JPH01160821A - セラミックス超電導体及びその製造方法 - Google Patents

セラミックス超電導体及びその製造方法

Info

Publication number
JPH01160821A
JPH01160821A JP62320179A JP32017987A JPH01160821A JP H01160821 A JPH01160821 A JP H01160821A JP 62320179 A JP62320179 A JP 62320179A JP 32017987 A JP32017987 A JP 32017987A JP H01160821 A JPH01160821 A JP H01160821A
Authority
JP
Japan
Prior art keywords
oxygen
elements
under
air
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62320179A
Other languages
English (en)
Inventor
Noriyoshi Shishido
統悦 宍戸
Tsuguo Fukuda
承生 福田
Naoki Toyoda
直樹 豊田
Kazutoshi Ukei
請井 一利
Takahiko Sasaki
孝彦 佐々木
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62320179A priority Critical patent/JPH01160821A/ja
Publication of JPH01160821A publication Critical patent/JPH01160821A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックス超電導体及びその製造方法に関
する。
〔従来の技術とその問題点〕
最近、臨界温度(以下T、と略記)の高いセラミックス
超電導体が注目されており、例えば、希土類元素−アル
カリ土類元素−銅−酸素系の超電導体にあっては、結晶
構造かに、N1Fa型(正方晶系)のものは40に級、
Y、BazCu、Oy−δのペロブスカイト型の(斜方
晶系)のものは90に級という高いTcを示したものが
開発されており、冷却媒体の液体窒素の(77K )化
の可能性が現実のものとなりつつあり、これらのセラミ
ックス超電導体のエレクトロニクス、電力貯蔵等各分野
への応用が期待されている。
しかし上記のようなセラミックス超電導体は、空気中に
曝しておくと湿気等により、また室温と液体窒素等の冷
却媒体との間で熱サイクルを繰り返し与えると熱応力が
生じてTo、臨界電流密度(以下J、と略記)、上部臨
界磁場(以下H0と略記)等の超電導特性が低下すると
いう問題があった。
〔問題点を解決するための手段及び作用〕本発明は、か
かる状況に鑑みなされたものでその目的とするところは
、耐湿性、耐熱応力に優れたセラミックス超電導体及び
その製造方法を提供することにある。
即ち本発明の第1発明は、一般式R1,αA:1β(C
u、−γBγ)!□δO1,εで示される組成物からな
ることを特徴とするセラミックス超電導体である。
本第1発明において式中Rは希土類元素であり、Sc、
Y、La、Ce、、Pr、Nd% Sm、Eu。
Gd、Tb、  Dy% Ho、Er、Tm、Yb、L
U等の元素のうちの少なくとも1種からなる。又Aはア
ルカリ土類元素又はアルカリ元素であり、Be、Mg、
Ca、Sr、Ba、Ra、Li、Na5KSRb、Cs
5Fr等の元素のうち少なくとも1種からなり、特にB
a、Sr、Ca等のアルカリ土類元素が通している。ア
ルカリ元素は、結晶構造中のアルカリ土類元素サイトの
一部あるいはほとんど全部に置換可能である。またBは
Ru、Rh、PdSAg、Re、Os、Ir、PL。
Au、Fe、Co、Niの群から選ばれる少なくとも1
種の元素である。即ちB元素は貴金属元素及び周期表上
の8属元素である。
本第1発明のセラミックス超電導体は、上記の構成元素
が前記の一般式において0≦α<0.1.0≦β<0.
1.0.03≦γ≦0.6.0≦δ〈0.1、O≦ε〈
1.)を満足して配合されることにより安定して形成さ
れる。
従来KtNi Fa型超超電導体えば(Lao、*sB
a o、 +sLCu 04のCuサイトあるいはY 
IB a tCu、O,=δ型超電導体のCuサイトを
貴金属元素であるいは周期表の8属元素で置換する試み
がいくつか報告されているが、本発明のセラミックス超
電導体は、これらの従来の置換型セラミックス超電導体
とは、結晶構造そのものが異なる全く新規なセラミック
ス超電導体でありその結晶構造は、斜方晶系で格子定数
がa軸9.5〜11.5人、b軸4.8〜6.2人、C
軸12.5〜15.0人においてその効果が最もよく発
揮される。尚、上記の格子定数は、ランタナイド収縮側
に応じて希土類元素の種類により、変化するものである
又本組成物の結晶学的特徴の第1はその分子内に擬−次
元の−Cu−0−B−0−の繰り返し単位で形成される
鎖状結合(通常2本が対をなす)を含むことである。上
記鎖状結合において−Cu−0−と−B−0−は交互に
繰り返すが部分的には一方のみが繰り返す部分があって
も良く、又CU及びB元素は自身の両数に応じた酸素を
配位している0例えばB元素がPtの場合、即ち−Cu
−O−Pt−0−鎖の場合、Cuイオンのまわりの酸素
イオンは四角錐型5配位をとり白金イオンのまわりの酸
素イオンは八面体6配位をとる。四角錐の頂点の酸素イ
オンが八面体の酸素イオンを共有して、四角錐−八面体
のペアーを作り、更にペアー同士が隅を共存してb軸方
向に伸びて二重の−Cu−0−PL−0−鎖が形成され
る。上記において鎖の貫入方向はb軸に平行であり、又
R元素とA元素はこの鎖に組み込まれずこの鎖から離れ
て位置している。
本第2発明はR(希土類元素)、A(アルカリ土類元素
又はアルカリ元素)、Cu (銅)で示される元素を元
素単体又はこれら元素を含有する化合物としてR,A、
Cuをそれぞれ一般式R2LαA21β(Cu+−rβ
T)よ、δ0..t、(式中R1A、Cu、B、O1α
、β、T1δ、εは特許請求の範囲第1項記載の内容と
同じ)を満足するように秤量し混合したのち、この混合
体を空気中、酸素気流中又は200kg / ctA以
下の酸素加圧下のいずれかの条件下で600〜1,10
0°Cで仮焼成し、次いでこれを粉砕したのち、この仮
焼粉にフラックス化合物を重量比で1:1〜3の割合で
配合し混合したのち、この混合粉をRu、Rh、Pd、
Ag、Re、Os、Ir、Pt、Au、Fe、Co。
Ni群の中から選択される少なくとも1種の元素、ある
いはこれらの元素の2種以上からなる合金で作製された
容器内に充填したのち、空気中、酸素気流中又は200
kg/cJ以下の酸素加圧下のいずれかの条件下で95
0〜L、100°Cで加熱処理し次いで20°C/時間
以下の冷却速度で徐冷することを特徴とするものである
本第2発明において、一般式R(希土類元素)、A(ア
ルカリ土類元素又はアルカリ元素)、Cu(銅)で示さ
れる元素の原料には酸化物、炭酸塩、塩化物、硝酸塩、
硫酸塩、水酸化物、水和物、修酸塩、蟻酸塩、酢酸塩、
キレート等の化合物が用いられ、これらの原料を乾式決
算任意の方法により混合したのち、この混合原料を空気
中、酸素気流中又は200kg/d以下の酸素加圧下の
いずれかの条件下で600〜1,100℃で仮焼成し、
原料の分解及び各原子間の反応を行わせる。このように
して得られた仮焼成体を粉砕し、この仮焼粉にCuO又
はPboに代表されるフラックスを重量比で仮焼粉1に
対し1〜3の割合で配合し混合する。
このフラックスは仮焼粉間に介在して溶媒の作用を与え
るものでその配合割合が1未満では、仮焼粉が大部分未
溶解で残り、3を超えると仮焼粉は十分溶解するが溶媒
過乗となるため徐冷工程で目的の化合物が析出する量が
少なくなるので重量比で仮焼粉1に対してフラックスを
1〜3の範囲内に配合するのが好ましい。フラックスと
してはCuO1PbOの他にPb0z、M o Oz、
WO3、v203、B2O3などの酸化物、KFなどの
アルカリハライド、BaC01等の炭酸塩が適用される
又フラックスは単塩に限らず例えばLi、0−Mo3の
ように複合塩の場合を含むものとし熔解能力と粘性を調
節する。上記のフラックスのうちCuO1PbOはフラ
ックスとしての効果が大きく適しており、特にCuOは
本発明超電導体の主要構成成分となっているので、フラ
ックスによる超電導特性の低下を考えずに済み一層好適
である。
フラックスが添加された混合粉体をRu、Rh。
Pd、Ag5Re、Os、Ir、Au、Fe、Co、N
iのうちの少なくとも1種の貴金属元素又は上記元素の
合金で作製された容器例えばボートや坩堝内に充填し、
空気中、酸素気流中又は200kg / ca以下の酸
素加圧下のいずれかの条件下で、950〜1.100°
Cで本焼成後20℃/時間以下の速度で徐冷する。徐冷
は少なくとも800°Cまで行うと結晶構造の調整等が
十分になされて好ましい。
仮焼成条件は600〜1,100’C1本焼成条件は9
50〜1.100’Cの範囲内で行うことが、反応が十
分に進ますT、やJcが低い値になったり、1,100
°Cを超えた温度で相分離を起したりすることがなく、
好ましいものである。
又焼成時の酸素圧は200kg/c+aを超えると超電
導体に含有される酸素量が多くなり、Te、Jc等の特
性が低下してしまう。
このような一連の製造工程を経て、超電導体は、前記の
容器の内壁及び底部に密生する形で製出される。
本第3発明は、R(希土類元素)、A(アルカリ土類元
素又はアルカリ元素)、Cu(銅)、B(Ru、Rh、
PdSAg、Re、Os、T r、PL、Au、Fe、
Co、Niの群から選ばれた少なくとも一種の元素)で
示される元素を元素単体あるいは化合物として、−i式
R2,αA2.β(Cu+−y B T) z*δ08
.ε、(式中R,A、Cu、B、0、α、β、T、δ、
εは特許請求の範囲第1項記載の内容と同じ)を満足す
るように秤量し、これを混合したのち、この混合体を空
気中、酸素気流中あるいは200kg/cJ以下の酸素
加圧下のいずれかの条件下で600〜950°Cで仮焼
成し、これを粉砕したのち、この仮焼粉を成型し、次い
でこの成型体を空気中、酸素気流中又は200kg/d
以下の酸素加圧下のいずれかの条件下で800〜1.1
00°Cで本焼成することを特徴とするものである。
本第3発明において、一般式R,A、Cu、Bで示した
元素の原料には、元素単体又は前記第2発明と同し酸化
物や炭酸塩等の化合物が用いられる。
この第3発明にあっては、上記原料を所定量配合し混合
したのち、これを酸素含有雰囲気中で仮焼成することに
より一般式R,A、Cu、Bで示した元素からなる化合
物が形成され、これを粉砕して圧粉成形し本焼成するこ
とにより前記一般式で示した組成を満足する超電導体が
製造される。
この第3発明において、仮焼成条件は600〜950°
C1本焼成条件は800〜1,100°b酸素圧は20
0kg/ci以下が好ましくその理由は、前記第2発明
の場合と同様である。
木筆3項発明において、仮焼粉を成形する工程と本焼成
の工程をホットプレスにより一度に行うと工程が短縮さ
れるばかりでなく、得られる超電導成形体の嵩密度が増
加し、その結果機械的強度やJ6等の超電導特性の向上
したものが得られる。
本第4発明は、R(希土類元素)、A(アルカリ土類元
素又はアルカリ元素)、Cu(tM)で示される元素を
元素単体又はこれら元素を含有する化合物として、R,
A、Cuがそれぞれ一般式R1□αA!1β(Cu+−
rBr)z、δ0..ε、(式中R,,A、Cu、B、
O1α、β、T、δ、εは特許請求の範囲第1項記載の
内容と同じ)を満足するように秤量し、混合したのち、
この混合体を空気中、酸素気流中又は200kg/cj
以下の酸素加圧下のいずれかの条件下で600〜950
℃仮焼成し、次いでこの仮焼成体を粉砕したのち、この
仮焼粉を成型し、更にこの成型体を空気中、酸素気流中
又は200kg/c1i以下の酸素加圧下のいずれかの
条件下で800〜L100℃で本焼成し、次いでこの本
焼成体を一般式B (Ru、Rh、Pd、Ag、Re、
Os、Ir、PL、Au、Fe、Co、Niの群から選
ばれる少なくとも1種の元素)又はその元素の酸化物か
らなる成型体に所定の圧力をかけな、がら接触させて空
気中、酸素気流中又は200kg / cd以下の酸素
加圧下のいずれかの条件下で800〜1.100°Cで
加熱して、上記本焼成体の一般式Bからなる成型体との
接触面側に前記一般式RhαA1β(Cu1−rBr)
t、δ0.ε、(式中R,A、Cu、B、O1α、β、
T、δ、εは特許請求の範囲第1項記載の内容と同じ)
で示される組成物を生成せしめることを特徴とするもの
である。
即ち本第4発明においては、式中R,A、Cuからなる
本焼成体と一般式Bで示した元素群からなる成形体とを
別々に作製しておき、これらを酸素含有雰囲気中で所定
の温度に加熱して所望の圧力をかけながら接触させて双
方の界面に拡散をおこさせ上記一般式で示した超電導体
を形成せしめるものである。
本第4発明において成型及び本焼成をホットプレス法で
同時に行うと短時間で高密度のセラミックス超電導体を
得ることができる。
本第5発明は、R(希土類元素)、A(アルカリ土類元
素又はアルカリ元素L、Cu (銅)、B(Ru、Rh
5Pd、Ag、Re、Os、I r。
PL、AuXFe、Co、Niの群から選ばれる少なく
とも1種の元素)で示される元素をそれぞれ元素単体で
一般式Rz 1 CI A z 1β(Cu+−rBr
)2□δ01.ε、(式中R,ASCu、B、 α、β
、T、δ、は特許請求の範囲第1項記載の内容と同じ)
を満足するように秤量し混合したのち、この混合体を不
活性雰囲気中で熔融して合金となし、次いでこの合金を
空気中、酸素気流中又は200kg/−以下の酸素加圧
下のいずれかの条件下で800〜1,100°Cで加熱
し酸化することを特徴とするものである。
上記の合金を加熱酸化するに際し、合金を予め粉砕して
粒状化もしくは粉体化しておくか、又は溶融合金を噴霧
法により粉体化しておくと酸化が迅速になされる。
本発明の超電導体は、上記第2〜5発明に示される製造
方法以外に通常のgi膜製造方法例えばスパッタリング
法、蒸着法、イオンブレーティング法、MB2法、IC
B法、CVD法、プラズマCVD法、光CVD法等によ
って製造することができる。この、場合の原料としては
、構成元素の水素化物、ハロゲン化物、有機金属化合物
、アセチルアセトン錯塩、有機錯塩、アルコキシド等の
比較的低温で熱分解する物質が適しており酸素を共存さ
せることにより上記超電導体膜を低温で形成させること
ができる。上記の薄膜製造法によれば、結晶組成、結晶
の配向性、結晶の成長速度等が制御できるため、Jo等
の高い超電導体を形成し得る。
前記の本第2〜5発明方法又は上記の通常の薄膜製造方
法により製造された超電導体は、更に酸素含有雰囲気中
で500〜1.000″Cのアニーリングを施すことに
より組成むらの解消、酸素量や結晶構造の調整がなされ
超電導特性の一層の向上が計れる。
〔実施例〕
以下に本発明を実施例により詳細に説明する。
実施例−1 希土類元素、アルカリ土類元素又はアルカリ元素、Cu
をそれぞれ含有する化合物を種々のモル比で秤量し、こ
れを乳鉢でよく混合したのち、この混合粉をアルミナ坩
堝に入れ、これを抵抗炉中で100d/sinの酸素気
流中で930°C24時間仮焼成し、これを粉砕して仮
焼粉となし、この仮焼粉lに対しフラックスとしてCu
Oを2重量比配合して混合し、この混合粉を貴金属坩堝
にいれて200成/minの酸素気流中で1,050°
Cに加熱された抵抗炉内で3時間保持し、次いで5°C
/時間の速度で900℃まで徐冷したあと電源を切り炉
冷した。坩堝底部に単結晶体からなる超電導体が得られ
た。尚、この超電導体の結晶構造は斜方晶で格子定数は
a軸9.5〜11.5人、b軸4.8〜6.2人、C軸
12.5〜15.0人の範囲内にあった例えば希土類元
素がEr、アルカリ土類元素がBa、Bで示される元素
がptの時、得られた格子定数はa−10,29人、b
−5,66人、c=13.16人であった。
実施例−2 Y2O2、Ba (OH)z・8HzO1CuOをそれ
ぞれモル比で1:2:1になるように秤量し、これを乳
鉢でよく混合したのち、この混合粉をアルミナ坩堝に入
れこれを抵抗炉により空気中950°C15時間仮焼成
し、これを粉砕して仮焼粉となし、この仮焼粉1に対し
フラックスとしてPbO□を1重量比配合して混合し、
この混合粉を白金製ボートに入れ150成/winの酸
素気流中で1,025°Cに加熱された抵抗炉内で1時
間保持して本焼成を行い、次いで10°C/時間の速度
で920℃まで徐冷したあと電源を切り炉冷した。その
結果白金製ボート内壁に単結晶からなる超電導体を得た
実施例−・3 Ho、O,、B a (OH)z ・8 HzOlCu
b。
PtO*をそれぞれモル比で1 : 2.2 : 1.
25 : 0.75になるように秤量し、これを乳鉢で
よく混合したのち、この混合粉をアルミナ坩堝に入れ、
これを抵抗炉中で2001d/+winの酸素気流中で
930°C24時間仮焼成し、これを粉砕して仮焼粉と
なし、この仮焼粉を静水圧プレスにより4,000kg
/cdの圧力をかけてペレット状に成型し、次いでこの
ペレット状成型体を20kg/c−dの酸素圧下で1 
、050°C24時間本焼成し、多結晶体からなる超電
導体を得た。
実施例−4 実施例−3において用いた仮焼粉をカーボンジグに入れ
2軸プレスを利用して1,000kg/cdの圧力で加
圧しながら1.050°Cまで昇温し、15kg/cf
flの酸素圧のもとて5時間保持したのち室温に冷却し
、多結晶体からなる超電導体を得た。
実施例−5 実施例−4において得られた超電導体を300成/ m
 I nの酸素気流中で600°C48Hのアニーリン
グを施した。
実施例−6 5m、O,、B a (OH)z ・8 H2O1Cu
O1をそれぞれモル比で1.1:2:1になるように秤
量し、これを乳鉢で混合したのち、この混合粉を高純度
アルミナ坩堝に入れ、これを抵抗炉中で100IIl/
sinの酸素気流中で900°CIO時間仮焼成し、こ
れを粉砕して仮焼粉となし、この仮焼粉を静水圧プレス
により4.000kg / ctAの圧力をかけてペレ
ット状に成型し、この成型体を200成/minの酸素
気流中で1,050’C10時間本焼成した。
このようにして本焼成した成型体に白金板を500kg
/c4の荷重をかけて面接触させ200 ml / m
 i nの酸素気流中で1 、050°C24時間保持
し、上記成型体の白金板と接触した側に厚さ0.7mm
の多結晶体からなる超電導体を形成した。
実施例−7 Y、Sr、Cu、Coの金属元素をそれぞれ原子比で2
 : 2 :1.1:0.9になるように秤量し混合し
たのち、アルゴン雰囲気中で加熱溶融して合金となし、
次いでこの合金を粉砕して粒状化したのち、この粒状体
を200Id/minの酸素気流中で950°C24時
間加熱して仮焼成し、次いでこれを粉砕して仮焼粉とな
し、この仮焼粉を静水圧プレスにより4,000kg/
c+aの圧力をかけてペレット状に成型し、この成型体
を200m1/minの酸素気流中で1.050°CI
O時間本焼成し、多結晶体からなる超電導体を得た。
比較例−1 実施例−1において、N(11の原料ErzO3、Ba
 (OH)z・8Hzo、CuOをそれぞれモル比で1
/2:4:6になるように秤量した以外は実施例−1と
同じ方法により超電導体を製造した。
比較例−2 実施例−1において、阻4の原料HotOx、5rcO
3,CuOをそれぞれモル比で1:1ニアになるように
秤量した以外は、実施例=1と同じ方法により超電導体
を製造した。
比較例−3 実施例−2において、フラックスの量を仮焼粉lに対し
l/2にした以外は実施例−2と同し方法により超電導
体を製造した。
比較例−4 実施例−2において、フラックスの量を仮焼粉1に対し
4にした以外は、実施例−2と同じ方法により超電導体
を製造した。
而して得られた11種のセラミックス超電導体について
T、及びJ、を求めた。j、は室温(大気中湿度70%
)液体窒素間で10”回の熱サイクル試験を行い、その
前後のJ、を4端子法により求めた。結果は第1表に示
した。
第1表より明らかなように本発明品は比較品に較べてT
c及びJ、が高く特に熱サイクル試験後においても高い
Jc値を示しており、耐湿性、耐熱応力性に優れている
ことが判る。
本発明品において、成型工程と本焼成工程をホットプレ
スにより行ったもの(9)は、上記工程を別々に実施し
たもの(8)に較べて嵩密度が高く、その結果Jcが高
い値を示している。更に得られた超電導体にアニールを
施したものθωは、Tc及びjCに一層の向上が認めら
れる。
比較品において、希土類元素、アルカリ土類元素又はア
ルカリ元素、Cuのモル比が一般弐E「1.αAtLβ
(Cu+yrBr)tLδ0.JLtから外れるもの(
13,14) 、又仮焼粉とフラックスの比率がtit
〜3の条件を外れるもの(15,16)は、いずれもT
c、、Jcの値が低く、特に熱サイクル試験後のJcが
著しく低下しており、耐湿性、耐熱応力性に劣ることが
判る。
本発明のセラミックス超電導体は、スパッタリング法、
蒸着法、イオンブレーティング法、MBE法、TCB法
、CVD法、ブラズTCVD法、光CVD法等の通常の
成膜技術によって製造することができるが、例えばCV
D法によりE「、88%Cu、Pdの各アセチルアセト
ナートを原料とし10”Torrの酸素共存下で800
°Cでホワイトサファイア基板上に厚さ500μのEr
xBatCU+、+Pda、vOsの組成のMi電導体
欣を形成せしめ、超電導特性を測定したところTc=9
4に、J、=9XIO’A/c−の値を示し、熱サイク
ル試験後においてもJ、の低下は認められなかった。尚
、Hcは47テスラと高い値を示した。
〔効果〕
以上述べたように本発明によれば、耐湿性、耐熱応力性
に優れ、且つ、TcやJ、の高いセラミックス超電導体
が得られ、工業上顕著な効果を奏するものである。
特許出願人   古河電気工業株式会社第1頁の続き

Claims (9)

    【特許請求の範囲】
  1. (1)一般式R_2_±_αA_2_±_β(Cu_1
    _−_γB_γ)_2_±_δO_8_±_ε、(式中
    Rは希土類元素、Aはアルカリ土類元素又はアルカリ元
    素から選ばれる少なくとも1種の元素、BはRu、Rh
    、Pd、Ag、Re、Os、Ir、Pt、Au、Fe、
    Co、Niの群から選ばれる少なくとも1種の元素、C
    uは銅、0は酸素、α、β、γ、δ、εはそれぞれ0≦
    α<0.1、0≦β<0.1、0.03≦γ≦0.6、
    0≦δ<0.1、0≦ε<1)で示される組成物から成
    ることを特徴とするセラミックス超電導体。
  2. (2)組成物の結晶構造が斜方晶系であって、その格子
    定数がa軸9.5〜11.5Å、b軸4.8〜6.2Å
    、c軸12.5〜15.0Åであり、かつその分子内に
    擬一次元の−Cu−O−B−O−の繰り返し単位で形成
    される鎖状結合を含み、上記鎖状結合においてCu及び
    B元素が各々の荷数に応じたOを配位していることを特
    徴とする特許請求の範囲第1項記載のセラミックス超電
    導体。
  3. (3)R(希土類元素)、A(アルカリ土類元素又はア
    ルカリ元素)、Cu(銅)で示される元素を元素単位又
    はこれら元素を含有する化合物としてR、A、Cuをそ
    れぞれ一般式R_2_±_αA_2_±β(CU_1_
    −_γB_γ)_2_±_δO_8_±_ε、(式中R
    、A、Cu、B、O、α、β、γ、δ、εは特許請求の
    範囲第1項記載の内容と同じ)を満足するように秤量し
    混合したのち、この混合体を空気中、酸素気流中又は2
    00kg/cm^2以下の酸素加圧下のいずれかの条件
    下で600〜1,100℃で仮焼成し、次いでこれを粉
    砕したのち、この仮焼粉にフラックス化合物を重量比で
    1:1〜3の割合で配合し混合したのち、この混合粉を
    Ru、Rh、Pd、Ag、Re、Os、Ir、Pt、A
    u、Fe、Co、Ni群の中から選択される少なくとも
    1種の元素、あるいはこれらの元素の2種以上からなる
    合金で作製された容器内に充填したのち、空気中、酸素
    気流中又は200kg/cm^2以下の酸素加圧下のい
    ずれかの条件下で950〜1,100℃で加熱処理し次
    いで20℃/時間以下の冷却速度で徐冷することを特徴
    とするセラミックス超電導体の製造方法。
  4. (4)フラックス化合物がCuO又はPbOであること
    を特徴とする特許請求の範囲第3項記載のセラミックス
    超電導体の製造方法。
  5. (5)R(希土類元素)、A(アルカリ土類元素又はア
    ルカリ元素)、Cu(銅)、B(Ru、Rh、Pd、A
    g、Re、Os、Ir、Pt、Au、Fe、Co、Ni
    の群から選ばれた少なくとも一種の元素)で示される元
    素を元素単体あるいは化合物として、一般式R_2_±
    _αA_2_±_β(Cu_1_−_γB_γ)_2_
    ±_δO_8_±_ε、(式中R、A、Cu、B、O、
    α、β、γ、δ、εは特許請求の範囲第1項記載の内容
    と同じ)を満足するように秤量し、これを混合したのち
    、この混合体を空気中、酸素気流中あるいは200kg
    /cm^2以下の酸素加圧下のいずれかの条件下で60
    0〜950℃で仮焼成し、これを粉砕したのち、この仮
    焼粉を成型し、次いでこの成型体を空気中、酸素気流中
    又は200kg/cm^2以下の酸素加圧下のいずれか
    の条件下で800〜1,100℃で本焼成することを特
    徴とするセラミックス超電導体の製造方法。
  6. (6)成型及び本焼成をホットプレスにより行うことを
    特徴とする特許請求の範囲第5項記載のセラミックス超
    電導体の製造方法。
  7. (7)R(希土類元素)、A(アルカリ土類元素又はア
    ルカリ元素)、Cu(銅)で示される元素を元素単体又
    はこれら元素を含有する化合物として、R、A、Cuが
    それぞれ一般式R_2_±_αA_2_±_β(Cu_
    1_−_γB_γ)_2_±_δO_8_±_ε、(式
    中R、A、Cu、B、O、α、β、γ、δ、εは特許請
    求の範囲第1項記載の内容と同じ)を満足するように秤
    量し、混合したのち、この混合体を空気中、酸素気流中
    又は200kg/cm^2以下の酸素加圧下のいずれか
    の条件下で600〜950℃仮焼成し、次いでこの仮焼
    成体を粉砕したのち、この仮焼粉を成型し、更にこの成
    型体を空気中、酸素気流中又は200kg/cm^2以
    下の酸素加圧下のいずれかの条件下で800〜1,10
    0℃で本焼成し、次いでこの本焼成体を一般式B又はそ
    の元素の酸化物からなる成型体に所定の圧力をかけなが
    ら接触させて空気中、酸素気流中又は200kg/cm
    ^2以下の酸素加圧下のいずれかの条件下で800〜1
    ,100℃で加熱して、上記本焼成体の一般式Bからな
    る成型体との接触面側に一般式R_2_±_αA_2_
    ±_β(Cu_1_−_γB_γ)_2_±_δO_8
    _±_ε、(式中R、A、Cu、B、O、α、β、γ、
    δ、εは特許請求の範囲第1項記載の内容と同じ)で示
    される組成物を生成せしめることを特徴とするセラミッ
    クス超電導体の製造方法。
  8. (8)成型及び本焼成をホットプレスにより行うこと特
    徴とする特許請求の範囲第7項記載のセラミックス超電
    導体の製造方法。
  9. (9)R(希土類元素)、A(アルカリ土類元素又はア
    ルカリ元素)、Cu(銅)、B(Ru、Rh、Pd、A
    g、Re、Os、Ir、Pt、Au、Fe、Co、Ni
    の群から選ばれる少なくとも1種の元素)で示される元
    素をそれぞれ元素単体で一般式R_2_±_αA_2_
    ±_β(Cu_1_−_γB_γ)_2_±_δ_O_
    8_±_ε、(式中R、A、Cu、B、α、β、γ、δ
    は特許請求の範囲第1項記載の内容と同じ)を満足する
    ように秤量し混合したのち、この混合体を不活性雰囲気
    中で溶融して合金となし、次いでこの合金を空気中、酸
    素気流中又は200kg/cm^2以下の酸素加圧下の
    いずれかの条件下で800〜1,100℃で加熱し酸化
    することを特徴とするセラミックス超電導体の製造方法
JP62320179A 1987-12-18 1987-12-18 セラミックス超電導体及びその製造方法 Pending JPH01160821A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320179A JPH01160821A (ja) 1987-12-18 1987-12-18 セラミックス超電導体及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320179A JPH01160821A (ja) 1987-12-18 1987-12-18 セラミックス超電導体及びその製造方法

Publications (1)

Publication Number Publication Date
JPH01160821A true JPH01160821A (ja) 1989-06-23

Family

ID=18118575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320179A Pending JPH01160821A (ja) 1987-12-18 1987-12-18 セラミックス超電導体及びその製造方法

Country Status (1)

Country Link
JP (1) JPH01160821A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583093A (en) * 1991-03-22 1996-12-10 Canon Kabushiki Kaisha Metal oxide material with Ln, Sr, Cu, O, optionally Ca, and at least one of Fe, Co, Ti, V, Ge, Mo, and W

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583093A (en) * 1991-03-22 1996-12-10 Canon Kabushiki Kaisha Metal oxide material with Ln, Sr, Cu, O, optionally Ca, and at least one of Fe, Co, Ti, V, Ge, Mo, and W

Similar Documents

Publication Publication Date Title
US4861753A (en) Process for making superconductors using barium nitrate
US5324712A (en) Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding
US5140000A (en) Metal oxide 247 superconducting materials
NZ228820A (en) Superconducting metal oxide and its preparation
Sastry et al. Novel synthetic pathway to Bi (Pb)-2223 phase with variable Ca: Sr ratio, Bi 1.7 Pb 0.3 Sr 4–x Ca x Cu 3 O y: 1.85⩽ x⩽ 2.4
JPH01160821A (ja) セラミックス超電導体及びその製造方法
JPH02133322A (ja) Bi―Pb―Sr―Ba―Ca―Cu―O系超電導物質
US5036043A (en) Process for making 90 K superconductors
JPH0255298A (ja) 酸化物超電導体単結晶の育成方法
JP3021639B2 (ja) 好適な配向状態の稠密超伝導体
JPH0687611A (ja) 酸化物系超電導体、その製造方法及び線材
JP2838312B2 (ja) 酸化物超伝導物質
JPS63176353A (ja) 超伝導性素材
JPH04124032A (ja) 超電導体及びその合成法
EP0357683A4 (en) Improved process for making 90 k superconductors
US5536705A (en) Superconductor with 1212 phase of Hg,Pb,Sr,Ba,Ca,Y,Cu oxide
JPH0238359A (ja) 超電導体の製造方法
WO1989008076A1 (en) SUPERCONDUCTIVITY IN A Bi-Ca-Sr-Cu OXIDE COMPOUND SYSTEM FREE OF RARE EARTHS
JP2879448B2 (ja) Bi―Pb―Sr―Ca―Cu―O系超電導物質
JP3151558B2 (ja) Bi―Pb―Sr―Ca―Cu―O系超電導物質
JP2801806B2 (ja) 金属酸化物材料
JPH05339008A (ja) Tl,Pb系酸化物超電導材及びその製造方法
JPH03223118A (ja) 酸化物超電導体の製造法
JPH03115157A (ja) Bi系酸化物超電導体の製造法
Bhat et al. The mercury based superconductors: synthesis conditions and structural details (a literature review)