JPH01188420A - 酸化物超伝導薄膜の製法 - Google Patents
酸化物超伝導薄膜の製法Info
- Publication number
- JPH01188420A JPH01188420A JP63010708A JP1070888A JPH01188420A JP H01188420 A JPH01188420 A JP H01188420A JP 63010708 A JP63010708 A JP 63010708A JP 1070888 A JP1070888 A JP 1070888A JP H01188420 A JPH01188420 A JP H01188420A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- oxide superconducting
- superconducting thin
- substrate
- sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 22
- 238000004544 sputter deposition Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 14
- 229910052786 argon Inorganic materials 0.000 claims abstract description 7
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 5
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 5
- 229910002480 Cu-O Inorganic materials 0.000 claims abstract 3
- 239000011737 fluorine Substances 0.000 claims description 26
- 239000007789 gas Substances 0.000 claims description 20
- 239000011593 sulfur Substances 0.000 claims description 19
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical group [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 claims description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 2
- 230000008569 process Effects 0.000 abstract description 8
- 238000002425 crystallisation Methods 0.000 abstract description 2
- 230000008025 crystallization Effects 0.000 abstract description 2
- 238000005477 sputtering target Methods 0.000 abstract description 2
- 239000008246 gaseous mixture Substances 0.000 abstract 2
- 239000010408 film Substances 0.000 description 26
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 22
- 239000000203 mixture Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- -1 fluorine ions Chemical class 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000004125 X-ray microanalysis Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229940063746 oxygen 20 % Drugs 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Physical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は酸化物超伝導薄膜の製法に係り、特に電子デバ
イス化を目的とする酸化物超伝導薄膜の製法に関する。
イス化を目的とする酸化物超伝導薄膜の製法に関する。
従来、ペロブスカイト状結晶構造をもつ酸化物超伝導薄
膜の製法については、フィジカル・レヴユー・レターズ
58巻25号(1987年)第2684頁から第26
86頁(Physical Reviet++Lett
ers58 、25 (1987) P P 2684
−2686)において論じられている。
膜の製法については、フィジカル・レヴユー・レターズ
58巻25号(1987年)第2684頁から第26
86頁(Physical Reviet++Lett
ers58 、25 (1987) P P 2684
−2686)において論じられている。
上記従来技術は、低温プロセスにより良質な酸化物超伝
導薄膜を得る点については配慮がされておらず、結晶性
の高い、あるいは単結晶膜を製造するには、最終熱処理
温度として850℃〜950℃、数時間の熱処理を酸素
ガス雰囲気中で行わなければならず、薄膜構成元素の一
部が蒸発したり、あるいは基板と反応したり、また膜の
均一性、平坦性などは非常に悪く、電子素子化のための
薄膜化はまだ未検討の段階で、素子に必要な薄膜はまだ
得られていないという問題があった。
導薄膜を得る点については配慮がされておらず、結晶性
の高い、あるいは単結晶膜を製造するには、最終熱処理
温度として850℃〜950℃、数時間の熱処理を酸素
ガス雰囲気中で行わなければならず、薄膜構成元素の一
部が蒸発したり、あるいは基板と反応したり、また膜の
均一性、平坦性などは非常に悪く、電子素子化のための
薄膜化はまだ未検討の段階で、素子に必要な薄膜はまだ
得られていないという問題があった。
本発明の目的は、電子デバイスなどの微細構造を有する
素子の作製を可能にするように、700℃以下の低温プ
ロセスのみで、均一で、かつ平坦な結晶性の良好な酸化
物超伝導薄膜を得ることにある。
素子の作製を可能にするように、700℃以下の低温プ
ロセスのみで、均一で、かつ平坦な結晶性の良好な酸化
物超伝導薄膜を得ることにある。
上記目的は、基板上に酸化物超伝導薄膜を形成するプロ
セスにおいてふっ素イオンあるいは硫黄イオンを微量ド
ーピングすることにより、また基板上に酸化物超伝導薄
膜を形成し、次いでこの酸化物超伝導薄膜をふっ素ある
いは硫黄元素を微量含む酸化性雰囲気で熱処理すること
により、達成される。
セスにおいてふっ素イオンあるいは硫黄イオンを微量ド
ーピングすることにより、また基板上に酸化物超伝導薄
膜を形成し、次いでこの酸化物超伝導薄膜をふっ素ある
いは硫黄元素を微量含む酸化性雰囲気で熱処理すること
により、達成される。
本願第1番目の発明は、R−Ba−Cu−0系(R=イ
ツトリウム及びランタノイド系元素)焼結体を主ターゲ
ットとし、アルゴンガスと酸素の混合ガスを主雰囲気と
してスパッタリングすることにより基板上に酸化物超伝
導薄膜を形成する方法において、前記酸化物超伝導薄膜
にふっ素及びあるいは硫黄をドーピングすることにより
、500℃〜700℃の温度において結晶化して酸化物
超伝導:4膜とすることを特徴とする。
ツトリウム及びランタノイド系元素)焼結体を主ターゲ
ットとし、アルゴンガスと酸素の混合ガスを主雰囲気と
してスパッタリングすることにより基板上に酸化物超伝
導薄膜を形成する方法において、前記酸化物超伝導薄膜
にふっ素及びあるいは硫黄をドーピングすることにより
、500℃〜700℃の温度において結晶化して酸化物
超伝導:4膜とすることを特徴とする。
本願第2番目の発明は、R−Ba−Cu−〇系(R=イ
ツトリウム、及びランタノイド系元素)焼結体を主ター
ゲットとし、水素ガスを含む雰囲気においてスパッタリ
ングを行い、基板上に酸化物超伝導薄膜を形成する方法
において、前記酸化物超伝導薄膜にふっ素及びあるいは
硫黄をドーピングして、500℃〜700℃の温度にお
いて結晶化させることを特徴とする。
ツトリウム、及びランタノイド系元素)焼結体を主ター
ゲットとし、水素ガスを含む雰囲気においてスパッタリ
ングを行い、基板上に酸化物超伝導薄膜を形成する方法
において、前記酸化物超伝導薄膜にふっ素及びあるいは
硫黄をドーピングして、500℃〜700℃の温度にお
いて結晶化させることを特徴とする。
いずれにせよ本発明については次の態様が好ましい。
(1)ふっ素あるいは硫黄を微量含むターゲットを使用
することにより、ドーピングすること。
することにより、ドーピングすること。
(2)雰囲気ガスとして、アルゴン、酸素及びふつ他系
ガスの混合ガスを使用すること。
ガスの混合ガスを使用すること。
(3)雰囲気ガスとして、アルゴン、a素及び硫化系ガ
スの混合ガスを使用すること。
スの混合ガスを使用すること。
(4)ふっ素イオンのドーピング量として、RBazC
uaFxOyなる酸素欠損型3層ペロブスカイト状結晶
構造を有する酸化物超伝導薄膜において、ふっ素のドー
ピング量Xとして、0.05〜1とすること。
uaFxOyなる酸素欠損型3層ペロブスカイト状結晶
構造を有する酸化物超伝導薄膜において、ふっ素のドー
ピング量Xとして、0.05〜1とすること。
(5)硫黄イオンのドーピング量として。
RBazCuaSxOyなる酸素欠損型3層ペロブスカ
イト状結晶構造を有する酸化物超伝導薄膜において、硫
黄のドーピング量XとしてX=0.05〜1.5とする
こと。
イト状結晶構造を有する酸化物超伝導薄膜において、硫
黄のドーピング量XとしてX=0.05〜1.5とする
こと。
(6)基板上に酸化物薄膜を形成し、次いでこの酸化物
を酸素とふつ他系ガスを主とする混合ガス雰囲気中ある
いは酸素と硫化系ガスを主とする混合ガス雰囲気中で、
500℃−700℃で熱処理することにより、結晶化さ
せ、酸化物超伝導薄膜とすること。
を酸素とふつ他系ガスを主とする混合ガス雰囲気中ある
いは酸素と硫化系ガスを主とする混合ガス雰囲気中で、
500℃−700℃で熱処理することにより、結晶化さ
せ、酸化物超伝導薄膜とすること。
(7)ターゲットとして’1BazcusFxsyOz
(0、3< x< 0 、7 、0 、1 < y
< 1 )の組成の酸化物を使用すること。
(0、3< x< 0 、7 、0 、1 < y
< 1 )の組成の酸化物を使用すること。
ふっ素イオンあるいは硫黄イオンの微量のドーピングに
よって、酸化物超伝導薄膜の結晶化温度が著しく低下す
る。それによって、良質の酸化物超伝導薄膜を低温プロ
セスのみにより製造することができるので、この薄膜を
電子デバイスへ応用する場合、膜の均一性、平坦性など
が著しく改善される。
よって、酸化物超伝導薄膜の結晶化温度が著しく低下す
る。それによって、良質の酸化物超伝導薄膜を低温プロ
セスのみにより製造することができるので、この薄膜を
電子デバイスへ応用する場合、膜の均一性、平坦性など
が著しく改善される。
以下1本発明の実施例を用いて説明する。
ターゲットを次のように作製する。R203(例えば、
YzO8,E rxos、Gdz○8など)、BaC0
a 、CuOを所定の組成に調合し、酸素?#囲気中で
900℃、5〜10時間加熱反応させる。こうして得ら
れた粉末をターゲット形状の円板に成形プレスし、95
0℃、1〜10時間、酸14雰囲気中で焼結してターゲ
ットを得る。またふっ素元素を含むターゲットの作成は
、原料粉末として、Rx0se B a Coat B
a Fz、 Cu Oを所定の組成に秤量、混合し、
上記と同様な熱処理条件により加熱反応させ、こうして
得られた粉末を成形プレスし、上記と同様な焼結条件に
より焼結してターゲットを得る。この場合、原料粉末と
して、CuFzを使用することもできる。硫黄元素を含
むターゲットの場合は、出発原料粉末としてR2O3,
B a COa 、 Cu O,Cu Sの組合せで作
製できる。
YzO8,E rxos、Gdz○8など)、BaC0
a 、CuOを所定の組成に調合し、酸素?#囲気中で
900℃、5〜10時間加熱反応させる。こうして得ら
れた粉末をターゲット形状の円板に成形プレスし、95
0℃、1〜10時間、酸14雰囲気中で焼結してターゲ
ットを得る。またふっ素元素を含むターゲットの作成は
、原料粉末として、Rx0se B a Coat B
a Fz、 Cu Oを所定の組成に秤量、混合し、
上記と同様な熱処理条件により加熱反応させ、こうして
得られた粉末を成形プレスし、上記と同様な焼結条件に
より焼結してターゲットを得る。この場合、原料粉末と
して、CuFzを使用することもできる。硫黄元素を含
むターゲットの場合は、出発原料粉末としてR2O3,
B a COa 、 Cu O,Cu Sの組合せで作
製できる。
ターゲット組成比ErzBaxCuaFo、5O7j
(δは酸素の欠損量)を有するターゲットを用い、基
板として、 5rTiQ3 、MgO単結晶を用いアル
ゴン酸素雰囲気(酸素20%−50%)中でスパッタ電
圧300V、スパッタ電流300mA、圧カ0.0IT
orrの条件で直流マグネトロンスパッタするとYFl
azCuaFxO7−$簿膜が得られる。結晶の質は、
基板の温度により大きく変化する。第1図。
(δは酸素の欠損量)を有するターゲットを用い、基
板として、 5rTiQ3 、MgO単結晶を用いアル
ゴン酸素雰囲気(酸素20%−50%)中でスパッタ電
圧300V、スパッタ電流300mA、圧カ0.0IT
orrの条件で直流マグネトロンスパッタするとYFl
azCuaFxO7−$簿膜が得られる。結晶の質は、
基板の温度により大きく変化する。第1図。
第2図は、いろいろな基板温度で得られた薄膜のCuK
αを用いたX線回折パターンを示す、この場合、基板に
よるX線強度のピークは図中から削除している。第1図
は、基板温度300℃で得られた膜厚約2μmの膜で、
更に成膜後、500”C。
αを用いたX線回折パターンを示す、この場合、基板に
よるX線強度のピークは図中から削除している。第1図
は、基板温度300℃で得られた膜厚約2μmの膜で、
更に成膜後、500”C。
10hのアニール熱処理を酸化性雰囲気で行ったもので
あるが、非晶質であり、4に以上の温度では超伝導状態
へ転移しない、(b)図は、基板温度650℃で作製し
た収厚約2.5μmの膜で、更に成膜後、500℃、1
0hのアニール熱処理を酸化性雰囲気中で行ったもので
あり、C軸方向に配向性をもつ良い結晶性を示し、超伝
導転移温度は約91にで、転移中は0.3にである。
あるが、非晶質であり、4に以上の温度では超伝導状態
へ転移しない、(b)図は、基板温度650℃で作製し
た収厚約2.5μmの膜で、更に成膜後、500℃、1
0hのアニール熱処理を酸化性雰囲気中で行ったもので
あり、C軸方向に配向性をもつ良い結晶性を示し、超伝
導転移温度は約91にで、転移中は0.3にである。
第1図の膜を、酸化性雰囲気中で800℃、2h、次い
で500℃、10hの熱処理を行うことで結晶性はかな
り改善され、超伝導転移温度も85Kまで上昇するが、
膜表面はあれでくる。
で500℃、10hの熱処理を行うことで結晶性はかな
り改善され、超伝導転移温度も85Kまで上昇するが、
膜表面はあれでくる。
第1図、第2図の膜中におけるふっ素のドーピング量X
はそれぞれ約0.5,0.4である。ターゲット組成で
はX=0.5 であるので、基板温度の増加とともに膜
中のふっ素ドーピング量は減少するようだ、エレクトロ
ン・プローブ・X線マイクロアナライザ(IElect
ron probe X−raymicroanaly
ser 、略してEPMA)による分析によれば、ドー
ピングされたふっ素元素は均一に分布していた。
はそれぞれ約0.5,0.4である。ターゲット組成で
はX=0.5 であるので、基板温度の増加とともに膜
中のふっ素ドーピング量は減少するようだ、エレクトロ
ン・プローブ・X線マイクロアナライザ(IElect
ron probe X−raymicroanaly
ser 、略してEPMA)による分析によれば、ドー
ピングされたふっ素元素は均一に分布していた。
アルゴン酸素混合雰囲気の圧力がO、、OO5以下では
薄膜の表面があれ、0 、 I Torr以上において
も膜の付着が低下したり、均一に膜形成ができないため
、一般に雰囲気圧力は0.01〜0.08Torrの範
囲にあるのが望ましい、また、スパッタ電力も50W以
下では薄膜の堆積速度が小さ過ぎて、実用的でなく、2
00W以上では薄膜表面があれでしまうので、スパッタ
電力は70W〜150Wが好ましい0以上述べたことは
、ここで使用した直流マグネットスパッタにより薄膜を
形成する場合においての好適なスパッタ条件を例示した
もので、高周波スパッタ、高周波マグネトロンスパッタ
により薄膜形成を行う場合には、いろいろな変形や改良
があり得ることは言うまでもない。
薄膜の表面があれ、0 、 I Torr以上において
も膜の付着が低下したり、均一に膜形成ができないため
、一般に雰囲気圧力は0.01〜0.08Torrの範
囲にあるのが望ましい、また、スパッタ電力も50W以
下では薄膜の堆積速度が小さ過ぎて、実用的でなく、2
00W以上では薄膜表面があれでしまうので、スパッタ
電力は70W〜150Wが好ましい0以上述べたことは
、ここで使用した直流マグネットスパッタにより薄膜を
形成する場合においての好適なスパッタ条件を例示した
もので、高周波スパッタ、高周波マグネトロンスパッタ
により薄膜形成を行う場合には、いろいろな変形や改良
があり得ることは言うまでもない。
次に、ターゲット組成比ErnBazCuaSz07j
を有するターゲットを用い、上記と同様に直流マグネ
トロンスパッタにより、薄膜を形成する場合にっいて述
べる。スパッタ条件は、アルゴン酸素混合雰囲気(酸素
20%)、スパッタ電圧250V。
を有するターゲットを用い、上記と同様に直流マグネ
トロンスパッタにより、薄膜を形成する場合にっいて述
べる。スパッタ条件は、アルゴン酸素混合雰囲気(酸素
20%)、スパッタ電圧250V。
スパッタ電流300mA、圧力0.02Torrである
。ふっ素糸と同様に成膜中の基板温度が450℃以下で
は結晶性は非常に劣るが、500℃〜700℃ではC軸
配向の良い結晶性をもつ薄膜が得られ、750’C以上
では薄膜表面が荒れ、結晶性は劣化する。
。ふっ素糸と同様に成膜中の基板温度が450℃以下で
は結晶性は非常に劣るが、500℃〜700℃ではC軸
配向の良い結晶性をもつ薄膜が得られ、750’C以上
では薄膜表面が荒れ、結晶性は劣化する。
第2図は、スパッタ条件は、アルゴン酸素混合雰囲気(
酸素20%)圧力0.02Torr、スパッタ電圧25
0V、スパッタ電流約350mAを設定し、ターゲット
としてErxBazCusFxOr−1eErlBa2
CuaSt07j (x = O〜2 )を用い、基板
として5rTiOa基板を用い、基板温度を650℃一
定して、スパッタ時間を60分間、成膜し、次いで50
0℃、10時間 酸化性雰囲気中でアニール熱処理を実
施した8M場合の膜形成速度と膜中にドーピングされた
ふっ素あるいは硫黄の量の関係を示す。ターゲット組成
中のふっ素あるいは硫黄の量を変化させることにより、
膜中のこれらの元素のドーピング量は決まる。薄膜中に
ふっ素がドーピングされた場合、ドーピング量Xが0.
2〜0.8 の範囲で膜形成速度はX=0の場合に比べ
、約2倍に増大する6硫黄の場合にも、X=0.2〜1
.2の範囲で、ドーピングしない場合に比べ約2倍に、
膜形成速度は増大している。こうして作製された薄膜は
、良い結晶性を示し、特にふっ素及び硫黄のドーピング
嫌がそれぞれX=0.1〜0.7及びX=0.2〜1.
0(7)範囲ノ薄膜は、C軸に非常に良い配向性を示す
超伝導薄膜となっており、第3図に示すように各々のド
ーピング量と臨界電流密度の関係は、前記の各々の範囲
において78にで10’A/cm”程度の臨界電流密度
を有する超伝導薄膜が得られていることが分かる。
酸素20%)圧力0.02Torr、スパッタ電圧25
0V、スパッタ電流約350mAを設定し、ターゲット
としてErxBazCusFxOr−1eErlBa2
CuaSt07j (x = O〜2 )を用い、基板
として5rTiOa基板を用い、基板温度を650℃一
定して、スパッタ時間を60分間、成膜し、次いで50
0℃、10時間 酸化性雰囲気中でアニール熱処理を実
施した8M場合の膜形成速度と膜中にドーピングされた
ふっ素あるいは硫黄の量の関係を示す。ターゲット組成
中のふっ素あるいは硫黄の量を変化させることにより、
膜中のこれらの元素のドーピング量は決まる。薄膜中に
ふっ素がドーピングされた場合、ドーピング量Xが0.
2〜0.8 の範囲で膜形成速度はX=0の場合に比べ
、約2倍に増大する6硫黄の場合にも、X=0.2〜1
.2の範囲で、ドーピングしない場合に比べ約2倍に、
膜形成速度は増大している。こうして作製された薄膜は
、良い結晶性を示し、特にふっ素及び硫黄のドーピング
嫌がそれぞれX=0.1〜0.7及びX=0.2〜1.
0(7)範囲ノ薄膜は、C軸に非常に良い配向性を示す
超伝導薄膜となっており、第3図に示すように各々のド
ーピング量と臨界電流密度の関係は、前記の各々の範囲
において78にで10’A/cm”程度の臨界電流密度
を有する超伝導薄膜が得られていることが分かる。
また、ターゲットにYBazCuaFxSyOzなる組
成の焼結体を用いてもよい、ここで、x=0.3〜0.
7.y=0.1〜1である。
成の焼結体を用いてもよい、ここで、x=0.3〜0.
7.y=0.1〜1である。
以上の実施例においては、ふっ素あるいは硫黄元素はス
パッタ用ターゲット中に微量含有させることによって実
行した。ここでは、他の実施例を説明する。ターゲット
としてはふっ素あるいは硫黄元素を含まない公称組成R
zl’3a2CusO7j焼結体を用い、スパッタ中の
雰囲気として、アルゴン酸素混合ガスにふっ素糸あるい
は硫化系ガスを微量混合したガスを使用することによっ
て、成膜中にふっ素あるいは硫黄を薄膜中にドーピング
することが可能である。この場合、ふっ素あるいは硫化
系ガスの混合比率によって、ドーピング基を制御するこ
とができる。しかしながら、この場合成膜中の基板温度
や雰囲気ガス中の酸素量により、薄膜中のドーピング量
が大きく変化するが、薄膜中のドーピング量が前記と同
程度となるようにスパッタすると、結晶性の良い膜が得
られる。
パッタ用ターゲット中に微量含有させることによって実
行した。ここでは、他の実施例を説明する。ターゲット
としてはふっ素あるいは硫黄元素を含まない公称組成R
zl’3a2CusO7j焼結体を用い、スパッタ中の
雰囲気として、アルゴン酸素混合ガスにふっ素糸あるい
は硫化系ガスを微量混合したガスを使用することによっ
て、成膜中にふっ素あるいは硫黄を薄膜中にドーピング
することが可能である。この場合、ふっ素あるいは硫化
系ガスの混合比率によって、ドーピング基を制御するこ
とができる。しかしながら、この場合成膜中の基板温度
や雰囲気ガス中の酸素量により、薄膜中のドーピング量
が大きく変化するが、薄膜中のドーピング量が前記と同
程度となるようにスパッタすると、結晶性の良い膜が得
られる。
スパッタ中の雰囲気として、水素とアルゴンの混合ガス
雰囲気とすれば、生成された薄膜の超伝導臨界温度を上
げることができる。
雰囲気とすれば、生成された薄膜の超伝導臨界温度を上
げることができる。
本発明によれば、配向性が良く、単結晶あるいは単結晶
に近い良質の酸化物超伝導薄膜を、700℃以下の低温
プロセスのみで作製することが可能となり、さらにこう
して作製した薄膜は均一で。
に近い良質の酸化物超伝導薄膜を、700℃以下の低温
プロセスのみで作製することが可能となり、さらにこう
して作製した薄膜は均一で。
かつ平坦な酸化物超伝導薄膜を得ることができる効果が
ある。
ある。
第1図、第2図は夫々本発明の一実施例により作製した
酸化物超伝導薄膜のCu Kαを用いたX線回折パター
ン図、第3図は本発明の一実施例により作製した酸化物
薄膜の膜形成速度のふっ素あるいは硫黄の膜中へのドー
ピング量による変化を示す特性図、第4図は本発明の一
実施例により作製した酸化物薄膜の臨界電流密度のふっ
素あるいは硫黄の膜中へのドーピング量による依存性を
示す特性図である。 弔 1 国 2θ (αkkン 第 2 国
酸化物超伝導薄膜のCu Kαを用いたX線回折パター
ン図、第3図は本発明の一実施例により作製した酸化物
薄膜の膜形成速度のふっ素あるいは硫黄の膜中へのドー
ピング量による変化を示す特性図、第4図は本発明の一
実施例により作製した酸化物薄膜の臨界電流密度のふっ
素あるいは硫黄の膜中へのドーピング量による依存性を
示す特性図である。 弔 1 国 2θ (αkkン 第 2 国
Claims (1)
- 【特許請求の範囲】 1、R−Ba−Cu−O系(式中、Rはイットリウム及
びランタノイド系元素から選ばれる)焼結体を主ターゲ
ットとし、アルゴンガスと酸素の混合ガスを主雰囲気と
してスパッタリングすることにより基板上に酸化物超伝
導薄膜を形成する方法において、前記酸化物超伝導薄膜
にふつ素及び/または硫黄をドーピングして、500〜
700℃にて結晶化せしめることを特徴とする酸化物超
伝導薄膜の製法。 2、R−Ba−Cu−O系(式中、Rはイットリウム及
びランタノイド系元素から選ばれる)焼結体を主ターゲ
ットとし、水素ガスを含む雰囲気にてスパッタリングす
ることにより基板上に酸化物超伝導薄膜を形成する方法
において、前記酸化物超伝導薄膜にふつ素及び/または
硫黄をドーピングして、500〜700℃にて結晶化せ
しめることを特徴とする酸化物超伝導薄膜の製法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63010708A JPH01188420A (ja) | 1988-01-22 | 1988-01-22 | 酸化物超伝導薄膜の製法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63010708A JPH01188420A (ja) | 1988-01-22 | 1988-01-22 | 酸化物超伝導薄膜の製法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01188420A true JPH01188420A (ja) | 1989-07-27 |
Family
ID=11757803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63010708A Pending JPH01188420A (ja) | 1988-01-22 | 1988-01-22 | 酸化物超伝導薄膜の製法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01188420A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01239004A (ja) * | 1988-03-17 | 1989-09-25 | Matsushita Electric Ind Co Ltd | 酸化物高温超電導体及び薄膜超電導体及びスパッタリング用ターゲット |
JP2013095648A (ja) * | 2011-11-02 | 2013-05-20 | Institute Of National Colleges Of Technology Japan | 酸化物超伝導薄膜 |
-
1988
- 1988-01-22 JP JP63010708A patent/JPH01188420A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01239004A (ja) * | 1988-03-17 | 1989-09-25 | Matsushita Electric Ind Co Ltd | 酸化物高温超電導体及び薄膜超電導体及びスパッタリング用ターゲット |
JP2013095648A (ja) * | 2011-11-02 | 2013-05-20 | Institute Of National Colleges Of Technology Japan | 酸化物超伝導薄膜 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6161556B2 (ja) | ||
JPH01188420A (ja) | 酸化物超伝導薄膜の製法 | |
JPS60161635A (ja) | 電子デバイス用基板 | |
JPH01208327A (ja) | 薄膜超電導体の製造方法 | |
JPH02252697A (ja) | 超伝導セラミックス薄膜の製法 | |
JPS63301424A (ja) | 酸化物超伝導体薄膜の製造方法 | |
JPS63225599A (ja) | 酸化物超伝導薄膜の作製方法 | |
JPH053439B2 (ja) | ||
JPS63236794A (ja) | 酸化物超伝導薄膜の作製方法 | |
JPS5821880A (ja) | 酸化物超伝導薄膜の製造方法 | |
JP2564598B2 (ja) | 酸化物超伝導体及びその製造方法 | |
JPH01105416A (ja) | 薄膜超電導体の製造方法 | |
JPH03261607A (ja) | 高温超電導薄膜の作製方法 | |
JPH03275504A (ja) | 酸化物超伝導体薄膜およびその製造方法 | |
JP2765138B2 (ja) | 高品質酸化物超電導薄膜の作製方法 | |
JPH01278449A (ja) | 酸化物超電導体の製造方法 | |
JPH0244782A (ja) | 超伝導素子およびその製造方法 | |
JP2012031468A (ja) | 超伝導体薄膜の製造方法 | |
JPH03205308A (ja) | 酸化物超電導薄膜の製造方法 | |
JPS63248019A (ja) | 酸化物超電導薄膜の製造方法 | |
JPH08325019A (ja) | ビスマス層状化合物の製造方法 | |
JPH0297419A (ja) | 薄膜超電導体の製造方法 | |
JPS6091504A (ja) | 導電性酸化物薄膜の製造方法 | |
JPH01252530A (ja) | スパッタリング用ターゲットおよび超電導薄膜の製造方法 | |
JPH07106904B2 (ja) | 薄膜超電導体の製造方法 |