TWI660075B - Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof - Google Patents

Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof Download PDF

Info

Publication number
TWI660075B
TWI660075B TW106142095A TW106142095A TWI660075B TW I660075 B TWI660075 B TW I660075B TW 106142095 A TW106142095 A TW 106142095A TW 106142095 A TW106142095 A TW 106142095A TW I660075 B TWI660075 B TW I660075B
Authority
TW
Taiwan
Prior art keywords
silicon layer
layer
polycrystalline silicon
doped
semiconductor layer
Prior art date
Application number
TW106142095A
Other languages
Chinese (zh)
Other versions
TW201925551A (en
Inventor
孫暐栢
田偉辰
黃玉君
葉昌鑫
吳以德
李宗信
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW106142095A priority Critical patent/TWI660075B/en
Application granted granted Critical
Publication of TWI660075B publication Critical patent/TWI660075B/en
Publication of TW201925551A publication Critical patent/TW201925551A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一種多晶矽層的製造方法,包括以下步驟。提供基板。於基板上形成微晶矽晶種層,其中微晶矽晶種層包括多個微晶矽晶種。於微晶矽晶種層上形成非晶矽層。使非晶矽層熔融,且熔融的非晶矽層在微晶矽晶種上重新結晶,而形成多晶矽層。A method for manufacturing a polycrystalline silicon layer includes the following steps. Provide a substrate. A microcrystalline silicon seed layer is formed on the substrate, wherein the microcrystalline silicon seed layer includes a plurality of microcrystalline silicon seeds. An amorphous silicon layer is formed on the microcrystalline silicon seed layer. The amorphous silicon layer is melted, and the molten amorphous silicon layer is recrystallized on the microcrystalline silicon seed to form a polycrystalline silicon layer.

Description

多晶矽層的製造方法、異質接面太陽能電池及其製造方法Manufacturing method of polycrystalline silicon layer, heterojunction solar cell and manufacturing method thereof

本發明是有關於一種半導體層的製造方法、太陽能電池結構及其製造方法,且特別是有關於一種多晶矽層的製造方法、異質接面太陽能電池及其製造方法。The invention relates to a method for manufacturing a semiconductor layer, a solar cell structure and a method for manufacturing the same, and more particularly to a method for manufacturing a polycrystalline silicon layer, a heterojunction solar cell, and a method for manufacturing the same.

目前,由於低溫多晶矽的晶粒尺寸無法大幅提高,為形成較佳的低溫多晶矽結構,更發展出連續側向固化法(Sequential Lateral Solidification,SLS)、相位偏移光罩(Phase Shift Mask)和非晶矽平坦化(floating α-Si layer)等製程。但是,利用這些方法需另外增加一些設備,增加了製程的設備成本,亦較不易整合至現有製程。At present, because the grain size of low-temperature polycrystalline silicon cannot be greatly improved, in order to form a better low-temperature polycrystalline silicon structure, Sequential Lateral Solidification (SLS), Phase Shift Mask, and non-crystalline silicon have been developed. Crystal silicon planarization (floating α-Si layer) and other processes. However, the use of these methods requires additional equipment, which increases the equipment cost of the process, and it is not easy to integrate into the existing process.

本發明提供一種多晶矽層的製造方法,其可降低設備投資成本,且容易與現有製程進行整合。The invention provides a method for manufacturing a polycrystalline silicon layer, which can reduce equipment investment costs and is easy to integrate with existing processes.

本發明提供一種異質接面太陽能電池及其製造方法,其可具有較佳的光電轉換效率。The invention provides a heterojunction solar cell and a manufacturing method thereof, which can have better photoelectric conversion efficiency.

本發明提出一種多晶矽層的製造方法,包括以下步驟。提供基板。於基板上形成微晶矽晶種層,其中微晶矽晶種層包括多個微晶矽晶種。於微晶矽晶種層上形成非晶矽層。使非晶矽層熔融,且熔融的非晶矽層在微晶矽晶種上重新結晶,而形成多晶矽層。The invention provides a method for manufacturing a polycrystalline silicon layer, which includes the following steps. Provide a substrate. A microcrystalline silicon seed layer is formed on the substrate, wherein the microcrystalline silicon seed layer includes a plurality of microcrystalline silicon seeds. An amorphous silicon layer is formed on the microcrystalline silicon seed layer. The amorphous silicon layer is melted, and the molten amorphous silicon layer is recrystallized on the microcrystalline silicon seed to form a polycrystalline silicon layer.

依照本發明的一實施例所述,在上述多晶矽層的製造方法中,基板例如是半導體基板、玻璃基板、塑膠基板或不鏽鋼基板。According to an embodiment of the present invention, in the method for manufacturing a polycrystalline silicon layer, the substrate is, for example, a semiconductor substrate, a glass substrate, a plastic substrate, or a stainless steel substrate.

依照本發明的一實施例所述,在上述多晶矽層的製造方法中,微晶矽晶種層的形成方法例如是多點電磁波饋入的電漿增強型化學氣相沉積法(PECVD)。According to an embodiment of the present invention, in the method for manufacturing a polycrystalline silicon layer, a method for forming a microcrystalline silicon seed layer is, for example, a plasma enhanced chemical vapor deposition (PECVD) method with multi-point electromagnetic wave feeding.

依照本發明的一實施例所述,在上述多晶矽層的製造方法中,非晶矽層的形成方法例如是電漿增強型化學氣相沉積法。According to an embodiment of the present invention, in the method for manufacturing a polycrystalline silicon layer, a method for forming an amorphous silicon layer is, for example, a plasma enhanced chemical vapor deposition method.

依照本發明的一實施例所述,在上述多晶矽層的製造方法中,使非晶矽層熔融的方法例如是進行退火製程。According to an embodiment of the present invention, in the method for manufacturing a polycrystalline silicon layer, a method of melting an amorphous silicon layer is, for example, an annealing process.

依照本發明的一實施例所述,在上述多晶矽層的製造方法中,退火製程例如是雷射退火製程。According to an embodiment of the present invention, in the method for manufacturing a polycrystalline silicon layer, the annealing process is, for example, a laser annealing process.

本發明提出一種異質接面太陽能電池,包括第一摻雜型基板、第一本質型半導體層、至少一層多晶矽層、第二摻雜型半導體層、第一摻雜型半導體層、第一透明電極膜、第二透明電極膜、第一電極與第二電極。第一摻雜型基板具有相對的第一表面與第二表面。第一本質型半導體層設置於第一表面上。多晶矽層設置於第一本質型半導體層上。第二摻雜型半導體層設置於多晶矽層上。第一摻雜型半導體層設置於第二表面上。第一透明電極膜設置於第二摻雜型半導體層上。第二透明電極膜設置於第一摻雜型半導體層上。第一電極設置於第一透明電極膜上。第二電極設置於第二透明電極膜上。The invention provides a heterojunction solar cell, which includes a first doped substrate, a first intrinsic semiconductor layer, at least one polycrystalline silicon layer, a second doped semiconductor layer, a first doped semiconductor layer, and a first transparent electrode. Film, second transparent electrode film, first electrode and second electrode. The first doped substrate has a first surface and a second surface opposite to each other. A first intrinsic type semiconductor layer is disposed on the first surface. The polycrystalline silicon layer is disposed on the first intrinsic semiconductor layer. The second doped semiconductor layer is disposed on the polycrystalline silicon layer. The first doped semiconductor layer is disposed on the second surface. The first transparent electrode film is disposed on the second doped semiconductor layer. The second transparent electrode film is disposed on the first doped semiconductor layer. The first electrode is disposed on the first transparent electrode film. The second electrode is disposed on the second transparent electrode film.

依照本發明的一實施例所述,在上述異質接面太陽能電池中,多晶矽層可為第一摻雜型多晶矽層、第二摻雜型多晶矽層或其組合。According to an embodiment of the present invention, in the heterojunction solar cell, the polycrystalline silicon layer may be a first doped polycrystalline silicon layer, a second doped polycrystalline silicon layer, or a combination thereof.

依照本發明的一實施例所述,在上述異質接面太陽能電池中,更包括第二本質型半導體層。第二本質型半導體層設置於第一摻雜型基板與第一摻雜型半導體層之間。According to an embodiment of the present invention, the heterojunction solar cell further includes a second intrinsic semiconductor layer. The second intrinsic semiconductor layer is disposed between the first doped substrate and the first doped semiconductor layer.

本發明提出一種異質接面太陽能電池的製造方法,包括以下步驟。提供第一摻雜型基板。第一摻雜型基板具有相對的第一表面與第二表面。於第一表面上形成第一本質型半導體層。於第一本質型半導體層上形成至少一層多晶矽層。於多晶矽層上形成第二摻雜型半導體層。於第二表面上形成第一摻雜型半導體層。於第二摻雜型半導體層上形成第一透明電極膜。於第一摻雜型半導體層上形成第二透明電極膜。於第一透明電極膜上形成第一電極。於第二透明電極膜上形成第二電極。The invention provides a method for manufacturing a heterojunction solar cell, which includes the following steps. A first doped substrate is provided. The first doped substrate has a first surface and a second surface opposite to each other. A first intrinsic semiconductor layer is formed on the first surface. Forming at least one polycrystalline silicon layer on the first intrinsic semiconductor layer. A second doped semiconductor layer is formed on the polycrystalline silicon layer. A first doped semiconductor layer is formed on the second surface. A first transparent electrode film is formed on the second doped semiconductor layer. A second transparent electrode film is formed on the first doped semiconductor layer. A first electrode is formed on the first transparent electrode film. A second electrode is formed on the second transparent electrode film.

依照本發明的一實施例所述,在上述異質接面太陽能電池的製造方法中,多晶矽層可為第一摻雜型多晶矽層、第二摻雜型多晶矽層或其組合。According to an embodiment of the present invention, in the method for manufacturing a heterojunction solar cell, the polycrystalline silicon layer may be a first doped polycrystalline silicon layer, a second doped polycrystalline silicon layer, or a combination thereof.

依照本發明的一實施例所述,在上述異質接面太陽能電池的製造方法中,多晶矽層的形成方法包括以下步驟。形成微晶矽晶種層。微晶矽晶種層包括多個微晶矽晶種。於微晶矽晶種層上形成非晶矽層。使非晶矽層熔融,且熔融的非晶矽層在微晶矽晶種上重新結晶,而形成多晶矽層。According to an embodiment of the present invention, in the method for manufacturing a heterojunction solar cell, a method for forming a polycrystalline silicon layer includes the following steps. A microcrystalline silicon seed layer is formed. The microcrystalline silicon seed layer includes a plurality of microcrystalline silicon seeds. An amorphous silicon layer is formed on the microcrystalline silicon seed layer. The amorphous silicon layer is melted, and the molten amorphous silicon layer is recrystallized on the microcrystalline silicon seed to form a polycrystalline silicon layer.

依照本發明的一實施例所述,在上述異質接面太陽能電池的製造方法中,更包括於第一摻雜型基板與第一摻雜型半導體層之間形成第二本質型半導體層。According to an embodiment of the present invention, in the method for manufacturing a heterojunction solar cell, the method further includes forming a second intrinsic semiconductor layer between the first doped substrate and the first doped semiconductor layer.

基於上述,在本發明所提出的多晶矽層的製造方法中,在使非晶矽層熔融之後,熔融的非晶矽層與微晶矽晶種之間會產生溫度梯度,而使得熔融的非晶矽層在溫度較低的微晶矽晶種上重新結晶,藉此可在較低製程溫度下形成多晶矽層。此外,由於熔融的非晶矽層具有足夠的時間進行有方向性的結晶,因此可形成具有較佳結晶結構的多晶矽層,進而使得多晶矽層可具有較佳的電性與穩定性。另外,由於本發明所提出的多晶矽層的製造方法無需增加額外設備即可製作出具有較佳結晶結構的多晶矽層,因此可降低設備投資成本,且容易與現有製程進行整合。Based on the above, in the method for manufacturing a polycrystalline silicon layer proposed by the present invention, after the amorphous silicon layer is melted, a temperature gradient is generated between the molten amorphous silicon layer and the microcrystalline silicon seed, so that the molten amorphous silicon layer The silicon layer is recrystallized from the lower temperature microcrystalline silicon seed crystal, thereby forming a polycrystalline silicon layer at a lower process temperature. In addition, since the molten amorphous silicon layer has sufficient time for directional crystallization, a polycrystalline silicon layer having a better crystalline structure can be formed, so that the polycrystalline silicon layer can have better electrical properties and stability. In addition, since the method for manufacturing a polycrystalline silicon layer provided by the present invention can produce a polycrystalline silicon layer having a better crystalline structure without adding additional equipment, equipment investment costs can be reduced, and integration with existing processes is easy.

另一方面,在本發明所提出的異質接面太陽能電池及其製造方法中,由於設置於第一本質型半導體層與第二摻雜型半導體層之間的多晶矽層可作為光吸收層,因此可有效地提升開路電壓(Voc)與短路電流(Jsc),進而提升異質接面太陽能電池的光電轉換效率。On the other hand, in the heterojunction solar cell and the manufacturing method thereof proposed by the present invention, since the polycrystalline silicon layer provided between the first intrinsic semiconductor layer and the second doped semiconductor layer can be used as a light absorption layer, Can effectively increase the open circuit voltage (Voc) and short circuit current (Jsc), and then improve the photoelectric conversion efficiency of the solar cell with heterojunction.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

圖1為本發明一實施例的多晶矽層的製造流程圖。圖2A至圖2B為本發明一實施例的多晶矽層的製造流程剖面圖。FIG. 1 is a manufacturing flowchart of a polycrystalline silicon layer according to an embodiment of the present invention. 2A to 2B are cross-sectional views of a manufacturing process of a polycrystalline silicon layer according to an embodiment of the present invention.

請參照圖1與圖2A,進行步驟S100,提供基板100。基板100例如是半導體基板、玻璃基板、塑膠基板或不鏽鋼基板。此外,依據產品需求,在基板100上亦可形成有所需的膜層。Referring to FIG. 1 and FIG. 2A, step S100 is performed to provide a substrate 100. The substrate 100 is, for example, a semiconductor substrate, a glass substrate, a plastic substrate, or a stainless steel substrate. In addition, according to product requirements, a desired film layer may be formed on the substrate 100.

接著,進行步驟S102,於基板100上形成微晶矽晶種層102,其中微晶矽晶種層102包括多個微晶矽晶種102a。此外,微晶矽晶種層102更可包括非晶矽材料102b。非晶矽材料102b覆蓋微晶矽晶種102a。微晶矽晶種層102的形成方法例如是多點電磁波饋入的電漿增強型化學氣相沉積法,藉此可形成規律的微晶矽晶種102a。Next, step S102 is performed to form a microcrystalline silicon seed layer 102 on the substrate 100, where the microcrystalline silicon seed layer 102 includes a plurality of microcrystalline silicon seeds 102a. In addition, the microcrystalline silicon seed layer 102 may further include an amorphous silicon material 102b. The amorphous silicon material 102b covers the microcrystalline silicon seed 102a. The method for forming the microcrystalline silicon seed layer 102 is, for example, a plasma enhanced chemical vapor deposition method in which multiple points of electromagnetic waves are fed, thereby forming a regular microcrystalline silicon seed layer 102a.

然後,進行步驟S104,於微晶矽晶種層102上形成非晶矽層104。非晶矽層104的形成方法例如是化學氣相沉積法,如電漿增強型化學氣相沉積法。Then, step S104 is performed to form an amorphous silicon layer 104 on the microcrystalline silicon seed layer 102. A method for forming the amorphous silicon layer 104 is, for example, a chemical vapor deposition method, such as a plasma enhanced chemical vapor deposition method.

請參照圖1與圖2B,進行步驟S106,使非晶矽層104熔融,且熔融的非晶矽層104在微晶矽晶種102a上重新結晶,而形成多晶矽層106。在步驟S106中,依照實際製程條件,與所需特性,非晶矽材料102b亦可同時熔融且在微晶矽晶種102a上重新結晶,而形成多晶矽層106。藉此,可在較低製程溫度下形成多晶矽層106,因此多晶矽層106可為低溫多晶矽層。使非晶矽層104熔融的方法例如是進行退火製程,如雷射退火製程。雷射退火製程所使用的雷射光束例如是準分子雷射光束,如氯化氙(XeCl)雷射光束或氟化氪(KrF)。Referring to FIG. 1 and FIG. 2B, step S106 is performed to melt the amorphous silicon layer 104, and the molten amorphous silicon layer 104 is recrystallized on the microcrystalline silicon seed 102a to form a polycrystalline silicon layer 106. In step S106, the amorphous silicon material 102b can also be melted and recrystallized on the microcrystalline silicon seed 102a at the same time according to the actual process conditions and desired characteristics to form a polycrystalline silicon layer 106. Thereby, the polycrystalline silicon layer 106 can be formed at a lower process temperature, so the polycrystalline silicon layer 106 can be a low-temperature polycrystalline silicon layer. A method for melting the amorphous silicon layer 104 is, for example, an annealing process, such as a laser annealing process. The laser beam used in the laser annealing process is, for example, an excimer laser beam, such as a xenon chloride (XeCl) laser beam or krypton fluoride (KrF).

基於上述實施例可知,在使非晶矽層104熔融之後,熔融的非晶矽層104與微晶矽晶種102a之間會產生溫度梯度,而使得熔融的非晶矽層104在溫度較低的微晶矽晶種102a上重新結晶,藉此可在較低製程溫度下形成多晶矽層106。此外,由於熔融的非晶矽層104具有足夠的時間進行有方向性的結晶,因此可形成具有較佳結晶結構的多晶矽層106,進而使得多晶矽層106可具有較佳的電性與穩定性。另外,由於上述多晶矽層106的製造方法無需增加額外設備即可製作出具有較佳結晶結構的多晶矽層106,因此可降低設備投資成本,且容易與現有製程進行整合。Based on the above embodiment, it can be known that after the amorphous silicon layer 104 is melted, a temperature gradient occurs between the molten amorphous silicon layer 104 and the microcrystalline silicon seed 102a, so that the molten amorphous silicon layer 104 has a lower temperature The microcrystalline silicon seed 102a is recrystallized, thereby forming a polycrystalline silicon layer 106 at a lower process temperature. In addition, since the molten amorphous silicon layer 104 has sufficient time for directional crystallization, a polycrystalline silicon layer 106 having a better crystalline structure can be formed, so that the polycrystalline silicon layer 106 can have better electrical properties and stability. In addition, since the above-mentioned manufacturing method of the polycrystalline silicon layer 106 can produce a polycrystalline silicon layer 106 with a better crystalline structure without adding additional equipment, equipment investment costs can be reduced, and integration with existing processes is easy.

圖3為本發明一實施例的異質接面太陽能電池的立體圖。FIG. 3 is a perspective view of a heterojunction solar cell according to an embodiment of the present invention.

以下,藉由圖3說明本實施例的異質接面太陽能電池200的製造方法。Hereinafter, a method for manufacturing a heterojunction solar cell 200 according to this embodiment will be described with reference to FIG. 3.

提供第一摻雜型基板202。第一摻雜型基板202具有相對的第一表面S1與第二表面S2。第一摻雜型與第二摻雜型為不同摻雜型,且分別可為N型與P型中的一者與另一者。在此實施例中,第一摻雜型是以N型為例來進行說明,且第二摻雜型是以P型為例來進行說明,但本發明並不以此為限。在另一實施例中,第一摻雜型可為P型,且第二摻雜型可N型。基板110例如是半導體基板,如矽基板。在此實施例中,基板110是以N型單晶矽基板為例來進行說明。A first doped substrate 202 is provided. The first doped substrate 202 has a first surface S1 and a second surface S2 opposite to each other. The first doped type and the second doped type are different doped types, and may be one of the N-type and the P-type, respectively. In this embodiment, the first doped type is described using an N-type as an example, and the second doped type is described using a P-type as an example, but the present invention is not limited thereto. In another embodiment, the first doped type may be a P-type, and the second doped type may be an N-type. The substrate 110 is, for example, a semiconductor substrate such as a silicon substrate. In this embodiment, the substrate 110 is described using an N-type single crystal silicon substrate as an example.

於第一表面S1上形成第一本質型半導體層204。第一本質型半導體層204的材料例如是非晶矽。第一本質型半導體層204的形成方法例如是化學氣相沉積法,如電漿增強型化學氣相沉積法。A first intrinsic semiconductor layer 204 is formed on the first surface S1. The material of the first intrinsic type semiconductor layer 204 is, for example, amorphous silicon. The method for forming the first intrinsic semiconductor layer 204 is, for example, a chemical vapor deposition method, such as a plasma enhanced chemical vapor deposition method.

於第一本質型半導體層204上形成至少一層多晶矽層206。多晶矽層206可作為光吸收層,因此可有效地提升異質接面太陽能電池200的光電轉換效率。多晶矽層206可為單層結構或多層結構。多晶矽層206可為第一摻雜型多晶矽層(如,N型摻雜型多晶矽層)、第二摻雜型多晶矽層(如,P型摻雜型多晶矽層)或其組合。在此實施例中,多晶矽層206是以第二摻雜型多晶矽層(如,P型摻雜型多晶矽層)的單層結構為例來進行說明。在其他實施例中,在多晶矽層206為多層結構的情況下,多晶矽層206可為交替排列的第一摻雜型多晶矽層(如,N型摻雜型多晶矽層)與第二摻雜型多晶矽層(如,P型摻雜型多晶矽層)的堆疊結構,而在異質接面太陽能電池200中形成串聯的電池單元。At least one polycrystalline silicon layer 206 is formed on the first intrinsic semiconductor layer 204. The polycrystalline silicon layer 206 can be used as a light absorbing layer, so the photoelectric conversion efficiency of the hetero junction solar cell 200 can be effectively improved. The polycrystalline silicon layer 206 may have a single-layer structure or a multi-layer structure. The polycrystalline silicon layer 206 may be a first doped polycrystalline silicon layer (eg, an N-type doped polycrystalline silicon layer), a second doped polycrystalline silicon layer (eg, a P-type doped polycrystalline silicon layer), or a combination thereof. In this embodiment, the polycrystalline silicon layer 206 is described by taking a single-layer structure of a second doped polycrystalline silicon layer (eg, a P-type doped polycrystalline silicon layer) as an example. In other embodiments, when the polycrystalline silicon layer 206 is a multilayer structure, the polycrystalline silicon layer 206 may be a first doped polycrystalline silicon layer (eg, an N-type doped polycrystalline silicon layer) and a second doped polycrystalline silicon layer arranged alternately. Layers (eg, P-type doped polycrystalline silicon layers), and battery cells connected in series are formed in the heterojunction solar cell 200.

此外,多晶矽層206可為低溫多晶矽層。多晶矽層206的形成方法可採用上述圖1、圖2A與圖2B中所記載的多晶矽層106的形成方法,且於此不再重複說明。另外,在多晶矽層206為多層結構的情況下,可重複進行圖1中的步驟S102(形成微晶矽晶種層)、步驟S104(形成非晶矽層)與步驟S106(使非晶矽層熔融且在微晶矽晶種上重新結晶,而形成多晶矽層)。在多晶矽層206的形成方法中,可藉由調整沉積氣體來決定多晶矽層206的摻雜型態。In addition, the polycrystalline silicon layer 206 may be a low-temperature polycrystalline silicon layer. The method for forming the polycrystalline silicon layer 206 may be the method for forming the polycrystalline silicon layer 106 described in FIG. 1, FIG. 2A, and FIG. 2B, and the description is not repeated here. In addition, in the case where the polycrystalline silicon layer 206 has a multilayer structure, steps S102 (forming a microcrystalline silicon seed layer), step S104 (forming an amorphous silicon layer), and step S106 (making an amorphous silicon layer) in FIG. Melt and recrystallize on the microcrystalline silicon seed to form a polycrystalline silicon layer). In the method for forming the polycrystalline silicon layer 206, the doping type of the polycrystalline silicon layer 206 can be determined by adjusting the deposition gas.

於多晶矽層206上形成第二摻雜型半導體層208。第二摻雜型半導體層208的材料例如是非晶矽。在此實施例中,第二摻雜型半導體層208是以P型非晶矽層為例來進行說明。第二摻雜型半導體層208的形成方法例如是化學氣相沉積法,如電漿增強型化學氣相沉積法。A second doped semiconductor layer 208 is formed on the polycrystalline silicon layer 206. The material of the second doped semiconductor layer 208 is, for example, amorphous silicon. In this embodiment, the second doped semiconductor layer 208 is described by taking a P-type amorphous silicon layer as an example. A method for forming the second doped semiconductor layer 208 is, for example, a chemical vapor deposition method, such as a plasma enhanced chemical vapor deposition method.

可選擇性地於第二表面S2上形成第二本質型半導體層210。第二本質型半導體層210的材料例如是非晶矽。第二本質型半導體層210的形成方法例如是化學氣相沉積法,如電漿增強型化學氣相沉積法。A second intrinsic type semiconductor layer 210 may be selectively formed on the second surface S2. The material of the second intrinsic type semiconductor layer 210 is, for example, amorphous silicon. The method for forming the second intrinsic type semiconductor layer 210 is, for example, a chemical vapor deposition method, such as a plasma enhanced chemical vapor deposition method.

於第二本質型半導體層210上形成第一摻雜型半導體層212。第一摻雜型半導體層212的材料例如是非晶矽。在此實施例中,第一摻雜型半導體層212是以N型非晶矽層為例來進行說明。第一摻雜型半導體層212的形成方法例如是化學氣相沉積法,如電漿增強型化學氣相沉積法。A first doped semiconductor layer 212 is formed on the second intrinsic semiconductor layer 210. The material of the first doped semiconductor layer 212 is, for example, amorphous silicon. In this embodiment, the first doped semiconductor layer 212 is described using an N-type amorphous silicon layer as an example. The method for forming the first doped semiconductor layer 212 is, for example, a chemical vapor deposition method, such as a plasma enhanced chemical vapor deposition method.

可於第二摻雜型半導體層208上形成第一透明電極膜214,且可於第一摻雜型半導體層212上形成第二透明電極膜216。第一透明電極膜214與第二透明電極膜216分別可用以提升電流的收集效率。第一透明電極膜214與第二透明電極膜216的材料可為透明導電氧化物(transparent conductive oxide,TCO),例如是銦錫氧化物(ITO)等金屬氧化物。第一透明電極膜214與第二透明電極膜216的形成方法例如是濺鍍法或蒸鍍法。A first transparent electrode film 214 may be formed on the second doped semiconductor layer 208, and a second transparent electrode film 216 may be formed on the first doped semiconductor layer 212. The first transparent electrode film 214 and the second transparent electrode film 216 can be used to improve the current collection efficiency. The material of the first transparent electrode film 214 and the second transparent electrode film 216 may be a transparent conductive oxide (TCO), such as a metal oxide such as indium tin oxide (ITO). A method of forming the first transparent electrode film 214 and the second transparent electrode film 216 is, for example, a sputtering method or a vapor deposition method.

可於第一透明電極膜214上形成第一電極218,且可於第二透明電極膜216上形成第二電極220。第一電極218與第二電極220可用於取出異質接面太陽能電池200所產生的電力。第一電極218與第二電極220的材料例如是鋁、銅、金或銀等金屬。在此實施例中,第一電極218與第二電極220是以網格狀電極(grid electrode)為例來進行說明,但本發明並不以此為限。在另一實施例中,在第一表面S1為入光面的情況下,第二電極220亦可為覆蓋第二透明電極膜216的整片電極結構。A first electrode 218 may be formed on the first transparent electrode film 214, and a second electrode 220 may be formed on the second transparent electrode film 216. The first electrode 218 and the second electrode 220 can be used to extract power generated by the heterojunction solar cell 200. The material of the first electrode 218 and the second electrode 220 is, for example, a metal such as aluminum, copper, gold, or silver. In this embodiment, the first electrode 218 and the second electrode 220 are described by taking a grid electrode as an example, but the present invention is not limited thereto. In another embodiment, when the first surface S1 is a light incident surface, the second electrode 220 may also be an entire electrode structure covering the second transparent electrode film 216.

以下,藉由圖3來說明本實施例的異質接面太陽能電池200的結構。Hereinafter, the structure of the heterojunction solar cell 200 according to this embodiment will be described with reference to FIG. 3.

請參照圖3,異質接面太陽能電池200包括第一摻雜型基板202、第一本質型半導體層204、至少一層多晶矽層206、第二摻雜型半導體層208與第一摻雜型半導體層212,且更可包括第二本質型半導體層210、第一透明電極膜214、第二透明電極膜216、第一電極218與第二電極220中的至少一者。第一摻雜型基板202具有相對的第一表面S1與第一表面S2。第一本質型半導體層204設置於第一表面S1上。多晶矽層206設置於第一本質型半導體層204上。第二摻雜型半導體層208設置於多晶矽層206上。第一摻雜型半導體層212設置於第一表面S2上。第二本質型半導體層210設置於第一摻雜型基板202與第一摻雜型半導體層212之間。第一透明電極膜214設置於第二摻雜型半導體層208上。第二透明電極膜216設置於第一摻雜型半導體層212上。第一電極218設置於第一透明電極膜214上。第二電極220設置於第二透明電極膜216上。3, a heterojunction solar cell 200 includes a first doped substrate 202, a first intrinsic semiconductor layer 204, at least one polycrystalline silicon layer 206, a second doped semiconductor layer 208, and a first doped semiconductor layer. 212, and may further include at least one of a second intrinsic type semiconductor layer 210, a first transparent electrode film 214, a second transparent electrode film 216, a first electrode 218, and a second electrode 220. The first doped substrate 202 has a first surface S1 and a first surface S2 opposite to each other. The first intrinsic type semiconductor layer 204 is disposed on the first surface S1. The polycrystalline silicon layer 206 is disposed on the first intrinsic semiconductor layer 204. The second doped semiconductor layer 208 is disposed on the polycrystalline silicon layer 206. The first doped semiconductor layer 212 is disposed on the first surface S2. The second intrinsic semiconductor layer 210 is disposed between the first doped substrate 202 and the first doped semiconductor layer 212. The first transparent electrode film 214 is disposed on the second doped semiconductor layer 208. The second transparent electrode film 216 is disposed on the first doped semiconductor layer 212. The first electrode 218 is disposed on the first transparent electrode film 214. The second electrode 220 is disposed on the second transparent electrode film 216.

此外,異質接面太陽能電池200中的各構件的材料、態樣、形成方法與功效等,已於上述實施例中進行詳盡地說明,於此不再重複說明。In addition, the materials, forms, forming methods, and effects of the components in the heterojunction solar cell 200 have been described in detail in the above embodiments, and are not repeated here.

基於上述實施例可知,在異質接面太陽能電池200及其製造方法中,由於設置於第一本質型半導體層204與第二摻雜型半導體層208之間的多晶矽層206可作為光吸收層,因此可有效地提升開路電壓與短路電流,進而提升異質接面太陽能電池200的光電轉換效率。Based on the above embodiments, it can be known that in the heterojunction solar cell 200 and the manufacturing method thereof, since the polycrystalline silicon layer 206 provided between the first intrinsic semiconductor layer 204 and the second doped semiconductor layer 208 can serve as a light absorption layer, Therefore, the open-circuit voltage and the short-circuit current can be effectively improved, and the photoelectric conversion efficiency of the heterojunction solar cell 200 can be improved.

綜上所述,上述實施例的多晶矽層的製造方法可在較低製程溫度下形成具有較佳結晶結構的多晶矽層,進而使得多晶矽層可具有較佳的電性與穩定性。此外,上述實施例的多晶矽層的製造方法無需增加額外設備即可製作出具有較佳結晶結構的多晶矽層,因此可降低設備投資成本,且容易與現有製程進行整合。In summary, the method for manufacturing the polycrystalline silicon layer in the above embodiment can form a polycrystalline silicon layer having a better crystal structure at a lower process temperature, so that the polycrystalline silicon layer can have better electrical properties and stability. In addition, the method for manufacturing a polycrystalline silicon layer in the above embodiment can produce a polycrystalline silicon layer with a better crystal structure without adding additional equipment, so the equipment investment cost can be reduced, and it can be easily integrated with existing processes.

另一方面,在上述實施例的異質接面太陽能電池及其製造方法中,可藉由多晶矽層作為光吸收層,而有效地提升異質接面太陽能電池的光電轉換效率。On the other hand, in the heterojunction solar cell and the manufacturing method thereof in the above embodiments, the polycrystalline silicon layer can be used as a light absorption layer to effectively improve the photoelectric conversion efficiency of the heterojunction solar cell.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

100‧‧‧基板100‧‧‧ substrate

102‧‧‧微晶矽晶種層102‧‧‧Microcrystalline silicon seed layer

102a‧‧‧微晶矽晶種102a‧‧‧Microcrystalline silicon seed

102b‧‧‧非晶矽材料102b‧‧‧Amorphous silicon material

104‧‧‧非晶矽層104‧‧‧amorphous silicon layer

106‧‧‧多晶矽層106‧‧‧Polycrystalline silicon layer

200‧‧‧異質接面太陽能電池200‧‧‧heterojunction solar cell

202‧‧‧第一摻雜型基板202‧‧‧First doped substrate

204‧‧‧第一本質型半導體層204‧‧‧The first essential semiconductor layer

206‧‧‧多晶矽層206‧‧‧polycrystalline silicon layer

208‧‧‧第二摻雜型半導體層208‧‧‧Second doped semiconductor layer

210‧‧‧第二本質型半導體層210‧‧‧Second Intrinsic Semiconductor Layer

212‧‧‧第一摻雜型半導體層212‧‧‧first doped semiconductor layer

214‧‧‧第一透明電極膜214‧‧‧The first transparent electrode film

216‧‧‧第二透明電極膜216‧‧‧Second transparent electrode film

218‧‧‧第一電極218‧‧‧First electrode

220‧‧‧第二電極220‧‧‧Second electrode

S1‧‧‧第一表面S1‧‧‧First surface

S2‧‧‧第二表面S2‧‧‧Second surface

S100、S102、S104、S106‧‧‧步驟S100, S102, S104, S106 ‧‧‧ steps

圖1為本發明一實施例的多晶矽層的製造流程圖。 圖2A至圖2B為本發明一實施例的多晶矽層的製造流程剖面圖。 圖3為本發明一實施例的異質接面太陽能電池的立體圖。FIG. 1 is a manufacturing flowchart of a polycrystalline silicon layer according to an embodiment of the present invention. 2A to 2B are cross-sectional views of a manufacturing process of a polycrystalline silicon layer according to an embodiment of the present invention. FIG. 3 is a perspective view of a heterojunction solar cell according to an embodiment of the present invention.

Claims (11)

一種多晶矽層的製造方法,包括:提供基板;於所述基板上形成微晶矽晶種層,其中所述微晶矽晶種層包括多個微晶矽晶種,其中所述微晶矽晶種層的形成方法包括多點電磁波饋入的電漿增強型化學氣相沉積法;於所述微晶矽晶種層上形成非晶矽層;以及使所述非晶矽層熔融,且熔融的所述非晶矽層在所述多個微晶矽晶種上重新結晶,而形成多晶矽層。A method for manufacturing a polycrystalline silicon layer includes: providing a substrate; and forming a microcrystalline silicon seed layer on the substrate, wherein the microcrystalline silicon seed layer includes a plurality of microcrystalline silicon seeds, wherein the microcrystalline silicon crystal A method for forming a seed layer includes a plasma enhanced chemical vapor deposition method in which multiple points of electromagnetic waves are fed; forming an amorphous silicon layer on the microcrystalline silicon seed layer; and melting and melting the amorphous silicon layer. The amorphous silicon layer is recrystallized on the plurality of microcrystalline silicon seeds to form a polycrystalline silicon layer. 如申請專利範圍第1項所述的多晶矽層的製造方法,其中所述基板包括半導體基板、玻璃基板、塑膠基板或不鏽鋼基板。The method for manufacturing a polycrystalline silicon layer according to item 1 of the scope of patent application, wherein the substrate includes a semiconductor substrate, a glass substrate, a plastic substrate, or a stainless steel substrate. 如申請專利範圍第1項所述的多晶矽層的製造方法,其中所述非晶矽層的形成方法包括電漿增強型化學氣相沉積法。The method for manufacturing a polycrystalline silicon layer according to item 1 of the scope of patent application, wherein the method for forming the amorphous silicon layer includes a plasma enhanced chemical vapor deposition method. 如申請專利範圍第1項所述的多晶矽層的製造方法,其中使所述非晶矽層熔融的方法包括進行退火製程。The method for manufacturing a polycrystalline silicon layer according to item 1 of the scope of patent application, wherein the method of melting the amorphous silicon layer includes performing an annealing process. 如申請專利範圍第4項所述的多晶矽層的製造方法,其中所述退火製程包括雷射退火製程。The method for manufacturing a polycrystalline silicon layer according to item 4 of the scope of patent application, wherein the annealing process includes a laser annealing process. 一種異質接面太陽能電池,包括:第一摻雜型基板,具有相對的第一表面與第二表面;第一本質型半導體層,設置於所述第一表面上;至少一層多晶矽層,設置於所述第一本質型半導體層上,其中所述至少一層多晶矽層如申請專利範圍第1項至第5項中任一項所述的多晶矽層的製造方法所製得的;第二摻雜型半導體層,設置於所述至少一層多晶矽層上;第一摻雜型半導體層,設置於所述第二表面上;第一透明電極膜,設置於所述第二摻雜型半導體層上;第二透明電極膜,設置於所述第一摻雜型半導體層上;第一電極,設置於所述第一透明電極膜上;以及第二電極,設置於所述第二透明電極膜上。A heterojunction solar cell includes: a first doped substrate having a first surface and a second surface opposite to each other; a first intrinsic semiconductor layer disposed on the first surface; and at least one polycrystalline silicon layer disposed on On the first intrinsic type semiconductor layer, wherein the at least one polycrystalline silicon layer is made by the method for manufacturing a polycrystalline silicon layer according to any one of claims 1 to 5 of a patent application scope; a second doped type A semiconductor layer is disposed on the at least one polycrystalline silicon layer; a first doped semiconductor layer is disposed on the second surface; a first transparent electrode film is disposed on the second doped semiconductor layer; Two transparent electrode films are disposed on the first doped semiconductor layer; a first electrode is disposed on the first transparent electrode film; and a second electrode is disposed on the second transparent electrode film. 如申請專利範圍第6項所述的異質接面太陽能電池,其中所述至少一層多晶矽層包括第一摻雜型多晶矽層、第二摻雜型多晶矽層或其組合。The heterojunction solar cell according to item 6 of the application, wherein the at least one polycrystalline silicon layer includes a first doped polycrystalline silicon layer, a second doped polycrystalline silicon layer, or a combination thereof. 如申請專利範圍第6項所述的異質接面太陽能電池,更包括第二本質型半導體層,設置於所述第一摻雜型基板與所述第一摻雜型半導體層之間。The heterojunction solar cell according to item 6 of the patent application scope further includes a second intrinsic semiconductor layer, which is disposed between the first doped substrate and the first doped semiconductor layer. 一種異質接面太陽能電池的製造方法,包括:提供第一摻雜型基板,其中所述第一摻雜型基板具有相對的第一表面與第二表面;於所述第一表面上形成第一本質型半導體層;於所述第一本質型半導體層上形成至少一層多晶矽層,其中所述至少一層多晶矽層的形成方法包括:形成微晶矽晶種層,其中所述微晶矽晶種層包括多個微晶矽晶種;於所述微晶矽晶種層上形成非晶矽層;以及使所述非晶矽層熔融,且熔融的所述非晶矽層在所述多個微晶矽晶種上重新結晶,而形成多晶矽層;於所述至少一層多晶矽層上形成第二摻雜型半導體層;於所述第二表面上形成第一摻雜型半導體層;於所述第二摻雜型半導體層上形成第一透明電極膜;於所述第一摻雜型半導體層上形成第二透明電極膜;於所述第一透明電極膜上形成第一電極;以及於所述第二透明電極膜上形成第二電極。A method for manufacturing a heterojunction solar cell includes: providing a first doped substrate, wherein the first doped substrate has a first surface and a second surface opposite to each other; and a first surface is formed on the first surface. Intrinsic semiconductor layer; forming at least one polycrystalline silicon layer on the first intrinsic semiconductor layer, wherein the method for forming the at least one polycrystalline silicon layer includes forming a microcrystalline silicon seed layer, wherein the microcrystalline silicon seed layer Including a plurality of microcrystalline silicon seed crystals; forming an amorphous silicon layer on the microcrystalline silicon seed layer; and melting the amorphous silicon layer, and the molten amorphous silicon layer is Recrystallize on the crystalline silicon seed to form a polycrystalline silicon layer; form a second doped semiconductor layer on the at least one polycrystalline silicon layer; form a first doped semiconductor layer on the second surface; Forming a first transparent electrode film on the two doped semiconductor layer; forming a second transparent electrode film on the first doped semiconductor layer; forming a first electrode on the first transparent electrode film; and On the second transparent electrode film A second electrode. 如申請專利範圍第9項所述的異質接面太陽能電池的製造方法,其中所述至少一層多晶矽層包括第一摻雜型多晶矽層、第二摻雜型多晶矽層或其組合。The method for manufacturing a heterojunction solar cell according to item 9 of the scope of the patent application, wherein the at least one polycrystalline silicon layer includes a first doped polycrystalline silicon layer, a second doped polycrystalline silicon layer, or a combination thereof. 如申請專利範圍第9項所述的異質接面太陽能電池的製造方法,更包括於所述第一摻雜型基板與所述第一摻雜型半導體層之間形成第二本質型半導體層。The method for manufacturing a heterojunction solar cell according to item 9 of the scope of the patent application, further comprising forming a second intrinsic semiconductor layer between the first doped substrate and the first doped semiconductor layer.
TW106142095A 2017-12-01 2017-12-01 Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof TWI660075B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106142095A TWI660075B (en) 2017-12-01 2017-12-01 Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106142095A TWI660075B (en) 2017-12-01 2017-12-01 Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI660075B true TWI660075B (en) 2019-05-21
TW201925551A TW201925551A (en) 2019-07-01

Family

ID=67348189

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106142095A TWI660075B (en) 2017-12-01 2017-12-01 Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI660075B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1530716A (en) * 2003-03-14 2004-09-22 友达光电股份有限公司 Manufacture of low temperature polycrystal silicon film electric crystal LCD device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1530716A (en) * 2003-03-14 2004-09-22 友达光电股份有限公司 Manufacture of low temperature polycrystal silicon film electric crystal LCD device

Also Published As

Publication number Publication date
TW201925551A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
CN102640263B (en) Crystallization treatment in semiconductor application
Chen et al. Magnetron sputtered Sb2Se3-based thin films towards high performance quasi-homojunction thin film solar cells
TW201624742A (en) Improved front contact heterojunction process
TW201013950A (en) Solar cell module and method for fabricating the same
US20200220040A1 (en) Roll-to-roll metallization of solar cells
TW201603296A (en) Solar cell with trench-free emitter regions
TWI690099B (en) Method for manufacturing perovskite solar cell module and perovskite solar cell module
US20130000706A1 (en) Tandem solar cell with improved tunnel junction
US20100229912A1 (en) Photovoltaic device through lateral crystallization process and fabrication method thereof
US8329500B2 (en) Method of manufacturing photovoltaic device
Zaynabidinov et al. On the optical efficiency of silicon photoelectric converters of solar energy
TWI660075B (en) Method for manufacturing polysilicon layer, heterojunction solar cell and manufacturing method thereof
JPH04168769A (en) Manufacture of photovoltaic element
KR101047170B1 (en) Solar cell and manufacturing method
KR101065749B1 (en) Solar cell and method for fabricating the same
TWI488322B (en) Manufacturing method of thin film solar cells and thin film solar cells thereof
JP2012517706A (en) Method and apparatus for irradiating the surface of a photovoltaic material with laser energy
JP2009021525A (en) Manufacturing method of polycrystalline silicon thin film, polycrystalline silicon thin film substrate and polycrystalline silicon thin film type solar battery
Schneller et al. Overview of laser processing in solar cell fabrication
KR100965982B1 (en) Polycrystalline Silicon Solar Cell and Method for Fabricating the Same
KR101542209B1 (en) Solar cell and method for fabricating the same
JP2001068714A (en) Silicon thin film photoelectric conversion module and manufacture thereof
JPH0282655A (en) Manufacture of photovolatic device
EP4318604A1 (en) Thin film photovoltaic devices and method of manufacturing them
KR101037124B1 (en) Solar cell and method for fabricating the same