JP2508456B2 - Method for forming semiconductor single crystal thin film - Google Patents

Method for forming semiconductor single crystal thin film

Info

Publication number
JP2508456B2
JP2508456B2 JP60294860A JP29486085A JP2508456B2 JP 2508456 B2 JP2508456 B2 JP 2508456B2 JP 60294860 A JP60294860 A JP 60294860A JP 29486085 A JP29486085 A JP 29486085A JP 2508456 B2 JP2508456 B2 JP 2508456B2
Authority
JP
Japan
Prior art keywords
layer
insulating layer
single crystal
compound semiconductor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60294860A
Other languages
Japanese (ja)
Other versions
JPS62154721A (en
Inventor
好司 玉村
芳文 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60294860A priority Critical patent/JP2508456B2/en
Publication of JPS62154721A publication Critical patent/JPS62154721A/en
Application granted granted Critical
Publication of JP2508456B2 publication Critical patent/JP2508456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコン半導体基板上に絶縁層で分離した
化合物半導体単結晶薄膜を形成するための半導体単結晶
薄膜の形成方法に関する。
TECHNICAL FIELD The present invention relates to a method for forming a semiconductor single crystal thin film for forming a compound semiconductor single crystal thin film separated by an insulating layer on a silicon semiconductor substrate.

〔発明の概要〕[Outline of Invention]

本発明は、半導体単結晶薄膜の形成方法において、シ
リコン半導体基板上に選択的に第1の絶縁層を形成し、
MOCVD法による第1のエピタキシャル成長を行ない、第
1の絶縁層が形成されていないシリコン半導体基板領域
上より成長し、さらに第1の絶縁層上にラテラル成長し
て、第1の絶縁層が形成されていないシリコン半導体基
板領域上から第1の絶縁層上にわたる全面に化合物半導
体層を形成して後、第1の絶縁層が形成されていないシ
リコン半導体基板領域上に形成された化合物半導体層を
選択的に除去し、次いで化合物半導体層が除去されたシ
リコン半導体基板領域の表面に第2の絶縁層を形成し、
次いでMOCVD法による第2のエピタキシャル成長を行な
い第1の絶縁層上の化合物半導体層を種としてラテラル
成長により第2の絶縁層上に化合物半導体層を形成する
ことによって、シリコン半導体基板上に絶縁層で分離し
た化合物半導体層結晶薄膜を形成できるようにしたもの
である。
The present invention is a method for forming a semiconductor single crystal thin film, in which a first insulating layer is selectively formed on a silicon semiconductor substrate,
The first epitaxial layer is formed by MOCVD, and the first insulating layer is formed on the silicon semiconductor substrate region where the first insulating layer is not formed and further laterally grown on the first insulating layer. After forming the compound semiconductor layer over the entire surface of the first insulating layer over the silicon semiconductor substrate region where the first insulating layer is not formed, the compound semiconductor layer formed over the silicon semiconductor substrate region where the first insulating layer is not formed is selected. And then a second insulating layer is formed on the surface of the silicon semiconductor substrate region from which the compound semiconductor layer has been removed,
Then, a second epitaxial growth is performed by MOCVD, and a compound semiconductor layer is formed on the second insulating layer by lateral growth using the compound semiconductor layer on the first insulating layer as a seed. This is so that a separated compound semiconductor layer crystal thin film can be formed.

〔従来の技術〕[Conventional technology]

シリコン基板上へのGa(Al)Asエピタキシャル成長
は、GaAsP/GaP超格子を使う方法、Geをバッファ層とし
て用いる方法、ゆっくりした成長にて直接GaAsを成長さ
せる方法等がある。一方、GaAs基板上に、SiO2又はSiNX
等の絶縁膜のマスクを介して単結晶GaAsを選択成長させ
る場合、MBE(分子線エピタキシー)法では絶縁膜上
に、多結晶GaAsが析出し、MOMBE(有機金属分子線エピ
タキシー)法及び減圧MOCVD(有機金属気相成長)法で
は絶縁膜上に何も堆積しない。また常圧MOCVD法では厳
密な成長条件でない限り絶縁膜上に粒子状のものが析出
されることが報告されている。厳密な成長条件では絶縁
膜上に多少ラテラル成長するが、十分な長さのラテラル
成長は得られない。
Ga (Al) As epitaxial growth on a silicon substrate includes a method using a GaAsP / GaP superlattice, a method using Ge as a buffer layer, and a method of growing GaAs directly by slow growth. On the other hand, on a GaAs substrate, SiO 2 or SiN X
In the case of selective growth of single-crystal GaAs through a mask of an insulating film such as, MBE (Molecular Beam Epitaxy) method deposits polycrystalline GaAs on the insulating film, MOMBE (Metal Organic Molecular Beam Epitaxy) method and low pressure MOCVD In the (metal organic chemical vapor deposition) method, nothing is deposited on the insulating film. It has also been reported that in the atmospheric pressure MOCVD method, particles are deposited on the insulating film unless the growth conditions are strict. Under a strict growth condition, lateral growth is somewhat performed on the insulating film, but lateral growth of a sufficient length cannot be obtained.

そして、SiO2又はSiNX等の絶縁膜上にIII-V族化合物
半導体単結晶薄膜例えばGa(Al)As単結晶薄膜を成長さ
せる方法は未だ提案されていない。
A method for growing a III-V group compound semiconductor single crystal thin film, for example, a Ga (Al) As single crystal thin film on an insulating film such as SiO 2 or SiN x has not been proposed yet.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、例えばシリコン基板上に絶縁層で分離した
III-V族化合物半導体単結晶薄膜が形成できれば、夫々
シリコン系素子とIII-V族化合物半導体系素子の複合デ
バイスが得られる。又、例えばシリコン基板上に絶縁層
で分離したシリコン単結晶薄膜が形成できれば、三次元
デバイスへの応用が可能となる。
By the way, for example, it is separated by an insulating layer on a silicon substrate.
If a III-V group compound semiconductor single crystal thin film can be formed, a composite device of a silicon-based element and a III-V group compound-semiconductor element can be obtained. Further, if a silicon single crystal thin film separated by an insulating layer can be formed on a silicon substrate, it can be applied to a three-dimensional device.

本発明は、上述の点に鑑み、シリコン半導体基板上に
絶縁層で分離した化合物半導体単結晶薄膜を形成するこ
とができる半導体単結晶薄膜の形成方法を提供するもの
である。
In view of the above points, the present invention provides a method for forming a semiconductor single crystal thin film capable of forming a compound semiconductor single crystal thin film separated by an insulating layer on a silicon semiconductor substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、シリコン半導体基板(1)上に選択的に第
1の絶縁層(2)を形成し、MOCVD法による第1のエピ
タキシャル成長を行ない、第1の絶縁層(2)が形成さ
れていないシリコン半導体基板領域上より成長し、さら
に第1の絶縁層上にラテラル成長して、第1の絶縁層
(2)が形成されていないシリコン半導体基板領域から
第1の絶縁層(2)上にわたる全面に化合物半導体層
(3)を形成する。次に第1の絶縁層(2)が形成され
ていないシリコン半導体基板領域上に形成された化合物
半導体層(3A)を選択的に除去し、その化合物半導体層
(3A)が除去されたシリコン半導体基板領域の表面に第
2の絶縁層(2′)を形成する。しかる後、再びMOCVD
法による第2のエピタキシャル成長を行ない、第1の絶
縁層(2)上の化合物半導体層(3B)を種とするラテラ
ル成長により第2の絶縁層(2′)上に化合物半導体層
(3C)を形成する。
According to the present invention, the first insulating layer (2) is selectively formed on the silicon semiconductor substrate (1), the first epitaxial growth is performed by the MOCVD method, and the first insulating layer (2) is not formed. It grows from the silicon semiconductor substrate region and further laterally grows on the first insulating layer to extend from the silicon semiconductor substrate region where the first insulating layer (2) is not formed to the first insulating layer (2). A compound semiconductor layer (3) is formed on the entire surface. Next, the compound semiconductor layer (3A) formed on the silicon semiconductor substrate region where the first insulating layer (2) is not formed is selectively removed, and the compound semiconductor layer (3A) is removed from the silicon semiconductor. A second insulating layer (2 ') is formed on the surface of the substrate area. After that, MOCVD again
Second epitaxial growth is performed by a method to form a compound semiconductor layer (3C) on the second insulating layer (2 ') by lateral growth using the compound semiconductor layer (3B) on the first insulating layer (2) as a seed. Form.

〔作用〕[Action]

シリコン半導体基板(1)と第1の絶縁層(2)上に
化合物半導体層(3)を形成する第1のエピタキシャル
成長工程では、第1の絶縁層(2)が形成されないシリ
コン半導体基板領域上では本来の単結晶の化合物半導体
層(3A)が成長し、第1の絶縁層(2)上ではラテラル
(横方向)成長が起きて同様に単結晶の化合物半導体層
(3B)が形成される。また、第2の絶縁層(2′)を形
成した後、この上に化合物半導体層(3C)を形成する第
2のエピタキシャル成長工程では先の単結晶の化合物半
導体層(3B)を種として之より再びラテラル成長して単
結晶の化合物半導体層(3C)が形成される。その結果、
シリコン半導体基板(1)に絶縁層(2)(2′)で分
離された化合物半導体単結晶薄膜(4)が形成される。
In the first epitaxial growth step of forming the compound semiconductor layer (3) on the silicon semiconductor substrate (1) and the first insulating layer (2), in the silicon semiconductor substrate region where the first insulating layer (2) is not formed, The original single crystal compound semiconductor layer (3A) grows, lateral (lateral) growth occurs on the first insulating layer (2), and a single crystal compound semiconductor layer (3B) is similarly formed. Further, in the second epitaxial growth step of forming the compound semiconductor layer (3C) on the second insulating layer (2 ′), the single crystal compound semiconductor layer (3B) is used as a seed. Lateral growth again forms a single crystal compound semiconductor layer (3C). as a result,
A compound semiconductor single crystal thin film (4) separated by insulating layers (2) and (2 ') is formed on a silicon semiconductor substrate (1).

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 先ず、第1図Aに示すようにIV族半導体例えばシリコ
ン基板(1)の表面に選択酸化(LOCOS)法により選択
的にSiO2層(2)を形成する。
Example 1 First, as shown in FIG. 1A, a SiO 2 layer (2) is selectively formed on the surface of a group IV semiconductor such as a silicon substrate (1) by a selective oxidation (LOCOS) method.

次に第1図Bに示すように選択的にSiO2層(2)が形
成されたシリコン基板(1)上に例えば常圧MOCVD(有
機金属気相成長)法によってIII-V族化合物半導体例え
ばGa(Al)As層(3)をエピタキシャル成長させる。こ
のとき、SiO2層(2)の形成されないシリコン基板
(1)上にはGa(Al)As層(3A)がエピタキシャル成長
する。また、ラテラル成長が起きSiO2層(2)上にも単
結晶のGa(Al)As層(3B)が成長する。
Next, as shown in FIG. 1B, a group III-V compound semiconductor, for example, by a normal pressure MOCVD (metal organic chemical vapor deposition) method, is formed on the silicon substrate (1) on which the SiO 2 layer (2) is selectively formed. The Ga (Al) As layer (3) is epitaxially grown. At this time, the Ga (Al) As layer (3A) is epitaxially grown on the silicon substrate (1) on which the SiO 2 layer (2) is not formed. Further, lateral growth occurs and a single-crystal Ga (Al) As layer (3B) grows on the SiO 2 layer (2).

次に、第1図Cに示すようにSiO2層(2)上のGa(A
l)As層(3B)のみを残して他のGa(Al)As層(3A)を
選択的にエッチング除去する。次に、第1図Dに示すよ
うにSiO2層(2)に覆われない全ての部分のシリコン基
板(1)上に選択的にSiO2層(2′)を形成する。この
SiO2層(2′)の形成は、例えば通常の方法を用い、Ga
(Al)As層(3B)を耐酸化膜で覆って後、全体を熱酸化
するようになす。
Next, on the SiO 2 layer (2) as shown in FIG. 1 C Ga (A
l) Other Ga (Al) As layer (3A) is selectively removed by etching, leaving only the As layer (3B). Next, selectively formed SiO 2 layer (2 ') on a silicon substrate of any of the portion not covered with the SiO 2 layer (2) as shown in FIG. 1 D (1). this
The SiO 2 layer (2 ′) is formed, for example, by using an ordinary method and Ga
After covering the (Al) As layer (3B) with an oxidation resistant film, the whole is thermally oxidized.

しかる後、再び上記の方法でGa(Al)Asをエピタキシ
ャル成長し、Ga(Al)As層(3B)を種として再度ラテラ
ル成長によりSiO2層(2′)上に単結晶のGa(Al)As層
(3C)を形成する。この場合、先にGa(Al)As層(3B)
が形成されているために全体のGa(Al)As層は多少凹凸
する。従って、この後、Ga(Al)As層の表面を平坦化す
るを可とする。これによって第1図Eに示すように、シ
リコン基板(1)上にSiO2層(2)(2′)が形成さ
れ、その上に基板(1)と分離されたGa(Al)As単結晶
薄膜(4)が形成された半導体基板(6)が得られる。
After that, Ga (Al) As was epitaxially grown again by the above method, and the Ga (Al) As layer (3B) was used as a seed to perform lateral growth again to form a single crystal Ga (Al) As on the SiO 2 layer (2 ′). Form the layer (3C). In this case, first the Ga (Al) As layer (3B)
The Ga (Al) As layer on the entire surface is somewhat uneven due to the formation of. Therefore, after this, the surface of the Ga (Al) As layer can be flattened. As a result, as shown in FIG. 1E, the SiO 2 layers (2) and (2 ′) are formed on the silicon substrate (1), and the Ga (Al) As single crystal separated from the substrate (1) is formed thereon. A semiconductor substrate (6) having a thin film (4) formed thereon is obtained.

実施例2 第2図の実施例はSiO2層の形成法が第1図の場合と異
なるものである。
Embodiment 2 The embodiment of FIG. 2 is different from that of FIG. 1 in the method of forming the SiO 2 layer.

先ず、第2図Aに示すようにシリコン基板(1)上に
SiO2層(2)を蒸着して後、このSiO2層(2)を所定パ
ターンにエッチング除去する。
First, as shown in FIG. 2A, on the silicon substrate (1)
Later deposited SiO 2 layer (2), etching away the SiO 2 layer (2) in a predetermined pattern.

次に、第2図Bに示すようにSiO2層(2)に選択的に
形成されたシリコン基板(1)上に例えば常圧MOCVD法
によってGa(Al)As層(3)をエピタキシャル成長させ
る。
Next, as shown in FIG. 2B, a Ga (Al) As layer (3) is epitaxially grown on the silicon substrate (1) selectively formed on the SiO 2 layer (2) by atmospheric pressure MOCVD, for example.

次に第2図Cに示すようにSiO2層(2)が形成されな
い領域上のGa(Al)As層(3A)を選択エッチングにて除
去する。次に、第2図Dに示すようにSiO2の再蒸着を行
い、選択エッチング除去で露呈したシリコン基板(1)
上にSiO2層(2′)を被着形成する。このとき、Ga(A
l)As層(3B)の側面にもSiO2が被着されることが考え
られる。この場合にはGa(Al)As層(3B)の側面に被着
されたSiO2をイオンミリング又は反応性イオンエッチン
グ等の異方性エッチングによって除去するようになす。
Next, as shown in FIG. 2C, the Ga (Al) As layer (3A) on the region where the SiO 2 layer (2) is not formed is removed by selective etching. Next, as shown in FIG. 2D, SiO 2 was redeposited and exposed by selective etching to remove the silicon substrate (1).
A SiO 2 layer (2 ′) is deposited on top. At this time, Ga (A
l) It is conceivable that SiO 2 is also deposited on the side surface of the As layer (3B). In this case, the SiO 2 deposited on the side surface of the Ga (Al) As layer (3B) is removed by anisotropic etching such as ion milling or reactive ion etching.

次に、第2図Eに示すように再度Ga(Al)As層をエピ
タキシャル成長させ、Ga(Al)As層(3B)を種としてラ
テラル成長によりSiO2層(2′)上に単結晶Ga(Al)As
層(3C)を形成する。この後Ga(Al)As層の平坦化処理
を施す。これによってシリコン基板(1)上にSiO2
(2)(2′)が形成され、この上に基板(1)と分離
されたGa(Al)As単結晶薄膜(4)が形成された半導体
基板(6)が得られる。
Next, as shown in FIG. 2E, a Ga (Al) As layer is again epitaxially grown, and a single crystal Ga () is formed on the SiO 2 layer (2 ′) by lateral growth using the Ga (Al) As layer (3B) as a seed. Al) As
Form the layer (3C). After that, the Ga (Al) As layer is flattened. As a result, a SiO 2 layer (2) (2 ′) is formed on the silicon substrate (1), and a Ga (Al) As single crystal thin film (4) separated from the substrate (1) is formed on the semiconductor. A substrate (6) is obtained.

この方法によれば、SiO2層上にGa(Al)Asの単結晶成
長ができ、シリコン基板上での任意なGaAs系素子の作成
が可能となる。そして、良質かつ耐熱性にすぐれた安価
なシリコン基板が使え、Si系素子と、GaAs系素子を同一
基板に作成することが可能となる。GaAs系素子として
は、レーザダイオード、発光ダイオード、太陽電池、電
界効果トランジスタ、2次元電子ガスチャンネルを利用
した高移動度デバイス(HEMT,TEGFET)等が考えられ
る。
According to this method, a single crystal of Ga (Al) As can be grown on the SiO 2 layer, and an arbitrary GaAs-based element can be formed on the silicon substrate. Then, an inexpensive silicon substrate having good quality and excellent heat resistance can be used, and the Si-based element and the GaAs-based element can be formed on the same substrate. As the GaAs element, a laser diode, a light emitting diode, a solar cell, a field effect transistor, a high mobility device (HEMT, TEGFET) using a two-dimensional electron gas channel, and the like can be considered.

本発明は、上例のようにして、シリコン半導体−絶縁
層−化合物半導体構造を形成することができる。
The present invention can form a silicon semiconductor-insulating layer-compound semiconductor structure as in the above example.

尚、上例では絶縁層(2)(2′)としてSiO2を用い
たが、SiNX等の他の絶縁層を用いることもできる。また
両絶縁層(2)(2′)としては同じSiO2を用いたが、
互いに異なる絶縁層を用いても良い。
Although SiO 2 is used as the insulating layers (2) and (2 ′) in the above example, other insulating layers such as SiN X can also be used. The same SiO 2 was used for both insulating layers (2) and (2 ′),
Different insulating layers may be used.

〔発明の効果〕〔The invention's effect〕

本発明によれば、シリコン半導体基板表面の絶縁層上
にシリコン半導体基板と絶縁分離した状態で化合物半導
体単結晶薄膜を形成することができる。従って例えばSi
基板上に絶縁層を介してGa(Al)As単結晶薄膜を形成す
ることが可能となるため、光素子、高速素子としてのGa
As系素子と、Si系素子との混合による光電子IC、三次元
素子への応用が可能となる。
According to the present invention, a compound semiconductor single crystal thin film can be formed on an insulating layer on the surface of a silicon semiconductor substrate in a state of being insulated and separated from the silicon semiconductor substrate. So for example Si
Since it becomes possible to form a Ga (Al) As single crystal thin film on the substrate through an insulating layer, Ga (Al) As as an optical element or high-speed element can be formed.
By mixing As-based elements and Si-based elements, it becomes possible to apply to optoelectronic ICs and three-dimensional elements.

【図面の簡単な説明】[Brief description of drawings]

第1図A〜E及び第2図A〜Eは夫々本発明による半導
体単結晶薄膜の形成方法の実施例を示す工程図である。 (1)はシリコン基板、(2)(2′)はSiO2層、
(3)〔(3A)(3B)(3C)〕はGa(Al)As層、(4)
はGa(Al)As単結晶薄膜である。
1A to 1E and 2A to 2E are process diagrams showing an embodiment of a method for forming a semiconductor single crystal thin film according to the present invention. (1) is a silicon substrate, (2) and (2 ') are SiO 2 layers,
(3) [(3A) (3B) (3C)] is a Ga (Al) As layer, (4)
Is a Ga (Al) As single crystal thin film.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】a.シリコン半導体基板上に選択的に第1の
絶縁層を形成する工程と、 b.MOCVD法による第1のエピタキシャル成長を行い上記
第1の絶縁層が形成されていないシリコン半導体基板領
域上より成長し、さらに上記第1の絶縁層上にラテラル
成長して、上記第1の絶縁層が形成されていないシリコ
ン半導体基板領域上から上記第1の絶縁層上にわたる全
面に化合物半導体層を形成する工程と、 c.上記第1の絶縁層が形成されていないシリコン半導体
基板領域上に形成された上記化合物半導体層を選択的に
除去する工程と、 d.上記化合物半導体層が除去された上記シリコン半導体
基板領域の表面に第2の絶縁層を形成する工程と、 e.MOCVD法による第2のエピタキシャル成長を行い上記
第1の絶縁層上の化合物半導体層を種とするラテラル成
長により、上記第2の絶縁層上に上記化合物半導体層を
形成する工程とを 有する半導体単結晶薄膜の形成方法。
1. A step of selectively forming a first insulating layer on a silicon semiconductor substrate; b. A silicon semiconductor in which the first epitaxial layer is formed by MOCVD and the first insulating layer is not formed. A compound semiconductor is grown on the substrate region and then laterally grown on the first insulating layer to cover the entire surface of the silicon semiconductor substrate region where the first insulating layer is not formed and the first insulating layer. A step of forming a layer, c. A step of selectively removing the compound semiconductor layer formed on the silicon semiconductor substrate region where the first insulating layer is not formed, and a step of removing the compound semiconductor layer. A step of forming a second insulating layer on the surface of the formed silicon semiconductor substrate region, and a second lateral growth using the compound semiconductor layer on the first insulating layer as a seed by performing the second epitaxial growth by the e.MOCVD method. The method for forming a semiconductor single crystal thin film and a step of forming the compound semiconductor layer on the second insulating layer.
JP60294860A 1985-12-27 1985-12-27 Method for forming semiconductor single crystal thin film Expired - Fee Related JP2508456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60294860A JP2508456B2 (en) 1985-12-27 1985-12-27 Method for forming semiconductor single crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60294860A JP2508456B2 (en) 1985-12-27 1985-12-27 Method for forming semiconductor single crystal thin film

Publications (2)

Publication Number Publication Date
JPS62154721A JPS62154721A (en) 1987-07-09
JP2508456B2 true JP2508456B2 (en) 1996-06-19

Family

ID=17813186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60294860A Expired - Fee Related JP2508456B2 (en) 1985-12-27 1985-12-27 Method for forming semiconductor single crystal thin film

Country Status (1)

Country Link
JP (1) JP2508456B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575328A (en) * 1980-06-13 1982-01-12 Matsushita Electronics Corp Growing method for semiconductor crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575328A (en) * 1980-06-13 1982-01-12 Matsushita Electronics Corp Growing method for semiconductor crystal

Also Published As

Publication number Publication date
JPS62154721A (en) 1987-07-09

Similar Documents

Publication Publication Date Title
JP2889589B2 (en) Method for manufacturing alternate layers of single crystal semiconductor material layer and insulating material layer
JP4790909B2 (en) Fabrication of gallium nitride layers by lateral growth.
US6100104A (en) Method for fabricating a plurality of semiconductor bodies
JP2954743B2 (en) Method for manufacturing semiconductor light emitting device
JP2889588B2 (en) Method of forming alternation of single crystal semiconductor material layer and insulating material layer
EP1052684A1 (en) A method for manufacturing group III nitride compound semiconductor and a light-emitting device using group III nitride compound semiconductor
US20100044719A1 (en) III-V Compound Semiconductor Epitaxy Using Lateral Overgrowth
TW200306019A (en) Process for producing group III nitride compound semiconductor, group III nitride compound semiconductor component, and method for producing group III nitride compound semiconductor substrate
JPH06140346A (en) Manufacture of heteroepitaxial thin layer and of electronic device
JP3545962B2 (en) GaN-based compound semiconductor crystal growth method and semiconductor crystal substrate
JPS61188927A (en) Compound semiconductor device
JP2508456B2 (en) Method for forming semiconductor single crystal thin film
JP2000077770A (en) Semiconductor laser and formation method of there
JP2794506B2 (en) Compound semiconductor heteroepitaxial growth method
US6633056B2 (en) Hetero-integration of dissimilar semiconductor materials
JP4285928B2 (en) Method for forming semiconductor layer
JPH05121321A (en) Silicon crystal growth method
JPH0626181B2 (en) Method for manufacturing semiconductor substrate
JP2767601B2 (en) Semiconductor device
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
KR20020055475A (en) Method of fusion for heteroepitaxial layers and overgrowth thereon
JPH10242049A (en) Semiconductor device and manufacturing method thereof
JPH0654763B2 (en) Method for growing semiconductor thin film
JPH03247597A (en) Epitaxial growth method of iii-v compound semiconductor on silicon substrate
JPS6398120A (en) Crystal growth method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees