGaInP crystal grown on the (100) GaAs substrate, a natural lattice is formed on the group II sublattice depending on the growth conditions, and compared to a complete mixed crystal, the band gear and energy are smaller and the oscillation wavelength is longer. The phenomenon is known. In general, the conditions for growing crystals for lasers are such that a natural lattice is formed on the group III sublattice, and the band gear and energy are smaller than in a complete mixed crystal, resulting in a longer oscillation wavelength due to factors such as doping characteristics. It ends up. Against this 100)
In an AlGaInP crystal grown on a GaAs substrate tilted in the [011) direction from the plane, as the tilt increases, the formation of a natural superlattice is inhibited, and at ±10' or more, the band gap energy of a complete mixed crystal decreases. The value is almost equal to . Therefore, it becomes easier to obtain a laser with a short wavelength, which is advantageous for applications such as optical information processing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の第3図の構造では、(100)面より〔011)
方向へ傾いた結晶を用いているのでへきかい面による平
行ずラーを形成するためには〔O1l〕方向へストライ
プをきる必要がある。このときメサストライプの左右側
面の基板に対する角度が、第3図に示すように、異なっ
てしまう。このためメサストライプの左右で屈折率分布
に非対称性が生じ、光の分布がゆがみ、レーザビームの
質が低下してしまう。
In the structure shown in Figure 3 above, from the (100) plane, [011]
Since a crystal tilted in the direction is used, it is necessary to cut the stripe in the [O1l] direction in order to form a parallel misalignment due to the cleavage plane. At this time, the angles of the left and right side surfaces of the mesa stripe with respect to the substrate differ as shown in FIG. This causes asymmetry in the refractive index distribution on the left and right sides of the mesa stripe, distorting the light distribution and degrading the quality of the laser beam.

本発明の目的は、上述の問題点を解決し、発振波長を短
く保ったままレーザビームの質の低下を防いだ横モード
制御構造のAlGaInP系半導体レーザを提供するこ
とにある。
An object of the present invention is to solve the above-mentioned problems and provide an AlGaInP-based semiconductor laser with a transverse mode control structure that prevents deterioration of laser beam quality while keeping the oscillation wavelength short.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体レーザは、基板面が(100)面より〔
011)方向へ±10°以上、±30″以下傾いた第1
導電型G a A s基板上に、GaInPもしくはA
lGaInPもしくはそれらの量子井戸層からなる活性
層と、この活性層をはさみ活性層よりも屈折率の小さな
AlGaInPからなるクラッド層とからなるダブルヘ
テロ構造が形成されており、前記活性層の上側の第2導
電型の第1のクラッド層は層厚が部分的に厚くなること
により形成される〔O1l〕方向のストライプ状の逆メ
サ構造を有し、少くともメサ構造両脇に半導体層を設け
てメサ構造を埋め込んだ構造を有することを特徴として
いる。
In the semiconductor laser of the present invention, the substrate surface is closer to the (100) plane [
011) The first tilted in the direction of ±10° or more and ±30″ or less
GaInP or A on the conductivity type GaAs substrate
A double heterostructure is formed, consisting of an active layer made of lGaInP or a quantum well layer thereof, and a cladding layer made of AlGaInP with a refractive index smaller than that of the active layer, sandwiching this active layer. The first cladding layer of two conductivity types has a striped inverted mesa structure in the [O1l] direction, which is formed by partially increasing the layer thickness, and at least semiconductor layers are provided on both sides of the mesa structure. It is characterized by having a structure in which a mesa structure is embedded.

〔作用〕[Effect]

本発明の半導体レーザでは、(100)面より〔O1l
〕方向へ傾いた面方位のG a A s基板上にレーザ
構造を形成する。(lOO)WJよシ[011〕方向へ
傾いた面方位のGaAs基板上にAlGaInP系結晶
を成長した場合、その傾きの小さな範囲(0°〜66)
では自然超格子の形成が促進され、バンドギャップエネ
ルギーは小さくなる。しかし傾きが±10’をこえると
急激に自然超格子の形成が阻害されるようになり発振波
長は(100)面より〔011)方向へ傾い九結晶を用
いた従来例と同様に短くすることができる。そして(l
OO)面より〔011)方向へ傾いたGaAs基板上に
レーザ構造を形成する場合は、へきかい面による平行ミ
ラーを形成するため罠は〔O1l〕方向へストライプを
きる必要がある。このときメサストライプの形状は逆メ
サとなる。そして逆メサ形状の場合メサストライプの左
右側面の基板に対する角度が異なっても左右とも屈折率
分布は急激に変化するためメサストライプの左右で屈折
・重分布に非対称性は生じず、光の分布はゆが桝まない
のでレーザビームの質は低下しない。
In the semiconductor laser of the present invention, [O1l
] A laser structure is formed on a GaAs substrate with a plane orientation tilted in the direction. (lOO) When an AlGaInP crystal is grown on a GaAs substrate with a plane orientation tilted in the [011] direction from the WJ, the tilt range is small (0° to 66).
In this case, the formation of a natural superlattice is promoted, and the band gap energy becomes smaller. However, when the tilt exceeds ±10', the formation of a natural superlattice is suddenly inhibited, and the oscillation wavelength is tilted from the (100) plane to the [011) direction, making it short as in the conventional example using nine crystals. I can do it. and (l
When forming a laser structure on a GaAs substrate tilted in the [011) direction from the 00) plane, the trap must be striped in the [011] direction in order to form a parallel mirror by the cleavage plane. At this time, the shape of the mesa stripe becomes an inverted mesa. In the case of an inverted mesa shape, even if the angles of the left and right sides of the mesa stripe with respect to the substrate are different, the refractive index distribution changes rapidly on both sides, so there is no asymmetry in the refraction/heavy distribution on the left and right sides of the mesa stripe, and the light distribution is Since there is no distortion, the quality of the laser beam does not deteriorate.

〔実施例〕〔Example〕

本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described using the drawings.

第1図は本発明の半導体レーザの第1の実施例の断面図
である。
FIG. 1 is a sectional view of a first embodiment of a semiconductor laser according to the present invention.

まず1回目の減圧MOVPEによる成長で、(511)
B面のn型GaAs基板1(8iドープ;n= 2 X
 10” cm−3)上に、n型(Alo、s oaO
,、)o、5In(1,5Fクラッド層2(n=5X1
0  cm  :厚み1μm)、oa(L5 Ing、
5 P活性層3(アンドープ;厚みo、1μm)、p型
(Alo、s Ga a、a ) o、s I n o
、sPクラッド層4 (p=5 X 1 o”cm−3
;厚み1.0 μm )、p型層aInP層5(p=l
xto  Cm  :厚み03μm)を順次形成した。
First, with the first decompression MOVPE growth, (511)
B-plane n-type GaAs substrate 1 (8i doped; n=2X
10” cm-3), n-type (Alo, soaO
,,)o,5In(1,5F cladding layer 2(n=5X1
0 cm: thickness 1 μm), oa (L5 Ing,
5 P active layer 3 (undoped; thickness o, 1 μm), p-type (Alo, s Ga a, a ) o, s I no
, sP cladding layer 4 (p=5 X 1 o"cm-3
; thickness 1.0 μm), p-type layer aInP layer 5 (p=l
xto Cm: thickness 03 μm) were sequentially formed.

成長条件は、温度700℃、圧カフ 0 Torr 、
  V/1I=200、キャリヤガス(H2)の全流量
1517m1nとした。原料としては、トリメチルイン
ジウA (TM I : (CHs )s I n )
、トリエチルガリウA(TEG: (C2H,)3Ga
)、トリメチルアルミニウム(TMA : (CHs 
)s kl )、アk シン(AsH3)、ホスフィン
(PH3)、n型ドーパント:セレン化水素(H,8e
)、p型ドーノ(ント:シクロペンタヂエニルマグネシ
ウム(CpzMg)を用いた。こうして成長したウェノ
1にフォトリングラフィに−より幅9μmのストライプ
状の5i02マスクを<011>方向に形成した。次に
塩酸系のエツチング液により、p型(AA!o、sGa
α4)0.5 I no、s Pクラッド層4の途中ま
で(ここでは0.8μmとした)をメサ状に工、チング
した。つぎに8102マスクをつけたまま減圧MOVP
Eにより2回目の成長を行ないn型GaAs層6を形成
した。
The growth conditions were a temperature of 700°C, a pressure cuff of 0 Torr,
V/1I=200, and the total flow rate of carrier gas (H2) was 1517 m1n. As a raw material, trimethylindium A (TMI: (CHs)s I n )
, triethylgalliu A (TEG: (C2H,)3Ga
), trimethylaluminum (TMA: (CHs
)s kl ), ak syn (AsH3), phosphine (PH3), n-type dopant: hydrogen selenide (H,8e
), p-type cyclopentadienylmagnesium (CpzMg) was used.A striped 5i02 mask with a width of 9 μm was formed in the <011> direction on the thus grown Weno 1 by photolithography.Next Then, p-type (AA!o, sGa
α4) 0.5 I no, s The middle of the P cladding layer 4 (here, 0.8 μm) was cut into a mesa shape. Next, decompression MOVP with the 8102 mask on.
A second growth was performed using E to form an n-type GaAs layer 6.

そして8i0zマスクを除去した後に、減圧MOVPE
により3回目の成長を行ないp型GaAs層7を形成し
た。最後に、p、n両電極(図示省略)を形成してキャ
ビティ長300μmにへき関し、個々のチップに分離し
た。
After removing the 8i0z mask, vacuum MOVPE
A third growth was performed to form a p-type GaAs layer 7. Finally, both p and n electrodes (not shown) were formed and separated into individual chips with a cavity length of 300 μm.

こうして製作した半導体レーザの発振波長は(511)
A面のGaAs基板上に形成した従来の半導体レーザと
同じ660nm程度で発振した。本実施例と同一条件で
(100)GaAs基板上に成長した半導体レーザの発
振波長は688 nmであり本実施例では28 nm短
波長化している。また本実施例の半導体レーザの接合面
に平行方向の近視野像は左右対象であった。これに対し
従来の半導体レーザではメサ左右で屈折率分布に非対称
性が生じ近視野像が左右非対称となってしまった。
The oscillation wavelength of the semiconductor laser manufactured in this way is (511)
It oscillated at about 660 nm, the same as a conventional semiconductor laser formed on an A-plane GaAs substrate. The oscillation wavelength of a semiconductor laser grown on a (100) GaAs substrate under the same conditions as in this example is 688 nm, which is shortened by 28 nm in this example. Furthermore, the near-field image in the direction parallel to the junction surface of the semiconductor laser of this example was symmetrical. In contrast, in conventional semiconductor lasers, there is asymmetry in the refractive index distribution between the left and right sides of the mesa, resulting in a near-field image that is asymmetrical.

第2図は本発明の半導体レーザの第2の実施例を示す断
面図であり、ストライプ状のメサ構造を形成するまでは
第1の実施例と同一製造プロセスである。そしてこのス
トライプ状のメサ構造の形成ののち、5i02マスクを
除去した後に、減圧MOVPEにより2回目の成長を行
ないp型GaAs層7を形成した。最後に、p、n両電
極(図示省略)を形成してキャビティ長300μmにへ
き開し、個々のチップに分離した。
FIG. 2 is a sectional view showing a second embodiment of the semiconductor laser of the present invention, and the manufacturing process is the same as that of the first embodiment until the striped mesa structure is formed. After the formation of this striped mesa structure, the 5i02 mask was removed and a second growth was performed by low pressure MOVPE to form a p-type GaAs layer 7. Finally, both p and n electrodes (not shown) were formed, the cavity was cleaved to a length of 300 μm, and the chips were separated into individual chips.

この第2の実施例は電流ブロック機構をp−n−p−n
接合を利用したものから、メサ部以外の部分でp型Ga
As層とp型(klo、s Ga(14)o、sI n
CLsP層が直接接合し、この2層間の大きなバンド不
連続により価電子帯に発生するエネルギースパイクによ
りホールが流れなくなる現象を利用したものに変わった
以外は第1の実施例と同じであり、その発振特性も第1
の実施例と同等であった。
This second embodiment uses a current blocking mechanism as p-n-p-n.
From those using junctions, p-type Ga is formed in areas other than the mesa.
As layer and p-type (klo, sGa(14)o, sIn
This is the same as the first embodiment except that the CLsP layer is directly bonded and the hole flow stops due to the energy spike generated in the valence band due to the large band discontinuity between these two layers. The oscillation characteristics are also the first
It was equivalent to the example of .

以上述べた実施例では、活性層をGa005 I no
、5 P sクラッド層を(Alo、s Ga(1,4
)o、s I no、s Pとしたが1活性層組成は製
作する半導体レーザに要求される発振波長要件を満たす
組成、材料、もしくは量子井戸にすればよく、クラッド
層組成は用いる活性層組成に対して光とキャリヤの閉じ
込めが十分にできる組成、材料を選べばよい。また半導
体レーザに要求される特性によりSCH構造にするなど
を向上させる層を導入することも可能である。また以上
述べた実施例では(100)面より〔011〕方向へ1
5.8°傾いた(511 )B面のG a A s基板
を用いたがこの角度も本発明の指定範囲内であれば良い
In the embodiments described above, the active layer is made of Ga005I no
, 5 P s cladding layer (Alo, s Ga(1,4
) o, s I no, s P 1 The active layer composition may be a composition, material, or quantum well that satisfies the oscillation wavelength requirements of the semiconductor laser to be manufactured, and the cladding layer composition depends on the active layer composition used. It is only necessary to select a composition and material that can sufficiently confine light and carriers. Furthermore, it is also possible to introduce a layer that improves the SCH structure or the like depending on the characteristics required of a semiconductor laser. In addition, in the embodiment described above, 1 from the (100) plane to the [011] direction.
Although a GaAs substrate with a (511) B plane tilted by 5.8° was used, this angle may also be within the specified range of the present invention.

〔発明の効果〕〔Effect of the invention〕

このように本発明により、発振波長を短く保ったままレ
ーザビームの質の低下を防いだ横モード制御構造のAl
GaInP系半導体レーザを提供することができる。
As described above, the present invention provides an Al material with a transverse mode control structure that prevents deterioration of laser beam quality while keeping the oscillation wavelength short.
A GaInP semiconductor laser can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例を示す断面図、第2図は
第2の実施例を示す断面図、第3図は従来の半導体レー
ザの例を示す断面図である。 図において、 1− (sll)s fin型GaAa基板、2−・・
・・・n型(kl 6.@ Ga 6,4 ) 6.5
 I n(L5 Fクラッド層、3−− GaInP活
性層、4 ”” ”’ I)型(にlo、a Ga(1
,4) cLs I no、sPクラッド層、5・・・
・・・p型層aInP層、6・・・・・・n型GaAs
層、? ・−−−−−p型GaAs、 8・”−(51
1)^面n型GaAs基板である。 代理人 弁理士  内 原   晋 VP型(EaAs層 刀 図
FIG. 1 is a sectional view showing a first embodiment of the present invention, FIG. 2 is a sectional view showing a second embodiment, and FIG. 3 is a sectional view showing an example of a conventional semiconductor laser. In the figure, 1- (sll)s fin type GaAa substrate, 2-...
...n type (kl 6.@Ga 6,4) 6.5
In (L5 F cladding layer, 3--GaInP active layer, 4 ''''''' I) type (nilo, a Ga(1
, 4) cLs I no, sP cladding layer, 5...
...p-type layer aInP layer, 6...n-type GaAs
layer,?・---P-type GaAs, 8・”-(51
1) It is a ^-plane n-type GaAs substrate. Agent: Susumu Uchihara, VP type (EaAs layered sword diagram)

Claims (1)

【特許請求の範囲】  面方位が(100)面より〔01@1@〕方向へ±1
0°以上±30°以下傾いている第1導電型GaAs基
板上に、GaInPもしくはAlGaInPもしくはそ
れらの量子井戸層からなる活性層と、この活性層をはさ
み活性層よりも屈折率の小さなAlGaInPからなる
クラッド層とからなるダブルヘテロ構造が形成されてお
り、前記活性層の上側の第2導電型の第一のクラッド層
は層厚が部分的に厚くなることにより形成される〔01
1〕方向のストライプ状の逆メサ構造を有し、少くとも
メサ構造両脇に半導体層を設けてメサ構造を埋め込んだ
構造を有することを特徴とする半導体レーザ。
[Claims] The plane orientation is ±1 from the (100) plane in the [01@1@] direction.
On a first conductivity type GaAs substrate tilted by 0° or more and ±30° or less, there is an active layer made of GaInP or AlGaInP or a quantum well layer thereof, and a layer made of AlGaInP with a refractive index smaller than that of the active layer sandwiching this active layer. A double heterostructure consisting of a cladding layer is formed, and the first cladding layer of the second conductivity type above the active layer is formed by partially thickening the layer thickness [01
1] A semiconductor laser having a stripe-like inverted mesa structure in the direction 1), and having a structure in which the mesa structure is embedded by providing semiconductor layers on at least both sides of the mesa structure.
JP18633590A 1990-07-13 1990-07-13 Semiconductor laser Expired - Fee Related JP2611509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18633590A JP2611509B2 (en) 1990-07-13 1990-07-13 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18633590A JP2611509B2 (en) 1990-07-13 1990-07-13 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH0472787A true JPH0472787A (en) 1992-03-06
JP2611509B2 JP2611509B2 (en) 1997-05-21

Family

ID=16186550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18633590A Expired - Fee Related JP2611509B2 (en) 1990-07-13 1990-07-13 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2611509B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193313A (en) * 1993-12-27 1995-07-28 Nec Corp Semiconductor laser
JP2009277999A (en) * 2008-05-16 2009-11-26 Hitachi Cable Ltd Semiconductor light-emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193313A (en) * 1993-12-27 1995-07-28 Nec Corp Semiconductor laser
JP2009277999A (en) * 2008-05-16 2009-11-26 Hitachi Cable Ltd Semiconductor light-emitting element

Also Published As

Publication number Publication date
JP2611509B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
JPH03227088A (en) Semiconductor laser
JP2929990B2 (en) Semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JP2980302B2 (en) Semiconductor laser
JPS61190994A (en) Semiconductor laser element
JPH0472787A (en) Semiconductor laser
JP2702871B2 (en) Semiconductor laser and method of manufacturing the same
JPH10209553A (en) Semiconductor laser element
JP3063684B2 (en) Semiconductor laser and manufacturing method thereof
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof
JPH04154184A (en) Semiconductor laser and manufacture thereof
JPH07202336A (en) Semiconductor laser and manufacture thereof
JP2973215B2 (en) Semiconductor laser device
JP2001332811A (en) Semiconductor laser element and its manufacturing method
JPH11346033A (en) Semiconductor laser and manufacture thereof
JPH11284276A (en) Semiconductor laser device and its manufacture
JPH01244690A (en) Semiconductor laser device
JPH077230A (en) Index counter guide type semiconductor laser
JPH04106991A (en) Semiconductor laser
JPS62144379A (en) Semiconductor laser element
JPH04105381A (en) Semiconductor laser
JPS6129183A (en) Semiconductor laser
JPH04162482A (en) Semiconductor laser
JP2000012953A (en) Semiconductor laser element and its manufacture
JPH01239988A (en) Semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees