JPS63283077A - Manufacture of solar cell - Google Patents

Manufacture of solar cell

Info

Publication number
JPS63283077A
JPS63283077A JP62117845A JP11784587A JPS63283077A JP S63283077 A JPS63283077 A JP S63283077A JP 62117845 A JP62117845 A JP 62117845A JP 11784587 A JP11784587 A JP 11784587A JP S63283077 A JPS63283077 A JP S63283077A
Authority
JP
Japan
Prior art keywords
electrode
layer
amorphous semiconductor
semiconductor layer
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62117845A
Other languages
Japanese (ja)
Inventor
Yukimi Ichikawa
幸美 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62117845A priority Critical patent/JPS63283077A/en
Publication of JPS63283077A publication Critical patent/JPS63283077A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To eliminate a need for a patterning operation of only an amorphous semiconductor layer by a method wherein a second electrode is separated from its low-resistance part by patterning only a second electrode layer. CONSTITUTION:When a series connection of a block cell constituted by first electrode layers 21-24 composed of transparent conductive thin films on an insulating substrate 1, by an amorphous Si(a-Si) layer 30 and by a second electrode layer 40 is to be cut at the second electrode layer 40 and at the amorphous semiconductor layer 30 by using laser beams 5, it is cut via parts near each cutting face 6 of the a-Si layer 30 whose resistance value has become low due to the crystallization of a-Si by a high-temperature heating operation or due to the generation of crystalline Si containing a molten metal; second electrodes 41-44 are separated from the low resistance parts by a patterning operation of only the second electrode layer 40.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、絶縁性基板上にあって基板側に第一電極9反
基板側に第二電極を備えたアモルファス半導体層からな
るユニットセルが、第一電極層を隣接セルの第二電極層
に接続することによって直列接続される太陽電池の製造
方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a unit cell comprising an amorphous semiconductor layer on an insulating substrate and having a first electrode on the substrate side and a second electrode on the opposite side of the substrate. , relates to a method for manufacturing solar cells connected in series by connecting a first electrode layer to a second electrode layer of an adjacent cell.

〔従来の技術〕[Conventional technology]

原料ガスのグロー放電分解や光CVD法により形成され
るアモルファス半導体膜は気相成長であるため、大面積
化が容易で、低コスト太陽電池の光電変換膜として期待
されている。こうした大面積のアモルファス太陽電池か
ら効率よく電力を取出すためのよく知られた方法として
、第2図に示されるような直列接続形の太陽電池がある
。これは、ガラス基板1などの絶縁性基板上に、酸化す
ずやITOなどの透明導電薄膜からなる第一電極21、
22.23・・・を短冊状に形成し、その上に光起電力
発生部であるアモルファス半導体層領域31.32゜3
3・・・を、次いで金属薄膜や透明導電薄膜からなる第
二電極41.42.43・・・を形成したものである。
Since amorphous semiconductor films formed by glow discharge decomposition of raw material gas or photo-CVD are grown in a vapor phase, they can be easily grown to a large area and are expected to be used as photoelectric conversion films for low-cost solar cells. A well-known method for efficiently extracting power from such large-area amorphous solar cells is a series-connected solar cell as shown in FIG. This consists of a first electrode 21 made of a transparent conductive thin film such as tin oxide or ITO, on an insulating substrate such as a glass substrate 1;
22, 23... are formed into a strip shape, and an amorphous semiconductor layer region 31.32°3 which is a photovoltaic force generating portion is formed on top of it.
3..., and then second electrodes 41, 42, 43, etc. made of a metal thin film or a transparent conductive thin film were formed.

第一電極21.アモルファス半導体層31および第二電
極41の組合せ、第一電極22.アモルファス半導体層
32および第二電極42の組合せ等が各ユニットセルを
構成する。そして、一つのユニットセルの第一電極層が
隣接するユニットセルの第二電極層と一部接触する構造
となるよう両電極およびアモルファス半導体層のパター
ンが形成され、各ユニットセルが直列に接続される。
First electrode 21. A combination of the amorphous semiconductor layer 31 and the second electrode 41, the first electrode 22. A combination of the amorphous semiconductor layer 32 and the second electrode 42 constitutes each unit cell. Then, patterns of both electrodes and the amorphous semiconductor layer are formed so that the first electrode layer of one unit cell partially contacts the second electrode layer of the adjacent unit cell, and each unit cell is connected in series. Ru.

こうした直列接続型の太陽電池の形成には、各層をそれ
ぞれ全面に被着した後、フォトエツチング法、レーザス
クライビング法、メカニカルスクライビング法などの各
種パターニングプロセス技術が用いられる。しかし、ど
のパターニング法を用いる場合でも、まず第一電極層を
形成しそれをパターニングした後、アモルファス半導体
層を形成し、それをパターニングする。そして最後に第
二電極層を均一に形成したのちパターニングを行うとい
う工程を経るのが普通である。
To form such series-connected solar cells, various patterning process techniques such as photoetching, laser scribing, and mechanical scribing are used after each layer is deposited on the entire surface. However, no matter which patterning method is used, a first electrode layer is first formed and patterned, and then an amorphous semiconductor layer is formed and patterned. Finally, it is common to go through a step of uniformly forming the second electrode layer and then patterning it.

〔発明が解決しようとする問題点〕 上述の従来の太陽電池の製造方法においては、アモルフ
ァス半導体層を成膜後、第二電極層積層前にアモルファ
ス半導体層のパターニングを行う際、アモルファス半導
体層に傷が入り、次の第二電極層の被着によりその傷を
介して第一電極層と短絡し、セルの短絡不良の原因とな
る問題があった。またパターニング時の汚染を除去する
ための洗浄工程が必要であった。
[Problems to be Solved by the Invention] In the conventional solar cell manufacturing method described above, when patterning the amorphous semiconductor layer after forming the amorphous semiconductor layer and before laminating the second electrode layer, There is a problem in that when a scratch occurs, a short circuit occurs with the first electrode layer through the scratch when the next second electrode layer is deposited, causing a short circuit failure of the cell. Additionally, a cleaning step was required to remove contamination during patterning.

本発明の目的は、上記の問題を解決してアモルファス半
導体層のパターニングを第一電極層被着前に行う必要の
ない低コストで信顧性の高い太陽電池の製造方法を提供
することにある。
An object of the present invention is to solve the above-mentioned problems and provide a low-cost and highly reliable method of manufacturing a solar cell that does not require patterning an amorphous semiconductor layer before depositing a first electrode layer. .

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明の方法は、絶縁性
基板上に一列に配列された複数の第一電極を形成し、そ
の上を覆ってアモルファス半導体層。
To achieve the above object, the method of the present invention includes forming a plurality of first electrodes arranged in a row on an insulating substrate, and covering the first electrodes with an amorphous semiconductor layer.

第二電極層を積層する工程の後に、レーザ光の照射によ
り第二電極層およびアモルファス半導体層を各第一電極
の縁部近傍の上で切断1分割すると共に、アモルファス
半導体層の切断面近傍を結晶化して良導電性化する工程
と、第二電極層のみを前記切断部より第一電極の内側の
上で切断し1分割する工程とを含むものとする。
After the process of laminating the second electrode layer, the second electrode layer and the amorphous semiconductor layer are cut into one part near the edge of each first electrode by irradiation with laser light, and the area near the cut surface of the amorphous semiconductor layer is cut into one part. The method includes a step of crystallizing to have good conductivity, and a step of cutting only the second electrode layer on the inner side of the first electrode from the cutting portion to divide it into one piece.

〔作用〕[Effect]

予め絶縁性基板上に形成された第一電極、その上に積層
されレーザ光の照射により分割されたアモルファス半導
体層領域およびその上に積層されアモルファス半導体層
と共に分割された第二電極層の、さらに第一電極縁部に
近い部分を分離して残った領域よりなる第二電極が各ユ
ニットセルを構成する。そして、アモルファス半導体層
の第一電極の縁部に近い側のレーザ光照射による切断面
近傍の良導電性の結晶化部分により第一電極と隣接セル
の第二電極との接続が行われる。
A first electrode formed in advance on an insulating substrate, an amorphous semiconductor layer region laminated thereon and divided by laser light irradiation, and a second electrode layer laminated thereon and divided together with the amorphous semiconductor layer. A second electrode consisting of a region remaining after separating a portion near the edge of the first electrode constitutes each unit cell. Then, the first electrode and the second electrode of the adjacent cell are connected by the highly conductive crystallized portion near the cut surface of the amorphous semiconductor layer that is irradiated with laser light on the side near the edge of the first electrode.

〔実施例〕〔Example〕

第1図(al 、 (b) 、 (c)は本発明の一実
施例の工程を示し、第2図と共通の部分には同一の符号
が付されている。第1図(alは、絶縁性基板としての
ガラス基板1の上に透明導電薄膜よりなる第一電極21
゜22、23・・・の短冊状パターンが形成されており
、その上にアモルファスシリコン(以下a −5iと記
す)層30.金属層40が全面に被着された状態を示す
Figures 1 (al, b), and (c) show the steps of an embodiment of the present invention, and the same parts as in Figure 2 are given the same reference numerals. A first electrode 21 made of a transparent conductive thin film is placed on a glass substrate 1 as an insulating substrate.
22, 23... are formed, and an amorphous silicon (hereinafter referred to as a-5i) layer 30. The state in which the metal layer 40 is coated on the entire surface is shown.

次に、各第一電極2L 22.23・・・の隣接セルと
接続される側、すなわち、図では左側の縁部に近い部分
の上に金属層40の側からレーザ光5を集光し、第1図
(b)に示すように金属層40およびa −3t層30
を線状に蒸発させて除去し、切断することによって、第
二電極4L 42.43・・・、a −3t層領域31
.32゜33・・・に分割する。このときa−St層の
各切断面6に近い部分は、高温加熱によるa −3tの
結晶化、あるいは溶融による金属を含む結晶si生成に
より良導性となっている。第一電極21.22.23・
・・に厚さ4500人の酸化すず膜、第二電極41.4
2.43・・・に厚さ2000〜3000人のM膜を用
いた場合、波長1.o6ρおよび0.53rmのYAG
レーザ光を集光し、第一電極層には損傷を与えずにa 
−3t層3oおよび金属層40を除去できるようにレー
ザ照射条件を調整すると、第一電極2L 22.23・
・・と第二電極4L 42゜43・・・の間の接触抵抗
は1Ω以下となることが示された。第一電極と第二電極
の間のa −St層を第一電極を通してのレーザ光照射
により焼きなましなだけでも接触抵抗の低下は見られる
が、その抵抗値はレーザ光照射条件により大きく変化し
、数にΩあるいはそれ以上となることが多い。第3図は
、波長1.06−のYAGレーザを5Q4X5Q4の方
形に集光し、1kHz、掃引速度100 tm / s
ecで金属層面に照射したときに得られる第一電極、第
二電極間の接触抵抗と、レーザ出力に比例するレーザの
励起ランプ電流との関係をプロットしたものである。ラ
ンプ電流25A以上の領域Aで金属層4oおよびa−3
i層30が切断され、26Aに近くなると接触抵抗が小
さくなって測定不可能となる。しかし、ランプ電流が3
OAを超えると第一電極層に損傷を与えるおそれがある
。実用的な太陽電池においては直列接続される第一、第
二電極間の接触抵抗は1Ω以下であることが望ましいが
、a −3i層と金属層の切断されるA fil域では
すべてこの抵抗値が得られる。ランプ電流が小さくなる
と、a−3i層および金属層が除去されなくなり、接触
抵抗も次第に大きくなってくる。このような場合でも焼
なましによりa−3tが結晶化し、接触抵抗が1Ω以下
となる条件は存在するが、金属層表面の反射率のばらつ
きなどによってもレーザ照射の影響が大きく変動するた
め、常に再現性よくそのような接触抵抗値の得られる焼
なましを行うことは実際には難しい。しかるに、第3図
のA領域の範囲は広いので、第一電極層に損傷を与えな
い範囲でレーザ出力を高めに設定しておけば、金属層表
面の反射率が変化しても常に低い接触抵抗が得られる。
Next, the laser beam 5 is focused from the metal layer 40 side onto the side of each first electrode 2L 22, 23... that is connected to the adjacent cell, that is, the part near the left edge in the figure. , as shown in FIG. 1(b), the metal layer 40 and the a-3t layer 30.
By linearly evaporating and removing and cutting, the second electrode 4L 42, 43..., a-3t layer region 31
.. Divide into 32°33... At this time, the portions of the a-St layer close to each cut surface 6 have good conductivity due to crystallization of a-3t due to high temperature heating or generation of crystal Si containing metal due to melting. First electrode 21.22.23・
4500mm thick tin oxide film, second electrode 41.4mm thick
2.43... When an M film with a thickness of 2000 to 3000 is used, the wavelength 1. YAG with o6ρ and 0.53rm
The laser beam is focused and the first electrode layer is a
- When the laser irradiation conditions are adjusted so that the 3t layer 3o and the metal layer 40 can be removed, the first electrode 2L 22.23.
... and the second electrode 4L 42°43... was shown to have a contact resistance of 1Ω or less. Although a reduction in contact resistance can be seen simply by annealing the a-St layer between the first electrode and the second electrode by laser beam irradiation through the first electrode, the resistance value changes greatly depending on the laser beam irradiation conditions. The number is often Ω or more. In Figure 3, a YAG laser with a wavelength of 1.06- is focused into a 5Q4X5Q4 square, 1kHz, and a sweep speed of 100tm/s.
This is a plot of the relationship between the contact resistance between the first electrode and the second electrode obtained when the surface of the metal layer is irradiated with EC and the excitation lamp current of the laser, which is proportional to the laser output. Metal layers 4o and a-3 in region A where the lamp current is 25A or more
When the i-layer 30 is cut and approaches 26A, the contact resistance becomes so small that it becomes impossible to measure. However, the lamp current is 3
If the OA is exceeded, there is a risk of damaging the first electrode layer. In a practical solar cell, it is desirable that the contact resistance between the first and second electrodes connected in series is 1Ω or less, but in the A fil region where the a-3i layer and the metal layer are cut, this resistance value is is obtained. As the lamp current decreases, the a-3i layer and the metal layer are no longer removed, and the contact resistance gradually increases. Even in this case, there are conditions where a-3t crystallizes due to annealing and the contact resistance becomes 1Ω or less, but the influence of laser irradiation varies greatly due to variations in the reflectance of the metal layer surface, etc. In practice, it is difficult to perform annealing that consistently provides such contact resistance values with good reproducibility. However, since the range of region A in Figure 3 is wide, if the laser output is set high within a range that does not damage the first electrode layer, the contact will always be low even if the reflectance of the metal layer surface changes. Resistance is obtained.

第1図(e)は、さらに第二電極41.42.43・・
・を超音波加工あるいはレーザ光加工によりパターニン
グし、結晶化部により下の第一電極21.22.23・
・・と短絡されている、図で左側の部分71.72.7
3・・・を切り離すことによって、最終的な直列接続形
の太陽電池にしたあとの断面構造を示す。このような第
二電極のパターニング工程は、第1図(b)に示したレ
ーザ光5による金属層40.a −3i層30の切断よ
り前に行ってもよいが、工数の低減のためには切断を同
時に行うことが望ましい。第4図はそのような加工方法
を示し、ステージ11上に置かれた太陽電池基板10の
上方に、レーザビーム12を集光するレンズ13と支持
体14に固定された超音波振動子15に取り付けられた
超音波カッタ16を配置し、レーザ光5の照射による加
工とカッタ16の接触による超音波加工を行いながらス
テージを移動させて掃引するものである。
FIG. 1(e) further shows second electrodes 41, 42, 43...
・ is patterned by ultrasonic processing or laser beam processing, and the lower first electrode 21, 22, 23 ・ is formed by the crystallized part.
The part 71.72.7 on the left in the figure is short-circuited with...
By separating 3..., the cross-sectional structure of the final series-connected solar cell is shown. Such a patterning process of the second electrode is performed by forming the metal layer 40 using the laser beam 5 shown in FIG. 1(b). Although it may be performed before cutting the a-3i layer 30, it is desirable to perform the cutting at the same time in order to reduce the number of steps. FIG. 4 shows such a processing method, in which a lens 13 that focuses a laser beam 12 and an ultrasonic transducer 15 fixed to a support 14 are placed above a solar cell substrate 10 placed on a stage 11. The attached ultrasonic cutter 16 is arranged, and the stage is moved and swept while performing processing by irradiation with the laser beam 5 and ultrasonic processing by contact of the cutter 16.

以上に述べた実施例で製造される太陽電池は、基板1側
からの光の入射により用いられるが、第二電極を透明電
極とし、上面から光を入射させる太陽電池の製造の場合
にも同様に実施できる。
The solar cell manufactured in the above-described embodiment is used with light entering from the substrate 1 side, but the same can be done in the case of manufacturing a solar cell in which the second electrode is a transparent electrode and light is entered from the top surface. It can be implemented.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、絶縁性基板上の第一電極層。 According to the invention, a first electrode layer on an insulating substrate.

アモルファス半導体層、第二電極層からなるユニットセ
ルの直列接続をレーザ光により第二電極層。
A unit cell consisting of an amorphous semiconductor layer and a second electrode layer is connected in series to form the second electrode layer using a laser beam.

アモルファス半導体層を切断する際にアモルファス半導
体層の結晶化によって低抵抗となった切断面近傍部分を
介して行い、第二電極層のみのパターニングによって第
二電極をその低抵抗部と切り離すことにより、アモルフ
ァス半導体層のみのパターニングは不要となり、アモル
ファス半導体層パターニング時の損傷による短絡のおそ
れがなくなり確実な電気的接続が可能になる。また第二
電極層、アモルファス半導体層の切断と第二電極層のパ
ターニングを同時に行うこともできるので工数の低減が
図れる。さらに、レーザ光照射による焼なましによって
再結晶化したアモルファス半導体層を接続に用いる場合
に比し、レーザ照射条件の広い範囲で隣接セル間の接触
抵抗の低い再現性のよい接続が得られ、信幀性の高い太
陽電池を製造することができる。
By cutting the amorphous semiconductor layer through a portion near the cutting surface that has low resistance due to crystallization of the amorphous semiconductor layer, and patterning only the second electrode layer to separate the second electrode from the low resistance portion, Patterning of only the amorphous semiconductor layer is no longer necessary, and there is no risk of short circuiting due to damage during patterning of the amorphous semiconductor layer, making reliable electrical connection possible. Further, since cutting of the second electrode layer and the amorphous semiconductor layer and patterning of the second electrode layer can be performed simultaneously, the number of steps can be reduced. Furthermore, compared to the case where an amorphous semiconductor layer recrystallized by annealing by laser beam irradiation is used for connection, connections with low contact resistance and high reproducibility between adjacent cells can be obtained over a wide range of laser irradiation conditions. Highly reliable solar cells can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜fc)は本発明の一実施例の製造工程を
順次示す断面図、第2図は従来の直列接続形太陽電池の
斜視図、第3図はレーザ光照射により得られるa −3
i層低抵抗部を介しての両面電極間の接触抵抗とレーザ
励起用ランプ電流との関係線図、第4図はレーザ光によ
る切断と第二電極層のパターニングを同時に行う加工時
の側面図である。 1ニガラス基板、21.22.23.24:第一電極、
3Q:a−3i層、31.32.33.34: a −
3i層領域、40:金属層、41.42.43.44:
第二電極、5:レーザ光。
FIG. 1 (al to fc) is a cross-sectional view sequentially showing the manufacturing process of an embodiment of the present invention, FIG. 2 is a perspective view of a conventional series-connected solar cell, and FIG. 3 is an a obtained by laser beam irradiation. -3
A diagram showing the relationship between the contact resistance between the electrodes on both sides via the i-layer low resistance part and the lamp current for laser excitation, and Fig. 4 is a side view during processing in which cutting by laser light and patterning of the second electrode layer are performed simultaneously. It is. 1 glass substrate, 21.22.23.24: first electrode,
3Q: a-3i layer, 31.32.33.34: a-
3i layer region, 40: metal layer, 41.42.43.44:
Second electrode, 5: laser light.

Claims (1)

【特許請求の範囲】[Claims] 1)絶縁性基板上にあって基板側に第一電極、反基板側
に第二電極を備えたアモルファス半導体層からなる複数
のユニットセルが直列接続されるものを製造するに際し
、絶縁性基板上に一列に配列された複数の第一電極を形
成する工程とその上を覆ってアモルファス半導体層、第
二電極層を積層する工程の後に、レーザ光の照射により
第二電極層およびアモルファス半導体層を各第一電極の
縁部近傍の上で切断、分割すると共にアモルファス半導
体層の切断面近傍を結晶化して良導電性化する工程と、
第二電極層のみを前記切断部より第一電極の内側の上で
切断、分割する工程とを含むことを特徴とする太陽電池
の製造方法。
1) When manufacturing a device in which a plurality of unit cells made of an amorphous semiconductor layer are connected in series on an insulating substrate and have a first electrode on the substrate side and a second electrode on the opposite side, After the step of forming a plurality of first electrodes arranged in a line and the step of laminating an amorphous semiconductor layer and a second electrode layer thereon, a second electrode layer and an amorphous semiconductor layer are formed by irradiation with laser light. cutting and dividing the amorphous semiconductor layer near the edge of each first electrode, and crystallizing the amorphous semiconductor layer near the cut surface to make it conductive;
A method for manufacturing a solar cell, comprising the step of cutting and dividing only the second electrode layer on the inner side of the first electrode from the cutting portion.
JP62117845A 1987-05-14 1987-05-14 Manufacture of solar cell Pending JPS63283077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62117845A JPS63283077A (en) 1987-05-14 1987-05-14 Manufacture of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62117845A JPS63283077A (en) 1987-05-14 1987-05-14 Manufacture of solar cell

Publications (1)

Publication Number Publication Date
JPS63283077A true JPS63283077A (en) 1988-11-18

Family

ID=14721694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62117845A Pending JPS63283077A (en) 1987-05-14 1987-05-14 Manufacture of solar cell

Country Status (1)

Country Link
JP (1) JPS63283077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187982A (en) * 2008-02-01 2009-08-20 Shiraitekku:Kk Edge cutting device for solar cell panel
JP2010533369A (en) * 2007-07-11 2010-10-21 ビュルクレ レーザー テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Thin film solar cell module and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117649A (en) * 1983-11-16 1985-06-25 ア−ルシ−エ− コ−ポレ−ション Photocell array
JPS61280680A (en) * 1985-05-10 1986-12-11 Sanyo Electric Co Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117649A (en) * 1983-11-16 1985-06-25 ア−ルシ−エ− コ−ポレ−ション Photocell array
JPS61280680A (en) * 1985-05-10 1986-12-11 Sanyo Electric Co Ltd Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533369A (en) * 2007-07-11 2010-10-21 ビュルクレ レーザー テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Thin film solar cell module and manufacturing method thereof
US8470615B2 (en) 2007-07-11 2013-06-25 Wilhelm Stein Thin layer solar cell module and method for producing it
US8846419B2 (en) 2007-07-11 2014-09-30 Wilhelm Stein Thin layer solar cell module and method for producing it
JP2009187982A (en) * 2008-02-01 2009-08-20 Shiraitekku:Kk Edge cutting device for solar cell panel

Similar Documents

Publication Publication Date Title
US4542578A (en) Method of manufacturing photovoltaic device
AU2004204637B2 (en) Transparent thin-film solar cell module and its manufacturing method
JPH0560674B2 (en)
JPH0851229A (en) Integrated solar battery and its manufacture
US4954181A (en) Solar cell module and method of manufacture
JP2680582B2 (en) Method for manufacturing photovoltaic device
JPS63283077A (en) Manufacture of solar cell
JP2000353816A (en) Manufacture of thin film solar battery module
JPH11126916A (en) Integrated-type thin film solar cell and its manufacture
JP4127994B2 (en) Photovoltaic device manufacturing method
JP2002280580A (en) Integrated photovoltaic device and manufacturing method therefor
JPH0243776A (en) Manufacture of thin film solar cell
JPS6233477A (en) Manufacture of photovoltaic device
JP2001094131A (en) Method for fabricating integrated photovoltaic power device
JPS61280680A (en) Manufacture of semiconductor device
JPH07105511B2 (en) Photovoltaic device manufacturing method
JP3278535B2 (en) Solar cell and method of manufacturing the same
JPH0758351A (en) Manufacture of thin film solar cell
JPS6191971A (en) Manufacture of solar battery device
JP2517226B2 (en) Method for manufacturing semiconductor device
JP2001237442A (en) Solar cell and its manufacturing method
JP2808005B2 (en) Manufacturing method of amorphous solar cell
JPS6265480A (en) Thin film solar battery
JPS6261376A (en) Solar battery
JPH11191630A (en) Manufacture of photovoltaic device and photovoltaic device thereof