JPH01140677A - Manufacture of thin film solar cell - Google Patents

Manufacture of thin film solar cell

Info

Publication number
JPH01140677A
JPH01140677A JP62300555A JP30055587A JPH01140677A JP H01140677 A JPH01140677 A JP H01140677A JP 62300555 A JP62300555 A JP 62300555A JP 30055587 A JP30055587 A JP 30055587A JP H01140677 A JPH01140677 A JP H01140677A
Authority
JP
Japan
Prior art keywords
amorphous semiconductor
laser beam
solar cell
thin film
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62300555A
Other languages
Japanese (ja)
Inventor
Norihiko Inuzuka
犬塚 敬彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62300555A priority Critical patent/JPH01140677A/en
Publication of JPH01140677A publication Critical patent/JPH01140677A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To prevent the crystallization of an amorphous semiconductor due to the thermal effect by immediately quenching the processed part of the amorphous semiconductor after the processing in the final process of a laser processing. CONSTITUTION:A conductor 12 and an amorphous semiconductor 13 formed on an insulating substrate 11 are sequentially divided by a laser beam, forming a plurality of photoelectric transducer regions which are electrically connected in series. And after the processing by the laser beam, the processed surface of the amorphous semiconductor 13 is quenched. With this, the amorphous semiconductor fused by the thermal effect of the laser beam is not crystallized and can maintain the amorphous state even after it is solidified.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は薄膜太陽電池に関し、特に直列接続型太陽電
池の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to thin film solar cells, and particularly to a method for manufacturing series-connected solar cells.

[従来の技術] 近年非晶質シリコン等の薄膜太陽電池を大量に製造する
場合の製造方式として、レーザースクライブを用いて形
成される直列接続型太陽電池の開発が盛んに行われてい
る。第2図は例えば特開昭59−220979号公報に
示された従来の薄膜太陽電池を示す断面図である0図に
示すように透明ガラスを用いた透光性絶縁基板(1)の
上には5n02からなる透明な第1電f4i層(2)が
形成され、第1電極層(2)の上にはPIN接合を有す
るアモルファスシリコン等のアモルファス半導体からな
る光半導体層(3)が形成されている。さらに薄膜状光
半導体層(3)の上には前記光半導体層(3)とオーミ
ック接触する第2TL極層(4)が形成されている。こ
の第2電極層(4)はアルミニウム等のオーミック層と
チタニウム等の導電加工層とで構成されている。このよ
うな直列接続型太陽電池はまず透光性絶縁基板(1)上
全面に透明な第1電極層を被着したのち第1電極層の所
定の位置にレーザービームを照射して隣接間隔部Llj
−除去し第1TL極層(2)を分離形成する8次に第1
電極層(2)の表面を含んで絶縁基板(1)上全面にP
IN接合を含むアモルファスシリコン光半導体層(3)
を被着したのち、アモルファスシリコン光半導体層上の
所定の位置にレーザービームを照射して隣接間隔部L2
を除去し個別の光半導体層(3)を分離形成する0次に
第1電極層の露出部及び光半導体層の各表面を含んで絶
縁基板(1)上全面に第2電極層(4)を被着したのち
、第2電1flFJ上の所定の位置にレーザービームを
照射して隣接間隔部L3を除去し、個別の第2i!極層
(4)を分離形成する。その結果各光電変換領域(5a
)、(5b)、(5C)が電気的に直列接続される。
[Prior Art] In recent years, series-connected solar cells formed using laser scribing have been actively developed as a manufacturing method for manufacturing thin-film solar cells made of amorphous silicon or the like in large quantities. Figure 2 is a cross-sectional view showing a conventional thin film solar cell disclosed in, for example, Japanese Patent Application Laid-Open No. 59-220979. A transparent first electrode layer (2) made of 5n02 is formed, and an optical semiconductor layer (3) made of an amorphous semiconductor such as amorphous silicon having a PIN junction is formed on the first electrode layer (2). ing. Further, a second TL pole layer (4) is formed on the thin-film optical semiconductor layer (3) and is in ohmic contact with the optical semiconductor layer (3). This second electrode layer (4) is composed of an ohmic layer made of aluminum or the like and a conductive layer made of titanium or the like. Such series-connected solar cells are manufactured by first depositing a transparent first electrode layer on the entire surface of a transparent insulating substrate (1), and then irradiating a laser beam onto a predetermined position of the first electrode layer to separate adjacent spaces. Llj
- removing and separating the first TL pole layer (2);
P is applied to the entire surface of the insulating substrate (1) including the surface of the electrode layer (2).
Amorphous silicon optical semiconductor layer including IN junction (3)
After depositing the amorphous silicon photosemiconductor layer, a laser beam is irradiated to a predetermined position on the amorphous silicon photosemiconductor layer to form an adjacent space L2.
A second electrode layer (4) is formed over the entire surface of the insulating substrate (1), including the exposed portion of the first electrode layer and each surface of the optical semiconductor layer. is deposited, a laser beam is irradiated to a predetermined position on the second electrode 1flFJ to remove the adjacent spacing portion L3, and the individual 2i-th! A polar layer (4) is formed separately. As a result, each photoelectric conversion area (5a
), (5b), and (5C) are electrically connected in series.

[発明が解決しようとする問題点] 太陽電池の光発電効率を左右する要因の1つは、光発電
領域間の漏れ電流の有無及びその大小であり、太陽電池
の発電効率を向上させるためには漏れ電流を小さくする
必要がある。しかしながら上記のようにレーザービーム
加工により製造された太陽電池は、製造の最終工程にお
いてレーザービームが照射されたアモルファスシリコン
光半導体層の加工面(30)がレーザービームの熱影響
によって多結晶化または微結晶化する。アモルファスシ
リコンが熱影響によって結晶化するとその結晶の電気伝
導度は、もとのアモルファスシリコンの電気伝導度に比
べて約10000倍も高いため、第1電極(2)と第2
電極(4)の間で上記加工面(30)の結晶下層を通っ
て漏れ電流が流れ光電変換効率を低下させる原因になる
という問題点があった。
[Problems to be Solved by the Invention] One of the factors that influences the photovoltaic efficiency of solar cells is the presence or absence of leakage current between photovoltaic regions and its magnitude. It is necessary to reduce leakage current. However, in the solar cell manufactured by laser beam processing as described above, the processed surface (30) of the amorphous silicon photosemiconductor layer irradiated with the laser beam becomes polycrystalline or microcrystalline due to the thermal influence of the laser beam in the final manufacturing process. crystallize. When amorphous silicon crystallizes under the influence of heat, the electrical conductivity of the crystal is about 10,000 times higher than that of the original amorphous silicon.
There is a problem in that a leakage current flows between the electrodes (4) through the lower crystal layer of the processed surface (30), causing a decrease in photoelectric conversion efficiency.

−ご この発明は上記のような問題点を解消するためになされ
たものでレーザービーム加工によるアモルファス半導体
の結晶化を防止する太陽電池の製造方法を提供すること
を目的としている。
- This invention was made to solve the above-mentioned problems, and its object is to provide a method for manufacturing a solar cell that prevents crystallization of an amorphous semiconductor due to laser beam processing.

[問題点を解決するための手段] この発明に係る薄膜太陽電池の製造方法においては、ア
モルファス半導体のレーザービーム加工部を加工後に急
冷するようにしている。
[Means for Solving the Problems] In the method for manufacturing a thin film solar cell according to the present invention, the laser beam processed portion of the amorphous semiconductor is rapidly cooled after processing.

[作用] この発明における薄膜太陽電池の製造方法は、最終工程
におけるアモルファスシリコンのレーザービーム加工部
を加工後に急冷するようにしたのでレーザービームの熱
影響によって溶融したアモルファス半導体が結晶化する
ことなく、凝固後もアモルファス状態を維持する。
[Function] In the method for manufacturing a thin film solar cell according to the present invention, the laser beam processed portion of the amorphous silicon in the final step is rapidly cooled after processing, so that the amorphous semiconductor melted by the thermal influence of the laser beam does not crystallize. Remains amorphous even after solidification.

[発明の実施例] 以下、この発明の一実施例を図にもとづいて説明する。[Embodiments of the invention] Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図に示すようにこの発明の一実施例に係る太陽電池
においては厚さ1〜3 mmのガラス板からなる透光性
の絶縁基板(11)の上には厚さ6000Aの5n02
からなる透明?4極(12)が形成され、その上にはさ
らにPIN接合を有するアモルファスシリコンの半導体
層(13)が形成される。前記半導体、II (13)
上には前記半導体層(13)とオーミック接触するアル
ミニウムからなる裏面型1fI(14)が形成される。
As shown in FIG. 1, in a solar cell according to an embodiment of the present invention, a 5N02 film with a thickness of 6000 A is placed on a transparent insulating substrate (11) made of a glass plate with a thickness of 1 to 3 mm.
Transparent consisting of? A quadrupole (12) is formed, and an amorphous silicon semiconductor layer (13) having a PIN junction is further formed thereon. The semiconductor, II (13)
A back-type 1fI (14) made of aluminum and in ohmic contact with the semiconductor layer (13) is formed thereon.

この発明による薄膜太陽電池の製造方法について以下に
説明する。絶縁基板(11)上全面に熱CVD法により
透明型tfI(12)として厚さ6000AのSnO2
膜を成膜する。その後、波長1.06μmのNd : 
YAGレーザーを用い前記の5n02膜を7 、5 +
w間隔にスクライブし複数の透明型ffi (12)に
分割した。スクライブ幅(Lll)は50μmである0
次に透明電極(12)の表面を含んで絶縁基板(11)
上全面にPIN接合を有するアモルファスシリコン半導
体膜を多室分離型プラズマCVD装置を用いてPM、 
IWl、 N層の順に成膜する。その後、波長0.53
 μmL:I)Nd : YAGレーザーの第2高調波
を用い前記のアモルファスシリコン膜の所定の位置をス
クライブし複数のアモルファス半導体層(13)に分割
する。スクライブ幅(L12)は100μmである0次
に透明電極(12)の露出部およびアモルファス半導体
層(13)の各表面を含む絶縁基板(11)上全面にス
パッタ装置によってアルミニウム膜を成膜し裏面電極(
14)を形成する。裏面電極(14)はその後、波長1
.06μmのNd : YAGレーザ−ビームを前記の
裏面型ffi (14)上に照射して、所定の位置の裏
面電極(14)および裏面電極(14)直下のアモルフ
ァス半導体層(13)の一部を蒸発除去すると共に、レ
ーザービーム加工後直ちに加工部(130)をフロン1
13や液体窒素等の冷媒によって急冷する。
A method for manufacturing a thin film solar cell according to the present invention will be described below. SnO2 with a thickness of 6000A is deposited on the entire surface of the insulating substrate (11) as a transparent tfI (12) by thermal CVD.
Deposit a film. After that, Nd with a wavelength of 1.06 μm:
Using a YAG laser, the 5n02 film was 7,5+
It was scribed at w intervals and divided into a plurality of transparent ffi (12). The scribe width (Lll) is 50 μm.
Next, the insulating substrate (11) including the surface of the transparent electrode (12)
An amorphous silicon semiconductor film having a PIN junction on the entire upper surface is PM-treated using a multi-chamber separation type plasma CVD equipment.
The IWl and N layers are deposited in this order. After that, wavelength 0.53
μmL:I)Nd: Using the second harmonic of a YAG laser, the amorphous silicon film is scribed at a predetermined position and divided into a plurality of amorphous semiconductor layers (13). The scribe width (L12) is 100 μm. An aluminum film is deposited on the entire surface of the insulating substrate (11), including the exposed portion of the zero-order transparent electrode (12) and each surface of the amorphous semiconductor layer (13), using a sputtering device. electrode(
14). The back electrode (14) then
.. A 0.6 μm Nd:YAG laser beam is irradiated onto the back surface type ffi (14) to remove the back electrode (14) at a predetermined position and a part of the amorphous semiconductor layer (13) directly under the back electrode (14). In addition to evaporation removal, immediately after laser beam processing, the processing area (130) is
13 or liquid nitrogen.

レーザースクライブ幅(L13)は50μmである。前
記のレーザースクライブによって裏面t ffi (1
4)は複数に分割され、各光電変換領域(15a)、(
15b)、(15c)が電気的に直列接続された薄膜太
陽電池が得られる。前記太陽電池のアモルファス半導体
層(13)のレーザービーム加工部(130)は、レー
ザービーム照射時にアモルファスシリコンの一部が溶融
状態となるが、加工後にレーザーラマン分光分析を用い
て調べたところ、アモルファス状を呈しており、加工部
(130)の電気伝導度は10−9〜1O−IQs/c
anであり高抵抗に保持されていた。
The laser scribe width (L13) is 50 μm. The back surface t ffi (1
4) is divided into a plurality of parts, and each photoelectric conversion area (15a), (
A thin film solar cell in which 15b) and 15c are electrically connected in series is obtained. In the laser beam processed portion (130) of the amorphous semiconductor layer (13) of the solar cell, part of the amorphous silicon becomes molten during laser beam irradiation, but when examined using laser Raman spectroscopy after processing, it was found that the amorphous silicon The electrical conductivity of the processed portion (130) is 10-9 to 1O-IQs/c.
an, and was maintained at a high resistance.

なお上記実施例では、透光性の絶縁基板(11)上に透
明電極(12)、アモルファス半導体(13)、裏面電
極(14)の順に形成された薄膜太陽電池について述べ
たが、各構成要素の形成順序を変えた場合、例えば絶縁
基板上に裏面’を極、アモルファス半導体、透明電極の
順に形成される薄膜太陽電池に対しても、この発明にお
ける製造方法を適用することができる。またアモルファ
ス半導体としてアモルファスシリコン半導体を用いる場
合に限らず他の半導体を用いる場合にもこの発明を適用
することができる。
In the above example, a thin film solar cell was described in which a transparent electrode (12), an amorphous semiconductor (13), and a back electrode (14) were formed in this order on a transparent insulating substrate (11). When the order of formation is changed, for example, the manufacturing method of the present invention can also be applied to a thin film solar cell in which a pole is formed on the back surface, an amorphous semiconductor, and a transparent electrode are formed in this order on an insulating substrate. Further, the present invention can be applied not only to the case where an amorphous silicon semiconductor is used as the amorphous semiconductor but also to the case where other semiconductors are used.

[発明の効果] 以上のようにこの発明によればレーザービーム加工の最
終工程においてアモルファス半導体層の加工部を加工後
、直ちに急冷しアモルファス半導体が熱影響によって多
結晶または微結晶に変化するのを防止するようにしたの
で、アモルファス半導体のレーザービーム加工面を高抵
抗に保持することかで゛きる。その結果透明電極と裏面
電極の間の漏れ電流がほとんどない高性能の薄膜太陽電
池を製造することが可能になる。
[Effects of the Invention] As described above, according to the present invention, in the final step of laser beam processing, the processed portion of the amorphous semiconductor layer is rapidly cooled immediately after processing to prevent the amorphous semiconductor from changing into polycrystals or microcrystals due to thermal effects. Since this is prevented, it is possible to maintain a high resistance on the laser beam processed surface of the amorphous semiconductor. As a result, it becomes possible to manufacture a high-performance thin-film solar cell with almost no leakage current between the transparent electrode and the back electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例による薄膜太陽型B’l、
の製造方法によって製作された直列接続型太陽電池の断
面図、第2図は従来法によって製造された直列接続型太
陽電池の断面図である。図において(11)は絶縁基板
、(12)は透明電極、(13)はアモルファス半導体
層、(14)は裏面電極、(130)はアモルファス半
導体の加工部である。 代理人  大 岩 fill  雄 第u図 14: ph電抄 手続補正書(自発)
FIG. 1 shows a thin film solar type B'l according to an embodiment of the present invention;
FIG. 2 is a cross-sectional view of a series-connected solar cell manufactured by the conventional method. In the figure, (11) is an insulating substrate, (12) is a transparent electrode, (13) is an amorphous semiconductor layer, (14) is a back electrode, and (130) is a processed portion of the amorphous semiconductor. Agent Oiwa Fill Yu Figure U14: PH Densho Procedures Amendment (Spontaneous)

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板上に形成された導体及びアモルファス半
導体膜をレーザービームによって順次分割し、電気的に
直列接続された複数の光電変換領域を形成する工程と、 レーザービームによる加工後、上記アモルファス半導体
膜の加工面を急冷させる工程と を備えていることを特徴とする薄膜太陽電池の製造方法
(1) A step of sequentially dividing a conductor and an amorphous semiconductor film formed on an insulating substrate with a laser beam to form a plurality of photoelectric conversion regions electrically connected in series; and after processing with the laser beam, the amorphous semiconductor A method for producing a thin film solar cell, comprising the step of rapidly cooling a processed surface of the film.
JP62300555A 1987-11-26 1987-11-26 Manufacture of thin film solar cell Pending JPH01140677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62300555A JPH01140677A (en) 1987-11-26 1987-11-26 Manufacture of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62300555A JPH01140677A (en) 1987-11-26 1987-11-26 Manufacture of thin film solar cell

Publications (1)

Publication Number Publication Date
JPH01140677A true JPH01140677A (en) 1989-06-01

Family

ID=17886241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62300555A Pending JPH01140677A (en) 1987-11-26 1987-11-26 Manufacture of thin film solar cell

Country Status (1)

Country Link
JP (1) JPH01140677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274446A (en) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd Method of manufacturing integrated hybrid thin film solar battery
DE112009005060T5 (en) 2009-07-10 2012-07-12 Mitsubishi Electric Corp. Laser processing method and laser processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274446A (en) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd Method of manufacturing integrated hybrid thin film solar battery
DE112009005060T5 (en) 2009-07-10 2012-07-12 Mitsubishi Electric Corp. Laser processing method and laser processing apparatus
CN102470481B (en) * 2009-07-10 2015-04-29 三菱电机株式会社 Laser processing method and apparatus
DE112009005060B4 (en) 2009-07-10 2017-10-19 Mitsubishi Electric Corp. Laser processing method and laser processing apparatus

Similar Documents

Publication Publication Date Title
US4870031A (en) Method of manufacturing a semiconductor device
JPH01140677A (en) Manufacture of thin film solar cell
JPH027415A (en) Formation of soi thin film
JP2709591B2 (en) Method for manufacturing recrystallized semiconductor thin film
JP2779033B2 (en) Method for growing polycrystalline Si thin film
JPS61111517A (en) Silicon substrate
JPS5939791A (en) Production of single crystal
JPS6254910A (en) Manufacturing semiconductor device
JPS6191971A (en) Manufacture of solar battery device
JPS63283077A (en) Manufacture of solar cell
JPH01134976A (en) Manufacture of solar cell
JPH03284831A (en) Forming method for semiconductor thin-film
JPS5939023A (en) Manufacture of semiconductor thin film
JPS6265480A (en) Thin film solar battery
TW201925551A (en) Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof
JPS6255917A (en) Recrystallization of semiconductor layer
JPS5934626A (en) Method for formation of semiconductor film
JPH034515A (en) Formation of semiconductor film
JPS61201414A (en) Manufacture of semiconductor single crystal layer
JPH07273031A (en) Manufacture of silicon substrate
JP2794092B2 (en) Method for manufacturing silicon substrate
JPH01297814A (en) Manufacture of single crystal
JPH027414A (en) Formation of soi thin film
JPS6126598A (en) Preparation of germanium thin film crystal
JPH0715023A (en) Photovoltaic device and its manufacture