JPH03247597A - Epitaxial growth method of iii-v compound semiconductor on silicon substrate - Google Patents

Epitaxial growth method of iii-v compound semiconductor on silicon substrate

Info

Publication number
JPH03247597A
JPH03247597A JP4295190A JP4295190A JPH03247597A JP H03247597 A JPH03247597 A JP H03247597A JP 4295190 A JP4295190 A JP 4295190A JP 4295190 A JP4295190 A JP 4295190A JP H03247597 A JPH03247597 A JP H03247597A
Authority
JP
Japan
Prior art keywords
compound semiconductor
single crystal
substrate
semiconductor layer
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4295190A
Other languages
Japanese (ja)
Inventor
Shigeo Sugao
繁男 菅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4295190A priority Critical patent/JPH03247597A/en
Publication of JPH03247597A publication Critical patent/JPH03247597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a semiconductor layer which is applicable to a light emitting element with decrease of transition by forming a mask for selective growth having periodically striped apertures on a substrate and selectively epitaxially growing compd. semiconductor layers in the ensuing stage. CONSTITUTION:For example, the mask 2 of an insulating film consisting of SiO2 is laminated at 200nm thickness by a thermal CVD method on the silicon single crystal substrate 1 having the surface at the (100) face inclined by 2 deg. in a <110> direction as a 1st stage. The striped apertures 3 of 1mu width in a (011) direction are thereafter formed at 5mu period by photolithography and chemical etching. Gallium arsenide buffer layers 4 are then epitaxially grown selectively in the apertures 3 exposed with the silicon single crystal by using the insulating layer 2 as a mask until the surfaces thereof are parallel with the substrate bearing as a whole and are flat by side growth as a 2nd stage. Indium phosphide layers 5 are in succession grown at 2mu thickness.

Description

【発明の詳細な説明】 (産業上の利用分野) シリコン基板上のIII e V族化合物半導体のエピ
タキシル成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for epitaxial growth of a group III e V compound semiconductor on a silicon substrate.

(従来の技術〉 シリコン単結晶基板上にガリウム砒素等のIII−V族
化合物半導体層を成長させる再に、表面清浄化が困難で
あること、大きな格子定数差を有すること、シリコンが
共有結合結晶であるのに対しIII e V族化合物半
導体が分極性結晶であること等の問題がある。これらの
問題のためシリコン基板上に成長した化合物半導体層は
108cm−3程度の高い転位を有しデバイス作製に充
分な品質を得ることが困難であった。しかし、これらの
問題を低減する手法として、高温での基板表面清浄化、
歪超格子層からなるバッファ層、基板方位の傾斜等の方
法がある。これらの手法を用いたシリコン基板上への化
合物半導体層のエピタキシャル成長の例が応用電子物性
分科会研究報告(同報告書、No、 424. p、 
12)に報告されている。この従来例ではシリコン単結
晶基板上にInP単結晶層を成長させており、エッチビ
ット密度として107cm−3が得られている。
(Prior art) When growing a III-V compound semiconductor layer such as gallium arsenide on a silicon single crystal substrate, it is difficult to clean the surface, there is a large difference in lattice constant, and silicon is a covalently bonded crystal. However, there are problems such as the fact that Group IIIe V compound semiconductors are polarized crystals.Because of these problems, compound semiconductor layers grown on silicon substrates have high dislocations of about 108cm-3, making them difficult to use for devices. It has been difficult to obtain sufficient quality for fabrication.However, as a method to reduce these problems, cleaning the substrate surface at high temperature,
There are methods such as using a buffer layer made of a strained superlattice layer and tilting the substrate orientation. An example of epitaxial growth of a compound semiconductor layer on a silicon substrate using these methods is given in the Research Report of the Applied Electronic Materials Subcommittee (Report, No. 424. p.
12). In this conventional example, an InP single crystal layer is grown on a silicon single crystal substrate, and an etch bit density of 107 cm-3 is obtained.

(発明が解決しようとする課題) しかしながら、転位が直接デバイス特性を左右する半導
体レーザや発光ダイオードでは105cm−3以下のエ
ッチビット密度に抑える必要があるため、従来の成長法
による結晶品質では発光素子への応用が困難であった。
(Problem to be solved by the invention) However, in semiconductor lasers and light-emitting diodes, where dislocations directly affect device characteristics, it is necessary to suppress the etch bit density to 105 cm-3 or less. It was difficult to apply it to

本発明の目的はシリコン単結晶基板上に転位の少ないI
II−V族化合物半導体層をエピタキシャル成長させる
ことを目的とする。
The object of the present invention is to produce an I material with few dislocations on a silicon single crystal substrate.
The purpose is to epitaxially grow a II-V group compound semiconductor layer.

(課題を解決するための手段) 本発明のエピタキシャル成長方法はシリコン単結晶基板
上にIII−V族化合物半導体層をエピタキシャル成長
する方法に於て、シリコン単結晶基板上に周期的にスト
ライプ状の開口部をもつ選択成長用マスクを形成する第
1の工程と前記III−V族化合物半導体層をエピタキ
シャル成長させ隣接する前記開口部から成長した前記半
導体層の成長部側面を接合させシリコン基板面とほぼ平
行な平坦な前記化合物半導体表面を形成する第2の工程
とを備えることを特徴とする。
(Means for Solving the Problems) The epitaxial growth method of the present invention is a method for epitaxially growing a III-V compound semiconductor layer on a silicon single crystal substrate. a first step of forming a mask for selective growth having a mask for selective growth; and a step of epitaxially growing the III-V compound semiconductor layer and joining the side surfaces of the growth portion of the semiconductor layer grown from the adjacent openings so as to be substantially parallel to the silicon substrate surface. and a second step of forming a flat surface of the compound semiconductor.

(作用) 本発明によるシリコン単結晶基板上へのIII−V族化
合物半導体のエピタキシャル成長方法では、第一の工程
でシリコン基板上に周期的なストライプ状の開口部をも
つ選択成長用マスクを形成し、第2の工程で化合物半導
体層を選択的にエピタキシャル成長する。この場合、周
期的にストライプ状に開口されたシリコン単結晶表面か
ら成長した化合物半導体層は成長面と垂直方向への成長
と共に面内方向への側面成長を続は隣合うストライプ状
の半導体成長層と結合し、全体として基板面方位と平行
な方位を持つ平坦な成長表面を形成する。
(Function) In the epitaxial growth method of a III-V compound semiconductor on a silicon single crystal substrate according to the present invention, a selective growth mask having periodic striped openings is formed on the silicon substrate in the first step. In the second step, a compound semiconductor layer is selectively epitaxially grown. In this case, a compound semiconductor layer grown from a silicon single crystal surface with periodic striped openings grows in the direction perpendicular to the growth plane and laterally grows in the in-plane direction. to form a flat growth surface with an overall orientation parallel to the substrate surface orientation.

以上のようにして形成された半導体層は内部にストライ
プ状の孔を持つ多孔質な単結晶半導体層となる。この多
孔質の半導体層は、シリコン基板と化合物半導体層との
7熱膨張率の違いにより発生する応力、および格子定数
差に起因する応力を軽減し、且つ、それらの応力によっ
て発生する転位の伝搬を阻止する。その結果この多孔質
の半導体層をバッファ層として用いることによりその上
に形成されるデバイス用の半導体層の転位の発生が低減
され、発光素子への応用が可能となる。
The semiconductor layer formed as described above becomes a porous single crystal semiconductor layer having stripe-shaped pores inside. This porous semiconductor layer reduces the stress caused by the difference in coefficient of thermal expansion between the silicon substrate and the compound semiconductor layer and the stress caused by the difference in lattice constant, and also prevents the propagation of dislocations caused by these stresses. to prevent As a result, by using this porous semiconductor layer as a buffer layer, the occurrence of dislocations in a semiconductor layer for a device formed thereon is reduced, making it possible to apply the porous semiconductor layer to a light emitting element.

(実施例) 以下、図面を用いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の詳細な説明する工程図である。本実施
例ではシリコン単結晶基板上にインジウム燐単結晶層を
エピタキシャル成長させる場合について説明する。
FIG. 1 is a detailed process diagram illustrating the present invention. In this embodiment, a case will be described in which an indium phosphorus single crystal layer is epitaxially grown on a silicon single crystal substrate.

まず第1の工程として410>方向に2°傾けた(10
0)面を表面とするシリコン単結晶基板上の上に熱CV
D法により厚さ200nmの5i02絶縁膜のマスク2
を積層したのち、通常のフォトリソグラフィーと化学エ
ツチングの手法により幅1pmの(011)方向のスト
ライプ状の開口部3を周期5pmで形成した(第1図(
a))。つぎに第2の工程として5i02絶縁膜層2を
選択成長マスクとして用い、シリコン単結晶表面が露出
している開口部3に選択的にガリウム砒素バッファ層4
をその表面が側面成長により全体として基板方位に平行
でかつ平坦な表面となるまでエピタキシャル成長を行な
い、続いて厚さ2pmのインジウム燐層5を成長した(
第1図(b))。ここではバッファ層4の厚さ4pm以
上で平坦化した。本実施例では選択成長特性を有するエ
ピタキシャル成長方法としてハイドライド気相成長法を
用いた。V族材料にはアルシン(分子式AsH3)及び
ホスフィン(分子式PH3)を用い、III族材料には
インジウム及びガリウムメタルを用い塩化水素との反応
により基板表面に導き成長させた。転位低減の効果を高
めるために、結晶成長前に高温(1000’C)での表
面清浄化を行なった。
First, as the first step, the 410> direction was tilted by 2 degrees (10
0) Thermal CV on the silicon single crystal substrate with the surface as the surface.
Mask 2 of 5i02 insulating film with a thickness of 200 nm by D method
After layering, stripe-shaped openings 3 with a width of 1 pm in the (011) direction were formed at a period of 5 pm using conventional photolithography and chemical etching methods (see Fig. 1).
a)). Next, in the second step, using the 5i02 insulating film layer 2 as a selective growth mask, a gallium arsenide buffer layer 4 is selectively formed in the opening 3 where the silicon single crystal surface is exposed.
Epitaxial growth was performed until the surface became a flat surface as a whole parallel to the substrate orientation by lateral growth, and then an indium phosphorus layer 5 with a thickness of 2 pm was grown (
Figure 1(b)). Here, the buffer layer 4 was flattened to a thickness of 4 pm or more. In this example, hydride vapor phase epitaxy was used as an epitaxial growth method having selective growth characteristics. Arsine (molecular formula: AsH3) and phosphine (molecular formula: PH3) were used as group V materials, and indium and gallium metal were used as group III materials, which were grown by being guided onto the substrate surface by reaction with hydrogen chloride. In order to enhance the effect of reducing dislocations, surface cleaning was performed at high temperature (1000'C) before crystal growth.

こうして形成したガリウム砒素バッファ層4は内部にス
トライプ状の孔を持つ多孔質な単結晶半導体層となる。
The gallium arsenide buffer layer 4 thus formed becomes a porous single crystal semiconductor layer having stripe-shaped pores inside.

この多孔質の半導体層は、シリコン基板と化合物半導体
層との熱膨張率の違いにより発生する応力、および格子
定数差に起因する応力を軽減し、且つ、それらの応力に
よって発生する転位の伝搬を阻止する。その結果この多
孔質のガリウム砒素バッファ層4を用いることによりそ
の上に形成されるデバイス用のインジウム燐層5の転位
密度が105cm−3以下に低減され、転位に比較的敏
感なデバイスである半導体レーザや発光ダイオード等の
発光素子への応用が可能となる。
This porous semiconductor layer reduces the stress caused by the difference in thermal expansion coefficient between the silicon substrate and the compound semiconductor layer and the stress caused by the difference in lattice constant, and also prevents the propagation of dislocations caused by these stresses. prevent. As a result, by using this porous gallium arsenide buffer layer 4, the dislocation density of the indium phosphide layer 5 for devices formed thereon is reduced to 105 cm-3 or less, and the semiconductor device is relatively sensitive to dislocations. Application to light-emitting elements such as lasers and light-emitting diodes becomes possible.

上記実施例ではガリウム砒素バッファ層4の上にインジ
ウム燐層5を成長させたがガリウム砒素等、他のIII
 e V族化合物半導体層の場合においても同様の効果
が得られる。選択成長用マスクとして5i02膜を用い
たが窒化シリコン、アモルファスシリコン、カーボン等
でもよい。また開口部3の幅は1μm、周期5μmとし
たが成長条件、材料により最適化すればよい。本実施例
の条件では幅1〜511m、周期5〜15pm程度で良
好な結果が得られる。またバッファ層4としてガリウム
砒素を用いたがインジウム燐、等地のIII −V族化
合物でもよい。バッファ層はその上に積層する半導体層
と同じか、Siとその半導体層の中間の格子定数の半導
体であればよい。
In the above embodiment, the indium phosphide layer 5 was grown on the gallium arsenide buffer layer 4, but other materials such as gallium arsenide, etc.
Similar effects can be obtained in the case of e V group compound semiconductor layer. Although a 5i02 film was used as a mask for selective growth, silicon nitride, amorphous silicon, carbon, etc. may also be used. Although the width of the opening 3 is 1 μm and the period is 5 μm, it may be optimized depending on the growth conditions and material. Under the conditions of this example, good results can be obtained with a width of 1 to 511 m and a period of about 5 to 15 pm. Further, although gallium arsenide is used as the buffer layer 4, it may also be a III-V group compound such as indium phosphorus. The buffer layer may be made of a semiconductor having a lattice constant that is the same as that of the semiconductor layer stacked thereon, or has a lattice constant between that of Si and the semiconductor layer.

上記実施例では選択成長特性を有する成長法としてハイ
ドライド気相成長法を用いたが、ケミカルビームエピタ
キシャル成長法MOVPE成長法等の選択成長特性を有
する他の成長法を用いてもよい。
In the above embodiment, hydride vapor phase epitaxy was used as a growth method having selective growth characteristics, but other growth methods having selective growth characteristics such as chemical beam epitaxial growth or MOVPE growth may be used.

(発明の効果) Si単結晶基板との熱膨張係数差、格子不整による転位
が多孔質な単結晶バッファ層の形成によって低減される
ために、従来技術に比べ結晶性が向上する。この結果転
位密度が105cm−3以下となり発光素子に応用する
ことができる。
(Effects of the Invention) Since the difference in thermal expansion coefficient with the Si single crystal substrate and dislocations due to lattice misalignment are reduced by forming the porous single crystal buffer layer, crystallinity is improved compared to the conventional technology. As a result, the dislocation density becomes 10 5 cm -3 or less, which can be applied to light emitting devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する工程断面図である。 1・・・シリコン単結晶基板、2・・・マスク、3・・
・開口部、4・・・ガリウム砒素バッファ層、5・・・
インジウム燐層 を、それぞれ示す。
FIG. 1 is a process cross-sectional view explaining the present invention in detail. 1...Silicon single crystal substrate, 2...Mask, 3...
- Opening, 4... Gallium arsenide buffer layer, 5...
Indium phosphorous layers are shown respectively.

Claims (1)

【特許請求の範囲】[Claims] シリコン単結晶基板上にIII−V族化合物半導体層をエ
ピタキシャル成長する方法に於て、シリコン単結晶基板
上に周期的にストライプ状の開口部をもつ選択成長用マ
スクを形成する第一の工程と前記III−V族化合物半導
体層をエピタキシャル成長し、隣接する前記開口部から
成長した前記半導体層の成長部側面を接合させシリコン
基板面とほぼ平行な平坦な前記化合物半導体表面を形成
する第2の工程とを備えることを特徴とするシリコン基
板上へのIII−V族化合物半導体のエピタキシャル成長
方法。
In a method for epitaxially growing a III-V compound semiconductor layer on a silicon single crystal substrate, a first step of forming a selective growth mask having periodic striped openings on the silicon single crystal substrate; a second step of epitaxially growing a III-V compound semiconductor layer and joining the side surfaces of the growth portions of the semiconductor layers grown from the adjacent openings to form the flat compound semiconductor surface substantially parallel to the silicon substrate surface; 1. A method for epitaxially growing a III-V compound semiconductor on a silicon substrate, the method comprising:
JP4295190A 1990-02-22 1990-02-22 Epitaxial growth method of iii-v compound semiconductor on silicon substrate Pending JPH03247597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4295190A JPH03247597A (en) 1990-02-22 1990-02-22 Epitaxial growth method of iii-v compound semiconductor on silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4295190A JPH03247597A (en) 1990-02-22 1990-02-22 Epitaxial growth method of iii-v compound semiconductor on silicon substrate

Publications (1)

Publication Number Publication Date
JPH03247597A true JPH03247597A (en) 1991-11-05

Family

ID=12650331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4295190A Pending JPH03247597A (en) 1990-02-22 1990-02-22 Epitaxial growth method of iii-v compound semiconductor on silicon substrate

Country Status (1)

Country Link
JP (1) JPH03247597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2418531A (en) * 2004-09-22 2006-03-29 Univ Warwick Formation of lattice-tuning semiconductor substrates
US9344200B2 (en) 2014-10-08 2016-05-17 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth
US9395489B2 (en) 2014-10-08 2016-07-19 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2418531A (en) * 2004-09-22 2006-03-29 Univ Warwick Formation of lattice-tuning semiconductor substrates
US9344200B2 (en) 2014-10-08 2016-05-17 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth
US9395489B2 (en) 2014-10-08 2016-07-19 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material
US9590393B2 (en) 2014-10-08 2017-03-07 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth
US9726819B2 (en) 2014-10-08 2017-08-08 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth
US9864135B2 (en) 2014-10-08 2018-01-09 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material

Similar Documents

Publication Publication Date Title
US7230282B2 (en) III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer
US6608327B1 (en) Gallium nitride semiconductor structure including laterally offset patterned layers
US6602763B2 (en) Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth
US6376339B2 (en) Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on silicon carbide substrates by lateral growth from sidewalls of masked posts, and gallium nitride semiconductor structures fabricated thereby
KR100950903B1 (en) Method for producing a gallium nitride film with low defect density by vapour phase epitaxy
US7253499B2 (en) III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer
EP1088340A1 (en) Fabrication of gallium nitride semiconductor layers by lateral growth from trench sidewalls
JP2002343729A (en) Pendeoepitaxial method for manufacturing gallium nitride semiconductor layer on sapphire substrate and gallium nitride semiconductor structure manufactured by the method
KR20010041192A (en) Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth through masks, and gallium nitride semiconductor structures fabricated thereby
KR100319300B1 (en) Semiconductor Device with Quantum dot buffer in heterojunction structures
US5356510A (en) Method for the growing of heteroepitaxial layers
JPH06140346A (en) Manufacture of heteroepitaxial thin layer and of electronic device
US5262348A (en) Method for the growing of heteroepitaxial layers within a confinement space
JP3757339B2 (en) Method for manufacturing compound semiconductor device
JPH03247597A (en) Epitaxial growth method of iii-v compound semiconductor on silicon substrate
JP3634243B2 (en) Method for producing group III nitride semiconductor single crystal and method for using group III nitride semiconductor single crystal
JPH03136319A (en) Heteroepitaxial substrate and semiconductor device
JPH07147461A (en) Semiconductor device and manufacture thereof
KR100359739B1 (en) Method of fusion for heteroepitaxial layers and overgrowth thereon
JPH05267175A (en) Compound semiconductor substrate
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JP4560885B2 (en) Compound semiconductor device and manufacturing method thereof, and semiconductor light emitting device and manufacturing method thereof
JPH0888185A (en) Semiconductor crystal growth method
JP2503255B2 (en) Method for manufacturing compound semiconductor substrate
JP2803375B2 (en) Semiconductor structure