JPH01159363A - 超電導材の製造方法 - Google Patents

超電導材の製造方法

Info

Publication number
JPH01159363A
JPH01159363A JP63214131A JP21413188A JPH01159363A JP H01159363 A JPH01159363 A JP H01159363A JP 63214131 A JP63214131 A JP 63214131A JP 21413188 A JP21413188 A JP 21413188A JP H01159363 A JPH01159363 A JP H01159363A
Authority
JP
Japan
Prior art keywords
alloy
composite oxide
superconducting
base material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63214131A
Other languages
English (en)
Inventor
Goji Yamaguchi
剛司 山口
Hideo Itozaki
糸崎 秀夫
Shuji Yatsu
矢津 修示
Tetsuji Jodai
哲司 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63214131A priority Critical patent/JPH01159363A/ja
Publication of JPH01159363A publication Critical patent/JPH01159363A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高い超電導臨界温度を有する複合酸化物系超
電導材料による超電導材の製造方法に関する。
従来の技術 超電導現象下で物質は完全な反磁性を示し、内部で有限
な定常電流が流れているにも関わらず電位差が現れなく
なる。そこで、電力損失の全くない伝送媒体としての超
電導体の各種応用が提案されている。
即ち、その応用分野は、MHD発電、電力送電、電力貯
蔵等の電力分野、或いは、磁気浮上列車、電磁気推進船
舶等の動力分野、更に、磁場、マイクロ波、放射線等の
超高感度センサとしてNMR1π中間子治療、高エネル
ギー物理実験装置などの計測の分野等、極めて多くの分
野を挙げることができる。
また、ジョセフソン素子に代表されるエレクトロニクス
の分野でも、単に消費電力の低減のみならず、動作の極
めて高速な素子を実現し得る技術として期待されている
ところで、嘗て超電導は超低温下においてのみ観測され
る現象であった。即ち、従来の超電導材料として最も高
い超電導臨界温度Tcを有するといわれていたNb3G
eにおいても23.2 Kという極めて低い温度が長期
間に亘って超電導臨界温度の限界とされていた。
ところが、1986年に、ベドノーツおよびミューラー
達によって高いT。を有する複合酸化物系の超電導材料
が発見されるに至って、高温超電導の可能性が大きく開
けてきた( Bednorz、 Mjller。
”Z、 Phys、 864.1986.189”)。
これまでにも、複合酸化物系のセラミック材料が超電導
特性を示すということ自体は既に公知であり、例えば米
国特許第3.932.315号には、Ba −Pb−B
i系の複合酸化物が超電導特性を示すということが記載
されており、また、特開昭60−173.885号公報
にはBa−B1系の複合酸化物が超電導特性を示すとい
うことが記載されている。しかし、これまでに知られて
いた複合酸化物のTcはIOK以下であり、超電導現象
を起こさせるには液体ヘリウム(沸点4.2 K ’)
を用いる以外なかった。
ベドノーツおよびミ二−ラー達によって発見された酸化
物超電導体は(La、 Ba)2CuO<で、この酸化
物超電導体はに2NiFA型酸化物と呼ばれるもので、
従来から知られていたペロブスカイト型超電導酸化物と
結晶構造が似ているが、そのTcは従来の超電導材料に
比べて飛躍的に高い約30にという値である。
更に、1987年2月になって、チュー達によって90
にクラスの臨界温度を示すBa−Y系の複合酸化物が発
見された。このYBCOと称されるBa−Y系の複合酸
化物はY+Ba2Cu* 07−Xで表される複合酸化
物である。
続いて発見されたBi −3r −Ca−Cu系および
Tl−Ba −Ca−Cu系複合酸化物は、Tcが10
0に以上であるばかりでなく、化学的にも安定しており
、YBCO等のような超電導特性の経時的劣化が少ない
発明が解決しようとする課題 このように高い温度で超電導現象を示す材料を用いたな
らば、液体水素、液体窒素等のように入手が容易で廉価
な冷却媒体を用いることができるので、冷却のための技
術的およびコスト的な負担を軽減して超電導現象を利用
することが可能となる。
しかしながら、上記の液体窒素温度で超電導現象を示す
新しいタイプの材料は、目下のところ焼結体として得ら
れるので加工性および機械的強度の点で大きな制約が課
せられている。電力あるいは電流の伝送媒体として考え
た場合、超電導材料を線材に加工することは不可欠であ
るが、上述のような材料では側底伸線加工法にに制約が
あるため、超電導技術の実用化における大きな課題とな
っている。
本出願人は、既に、超電導体の粉末を金属筒体に充填後
、この金属筒体を縮径し、次いで焼結することによって
超電導長尺体を製造することを提案した(例、特願昭6
3−25108号、特願昭63−46970、特願昭6
3−94155号、特願昭63−94155号参照)。
これらの方法それ自体満足なものであるが、本出願人は
、上記の方法よりも簡単な方法で超電導特性を有する超
電導体、例えば超電導長尺体が製造できることを発見し
、本発明を完成した。
即ち、本発明の目的は、上記従来技術の問題を解決し、
Tcの高い複合酸化物超電導材料の超電導体、特に超電
導線材を工業的に製造することのできる新規な製造方法
を提供することにある。
課題を解決するための手段 本発明に従うと、複合酸化物系超電導体を構成する元素
のうちの金属元素によって合金を調製し、該合金によっ
て所望の形状の母材を形成し、更に、該母材の表面を酸
化して該母材の表面に超電導体層を形成することを特徴
とする超電導材の製造方法が提供される。
作用 本発明による超電導体の製造方法は、複合酸化物系超電
導体を構成する構成金属元素の合金を作り、この合金に
よって形成した母材の表面を酸化して超電導特性を有す
る複合酸化物層を具備した超電導材とすることを特徴と
している。
即ち、本発明に係る方法では、合金母材を加工して母材
を作製するので、任意の形状の製品を容易に製造するこ
とができる。また、線状またはテ−プ状等の長尺の母材
を作製することによって、超電導線材の連続的な製造工
程を実現することができる。
ここで、合金母材表面の酸化処理は公知の任意の酸化法
を適用することができる。即ち、最も単純な方法として
は上記合金母材を酸化性雰囲気下で加熱すればよい。加
熱はレーザ加熱、高周波加熱、酸化炎照射等によって行
うこともできる。また、上記合金母材に、真空チャンバ
ー中で酸素イオンビームを照射するまたは酸素イオンを
注入することによって行うこともできる。更に、化学的
酸化剤を用いて合金表面を酸化することもできる。
即ち、この酸化処理によって、合金の少なくとも表面近
傍に複合酸化物系超電導材料が形成される。
本発明方法で用いられる複合酸化物超電導体を構成する
構成金属元素の合金とは複合酸化物から酸素を除いた金
属構成元素、例えば、Y−Ba−CLI−〇系、La−
Ba−Cu−0系およびLa−3r −Cu−0系の複
合酸化物超電導体の場合には、それぞれY−Ba−Cu
、 La−Ba−CuおよびLa−3r−Cuよりなる
合金を意味する。これらの構成金属元素は、最終的に得
られる合金において、これら構成金属元素の相対原子比
が対応する系の複合酸化物超電導体におけるこれら構成
金属元素の相対原子比となるような成分比率で混合され
る。
これらの元素は金属または金属としての物性を備えてい
るので、金属合金の周知の製造方法を用いて製造するこ
とができる。−例として、y−ea−Cu−0系複合酸
化物超電導材料の金属構成元素であるY −Ba−Cu
の合金は、以下のようにして製造することができる。
すなわち、先ず、市販のYSBaおよびCuの金属粉末
を用意する。これらの金属粉末をY:Ba:Cuの原子
比が1:2:3となるように適当な溶剤、例えば、エタ
ノール中且つ非酸化性雰囲気下または真空中で十分混合
する。得られた金属粉末混合物を非酸化性雰囲気下また
は真空中で1.000℃以上の温度で溶融して合金化す
る。この場合、操作を非酸化性雰囲気下または真空中で
行うのは合金の機械的特性を劣化させないためである。
このようにして得られた酸化工程前の合金は、金属また
は金属としての物性を備えているので、金属の分野で従
来から用いられている伸線加工、プレス、鍛造等の種々
の加工法を適用して所望の任意の形状、例えば、線材、
帯体、コイル、ロッド、ヨーク等に加工することができ
る。
例えば、得られた合金を線状またはテープ状に成形する
場合には、溶融合金を鋳造によってインゴットとし、こ
のインゴットから角棒または丸棒を切り出し、さらに、
伸線機を用いて線材とする方法がある。この合金の成形
は一般に不活性ガス雰囲気または真空中で行うのが好ま
しい。
本発明方法では、こうして得られた合金の成形体の表面
のみを酸化することによって成形体の表面のみに複合酸
化物超電導体層を形成する。
本発明によって表面酸化された合金成形体、例えば、線
材、テープ、その他の合金基材の内部は合金のままであ
るので、表面の複合酸化物層を機械的に支持する機能も
果たしている。
本発明によって形成できる複合酸化物系超電導体層とし
ては下記の系が挙げられる: (1)一般式+ Aw Bll CuyOx〔但し、元
素Aは、周期律表Ira族から選択された1種の元素で
あり、 元素Bは、周期律表1a族から選択された1種の元素で
あり、 元素Cは、周期律表Ib1■b、■b1■a族から選択
された1種の元素であり、WSXSylzは、1≦W≦
5. 1≦X≦5. 1≦y≦15. 1≦2≦20 をそれぞれ満たす数である〕 で示される組成を有する複合酸化物。
より具体的には、上記元素Aが8aまたはSrであり(
この元素αの10〜80%をMg5CaSSrから選択
された1種または・2種の元素で置換することもできる
)、上記元素BがYSLa、 Gd、 Dy5Ho、B
r。
Tm、 YbおよびLuよりなる群の中から選択された
少なくとも一つの元素である複合酸化物層が挙げられる
上記の元素の他に、さらにAI、 Fes Co、 N
1.、Zn。
Ag  およびT1によって構成される群から選択され
る少なくとも1種の元素を含めることも可能である。
上記元素AとBの原子比は上記AおよびBの種類に応じ
て適宜選択できる。例えば、Ba−Y、Ba−La5S
r−La系の場合にはそれぞれ以下の比を満足するのが
好ましい。
Y/ (Y十Ba) :       0.06〜0.
94、好ましくは0.1〜0.4 Ba/ (La+Ba) :       0.04〜
0.96、好ましくは0.08〜0.45 Sr/ (La+Sr) :       0.03〜
0.95、好ましくは0,05〜0.1 上記の元素の組合せの中で、特に、本発明によって形成
可能な複合酸化物層としては、例えば、以下に例示した
Y−Ba−Cu−○系、La−8a −Cu −0系お
よび1a−5r−Cu −0系の複合酸化物層が挙げら
れる: Y+Ba2Cu* o7−X、  HOIBa2Cu3
0t−x、Lu、Ba2Cu、○?−XSSmIBa2
Cu307−xsNdJa2CIJ+07 X%  G
d、Ba、Cu307−X1EUJa2cU30’r−
x、 Er I Ba2Cu307−x 5DyrBF
12C(JsOt−x、     TmlBa2Cu3
0t−xYl]+Ba2Ct130?−X   La+
Ba2(”IJs 07−x−。
(La、 Sr) 2CU 04−X、〔但し、XはQ
<x<lを満たす数である〕上記酸化物はペロブスカイ
ト型酸化物または擬似ペロブスカイト型酸化物であるこ
とが好ましい。
擬似ペロブスカイトとはペロブスカイトに類似した構造
をいい、例えば酸素欠損ペロブスカイト型、オルソロン
ピック型等を含むものである。
(2)一般式: D a (E +−q、Caq) m
cun Op−r〔但し、DはBiまたはTIであり、 Eは、DがBiのときはSrであり、 DがT1のときはBaであり、 mは、6≦m≦10を満たす数であり、nは、4≦n≦
8を満たす数であり、 1) = (6+2m+2n) / 2であり、qは、
Q<q<lを満たす数であり、 tは、−2≦r≦2を満たす数を表す〕で表される組成
を主とした複合酸化物超電導体層。
より具体的には下記の系を挙げることができる;Bi、
5r2Ca2Cuz O+o−wまたはB+、Sr、C
a、Cug 02 (10−X)T12Ba、Ca2C
u30 + o−s+またはT12Ba4Ca4Cus
 02 (In−M)〔但し、Xは一2≦X≦2を満た
す数である〕以下に実施例を挙げて本発明をより具体的
に詳述するが、以下の開示は本発明の一実施例に過ぎず
、本発明の技術的範囲を何ら限定するものではない。尚
、以下の記述において、試料の電気抵抗が急激に減少し
始める超電導臨界温度をTC1試料の電気抵抗が完全に
零となる温度をTciと表す。
実施例1 まず、市販のBaとYとCuの金属粉末を用意する。
これらの金属粉末をHa : Y : Cuの原子比で
2:1:3となるように混合する。得られた混合物を白
金るつぼ中で1.500℃で2時間溶融する。以上の処
理は全て真空中で行う。
得られた合金からローラダイスを用いて直径2mm、 
3mmおよび5mmの3本の線材を作る。次いで、これ
らの線材を1気圧の□酸素気流中で950℃で5時間加
熱した後、10℃/分で徐冷した。
こうして得られた各線材から各々長さ3Qcmの試料を
切取った試料■、■、■について超電導特性を測定した
超電導臨界温度TcとTciの測定は、定法に従って試
料の両端の位置でその表面にAg導電ペースト電極を付
け、クライオスタット中で一旦50Kまで冷却して電気
抵抗が完全に零になることを確認した後、温度を少しづ
つ上昇させながら抵抗の変化を測定した。抵抗測定は直
流4点プローブ法で行い、温度はキャリブレーション済
みのAu(Fe) −Ag熱電対を用いて行った。測定
されたTc並びにTciを第1表に示す。
第1表 発明の効果 本発明に従う超電導材の製造方法によれば、機械的な支
持体並びにクエンチ時の電流バイパスとしての機能を果
たす合金基材の表面に高い臨界温度を有する複合酸化物
超電導層を具備した超電導体を製造することができる。
こうして得られた超電導体は、特に超電導素子を利用し
た電子回路等のような精密な電気信号を取り扱う分野に
おいて有利に利用することができる。
特許出願人  住友電気工業株式会社

Claims (1)

    【特許請求の範囲】
  1.  複合酸化物系超電導体を構成する元素のうちの金属元
    素によって合金を調製し、該合金によって所望の形状の
    母材を形成し、更に、該母材の表面を酸化して該母材の
    表面に超電導体層を形成することを特徴とする超電導材
    の製造方法。
JP63214131A 1987-08-28 1988-08-29 超電導材の製造方法 Pending JPH01159363A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63214131A JPH01159363A (ja) 1987-08-28 1988-08-29 超電導材の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-214440 1987-08-28
JP21444087 1987-08-28
JP63214131A JPH01159363A (ja) 1987-08-28 1988-08-29 超電導材の製造方法

Publications (1)

Publication Number Publication Date
JPH01159363A true JPH01159363A (ja) 1989-06-22

Family

ID=26520162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214131A Pending JPH01159363A (ja) 1987-08-28 1988-08-29 超電導材の製造方法

Country Status (1)

Country Link
JP (1) JPH01159363A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294623A (ja) * 1987-05-27 1988-12-01 Fujikura Ltd 酸化物系超電導線の製造方法
JPS63301424A (ja) * 1987-06-02 1988-12-08 Nippon Telegr & Teleph Corp <Ntt> 酸化物超伝導体薄膜の製造方法
JPS63313416A (ja) * 1987-06-15 1988-12-21 Nippon Telegr & Teleph Corp <Ntt> 超伝導線材およびその作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294623A (ja) * 1987-05-27 1988-12-01 Fujikura Ltd 酸化物系超電導線の製造方法
JPS63301424A (ja) * 1987-06-02 1988-12-08 Nippon Telegr & Teleph Corp <Ntt> 酸化物超伝導体薄膜の製造方法
JPS63313416A (ja) * 1987-06-15 1988-12-21 Nippon Telegr & Teleph Corp <Ntt> 超伝導線材およびその作製方法

Similar Documents

Publication Publication Date Title
JP2754564B2 (ja) 超電導性複合体の製造方法
US4906609A (en) Fabrication of superconducting oxide wires by powder-in-tube method
JP2610939B2 (ja) 超伝導体の製造方法
JP2001233605A (ja) 超伝導酸化物および超伝導酸化物/金属複合材
JPH013015A (ja) 超電導材料およびその製造方法
JPH01159363A (ja) 超電導材の製造方法
JPH0577602B2 (ja)
EP0305300A2 (en) A method for producing a superconducting article
JPS63299018A (ja) 超電導材の製造方法
JPS63257125A (ja) 超伝導線材およびその作製方法
JP2651018B2 (ja) 高磁場マグネット
JPS63307622A (ja) 超電導ワイヤの製造方法
JP2727565B2 (ja) 超電導体の製造方法
JPH01206518A (ja) 線状超電導材の製造方法
JPS63288943A (ja) 超電導材の製造方法
JPH01163922A (ja) 線状超電導材の製造方法
JPH02221125A (ja) 酸化物超電導体および製造方法
JP2828631B2 (ja) 超電導物質の製造方法
JPH01283713A (ja) 線状超電導材の製造方法
Pinkerton et al. Superconducting yttrium‐barium‐copper‐oxide ribbons fabricated from a metal alloy precursor
JPH01279509A (ja) 線状超電導材の製造方法
JPS63274027A (ja) 超電導材料の製造方法
JPH0397679A (ja) 金属・セラミックス複合体の製造方法
JPH01206513A (ja) 超電導材
JPH01279512A (ja) 線状超電導材の製造方法