TW201925551A - Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof - Google Patents

Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW201925551A
TW201925551A TW106142095A TW106142095A TW201925551A TW 201925551 A TW201925551 A TW 201925551A TW 106142095 A TW106142095 A TW 106142095A TW 106142095 A TW106142095 A TW 106142095A TW 201925551 A TW201925551 A TW 201925551A
Authority
TW
Taiwan
Prior art keywords
layer
doped
semiconductor layer
germanium
forming
Prior art date
Application number
TW106142095A
Other languages
Chinese (zh)
Other versions
TWI660075B (en
Inventor
孫暐栢
田偉辰
黃玉君
葉昌鑫
吳以德
李宗信
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW106142095A priority Critical patent/TWI660075B/en
Application granted granted Critical
Publication of TWI660075B publication Critical patent/TWI660075B/en
Publication of TW201925551A publication Critical patent/TW201925551A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A method for manufacturing a polysilicon layer including following steps is provided. A substrate is provided. A microcrystalline silicon seed layer is formed on a substrate, wherein the microcrystalline silicon seed layer includes microcrystalline silicon seeds. An amorphous silicon layer is formed on the microcrystalline silicon seed layer. The amorphous silicon layer is melted, and the molten amorphous silicon layer recrystallizes on the microcrystalline silicon seeds to form a polysilicon layer.

Description

多晶矽層的製造方法、異質接面太陽能電池及其製造方法Method for manufacturing polycrystalline germanium layer, heterojunction solar cell and manufacturing method thereof

本發明是有關於一種半導體層的製造方法、太陽能電池結構及其製造方法,且特別是有關於一種多晶矽層的製造方法、異質接面太陽能電池及其製造方法。The present invention relates to a method of fabricating a semiconductor layer, a solar cell structure, and a method of fabricating the same, and more particularly to a method of fabricating a polysilicon layer, a heterojunction solar cell, and a method of fabricating the same.

目前,由於低溫多晶矽的晶粒尺寸無法大幅提高,為形成較佳的低溫多晶矽結構,更發展出連續側向固化法(Sequential Lateral Solidification,SLS)、相位偏移光罩(Phase Shift Mask)和非晶矽平坦化(floating α-Si layer)等製程。但是,利用這些方法需另外增加一些設備,增加了製程的設備成本,亦較不易整合至現有製程。At present, since the grain size of low-temperature polycrystalline germanium cannot be greatly improved, in order to form a preferred low-temperature polycrystalline germanium structure, a sequential lateral solidification (SLS), a phase shift mask (Phase Shift Mask) and a non- Process such as floating alpha-Si layer. However, the use of these methods requires additional equipment, which increases the cost of equipment for the process and is less likely to be integrated into existing processes.

本發明提供一種多晶矽層的製造方法,其可降低設備投資成本,且容易與現有製程進行整合。The invention provides a method for manufacturing a polycrystalline germanium layer, which can reduce equipment investment cost and is easy to integrate with existing processes.

本發明提供一種異質接面太陽能電池及其製造方法,其可具有較佳的光電轉換效率。The present invention provides a heterojunction solar cell and a method of fabricating the same that can have better photoelectric conversion efficiency.

本發明提出一種多晶矽層的製造方法,包括以下步驟。提供基板。於基板上形成微晶矽晶種層,其中微晶矽晶種層包括多個微晶矽晶種。於微晶矽晶種層上形成非晶矽層。使非晶矽層熔融,且熔融的非晶矽層在微晶矽晶種上重新結晶,而形成多晶矽層。The present invention provides a method of manufacturing a polycrystalline germanium layer comprising the following steps. A substrate is provided. Forming a microcrystalline germanium seed layer on the substrate, wherein the microcrystalline germanium seed layer comprises a plurality of microcrystalline germanium seed crystals. An amorphous germanium layer is formed on the microcrystalline germanium seed layer. The amorphous germanium layer is melted, and the molten amorphous germanium layer is recrystallized on the microcrystalline germanium seed crystal to form a polycrystalline germanium layer.

依照本發明的一實施例所述,在上述多晶矽層的製造方法中,基板例如是半導體基板、玻璃基板、塑膠基板或不鏽鋼基板。According to an embodiment of the present invention, in the method of manufacturing the polysilicon layer, the substrate is, for example, a semiconductor substrate, a glass substrate, a plastic substrate, or a stainless steel substrate.

依照本發明的一實施例所述,在上述多晶矽層的製造方法中,微晶矽晶種層的形成方法例如是多點電磁波饋入的電漿增強型化學氣相沉積法(PECVD)。According to an embodiment of the present invention, in the method for fabricating the polysilicon layer, the method for forming the microcrystalline germanium seed layer is, for example, a plasma enhanced chemical vapor deposition (PECVD) method in which multi-point electromagnetic wave is fed.

依照本發明的一實施例所述,在上述多晶矽層的製造方法中,非晶矽層的形成方法例如是電漿增強型化學氣相沉積法。According to an embodiment of the present invention, in the method for fabricating the polysilicon layer, the method of forming the amorphous germanium layer is, for example, a plasma enhanced chemical vapor deposition method.

依照本發明的一實施例所述,在上述多晶矽層的製造方法中,使非晶矽層熔融的方法例如是進行退火製程。According to an embodiment of the present invention, in the method for fabricating the polysilicon layer, the method of melting the amorphous germanium layer is, for example, an annealing process.

依照本發明的一實施例所述,在上述多晶矽層的製造方法中,退火製程例如是雷射退火製程。According to an embodiment of the present invention, in the method for fabricating the polysilicon layer, the annealing process is, for example, a laser annealing process.

本發明提出一種異質接面太陽能電池,包括第一摻雜型基板、第一本質型半導體層、至少一層多晶矽層、第二摻雜型半導體層、第一摻雜型半導體層、第一透明電極膜、第二透明電極膜、第一電極與第二電極。第一摻雜型基板具有相對的第一表面與第二表面。第一本質型半導體層設置於第一表面上。多晶矽層設置於第一本質型半導體層上。第二摻雜型半導體層設置於多晶矽層上。第一摻雜型半導體層設置於第二表面上。第一透明電極膜設置於第二摻雜型半導體層上。第二透明電極膜設置於第一摻雜型半導體層上。第一電極設置於第一透明電極膜上。第二電極設置於第二透明電極膜上。The present invention provides a heterojunction solar cell comprising a first doped substrate, a first intrinsic semiconductor layer, at least one polysilicon layer, a second doped semiconductor layer, a first doped semiconductor layer, and a first transparent electrode. a film, a second transparent electrode film, a first electrode and a second electrode. The first doped substrate has opposing first and second surfaces. The first intrinsic semiconductor layer is disposed on the first surface. The polysilicon layer is disposed on the first intrinsic semiconductor layer. The second doped semiconductor layer is disposed on the polysilicon layer. The first doped semiconductor layer is disposed on the second surface. The first transparent electrode film is disposed on the second doped semiconductor layer. The second transparent electrode film is disposed on the first doped semiconductor layer. The first electrode is disposed on the first transparent electrode film. The second electrode is disposed on the second transparent electrode film.

依照本發明的一實施例所述,在上述異質接面太陽能電池中,多晶矽層可為第一摻雜型多晶矽層、第二摻雜型多晶矽層或其組合。According to an embodiment of the present invention, in the heterojunction solar cell, the polysilicon layer may be a first doped polysilicon layer, a second doped polysilicon layer, or a combination thereof.

依照本發明的一實施例所述,在上述異質接面太陽能電池中,更包括第二本質型半導體層。第二本質型半導體層設置於第一摻雜型基板與第一摻雜型半導體層之間。According to an embodiment of the present invention, in the heterojunction solar cell, a second intrinsic semiconductor layer is further included. The second intrinsic semiconductor layer is disposed between the first doped substrate and the first doped semiconductor layer.

本發明提出一種異質接面太陽能電池的製造方法,包括以下步驟。提供第一摻雜型基板。第一摻雜型基板具有相對的第一表面與第二表面。於第一表面上形成第一本質型半導體層。於第一本質型半導體層上形成至少一層多晶矽層。於多晶矽層上形成第二摻雜型半導體層。於第二表面上形成第一摻雜型半導體層。於第二摻雜型半導體層上形成第一透明電極膜。於第一摻雜型半導體層上形成第二透明電極膜。於第一透明電極膜上形成第一電極。於第二透明電極膜上形成第二電極。The invention provides a method for manufacturing a heterojunction solar cell, comprising the following steps. A first doped substrate is provided. The first doped substrate has opposing first and second surfaces. A first intrinsic semiconductor layer is formed on the first surface. At least one polysilicon layer is formed on the first intrinsic semiconductor layer. A second doped semiconductor layer is formed on the polysilicon layer. A first doped semiconductor layer is formed on the second surface. A first transparent electrode film is formed on the second doped semiconductor layer. A second transparent electrode film is formed on the first doped semiconductor layer. A first electrode is formed on the first transparent electrode film. A second electrode is formed on the second transparent electrode film.

依照本發明的一實施例所述,在上述異質接面太陽能電池的製造方法中,多晶矽層可為第一摻雜型多晶矽層、第二摻雜型多晶矽層或其組合。According to an embodiment of the present invention, in the method for fabricating a heterojunction solar cell, the polysilicon layer may be a first doped polysilicon layer, a second doped polysilicon layer, or a combination thereof.

依照本發明的一實施例所述,在上述異質接面太陽能電池的製造方法中,多晶矽層的形成方法包括以下步驟。形成微晶矽晶種層。微晶矽晶種層包括多個微晶矽晶種。於微晶矽晶種層上形成非晶矽層。使非晶矽層熔融,且熔融的非晶矽層在微晶矽晶種上重新結晶,而形成多晶矽層。According to an embodiment of the present invention, in the method of fabricating a heterojunction solar cell, the method of forming a polysilicon layer includes the following steps. A microcrystalline germanium seed layer is formed. The microcrystalline germanium seed layer includes a plurality of microcrystalline germanium seed crystals. An amorphous germanium layer is formed on the microcrystalline germanium seed layer. The amorphous germanium layer is melted, and the molten amorphous germanium layer is recrystallized on the microcrystalline germanium seed crystal to form a polycrystalline germanium layer.

依照本發明的一實施例所述,在上述異質接面太陽能電池的製造方法中,更包括於第一摻雜型基板與第一摻雜型半導體層之間形成第二本質型半導體層。According to an embodiment of the present invention, in the method of manufacturing a heterojunction solar cell, the method further includes forming a second intrinsic semiconductor layer between the first doped substrate and the first doped semiconductor layer.

基於上述,在本發明所提出的多晶矽層的製造方法中,在使非晶矽層熔融之後,熔融的非晶矽層與微晶矽晶種之間會產生溫度梯度,而使得熔融的非晶矽層在溫度較低的微晶矽晶種上重新結晶,藉此可在較低製程溫度下形成多晶矽層。此外,由於熔融的非晶矽層具有足夠的時間進行有方向性的結晶,因此可形成具有較佳結晶結構的多晶矽層,進而使得多晶矽層可具有較佳的電性與穩定性。另外,由於本發明所提出的多晶矽層的製造方法無需增加額外設備即可製作出具有較佳結晶結構的多晶矽層,因此可降低設備投資成本,且容易與現有製程進行整合。Based on the above, in the method for producing a polycrystalline germanium layer proposed by the present invention, after the amorphous germanium layer is melted, a temperature gradient is generated between the molten amorphous germanium layer and the microcrystalline germanium crystal seed, thereby making the molten amorphous The tantalum layer is recrystallized on the lower temperature microcrystalline seed crystals, whereby the polycrystalline germanium layer can be formed at lower process temperatures. In addition, since the molten amorphous germanium layer has sufficient time for directional crystallization, a polycrystalline germanium layer having a preferable crystal structure can be formed, so that the polycrystalline germanium layer can have better electrical properties and stability. In addition, since the polycrystalline germanium layer manufacturing method proposed by the present invention can produce a polycrystalline germanium layer having a better crystal structure without adding additional equipment, the equipment investment cost can be reduced, and integration with an existing process can be easily performed.

另一方面,在本發明所提出的異質接面太陽能電池及其製造方法中,由於設置於第一本質型半導體層與第二摻雜型半導體層之間的多晶矽層可作為光吸收層,因此可有效地提升開路電壓(Voc)與短路電流(Jsc),進而提升異質接面太陽能電池的光電轉換效率。On the other hand, in the heterojunction solar cell and the method of manufacturing the same according to the present invention, since the polysilicon layer disposed between the first intrinsic semiconductor layer and the second doped semiconductor layer can function as a light absorbing layer, It can effectively increase the open circuit voltage (Voc) and short circuit current (Jsc), thereby improving the photoelectric conversion efficiency of the heterojunction solar cell.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1為本發明一實施例的多晶矽層的製造流程圖。圖2A至圖2B為本發明一實施例的多晶矽層的製造流程剖面圖。1 is a flow chart showing the manufacture of a polysilicon layer according to an embodiment of the present invention. 2A to 2B are cross-sectional views showing a manufacturing process of a polysilicon layer according to an embodiment of the present invention.

請參照圖1與圖2A,進行步驟S100,提供基板100。基板100例如是半導體基板、玻璃基板、塑膠基板或不鏽鋼基板。此外,依據產品需求,在基板100上亦可形成有所需的膜層。Referring to FIG. 1 and FIG. 2A, step S100 is performed to provide the substrate 100. The substrate 100 is, for example, a semiconductor substrate, a glass substrate, a plastic substrate, or a stainless steel substrate. In addition, a desired film layer may be formed on the substrate 100 depending on the product requirements.

接著,進行步驟S102,於基板100上形成微晶矽晶種層102,其中微晶矽晶種層102包括多個微晶矽晶種102a。此外,微晶矽晶種層102更可包括非晶矽材料102b。非晶矽材料102b覆蓋微晶矽晶種102a。微晶矽晶種層102的形成方法例如是多點電磁波饋入的電漿增強型化學氣相沉積法,藉此可形成規律的微晶矽晶種102a。Next, in step S102, a microcrystalline germanium seed layer 102 is formed on the substrate 100, wherein the microcrystalline germanium seed layer 102 includes a plurality of microcrystalline germanium seed crystals 102a. In addition, the microcrystalline germanium seed layer 102 may further include an amorphous germanium material 102b. The amorphous germanium material 102b covers the microcrystalline germanium seed crystal 102a. The method of forming the microcrystalline germanium seed layer 102 is, for example, a plasma enhanced chemical vapor deposition method in which multi-point electromagnetic waves are fed, whereby a regular microcrystalline twin seed crystal 102a can be formed.

然後,進行步驟S104,於微晶矽晶種層102上形成非晶矽層104。非晶矽層104的形成方法例如是化學氣相沉積法,如電漿增強型化學氣相沉積法。Then, in step S104, an amorphous germanium layer 104 is formed on the microcrystalline germanium seed layer 102. The method of forming the amorphous germanium layer 104 is, for example, a chemical vapor deposition method such as a plasma enhanced chemical vapor deposition method.

請參照圖1與圖2B,進行步驟S106,使非晶矽層104熔融,且熔融的非晶矽層104在微晶矽晶種102a上重新結晶,而形成多晶矽層106。在步驟S106中,依照實際製程條件,與所需特性,非晶矽材料102b亦可同時熔融且在微晶矽晶種102a上重新結晶,而形成多晶矽層106。藉此,可在較低製程溫度下形成多晶矽層106,因此多晶矽層106可為低溫多晶矽層。使非晶矽層104熔融的方法例如是進行退火製程,如雷射退火製程。雷射退火製程所使用的雷射光束例如是準分子雷射光束,如氯化氙(XeCl)雷射光束或氟化氪(KrF)。Referring to FIG. 1 and FIG. 2B, step S106 is performed to melt the amorphous germanium layer 104, and the molten amorphous germanium layer 104 is recrystallized on the microcrystalline germanium seed crystal 102a to form a polycrystalline germanium layer 106. In step S106, the amorphous germanium material 102b may be simultaneously melted and recrystallized on the microcrystalline seed crystal 102a in accordance with actual process conditions and desired characteristics to form a polycrystalline germanium layer 106. Thereby, the polysilicon layer 106 can be formed at a lower process temperature, and thus the polysilicon layer 106 can be a low temperature polysilicon layer. The method of melting the amorphous germanium layer 104 is, for example, an annealing process such as a laser annealing process. The laser beam used in the laser annealing process is, for example, a quasi-molecular laser beam such as a xenon chloride (XeCl) laser beam or krypton fluoride (KrF).

基於上述實施例可知,在使非晶矽層104熔融之後,熔融的非晶矽層104與微晶矽晶種102a之間會產生溫度梯度,而使得熔融的非晶矽層104在溫度較低的微晶矽晶種102a上重新結晶,藉此可在較低製程溫度下形成多晶矽層106。此外,由於熔融的非晶矽層104具有足夠的時間進行有方向性的結晶,因此可形成具有較佳結晶結構的多晶矽層106,進而使得多晶矽層106可具有較佳的電性與穩定性。另外,由於上述多晶矽層106的製造方法無需增加額外設備即可製作出具有較佳結晶結構的多晶矽層106,因此可降低設備投資成本,且容易與現有製程進行整合。Based on the above embodiments, it is known that after the amorphous germanium layer 104 is melted, a temperature gradient is generated between the molten amorphous germanium layer 104 and the microcrystalline germanium seed crystal 102a, so that the molten amorphous germanium layer 104 is at a lower temperature. The microcrystalline germanium seed crystal 102a is recrystallized, whereby the polycrystalline germanium layer 106 can be formed at a lower process temperature. In addition, since the molten amorphous germanium layer 104 has sufficient time for directional crystallization, the polycrystalline germanium layer 106 having a preferred crystal structure can be formed, so that the polycrystalline germanium layer 106 can have better electrical properties and stability. In addition, since the above-described method for manufacturing the polysilicon layer 106 can produce the polycrystalline germanium layer 106 having a better crystal structure without adding additional equipment, the investment cost of the device can be reduced, and integration with an existing process can be easily performed.

圖3為本發明一實施例的異質接面太陽能電池的立體圖。3 is a perspective view of a heterojunction solar cell according to an embodiment of the present invention.

以下,藉由圖3說明本實施例的異質接面太陽能電池200的製造方法。Hereinafter, a method of manufacturing the heterojunction solar cell 200 of the present embodiment will be described with reference to FIG.

提供第一摻雜型基板202。第一摻雜型基板202具有相對的第一表面S1與第二表面S2。第一摻雜型與第二摻雜型為不同摻雜型,且分別可為N型與P型中的一者與另一者。在此實施例中,第一摻雜型是以N型為例來進行說明,且第二摻雜型是以P型為例來進行說明,但本發明並不以此為限。在另一實施例中,第一摻雜型可為P型,且第二摻雜型可N型。基板110例如是半導體基板,如矽基板。在此實施例中,基板110是以N型單晶矽基板為例來進行說明。A first doped substrate 202 is provided. The first doped substrate 202 has opposing first and second surfaces S1 and S2. The first doping type and the second doping type are different doping types, and may be one of the N type and the P type, respectively. In this embodiment, the first doping type is described by taking the N type as an example, and the second doping type is described by taking the P type as an example, but the invention is not limited thereto. In another embodiment, the first doping type may be a P type, and the second doping type may be an N type. The substrate 110 is, for example, a semiconductor substrate such as a germanium substrate. In this embodiment, the substrate 110 is described by taking an N-type single crystal germanium substrate as an example.

於第一表面S1上形成第一本質型半導體層204。第一本質型半導體層204的材料例如是非晶矽。第一本質型半導體層204的形成方法例如是化學氣相沉積法,如電漿增強型化學氣相沉積法。A first intrinsic semiconductor layer 204 is formed on the first surface S1. The material of the first intrinsic type semiconductor layer 204 is, for example, an amorphous germanium. The formation method of the first intrinsic type semiconductor layer 204 is, for example, a chemical vapor deposition method such as a plasma enhanced chemical vapor deposition method.

於第一本質型半導體層204上形成至少一層多晶矽層206。多晶矽層206可作為光吸收層,因此可有效地提升異質接面太陽能電池200的光電轉換效率。多晶矽層206可為單層結構或多層結構。多晶矽層206可為第一摻雜型多晶矽層(如,N型摻雜型多晶矽層)、第二摻雜型多晶矽層(如,P型摻雜型多晶矽層)或其組合。在此實施例中,多晶矽層206是以第二摻雜型多晶矽層(如,P型摻雜型多晶矽層)的單層結構為例來進行說明。在其他實施例中,在多晶矽層206為多層結構的情況下,多晶矽層206可為交替排列的第一摻雜型多晶矽層(如,N型摻雜型多晶矽層)與第二摻雜型多晶矽層(如,P型摻雜型多晶矽層)的堆疊結構,而在異質接面太陽能電池200中形成串聯的電池單元。At least one polysilicon layer 206 is formed on the first intrinsic semiconductor layer 204. The polysilicon layer 206 can function as a light absorbing layer, so that the photoelectric conversion efficiency of the heterojunction solar cell 200 can be effectively improved. The polysilicon layer 206 can be a single layer structure or a multilayer structure. The polysilicon layer 206 may be a first doped polysilicon layer (eg, an N-type doped polysilicon layer), a second doped polysilicon layer (eg, a P-type doped polysilicon layer), or a combination thereof. In this embodiment, the polysilicon layer 206 is exemplified by a single layer structure of a second doped polysilicon layer (eg, a P-type doped polysilicon layer). In other embodiments, in the case where the polysilicon layer 206 is a multilayer structure, the polysilicon layer 206 may be an alternately arranged first doped polysilicon layer (eg, an N-type doped polysilicon layer) and a second doped polysilicon layer. A stacked structure of layers (eg, a P-type doped polysilicon layer) forms a battery cell in series in the heterojunction solar cell 200.

此外,多晶矽層206可為低溫多晶矽層。多晶矽層206的形成方法可採用上述圖1、圖2A與圖2B中所記載的多晶矽層106的形成方法,且於此不再重複說明。另外,在多晶矽層206為多層結構的情況下,可重複進行圖1中的步驟S102(形成微晶矽晶種層)、步驟S104(形成非晶矽層)與步驟S106(使非晶矽層熔融且在微晶矽晶種上重新結晶,而形成多晶矽層)。在多晶矽層206的形成方法中,可藉由調整沉積氣體來決定多晶矽層206的摻雜型態。Additionally, the polysilicon layer 206 can be a low temperature polysilicon layer. The method of forming the polysilicon layer 206 may be carried out by the above-described method of forming the polysilicon layer 106 described in FIG. 1, FIG. 2A and FIG. 2B, and the description thereof will not be repeated. In addition, in the case where the polysilicon layer 206 has a multilayer structure, step S102 (forming a microcrystalline germanium seed layer), step S104 (forming an amorphous germanium layer), and step S106 (making an amorphous germanium layer) in FIG. 1 may be repeatedly performed. Melt and recrystallize on the microcrystalline seed crystal to form a polycrystalline germanium layer). In the method of forming the polysilicon layer 206, the doping profile of the polysilicon layer 206 can be determined by adjusting the deposition gas.

於多晶矽層206上形成第二摻雜型半導體層208。第二摻雜型半導體層208的材料例如是非晶矽。在此實施例中,第二摻雜型半導體層208是以P型非晶矽層為例來進行說明。第二摻雜型半導體層208的形成方法例如是化學氣相沉積法,如電漿增強型化學氣相沉積法。A second doped semiconductor layer 208 is formed on the polysilicon layer 206. The material of the second doped semiconductor layer 208 is, for example, an amorphous germanium. In this embodiment, the second doped semiconductor layer 208 is exemplified by a P-type amorphous germanium layer. The method of forming the second doped semiconductor layer 208 is, for example, a chemical vapor deposition method such as a plasma enhanced chemical vapor deposition method.

可選擇性地於第二表面S2上形成第二本質型半導體層210。第二本質型半導體層210的材料例如是非晶矽。第二本質型半導體層210的形成方法例如是化學氣相沉積法,如電漿增強型化學氣相沉積法。The second intrinsic semiconductor layer 210 may be selectively formed on the second surface S2. The material of the second intrinsic semiconductor layer 210 is, for example, an amorphous germanium. The method of forming the second intrinsic type semiconductor layer 210 is, for example, a chemical vapor deposition method such as a plasma enhanced chemical vapor deposition method.

於第二本質型半導體層210上形成第一摻雜型半導體層212。第一摻雜型半導體層212的材料例如是非晶矽。在此實施例中,第一摻雜型半導體層212是以N型非晶矽層為例來進行說明。第一摻雜型半導體層212的形成方法例如是化學氣相沉積法,如電漿增強型化學氣相沉積法。A first doped semiconductor layer 212 is formed on the second intrinsic semiconductor layer 210. The material of the first doped semiconductor layer 212 is, for example, amorphous germanium. In this embodiment, the first doped semiconductor layer 212 is exemplified by an N-type amorphous germanium layer. The formation method of the first doped semiconductor layer 212 is, for example, a chemical vapor deposition method such as a plasma enhanced chemical vapor deposition method.

可於第二摻雜型半導體層208上形成第一透明電極膜214,且可於第一摻雜型半導體層212上形成第二透明電極膜216。第一透明電極膜214與第二透明電極膜216分別可用以提升電流的收集效率。第一透明電極膜214與第二透明電極膜216的材料可為透明導電氧化物(transparent conductive oxide,TCO),例如是銦錫氧化物(ITO)等金屬氧化物。第一透明電極膜214與第二透明電極膜216的形成方法例如是濺鍍法或蒸鍍法。A first transparent electrode film 214 may be formed on the second doped semiconductor layer 208, and a second transparent electrode film 216 may be formed on the first doped semiconductor layer 212. The first transparent electrode film 214 and the second transparent electrode film 216, respectively, can be used to increase the collection efficiency of current. The material of the first transparent electrode film 214 and the second transparent electrode film 216 may be a transparent conductive oxide (TCO), for example, a metal oxide such as indium tin oxide (ITO). The method of forming the first transparent electrode film 214 and the second transparent electrode film 216 is, for example, a sputtering method or a vapor deposition method.

可於第一透明電極膜214上形成第一電極218,且可於第二透明電極膜216上形成第二電極220。第一電極218與第二電極220可用於取出異質接面太陽能電池200所產生的電力。第一電極218與第二電極220的材料例如是鋁、銅、金或銀等金屬。在此實施例中,第一電極218與第二電極220是以網格狀電極(grid electrode)為例來進行說明,但本發明並不以此為限。在另一實施例中,在第一表面S1為入光面的情況下,第二電極220亦可為覆蓋第二透明電極膜216的整片電極結構。A first electrode 218 may be formed on the first transparent electrode film 214, and a second electrode 220 may be formed on the second transparent electrode film 216. The first electrode 218 and the second electrode 220 can be used to take out electric power generated by the heterojunction solar cell 200. The material of the first electrode 218 and the second electrode 220 is, for example, a metal such as aluminum, copper, gold or silver. In this embodiment, the first electrode 218 and the second electrode 220 are described by taking a grid electrode as an example, but the invention is not limited thereto. In another embodiment, in a case where the first surface S1 is a light incident surface, the second electrode 220 may also be a whole electrode structure covering the second transparent electrode film 216.

以下,藉由圖3來說明本實施例的異質接面太陽能電池200的結構。Hereinafter, the structure of the heterojunction solar cell 200 of the present embodiment will be described with reference to FIG.

請參照圖3,異質接面太陽能電池200包括第一摻雜型基板202、第一本質型半導體層204、至少一層多晶矽層206、第二摻雜型半導體層208與第一摻雜型半導體層212,且更可包括第二本質型半導體層210、第一透明電極膜214、第二透明電極膜216、第一電極218與第二電極220中的至少一者。第一摻雜型基板202具有相對的第一表面S1與第一表面S2。第一本質型半導體層204設置於第一表面S1上。多晶矽層206設置於第一本質型半導體層204上。第二摻雜型半導體層208設置於多晶矽層206上。第一摻雜型半導體層212設置於第一表面S2上。第二本質型半導體層210設置於第一摻雜型基板202與第一摻雜型半導體層212之間。第一透明電極膜214設置於第二摻雜型半導體層208上。第二透明電極膜216設置於第一摻雜型半導體層212上。第一電極218設置於第一透明電極膜214上。第二電極220設置於第二透明電極膜216上。Referring to FIG. 3, the heterojunction solar cell 200 includes a first doped substrate 202, a first intrinsic semiconductor layer 204, at least one polysilicon layer 206, a second doped semiconductor layer 208, and a first doped semiconductor layer. 212, and further comprising at least one of the second intrinsic semiconductor layer 210, the first transparent electrode film 214, the second transparent electrode film 216, the first electrode 218, and the second electrode 220. The first doped substrate 202 has an opposite first surface S1 and a first surface S2. The first intrinsic semiconductor layer 204 is disposed on the first surface S1. The polysilicon layer 206 is disposed on the first intrinsic semiconductor layer 204. The second doped semiconductor layer 208 is disposed on the polysilicon layer 206. The first doped semiconductor layer 212 is disposed on the first surface S2. The second intrinsic semiconductor layer 210 is disposed between the first doped substrate 202 and the first doped semiconductor layer 212. The first transparent electrode film 214 is disposed on the second doped semiconductor layer 208. The second transparent electrode film 216 is disposed on the first doped semiconductor layer 212. The first electrode 218 is disposed on the first transparent electrode film 214. The second electrode 220 is disposed on the second transparent electrode film 216.

此外,異質接面太陽能電池200中的各構件的材料、態樣、形成方法與功效等,已於上述實施例中進行詳盡地說明,於此不再重複說明。In addition, the materials, aspects, formation methods, and effects of the members in the heterojunction solar cell 200 have been described in detail in the above embodiments, and the description thereof will not be repeated.

基於上述實施例可知,在異質接面太陽能電池200及其製造方法中,由於設置於第一本質型半導體層204與第二摻雜型半導體層208之間的多晶矽層206可作為光吸收層,因此可有效地提升開路電壓與短路電流,進而提升異質接面太陽能電池200的光電轉換效率。Based on the above embodiments, in the heterojunction solar cell 200 and the method of fabricating the same, the polysilicon layer 206 disposed between the first intrinsic semiconductor layer 204 and the second doped semiconductor layer 208 can function as a light absorbing layer. Therefore, the open circuit voltage and the short circuit current can be effectively improved, thereby improving the photoelectric conversion efficiency of the heterojunction solar cell 200.

綜上所述,上述實施例的多晶矽層的製造方法可在較低製程溫度下形成具有較佳結晶結構的多晶矽層,進而使得多晶矽層可具有較佳的電性與穩定性。此外,上述實施例的多晶矽層的製造方法無需增加額外設備即可製作出具有較佳結晶結構的多晶矽層,因此可降低設備投資成本,且容易與現有製程進行整合。In summary, the method for fabricating the polysilicon layer of the above embodiment can form a polycrystalline germanium layer having a better crystal structure at a lower process temperature, so that the polycrystalline germanium layer can have better electrical properties and stability. In addition, the method for manufacturing the polysilicon layer of the above embodiment can produce a polycrystalline germanium layer having a better crystal structure without adding additional equipment, thereby reducing equipment investment cost and easily integrating with existing processes.

另一方面,在上述實施例的異質接面太陽能電池及其製造方法中,可藉由多晶矽層作為光吸收層,而有效地提升異質接面太陽能電池的光電轉換效率。On the other hand, in the heterojunction solar cell of the above embodiment and the method of manufacturing the same, the photoelectric conversion efficiency of the heterojunction solar cell can be effectively improved by using the polysilicon layer as the light absorbing layer.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧基板100‧‧‧Substrate

102‧‧‧微晶矽晶種層102‧‧‧Microcrystalline germanium seed layer

102a‧‧‧微晶矽晶種102a‧‧‧Microcrystalline seed crystal

102b‧‧‧非晶矽材料102b‧‧‧Amorphous material

104‧‧‧非晶矽層104‧‧‧Amorphous layer

106‧‧‧多晶矽層106‧‧‧Polysilicon layer

200‧‧‧異質接面太陽能電池200‧‧‧Hexual junction solar cells

202‧‧‧第一摻雜型基板202‧‧‧First doped substrate

204‧‧‧第一本質型半導體層204‧‧‧First Intrinsic Semiconductor Layer

206‧‧‧多晶矽層206‧‧‧Polysilicon layer

208‧‧‧第二摻雜型半導體層208‧‧‧Second doped semiconductor layer

210‧‧‧第二本質型半導體層210‧‧‧Second essential semiconductor layer

212‧‧‧第一摻雜型半導體層212‧‧‧First doped semiconductor layer

214‧‧‧第一透明電極膜214‧‧‧First transparent electrode film

216‧‧‧第二透明電極膜216‧‧‧Second transparent electrode film

218‧‧‧第一電極218‧‧‧First electrode

220‧‧‧第二電極220‧‧‧second electrode

S1‧‧‧第一表面S1‧‧‧ first surface

S2‧‧‧第二表面S2‧‧‧ second surface

S100、S102、S104、S106‧‧‧步驟S100, S102, S104, S106‧‧‧ steps

圖1為本發明一實施例的多晶矽層的製造流程圖。 圖2A至圖2B為本發明一實施例的多晶矽層的製造流程剖面圖。 圖3為本發明一實施例的異質接面太陽能電池的立體圖。1 is a flow chart showing the manufacture of a polysilicon layer according to an embodiment of the present invention. 2A to 2B are cross-sectional views showing a manufacturing process of a polysilicon layer according to an embodiment of the present invention. 3 is a perspective view of a heterojunction solar cell according to an embodiment of the present invention.

Claims (13)

一種多晶矽層的製造方法,包括: 提供基板; 於所述基板上形成微晶矽晶種層,其中所述微晶矽晶種層包括多個微晶矽晶種; 於所述微晶矽晶種層上形成非晶矽層;以及 使所述非晶矽層熔融,且熔融的所述非晶矽層在所述多個微晶矽晶種上重新結晶,而形成多晶矽層。A method for manufacturing a polycrystalline germanium layer, comprising: providing a substrate; forming a microcrystalline germanium seed layer on the substrate, wherein the microcrystalline germanium seed layer comprises a plurality of microcrystalline germanium seed crystals; Forming an amorphous germanium layer on the seed layer; and melting the amorphous germanium layer, and the molten amorphous germanium layer is recrystallized on the plurality of microcrystalline germanium crystal seeds to form a polycrystalline germanium layer. 如申請專利範圍第1項所述的多晶矽層的製造方法,其中所述基板包括半導體基板、玻璃基板、塑膠基板或不鏽鋼基板。The method for producing a polysilicon layer according to claim 1, wherein the substrate comprises a semiconductor substrate, a glass substrate, a plastic substrate or a stainless steel substrate. 如申請專利範圍第1項所述的多晶矽層的製造方法,其中所述微晶矽晶種層的形成方法包括多點電磁波饋入的電漿增強型化學氣相沉積法。The method for producing a polycrystalline germanium layer according to claim 1, wherein the method for forming the microcrystalline germanium seed layer comprises a plasma enhanced chemical vapor deposition method in which a plurality of electromagnetic waves are fed. 如申請專利範圍第1項所述的多晶矽層的製造方法,其中所述非晶矽層的形成方法包括電漿增強型化學氣相沉積法。The method for producing a polycrystalline germanium layer according to claim 1, wherein the method for forming the amorphous germanium layer comprises a plasma enhanced chemical vapor deposition method. 如申請專利範圍第1項所述的多晶矽層的製造方法,其中使所述非晶矽層熔融的方法包括進行退火製程。The method for producing a polycrystalline germanium layer according to claim 1, wherein the method of melting the amorphous germanium layer comprises performing an annealing process. 如申請專利範圍第5項所述的多晶矽層的製造方法,其中所述退火製程包括雷射退火製程。The method for producing a polysilicon layer according to claim 5, wherein the annealing process comprises a laser annealing process. 一種異質接面太陽能電池,包括: 第一摻雜型基板,具有相對的第一表面與第二表面; 第一本質型半導體層,設置於所述第一表面上; 至少一層多晶矽層,設置於所述第一本質型半導體層上; 第二摻雜型半導體層,設置於所述至少一層多晶矽層上; 第一摻雜型半導體層,設置於所述第二表面上; 第一透明電極膜,設置於所述第二摻雜型半導體層上; 第二透明電極膜,設置於所述第一摻雜型半導體層上; 第一電極,設置於所述第一透明電極膜上;以及 第二電極,設置於所述第二透明電極膜上。A heterojunction solar cell comprising: a first doped substrate having opposite first and second surfaces; a first intrinsic semiconductor layer disposed on the first surface; at least one polysilicon layer disposed on a first doped semiconductor layer; a second doped semiconductor layer disposed on the at least one polysilicon layer; a first doped semiconductor layer disposed on the second surface; a first transparent electrode film And disposed on the second doped semiconductor layer; a second transparent electrode film disposed on the first doped semiconductor layer; a first electrode disposed on the first transparent electrode film; Two electrodes are disposed on the second transparent electrode film. 如申請專利範圍第7項所述的異質接面太陽能電池,其中所述至少一層多晶矽層包括第一摻雜型多晶矽層、第二摻雜型多晶矽層或其組合。The heterojunction solar cell of claim 7, wherein the at least one polysilicon layer comprises a first doped polysilicon layer, a second doped polysilicon layer, or a combination thereof. 如申請專利範圍第7項所述的異質接面太陽能電池,更包括第二本質型半導體層,設置於所述第一摻雜型基板與所述第一摻雜型半導體層之間。The heterojunction solar cell according to claim 7, further comprising a second intrinsic semiconductor layer disposed between the first doped substrate and the first doped semiconductor layer. 一種異質接面太陽能電池的製造方法,包括: 提供第一摻雜型基板,其中所述第一摻雜型基板具有相對的第一表面與第二表面; 於所述第一表面上形成第一本質型半導體層; 於所述第一本質型半導體層上形成至少一層多晶矽層; 於所述至少一層多晶矽層上形成第二摻雜型半導體層; 於所述第二表面上形成第一摻雜型半導體層; 於所述第二摻雜型半導體層上形成第一透明電極膜; 於所述第一摻雜型半導體層上形成第二透明電極膜; 於所述第一透明電極膜上形成第一電極;以及 於所述第二透明電極膜上形成第二電極。A method of manufacturing a heterojunction solar cell, comprising: providing a first doped substrate, wherein the first doped substrate has opposing first and second surfaces; forming a first on the first surface An intrinsic semiconductor layer; forming at least one polysilicon layer on the first intrinsic semiconductor layer; forming a second doped semiconductor layer on the at least one polysilicon layer; forming a first doping on the second surface Forming a first transparent electrode film on the second doped semiconductor layer; forming a second transparent electrode film on the first doped semiconductor layer; forming on the first transparent electrode film a first electrode; and a second electrode formed on the second transparent electrode film. 如申請專利範圍第10項所述的異質接面太陽能電池的製造方法,其中所述至少一層多晶矽層包括第一摻雜型多晶矽層、第二摻雜型多晶矽層或其組合。The method of manufacturing a heterojunction solar cell according to claim 10, wherein the at least one polysilicon layer comprises a first doped polysilicon layer, a second doped polysilicon layer, or a combination thereof. 如申請專利範圍第10項所述的異質接面太陽能電池的製造方法,其中所述至少一層多晶矽層的形成方法包括: 形成微晶矽晶種層,其中所述微晶矽晶種層包括多個微晶矽晶種; 於所述微晶矽晶種層上形成非晶矽層;以及 使所述非晶矽層熔融,且熔融的所述非晶矽層在所述多個微晶矽晶種上重新結晶,而形成多晶矽層。The method for fabricating a heterojunction solar cell according to claim 10, wherein the method for forming the at least one polysilicon layer comprises: forming a microcrystalline germanium seed layer, wherein the microcrystalline germanium seed layer comprises a microcrystalline germanium seed crystal; forming an amorphous germanium layer on the microcrystalline germanium seed layer; and melting the amorphous germanium layer, and melting the amorphous germanium layer in the plurality of microcrystalline germanium The seed crystals are recrystallized to form a polycrystalline germanium layer. 如申請專利範圍第10項所述的異質接面太陽能電池的製造方法,更包括於所述第一摻雜型基板與所述第一摻雜型半導體層之間形成第二本質型半導體層。The method for manufacturing a heterojunction solar cell according to claim 10, further comprising forming a second intrinsic semiconductor layer between the first doped substrate and the first doped semiconductor layer.
TW106142095A 2017-12-01 2017-12-01 Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof TWI660075B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106142095A TWI660075B (en) 2017-12-01 2017-12-01 Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106142095A TWI660075B (en) 2017-12-01 2017-12-01 Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI660075B TWI660075B (en) 2019-05-21
TW201925551A true TW201925551A (en) 2019-07-01

Family

ID=67348189

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106142095A TWI660075B (en) 2017-12-01 2017-12-01 Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI660075B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324388C (en) * 2003-03-14 2007-07-04 友达光电股份有限公司 Manufacture of low temperature polycrystal silicon film electric crystal LCD device

Also Published As

Publication number Publication date
TWI660075B (en) 2019-05-21

Similar Documents

Publication Publication Date Title
US7755157B2 (en) Photovoltaic device and manufacturing method of photovoltaic device
TWI604621B (en) Solar cell, solar cell module, and manufacturing method of solar cell
TW201013950A (en) Solar cell module and method for fabricating the same
TW201624742A (en) Improved front contact heterojunction process
US8324498B2 (en) Method of forming crystalline layer, and thin film solar cell and method of fabricating the solar cell adopting the method of forming crystalline layer
JP2005123466A (en) Manufacturing method of silicon-based thin film photoelectric converter, and silicon-based thin film photoelectric converter manufactured thereby
TW201603296A (en) Solar cell with trench-free emitter regions
US20180166603A1 (en) Method of fabricating thin film photovoltaic devices
US20140014169A1 (en) Nanostring mats, multi-junction devices, and methods for making same
KR20180045587A (en) Solar cell and meaufacturing method of solar cell
US20100229912A1 (en) Photovoltaic device through lateral crystallization process and fabrication method thereof
KR20100070753A (en) Manufacturing method of photovoltaic devices
JP5282198B2 (en) Polycrystalline silicon thin film manufacturing method, polycrystalline silicon thin film substrate, and polycrystalline silicon thin film solar cell
JP2015142079A (en) photoelectric conversion device
TWI660075B (en) Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof
JPH0864851A (en) Photovoltaic element and fabrication thereof
KR101065749B1 (en) Solar cell and method for fabricating the same
KR20190061325A (en) Carrier selective contact solar cell and method of fabricating thereof
TWI488322B (en) Manufacturing method of thin film solar cells and thin film solar cells thereof
JP2012517706A (en) Method and apparatus for irradiating the surface of a photovoltaic material with laser energy
JP4729953B2 (en) Method for manufacturing thin film semiconductor device
JP2005217046A (en) Solar cell panel
KR20090046301A (en) Manufacturing method of single crystal substrate and manufacturing method of solar cell using it
KR101673241B1 (en) Method for fabricating tandem solar cell with thin film silicon and bulk crystalline silicon using silicon thin film tunnel junction layer by PECVD and solar cell thereof
JPH0282655A (en) Manufacture of photovolatic device