JPH01180523A - Thin-film transistor matrix and its production - Google Patents

Thin-film transistor matrix and its production

Info

Publication number
JPH01180523A
JPH01180523A JP63003707A JP370788A JPH01180523A JP H01180523 A JPH01180523 A JP H01180523A JP 63003707 A JP63003707 A JP 63003707A JP 370788 A JP370788 A JP 370788A JP H01180523 A JPH01180523 A JP H01180523A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
thin film
conductive film
transistor matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63003707A
Other languages
Japanese (ja)
Other versions
JP2574837B2 (en
Inventor
Eiji Matsuzaki
永二 松崎
Yoshifumi Yoritomi
頼富 美文
Takao Takano
隆男 高野
Akihiro Kenmochi
釼持 秋広
Toshiyuki Koshimo
敏之 小下
Kunihiko Watanabe
邦彦 渡辺
Mitsuo Nakatani
中谷 光雄
Kazuo Sunahara
砂原 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP370788A priority Critical patent/JP2574837B2/en
Publication of JPH01180523A publication Critical patent/JPH01180523A/en
Application granted granted Critical
Publication of JP2574837B2 publication Critical patent/JP2574837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136263Line defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/13629Multilayer wirings

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a thin-film transistor matrix which has a high yield and low wiring resistance by forming scanning lines by laminating a transparent conductive film, a high melting point metal which can be etched by a liquid chemical which hardly etches the transparent conductive film and a metallic film which consists essentially of Al successively from a substrate side on the substrate. CONSTITUTION:The scanning lines 8 are made of the multilayhered wirings consisting of an ITO film (indium oxide + tin oxide) 81, a Cr film 82 and an Al film 83 successively from the insulating substrate 1 side and gate electrodes 2 are made of the multilayered structure consisting of an ITO film 21 which is the transparent conductive film and a Cr film 22. Connection of source electrodes 6 and picture element electrodes 7 is executed via a Cr film 71 used for protecting the ITO film which forms the picture element electrodes. Since the scanning lines are made of the 3-layered structure successively laminated with the transparent conductive film, the high melting point metal film and the Al film in such a manner, the disconnection of the scanning lines is prevented, the resistance is lowered and the yield is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜トランジスタマトリクスに係り、特に液
晶等を用いた平面デイスプレィに好適な薄膜トランジス
タマトリクスとその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor matrix, and more particularly to a thin film transistor matrix suitable for flat displays using liquid crystals and the like, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

非晶賀シリコン、Cd5a等の半導体薄膜を用いた薄膜
トランジスタは、アクティブマトリクス型の多素子表示
装置のスイッチング素子として注目されている。
Thin film transistors using semiconductor thin films such as amorphous silicon and Cd5a are attracting attention as switching elements for active matrix multi-element display devices.

第4図は従来の薄膜トランジスタマトリクスに用いられ
ている薄膜トランジスタの断面構造の例である。すなわ
ち、絶縁性基板1上にゲート電極2、ゲート絶縁膜3、
半導体g、a、ドレイン電極5、ソース電極6が順次積
層され℃いる。ソース電極6は液晶セルに対する一方の
電極となる画素電極7と接続される。そして、ゲート電
極2は走査#8(ゲート巌とも呼ぶ)K、  ドレイン
電極は信号線9(ドレイン−とも呼ぶ)に接続され、薄
膜トランジスタマトリクスが構成される。
FIG. 4 is an example of a cross-sectional structure of a thin film transistor used in a conventional thin film transistor matrix. That is, on an insulating substrate 1, a gate electrode 2, a gate insulating film 3,
Semiconductors g and a, a drain electrode 5, and a source electrode 6 are sequentially laminated at a temperature of .degree. The source electrode 6 is connected to a pixel electrode 7 serving as one electrode for the liquid crystal cell. Then, the gate electrode 2 is connected to a scan #8 (also called a gate gate) K, and the drain electrode is connected to a signal line 9 (also called a drain-), thereby forming a thin film transistor matrix.

現在、上記薄膜トランジスタマ) IJクス裏造プロセ
スにおける課題は、歩留り向上とホトエツチング工程数
削減による製造コスト低減と配線抵抗低減である。信号
線と走査縁の断線防止、配線抵抗低減に対しては第5図
に示すように選択エツチングの可能な金属層による2層
配祿81と82.91と92(たとえば、Crとldo
やCrと、41)が提案されている。これに関するもの
としては、たとえば時開[61−95488が挙げられ
る。しかし、上記幼果を上げるためには、ホトエツチン
グ工程数が増大し℃しまう。一方、ホトエツチング工程
数削減のためには、第6図に示すようなプロセスが特開
昭61−276374で提案されている。この場合VC
,は、信号線や走査線の歩留り低下が考慮されていない
Currently, the challenges in the above-mentioned thin film transistor (IJ) backing process are to improve yield, reduce manufacturing costs by reducing the number of photo-etching steps, and reduce wiring resistance. To prevent disconnection of signal lines and scanning edges and to reduce wiring resistance, two-layer wiring 81 and 82, 91 and 92 (for example, Cr and
and Cr,41) have been proposed. Regarding this, for example, Jikai [61-95488] can be mentioned. However, in order to raise the above-mentioned young fruits, the number of photo-etching steps increases and the temperature increases. On the other hand, in order to reduce the number of photo-etching steps, a process as shown in FIG. 6 has been proposed in Japanese Patent Laid-Open No. 61-276374. In this case VC
, does not take into account the reduction in yield of signal lines and scanning lines.

また、配線の低抵抗化も基板サイズが太き(なると不十
分である。
Furthermore, lowering the resistance of wiring is insufficient if the substrate size is large.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、製造歩留り向上とホトエツチング工程
数削減の双方に対する配慮がされておらス、製造コスト
の低い薄膜トランジスタマトリクスを得られないという
n、題があった。
The above-mentioned conventional technology has the problem that it is not possible to obtain a thin film transistor matrix with low manufacturing cost because it does not take into account both the improvement in manufacturing yield and the reduction in the number of photo-etching steps.

本発明の目的は、製造時のホトエツチング工程数が少な
く、製造歩留りが高(、配線抵抗も低い薄膜トランジス
タマトリクスと製造プロセスを提供することにある。
An object of the present invention is to provide a thin film transistor matrix and manufacturing process that requires fewer photoetching steps during manufacturing, has a high manufacturing yield (and has low wiring resistance).

〔課題を解決するための手段〕[Means to solve the problem]

本発明における薄膜トランジスタマトリクスは、基板と
、該基板上にゲート電極と、前記ゲート電極上に形成し
たゲート絶縁膜、半導体膜と、前記半導体薄膜上に設け
たドレイン電極とソース電極とから少なくともなる薄膜
トランジスタをスイッチング素子としている。
A thin film transistor matrix in the present invention includes at least a substrate, a gate electrode on the substrate, a gate insulating film formed on the gate electrode, a semiconductor film, and a drain electrode and a source electrode provided on the semiconductor thin film. is used as a switching element.

上記目的は、走査縁を少なくとも3檀類の導電膜で構成
することにより達成される。特に、走査縁な基板側から
、少なくとも透明4を膜、透明導電膜をエツチングしに
くい薬液によりエツチングできる扁融点金楓、Alを主
成分とする金属層を順次積層した構成にすると効果的で
ある。
The above object is achieved by forming the scanning edge with at least three kinds of conductive films. In particular, it is effective to have a structure in which at least a transparent 4 film, a low melting point metal layer that can be etched with a chemical solution that does not easily etch the transparent conductive film, and a metal layer containing Al as a main component are sequentially laminated from the substrate side that is the scanning edge. .

〔作用〕[Effect]

薄膜トランジスタマトリクスに本発明を適用することに
より下記事項が可能になるため、ホトエツチング工程数
の著しい増大なしで、走査縁の記載抵抗が低(、製造歩
留りの高い薄膜トランジスタマトリクスを得ろことかで
きる。
By applying the present invention to a thin film transistor matrix, the following items can be achieved. Therefore, it is possible to obtain a thin film transistor matrix with low writing resistance at the scanning edge (and high manufacturing yield) without significantly increasing the number of photoetching steps.

(1)透明導電膜を最初に形成できると、原理的にホト
エツチング工程数を少く抑えろことかできる。本発明の
適用九よりこれが可能になる。
(1) If a transparent conductive film can be formed first, it is possible in principle to reduce the number of photoetching steps. This is made possible by application 9 of the present invention.

(21透明4を膜が第−鳩膜であるためにエツチングに
対する制約が少(、エツチング加工による不良を極めて
少なくできる。また、高融点象属膜で保護されているた
め、プロセス中透明導電膜に基づく欠陥が発生しに(い
(21 Transparent 4 is a transparent film, so there are few restrictions on etching.) Defects caused by etching can be extremely reduced.Also, since it is protected by a high melting point metal film, the transparent conductive film is removed during the process. Defects based on this may occur.

(3)走査縁が少なくとも透明導電膜と高融点金属、低
抵抗Al族の多層配線にでき、少なくとも2工程以上の
ホトエツチングにできるため、走査線の断線防止、低抵
抗化ができる。
(3) Since the scanning edge can be made of multilayer wiring made of at least a transparent conductive film, a high melting point metal, and a low resistance Al group, and can be photo-etched in at least two or more steps, it is possible to prevent disconnection of the scanning line and reduce the resistance.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第5図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第1図(α)は本発明を適用した薄膜トランジスタマ)
 IJクスの一部の平面因を、第1図(blは本発明の
特徴がでる走査線の断面構造を、第2図は本発明を適用
した場合の薄膜トランジスタの断面構造例を、第3図は
製造プロセスの一例を7o−チャートで示す。
Figure 1 (α) is a thin film transistor to which the present invention is applied)
The plane factors of a part of the IJ are shown in Figure 1 (bl is the cross-sectional structure of the scanning line where the features of the present invention appear, Figure 2 is an example of the cross-sectional structure of a thin film transistor when the present invention is applied, and Figure 3 is An example of the manufacturing process is shown in a 7o-chart.

走査線8を絶縁性基板1側から、ITO膜(酸化インジ
ウム+酸化スズ) 81 、 Cr膜82、Al膜83
からなる多層配線としている。この例では[j[防止の
ために、信号線9もCr膜91とAl換92からなる多
層配線としている。ゲート電極2は透明導電膜であるI
TO換21とCrg22からなる多層構造となっている
。ソース電極6と画素′−極7の接続は、画素電極とな
るITO展の保iに用いたCr g 71を介して行っ
ている。以下、WJ6図の)a−チャートに従って製造
方法を説明する。
The scanning line 8 is connected from the insulating substrate 1 side to an ITO film (indium oxide + tin oxide) 81 , a Cr film 82 , an Al film 83
It is a multilayer wiring consisting of. In this example, in order to prevent [j], the signal line 9 is also a multilayer wiring consisting of a Cr film 91 and an Al film 92. The gate electrode 2 is a transparent conductive film I
It has a multilayer structure consisting of TO exchanger 21 and Crg22. The source electrode 6 and the pixel electrode 7 are connected through a Cr g 71 used to hold the ITO layer which becomes the pixel electrode. Hereinafter, the manufacturing method will be explained according to the a-chart in Figure WJ6.

まず、ガラス板等の絶縁性基板1上にITO展と、Cr
 %1,41膜を順次スパッタリング法等により成膜す
る。次いで、ホトエツチングによりAlHgを加工し、
走査源8の、41配線85を形成する更に、ホトエツチ
ングにより加工し、走査源8のITO配緘81とCr配
線82を形成する。この時、ITO展のアンダーカット
を防ぐため、同一ホトレジストを用い、Crエッチ→I
TOエッチ→Crエッチとシテイル。Al )J141
7) 工y y−y f K ハ、H,pO,−4−m
id。
First, ITO and Cr were placed on an insulating substrate 1 such as a glass plate.
%1,41 films are sequentially formed by a sputtering method or the like. Next, process AlHg by photoetching,
The 41 wiring 85 of the scanning source 8 is formed.Furthermore, the ITO wiring 81 and the Cr wiring 82 of the scanning source 8 are formed by photoetching. At this time, in order to prevent undercutting of ITO, use the same photoresist and etch Cr → I
TO sex → Cr sex and shiteil. Al ) J141
7) Engineering y y-y f K Ha, H, pO, -4-m
id.

−)−CH3COO& −)−H,0からなるエツチン
グ液を用いることが多い。そのため、ITO膜の膜質に
よっては、このエツチング液圧より損傷を受けることが
ある。しかし、この場合には、Cr膜で保護されている
のでその心配はない。また、ITO膜のエツチングでは
、その良質のバラつきのため、エツチング残り等の不良
が発生しゃすい。しかし、上層OAl膜とCr膜がレジ
ストで保護されており、最下層に存在するために選択エ
ツチングのむすかしさかないことから、エツチング液選
択の自由度が大きく、エツチング不良を防ぎゃすい。
An etching solution consisting of -)-CH3COO & -)-H,0 is often used. Therefore, depending on the quality of the ITO film, it may be damaged by this etching liquid pressure. However, in this case, there is no need to worry about this because it is protected by the Cr film. Furthermore, when etching an ITO film, defects such as etching residue are likely to occur due to variations in quality. However, since the upper OAl film and the Cr film are protected by a resist and exist in the bottom layer, selective etching is difficult, so there is a large degree of freedom in selecting the etching solution and it is easy to prevent etching defects.

次に、ゲート絶#R膜として用いるシリコン窒化膜と、
半導体膜として用いる非晶質シリコン族と電極のコンタ
クトに用いるリンをドープしたル型の非晶質シリコン族
をプラズマCVD法(ChemicalVapor D
eposition  )により連続成膜する。この場
合にも、画素電極として用いるITO膜7をCr膜膜種
1保護しているため、還元雰囲気にさらされることによ
る膜質劣化を防げる。
Next, a silicon nitride film used as a gate isolation #R film,
The amorphous silicon group used as the semiconductor film and the phosphorus-doped amorphous silicon group used for the electrode contact are processed using the plasma CVD method (Chemical Vapor D).
Continuous film formation is performed by eposition). In this case as well, since the ITO film 7 used as the pixel electrode is protected by the Cr film type 1, deterioration in film quality due to exposure to a reducing atmosphere can be prevented.

次いで、薄膜トランジスタ領域をホトエツチングにより
形成する。エツチングはCF4十〇、ガスをエツチング
カスとして、ドライエツチングにより行う。エツチング
条件を、非晶質シリコン族の方がシリコン窒化膜より大
きなエツチング速度になるようにし、非晶質シリコン膜
領域4とシリコン窒化層領域5を形成する。
Next, a thin film transistor region is formed by photoetching. Etching is performed by dry etching using CF400 gas as an etching gas. Etching conditions are set such that the etching rate of the amorphous silicon group is higher than that of the silicon nitride film, and an amorphous silicon film region 4 and a silicon nitride layer region 5 are formed.

次に、Cr膜とAl膜を110次スパッタリング法で成
膜する。この後に、ホトエツチングによりAl膜を加工
し、信号線9のAl配線92、ドレイン電極5のAl部
分53、ソース電極6のAl部分と画素電極と接続する
配線のAl部分66を形成する。更に、ホトエツチング
によりCr膜を加工し、ドレイン電極5 (Cr部分は
52)とンースt 極6 (C” 8分は61)を分離
するとともに、画素電極7上のCr膜を除去する。この
時、薄膜トランジスタのソース電極6と画素電極7はソ
ース電極に用いたCr膜62、Al p 65.17”
0膜の保護に用いた(:r pd 71 Kより接続さ
れる。更に、リンをドープした非晶質シリコン膜を薄膜
トランジスタのチャネル部分から除去し、ドレインコン
タクト51とソースコンタクト61を分離する。ドレイ
ンコンタクトとソースコンタクトはリンをドーグしたル
型の非晶質シリコン族より構成される。同一レジストを
用いて更にCr膜をエツチングすると、ドレイン電極5
とソース電極6のCτ膜52.62が後退して、3型非
晶質シリコン換のアンダーカットを防ぐことができる。
Next, a Cr film and an Al film are formed by the 110th order sputtering method. Thereafter, the Al film is processed by photoetching to form an Al wiring 92 of the signal line 9, an Al portion 53 of the drain electrode 5, an Al portion 66 of the wiring connecting the Al portion of the source electrode 6 and the pixel electrode. Furthermore, the Cr film is processed by photo-etching to separate the drain electrode 5 (52 for the Cr portion) and the ground electrode 6 (61 for the C''8 portion), and the Cr film on the pixel electrode 7 is removed. , the source electrode 6 and pixel electrode 7 of the thin film transistor are a Cr film 62 used for the source electrode, and an Al p 65.17"
The amorphous silicon film doped with phosphorus is removed from the channel portion of the thin film transistor to separate the drain contact 51 and the source contact 61. The contact and source contact are made of amorphous silicon group doped with phosphorus.When the Cr film is further etched using the same resist, the drain electrode 5
Then, the Cτ film 52, 62 of the source electrode 6 recedes, and undercut of type 3 amorphous silicon can be prevented.

以上の工程により第1逸〜第2図のアクティブマトリク
ス基板が完成する。
Through the above steps, the active matrix substrates shown in FIGS. 1 to 2 are completed.

走査源と信号線は選択エツチングの可能な2徨挙以上の
導を膜で構成され、ホトエツチング工程数が2回となっ
ているため、断線を著しく低減できる。すなわち、歩留
り向上に効果的な第5図の場合と同等のm造か首りか侍
られる。また配−のm成畳索とし”’CAI換を使用し
ているため、配線の低抵抗化が達成される。走査線に対
するこの幼来は、本発明の通用によって達成される。す
なわち、走査線の構成膜の中に低抵抗なAlを含むこと
が不発明の1つのポイントである。A1%はヒロックス
成長防止のために、5iや1番、ctb、sb、piを
官んでいてもさしつかえない。
Since the scanning source and the signal line are made of a conductive film with two or more conductors that can be selectively etched, and the number of photoetching steps is two, disconnections can be significantly reduced. In other words, it is possible to use m-structure or necking, which is the same as in the case of FIG. 5, which is effective in improving the yield. In addition, since the wiring is an m-complex cable and a CAI conversion is used, a low resistance of the wiring is achieved. One of the points of non-invention is to include low-resistance Al in the constituent film of the wire.A1% may contain 5i, No. 1, ctb, sb, and pi to prevent hillox growth. do not have.

第3図では、ホトエツチング工程を2重わ(で囲んでい
る。不実り例ではホトエツチング工程数は5である。
In FIG. 3, the photo-etching process is surrounded by a double box. In the unproductive example, the number of photo-etching processes is 5.

薄膜トランジスタマトリクスの製造歩留り同上を目的に
考えられた第5図の場合には、接d喝子部の端子出しを
含むと、7回のホトエツチング工程数を必要としている
。瑚子出しと薄膜トランジスタ填城の限定を同一ホトエ
ツチングで行り又も。
In the case of FIG. 5, which was designed for the purpose of improving the manufacturing yield of the thin film transistor matrix, seven photoetching steps are required, including the terminal extraction of the contact portion. The same photo-etching was used to remove the fibers and limit the thickness of the thin film transistor.

6回のホトエツチング工程数を必要とする。従って、本
発明の適用により、第5図に示したような高歩留りの薄
膜トランジスタマトリクスを少ないホトエツチング工程
数で得ることができる。むしろ、ホトエツチング工程数
を少な(できる分、第5図の場合より高歩留りとなる。
Six photo-etching steps are required. Therefore, by applying the present invention, a high-yield thin film transistor matrix as shown in FIG. 5 can be obtained with a reduced number of photoetching steps. On the contrary, since the number of photo-etching steps can be reduced, the yield is higher than in the case of FIG.

この効果は、足f麿8の透明導を膜と筒融点金M膜を順
次積層することによって生ずる。この場合、透明尋tm
上の尚融点金属膜は選択エツチングができなげれはなら
ない。また、走査載8の配線抵抗を低減するためには、
前述したように高融点金属上にAl膜を配置する必要か
ある。従って、前記烏−点金一はAl族のエツチング液
に対し、画素−極を保護できなければならない。薄膜ト
ランジスタマトリクスノ透明41iL膜には、酸化スズ
と酸化インジウムからなる膜が適する。よって、上記条
件を満たす尚融点金属としてCr ’f’Ti 、 T
a 、 Nb 、Zrが有効である。
This effect is produced by sequentially laminating the transparent conductive film of the foot frame 8 and the tube melting point gold M film. In this case, transparent tm
The upper melting point metal film must not be selectively etched. In addition, in order to reduce the wiring resistance of the scanning mount 8,
As mentioned above, it is necessary to place an Al film on the high melting point metal. Therefore, the pixel electrode must be able to protect the pixel electrode from the Al group etching solution. A film made of tin oxide and indium oxide is suitable for the thin film transistor matrix transparent 41iL film. Therefore, as melting point metals that satisfy the above conditions, Cr'f'Ti, T
a, Nb, and Zr are effective.

本実施例では、信号源9やドレイン電極5、ソース′を
極6を構成する薄膜を&族するまでに、3回のホトエツ
チング工程数となる。これは、第6図の場合のホトエツ
チング工程数2より、ホトエツチングか1回多い。しか
し、走査線の尚い製造歩留り、配線抵抗の低減等、補っ
て余りある利点 1がある。
In this embodiment, three photo-etching steps are required to remove the signal source 9, the drain electrode 5, and the thin film forming the source electrode 6. This is one more photo-etching process than the two photo-etching steps in the case of FIG. However, there are advantages 1 that more than compensate for this, such as higher manufacturing yields for scanning lines and reduced wiring resistance.

本実施例では走査線を、透明24電課と詞融点金J!!
4膜、Al族を順次積層した3層構造としているがAl
膜の保M等を目的にして、更に金Jf%農を菖ねてもさ
しつかえない。ただし、定食−の膜厚を心安以上に厚(
することは好ましくない。
In this embodiment, the scanning line is connected to the transparent 24-electronic section and the melting point J! !
It has a three-layer structure in which four films and Al group are sequentially laminated, but Al
For the purpose of maintaining the membrane, etc., it is okay to further add gold Jf%. However, the film thickness of the set meal is thicker than safe (
It is not desirable to do so.

本実施例ではゲート絶縁膜としてシリコン璧化膜な、半
導体族として非晶質シリコン族を用いた博展トランジス
タをスイッチング素子とした場合を説明した。しかし、
酸化シリコン展寺他の杷猷襄をゲート絶縁膜としたり、
多結晶シリコン展号他の半4坏展よりなる薄膜トランジ
スタをスイッチング素子とした薄膜トランジスタマトリ
ク/1m対しても、本発明を適用できる。
In this embodiment, a case has been described in which a Hiroten transistor using a silicon dielectric film as a gate insulating film and an amorphous silicon group as a semiconductor group is used as a switching element. but,
Using silicon oxide and other forms of loquat as the gate insulating film,
The present invention can also be applied to a thin film transistor matrix/1m in which the switching element is a thin film transistor made of polycrystalline silicon.

〔発明の幼果〕[The young fruits of invention]

本発明によれは、裏通歩留りの尚い薄膜トランジスタマ
トリクスを少ないホトエツチング工程数で製造できるの
で、従来より安価な薄膜トランジスタマトリクスが得ら
れる効果がある。
According to the present invention, a thin film transistor matrix with a high throughput yield can be manufactured with a reduced number of photoetching steps, so that a thin film transistor matrix that is cheaper than the conventional method can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(α)は本発明を適用した薄膜トランジスタマト
リクスの一部の平面図、第11a+A+は本発明の特徴
を示す走査線の断面図、第2図は本発明を通用した薄膜
トランジスタマトリクスにおける薄膜トランジスタの断
面図、第3図は本発明を適用した薄膜トランジスタマト
リクスの製造手順を示すフローチャート、第4図は従来
の′14膜トランジスタの断面図の例、第5図は薄膜ト
ランジスタマトリクスの一例を示す平面図、第6図は薄
膜トランジスタマトリクス装造プロセスの一例を示す図
である。 1・・・絶縁性基板   2・・・ゲート電極3・・・
ゲート絶縁膜  4・・・半導体族5・・・ドレイン電
極  6・・・ソース電極7・・・画素電極     
 8・・・走査#l(ゲー)1m)9・・・信号源(ド
レイン鍼) 5、”YしAンを檜 12 目 ffl、B  7L[誹トr@層1シリコン川鯨冠 3
 図
FIG. 1 (α) is a plan view of a part of a thin film transistor matrix to which the present invention is applied, No. 11a+A+ is a cross-sectional view of a scanning line showing the features of the present invention, and FIG. 2 is a plan view of a part of a thin film transistor matrix to which the present invention is applied. 3 is a flowchart showing the manufacturing procedure of a thin film transistor matrix to which the present invention is applied, FIG. 4 is an example of a sectional view of a conventional '14 film transistor, and FIG. 5 is a plan view showing an example of a thin film transistor matrix. FIG. 6 is a diagram showing an example of a thin film transistor matrix fabrication process. 1... Insulating substrate 2... Gate electrode 3...
Gate insulating film 4... Semiconductor group 5... Drain electrode 6... Source electrode 7... Pixel electrode
8...Scanning #l (game) 1m) 9...Signal source (drain acupuncture) 5,"Y and A cypress 12th ffl, B 7L [Review r@layer 1 silicon river crest 3
figure

Claims (1)

【特許請求の範囲】 1、基板と、該基板上に形成したゲート電極と、該ゲー
ト電極上に形成したゲート絶縁膜と、該ゲート絶縁膜上
に形成した半導体薄膜と、該半導体薄膜上に形成したド
レイン電極とソース電極とからなる薄膜トランジスタマ
トリクスにおいて、該ゲート電極と接続したゲート線が
、透明導電膜と該透明導電膜上に形成した少なくとも2
種類からなる金属膜とからなることを特徴とする薄膜ト
ランジスタマトリクス。 2、請求項1記載において、該透明導電膜を酸化インジ
ウムと酸化スズの少なくとも1つを含む薄膜とし、該透
明導電膜に接する該金属膜を該透明導電膜に対して腐食
性の少ない薬品でエッチングできる高融点金属膜とする
ことを特徴とした薄膜トランジスタマトリクス。 3、請求項2記載において、該高融点金属膜をCrTi
、Ta、Nb、Zrの中から選んだことを特徴とする薄
膜トランジスタマトリクス。 4、請求項2若しくは3記載において、該高融点金属膜
と接する該透明導電膜と反対側の金属膜をAlあるいは
遷移金属を含むAlにより構成したことを特徴とした薄
膜トランジスタマトリクス。 5、請求項4において、該遷移金属がSi、Ti、Cμ
、Sb、Pdであることを特徴とした薄膜トランジスタ
マトリクス。 6、請求項1〜5のいずれか記載において、該透明導電
膜と同時に形成した透明導電膜により画素電極を構成す
ることを特徴とする薄膜トランジスタマトリクス。 7、請求項1において、画素電極を該透明導電膜と同時
に形成した透明導電膜で形成することを特徴とする薄膜
トランジスタマトリクスの製造方法。 8、請求項7において、該画素電極に用いる透明導電膜
を該ゲート線の透明導電膜と接する該金属膜で保護しな
がら加工し、該半導体薄膜と該画素電極とを接続し、該
画素電極上の該金属膜を除去することを特徴とする薄膜
トランジスタマトリクスの製造方法。
[Claims] 1. A substrate, a gate electrode formed on the substrate, a gate insulating film formed on the gate electrode, a semiconductor thin film formed on the gate insulating film, and a semiconductor thin film formed on the semiconductor thin film. In the thin film transistor matrix consisting of the formed drain electrode and source electrode, a gate line connected to the gate electrode is connected to a transparent conductive film and at least two layers formed on the transparent conductive film.
A thin film transistor matrix comprising a metal film of various types. 2. In claim 1, the transparent conductive film is a thin film containing at least one of indium oxide and tin oxide, and the metal film in contact with the transparent conductive film is treated with a chemical that is less corrosive to the transparent conductive film. A thin film transistor matrix characterized by being made of a high melting point metal film that can be etched. 3. In claim 2, the high melting point metal film is made of CrTi.
, Ta, Nb, and Zr. 4. The thin film transistor matrix according to claim 2 or 3, wherein the metal film on the side opposite to the transparent conductive film in contact with the high melting point metal film is made of Al or Al containing a transition metal. 5. In claim 4, the transition metal is Si, Ti, Cμ
, Sb, and Pd. 6. A thin film transistor matrix according to any one of claims 1 to 5, characterized in that a pixel electrode is constituted by a transparent conductive film formed at the same time as the transparent conductive film. 7. The method of manufacturing a thin film transistor matrix according to claim 1, wherein the pixel electrode is formed of a transparent conductive film formed at the same time as the transparent conductive film. 8. In claim 7, the transparent conductive film used for the pixel electrode is processed while being protected by the metal film in contact with the transparent conductive film of the gate line, the semiconductor thin film and the pixel electrode are connected, and the pixel electrode is A method for manufacturing a thin film transistor matrix, the method comprising removing the metal film on the thin film transistor matrix.
JP370788A 1988-01-13 1988-01-13 Thin film transistor matrix and manufacturing method thereof Expired - Lifetime JP2574837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP370788A JP2574837B2 (en) 1988-01-13 1988-01-13 Thin film transistor matrix and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP370788A JP2574837B2 (en) 1988-01-13 1988-01-13 Thin film transistor matrix and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01180523A true JPH01180523A (en) 1989-07-18
JP2574837B2 JP2574837B2 (en) 1997-01-22

Family

ID=11564821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP370788A Expired - Lifetime JP2574837B2 (en) 1988-01-13 1988-01-13 Thin film transistor matrix and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2574837B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006504A1 (en) * 1990-10-05 1992-04-16 General Electric Company Thin film transistor having an improved gate structure and gate coverage by the gate dielectric
US5502583A (en) * 1993-05-15 1996-03-26 Nec Corporation Liquid crystal display device capable of compensating for a positioning error between a drain line and a display electrode
US6567145B1 (en) * 1999-03-26 2003-05-20 Hitachi, Ltd. Liquid crystal display device having conductive lines formed with amorphous oxide conductive layer on metal layer and method of fabrication thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285464A (en) * 1986-06-03 1987-12-11 Matsushita Electric Ind Co Ltd Thin-film transistor array substrate and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285464A (en) * 1986-06-03 1987-12-11 Matsushita Electric Ind Co Ltd Thin-film transistor array substrate and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006504A1 (en) * 1990-10-05 1992-04-16 General Electric Company Thin film transistor having an improved gate structure and gate coverage by the gate dielectric
US5502583A (en) * 1993-05-15 1996-03-26 Nec Corporation Liquid crystal display device capable of compensating for a positioning error between a drain line and a display electrode
US6567145B1 (en) * 1999-03-26 2003-05-20 Hitachi, Ltd. Liquid crystal display device having conductive lines formed with amorphous oxide conductive layer on metal layer and method of fabrication thereof

Also Published As

Publication number Publication date
JP2574837B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
US6495857B2 (en) Thin film transister semiconductor devices
US7400365B2 (en) Method for manufacturing a thin film transistor array substrate for a liquid crystal display device
US5739877A (en) Active matrix liquid crystal display in which the gate and/or drain lines are made of a Cr-Mo alloy
US7554207B2 (en) Method of forming a lamination film pattern and improved lamination film pattern
JPH05232515A (en) Semiconductor integrated circuit and its production
JPH01123475A (en) Liquid crystal display equipment
KR100329585B1 (en) Thin-film transistor and liquid crystal display device
JPH0862628A (en) Liquid crystal display element and its production
JPS62280890A (en) Active matrix array
US7081931B2 (en) Liquid crystal display having aluminum wiring
JPH0580650B2 (en)
JPH08248442A (en) Liquid crystal display device
JPH01180523A (en) Thin-film transistor matrix and its production
JPH06230421A (en) Production of thin-film transistor matrix
JPH07312425A (en) Thin film transistor, taper etching method and multilayered film forming method relative to the same, and image display equipment
JPH02310932A (en) Manufacture of inverted stagger-type thin-film transistor
JP2585267B2 (en) Liquid crystal display
JP2710793B2 (en) Liquid crystal display panel and method of manufacturing the same
JP3291069B2 (en) Semiconductor device and manufacturing method thereof
JPH07134312A (en) Liquid crystal display device and its production
JPH04155315A (en) Manufacture of multi-layer film wiring body
KR100297861B1 (en) Solid-state device with thin-film transistor and manufacture thereof
JPH07110496A (en) Production of active matrix panel
JP3302475B2 (en) Method for manufacturing thin film transistor array
JPH05265041A (en) Production of liquid crystal display device