JPS6255917A - Recrystallization of semiconductor layer - Google Patents

Recrystallization of semiconductor layer

Info

Publication number
JPS6255917A
JPS6255917A JP19821585A JP19821585A JPS6255917A JP S6255917 A JPS6255917 A JP S6255917A JP 19821585 A JP19821585 A JP 19821585A JP 19821585 A JP19821585 A JP 19821585A JP S6255917 A JPS6255917 A JP S6255917A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
region
active layer
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19821585A
Other languages
Japanese (ja)
Inventor
Shigeru Kusunoki
茂 楠
Tadashi Nishimura
正 西村
Kazuyuki Sugahara
和之 須賀原
Yasuaki Inoue
靖朗 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19821585A priority Critical patent/JPS6255917A/en
Publication of JPS6255917A publication Critical patent/JPS6255917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To remove limitation on the element forming region by a method wherein the striped form of a reflection preventive film is made polygonal, and adjacent active regions of semiconductor are connected with each other so as to form a single crystalline region over a large area. CONSTITUTION:A substrate 1 and a semiconductor's active layer 3 where an element is to be made are separated with the insulation layer 2 made of an Si oxide film on a silicon substrate 1, and a reflection preventive layer 4 is formed on the active layer 3 with patterning. The active layer 3 is divided into two regions, with one of them being a semiconductor region whose ends are placed between the preventive films 4; and a connection region 7 where adjacent active region 6 is connected to. When one part of the preventive layer 4 is removed, laser light 5 is scanned lengthwise to obtain a single crystal with a large area by arranging adjoining active layers 6 along the same crystalline axis. Moreover, the active layer 3 is contacted with the substrate 1 to use the substrate 1 as a seed 8 for a crystal growth.

Description

【発明の詳細な説明】 C産業上の利用分野〕 この発明は、絶縁体上に堆積した多結晶または非晶質の
半4η体層を再結晶化する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for recrystallizing a polycrystalline or amorphous semi-4η layer deposited on an insulator.

〔従来の技術〕[Conventional technology]

半導体装置を高速化、高密度化するために、回路素子を
誘電体で分離して浮遊容量の少ない半導体集積回路を製
造する試みがなされており、その一方法として絶縁体上
に島状の半4体結晶を形成し、その半導体結晶中に回路
素子をfiffi成する方法がある。このような半導体
結晶を形成する方法として、絶縁体上に多結晶または非
晶質の半導体層を堆積し、その表面にレーナ゛光もしく
は電子線等のエネルギー線を照射することにより表面層
のみを加熱し、単結晶の半導体層を形成する方法がある
In order to increase the speed and density of semiconductor devices, attempts have been made to separate circuit elements with dielectrics and manufacture semiconductor integrated circuits with low stray capacitance. There is a method of forming a four-body crystal and forming circuit elements in the semiconductor crystal. As a method for forming such semiconductor crystals, a polycrystalline or amorphous semiconductor layer is deposited on an insulator, and only the surface layer is removed by irradiating the surface with energy beams such as laser light or electron beams. There is a method of heating to form a single crystal semiconductor layer.

第3図(al〜(elは従来の半導体装置の製造方法の
順次の工程を示す断面図および上面図である。まず、第
3図(alに示すように、P型(100)ノリコン基板
i11に、950°Cの酸化雰囲気中で1μmのSiO
□層(熱酸化膜)を絶縁層(2)として形成する。
FIG. 3(al) to (el are cross-sectional views and top views showing the sequential steps of the conventional semiconductor device manufacturing method. First, as shown in FIG. 3(al), a P-type (100) Noricon substrate i11 1 μm of SiO in an oxidizing atmosphere at 950°C.
A □ layer (thermal oxide film) is formed as an insulating layer (2).

これに通常の減圧CVD法で、厚さ5000人のポリシ
リコン層でなる半導体活性層(3)を堆積させる(第3
図fbl参照)。次に、第3図fclに示すように、薄
いシリコン窒化膜でなる反射防止膜(4)を減圧CVD
法により堆積させる。この反射防止膜(4)の厚みは4
00〜700人の間で設定するのがよい。続いて、第3
図(dlおよびfalに示すように、上記反射防止膜(
4)を幅3〜10μm、ピッチ10〜30μmのストラ
イプ状に残して残余部分を除去する。次に、このような
構成になる半導体装置にビーム径40μm程度のレーザ
光(5)を反射防止膜(4)のストライプに沿って走査
しながら照射すると(第3図(81参照)、反射防止膜
(4)の存在する領域の半導体活性層(3)には他の領
域の2倍程度のパワーが吸収され、反射防止膜(4)の
ない領域より高温となる。したがって、この状態でレー
ザ光(5)を走査すると、ビームが通りすぎた後、反射
防止膜(4)に挟まれた半導体活性層(3)の中央部で
早く冷却し、溶融から再結晶化状態が始まることになる
。すなわち、まず最も優勢な結晶成長方位である面をも
った再結晶粒が増大し、これを常に種とするような結晶
成長が第3図(Cりの矢印へで示すように中央から周辺
へ向かって起こるため、反射防止膜(4)に挟まれた半
導体活性領域(6)の全面が単結晶化することになる。
A semiconductor active layer (3) consisting of a polysilicon layer with a thickness of 5,000 wafers is deposited on this using the normal low pressure CVD method (third layer).
(see figure fbl). Next, as shown in FIG.
Deposit by method. The thickness of this anti-reflection film (4) is 4
It is recommended to set the number between 00 and 700 people. Next, the third
As shown in the figure (dl and fal), the above anti-reflection coating (
4) is left in a stripe shape with a width of 3 to 10 μm and a pitch of 10 to 30 μm, and the remaining portion is removed. Next, when the semiconductor device having such a configuration is irradiated with a laser beam (5) having a beam diameter of approximately 40 μm while scanning along the stripes of the anti-reflection film (4) (see Fig. 3 (see 81), the anti-reflection film is The semiconductor active layer (3) in the region where the film (4) is present absorbs about twice as much power as other regions, and becomes hotter than the region without the anti-reflection film (4).Therefore, in this state, the laser When the light (5) is scanned, after the beam has passed, the central part of the semiconductor active layer (3) sandwiched between the antireflection films (4) cools quickly, and the state of recrystallization from melting begins. That is, first, recrystallized grains with planes, which are the most dominant crystal growth direction, increase, and crystal growth using these as seeds continues from the center to the periphery, as shown by the arrow C in Figure 3. As a result, the entire surface of the semiconductor active region (6) sandwiched between the antireflection films (4) becomes monocrystalline.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の半導体層の再結晶化方法は以上のように行われて
いたので、反射防止膜(4)に挟まれた半導体活性領域
(6)内では単結晶化ができるものの、隣接する領域同
士の結晶軸方位が同しであるとは限らず、したがって一
般に反射防止膜(4)のストライプブの下にグレインバ
ウンダリが存在し、グレインバウンダリの存在する領域
に素子を形成すると、リーク電流、闇値電圧のばらつき
等の素子の電気特性の劣化につながるので、素子形成領
域が制限されるという問題点があった。
Conventional recrystallization methods for semiconductor layers are performed as described above, and although single crystallization is possible within the semiconductor active region (6) sandwiched between the antireflection films (4), The orientation of the crystal axes is not necessarily the same, therefore grain boundaries generally exist under the stripes of the anti-reflection film (4), and if a device is formed in the region where the grain boundaries exist, leakage current and dark value This leads to deterioration of the electrical characteristics of the element, such as voltage variations, and there is a problem that the area in which the element can be formed is restricted.

また、再結晶化されるべき半導体活性層(3)の一部を
シリコン基板(1)の単結晶シリコンに接触させ、それ
をソードとしてそこから結晶化を行う場合、反射防止膜
(4)に挾まれた隣接する半導体活性領域(6)同士が
独立な成長を続けるので、シリコン基板(1)の面方位
を長い距離保ったまま結晶成長するのは困難であるとい
う問題点があった。
In addition, when a part of the semiconductor active layer (3) to be recrystallized is brought into contact with the single crystal silicon of the silicon substrate (1) and crystallization is performed from there using it as a sword, the antireflection film (4) Since the sandwiched adjacent semiconductor active regions (6) continue to grow independently, there is a problem in that it is difficult to grow crystals while maintaining the plane orientation of the silicon substrate (1) over a long distance.

この発明は上記のような問題点を解消するためになされ
たもので、大面積に亘った単結晶領域を形成でき、素子
形成領域の制限を取り除くことのできる半導体層の再結
晶化方法を提供するものである。
This invention was made to solve the above-mentioned problems, and provides a method for recrystallizing a semiconductor layer that can form a single crystal region over a large area and eliminate restrictions on the device formation area. It is something to do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体層の再結晶化方法は、反射防止膜
の形状をストライプ状とはせず、多角形として、隣接す
る半導体活性領域を互いに連結させたものである。
In the method for recrystallizing a semiconductor layer according to the present invention, the antireflection film is not shaped like a stripe, but has a polygonal shape, and adjacent semiconductor active regions are connected to each other.

〔作用〕[Effect]

この発明における半導体層の再結晶化方法は、絶縁体上
に堆積した半導体活性層上に形成された反射防止膜のス
トライプ状パターンの一部を除去して、隣接する半導体
活性領域を連結させることにより、ある結晶成長の核よ
り生じた結晶成長と別の結晶成長の核より生じた結晶成
長が連結領域で相互に作用しあい、以後優勢な方の結晶
成長が両方の領域で進行することにより同一の結晶成長
核より生じた結晶成長が長い距離に亘って保たれる。
The recrystallization method of a semiconductor layer in the present invention includes removing a part of a striped pattern of an antireflection film formed on a semiconductor active layer deposited on an insulator to connect adjacent semiconductor active regions. As a result, crystal growth generated from one crystal growth nucleus and crystal growth generated from another crystal growth nucleus interact with each other in the connected region, and from then on, the dominant crystal growth progresses in both regions, resulting in the same growth. The crystal growth generated from the crystal growth nucleus is maintained over a long distance.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図falおよび(blはこの発明の一実施例による半導
体層の再結晶化方法を示す上面図および断面図である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
Figures fal and (bl) are a top view and a cross-sectional view showing a method for recrystallizing a semiconductor layer according to an embodiment of the present invention.

第1図(−1)お、上び(b)において、+11はシリ
コン基+反、(2)はシリコン基板(1)と素子を作製
する半導体活性層(3)とを分離するシリコン酸化膜で
なる絶縁層、(3)は再結晶化されるべき半導体活性層
、(4)はシリコン窒化1模でなる反射防止膜である。
In Figure 1 (-1) and (b), +11 is a silicon base + anti, and (2) is a silicon oxide film separating the silicon substrate (1) and the semiconductor active layer (3) for manufacturing the device. (3) is a semiconductor active layer to be recrystallized, and (4) is an antireflection film made of silicon nitride.

本実施例の半導体層の再結晶化方法では、第3図(al
〜(elに示した従来の方法と同様な工程を経てシリコ
ン窒化膜でなる反射防止膜のパターニングを行う。この
パターニングにおいて、従来の方法ではストライプ状に
反射防止膜(4)のパターニングを行い熱分布の制御を
行っていたが、本実施例の方法では、ストライプ状の反
射防止ill +41の一部を除去し、隣接する領域同
士を連結させる。
In the method of recrystallizing a semiconductor layer according to this embodiment, FIG.
~ (An anti-reflective film made of a silicon nitride film is patterned through the same steps as the conventional method shown in el. In this patterning, in the conventional method, the anti-reflective film (4) is patterned in a stripe shape and heated. The distribution was controlled, but in the method of this embodiment, a part of the striped anti-reflection ill +41 is removed and adjacent regions are connected to each other.

このように形成した試ネ4にレーザ光(5)を走査しな
がら照射して再結晶化を行った後、反射防止膜(4)を
除去し、通常のMO3作製工程に従い、SOl / M
 OS半導体装置を作製する。
After recrystallizing the sample 4 thus formed by scanning it with a laser beam (5), the anti-reflection film (4) was removed and SOI/M was formed according to the usual MO3 production process.
An OS semiconductor device is manufactured.

次に動作について説明する。以上のように構成された半
導体装直にレーザ光(5)を走査しながら照射する。こ
の発明による半導体活性層(3)は2つの領域よりなる
。1つは両端を反射防1F膜(4)に挟まれた半導体活
性領域(6)、もう1つは隣接する半導体活性領域(6
)を連結する連結領域(7)である。両端を反射防止膜
(4)で挟まれた半導体活性領域(6)では反射防止膜
(4)の存在する領域の半導体活性層(3)には他の領
域の2倍程度のパワーが吸収され、反射防止膜(4)の
ない領域より高温となる。したがって、この状態で縦方
向に沿ってレーザ光(5)を走査すると、ビームが通り
すぎた後、反射防止膜(4)で挟まれた半導体活性領域
(6)の中央部分で早く冷却し、溶融から再結晶化状態
が始まることになる。この場合、まず最も優勢な結晶成
長方位である面をもった111結晶t〜か1曽太し1、
ニボしを常に種とするような結晶成lζが第1図の矢印
△ご承ずように中央から周辺−・向かって起こるため、
反!Ij防止膜(4)で挟まれた半・!1体部層1領域
(6)の全面が中、結晶化することになる。隣接する半
導体活性領域(6)を連結する連f111領域(7)で
は、双方の十ノ9体活性領域(6)が同時に溶融してい
るため、冷却再結晶化が起こる際に2つの領域(6)は
同し7成長核より結晶成長が々(1まる。
Next, the operation will be explained. A laser beam (5) is irradiated directly onto the semiconductor device configured as described above while scanning. The semiconductor active layer (3) according to the invention consists of two regions. One is a semiconductor active region (6) sandwiched between anti-reflective 1F films (4) at both ends, and the other is an adjacent semiconductor active region (6).
) is a connection region (7) that connects the two. In the semiconductor active region (6) sandwiched between the anti-reflective films (4) at both ends, the semiconductor active layer (3) in the region where the anti-reflective film (4) exists absorbs about twice as much power as in other regions. , the temperature becomes higher than the area without the antireflection film (4). Therefore, when the laser beam (5) is scanned along the vertical direction in this state, after the beam passes, it is quickly cooled down in the central part of the semiconductor active region (6) sandwiched between the anti-reflection films (4). A recrystallization state begins from melting. In this case, first, a 111 crystal with a plane which is the most dominant crystal growth direction t~ or 1 so thick 1,
Since crystal growth lζ, which always uses niboshi as seeds, occurs from the center to the periphery as shown by the arrow △ in Figure 1,
Against! Half sandwiched between Ij prevention film (4)! The entire surface of the 1-body layer 1 region (6) becomes crystallized. In the continuous f111 region (7) that connects adjacent semiconductor active regions (6), both ten-nine active regions (6) are melted at the same time, so when cooling recrystallization occurs, the two regions ( 6) has more crystal growth than the same 7 growth nuclei (1 circle).

このようにして隣接する半導体活性領域(6)は同し結
晶軸をイfするため、ブレ1′ンハウンダリの存在しな
い大面積のji’+結晶化が行える。さらに、連結領域
(7)でも反射防止膜(4)の幅およびピンチを他の部
分と揃えることにより、熱分布の制御も乱すことはなく
全面に亘り栄枯晶化が行える。
In this way, since the adjacent semiconductor active regions (6) have the same crystal axis, ji'+ crystallization can be performed over a large area without any blurring 1' boundary. Furthermore, by making the width and pinch of the antireflection film (4) in the connecting region (7) the same as in other parts, crystallization can be performed over the entire surface without disturbing the control of heat distribution.

なお、上記実施例では半導体活性層(3)全体が酸化絶
縁■り(2)の上に接し、結晶成長の種は多結晶ノリコ
ン中の最も優勢な結晶成長方位である面を持った再結晶
粒であったが、第2図に示すように再結晶化されるべき
半導体活性層(3)の一部をノリコン基板+1.1に接
触させ、シリコン基板(1)を結晶成長の種(8)とし
て使用することもでき、上記実施例と同様の効果を奏す
る。この場合、シリコン基板[11の面方位は、連結領
域(7)で常に隣接する半導体活性領域(6)で相互に
補正されながら長く成長さゼることかできる。
In the above embodiment, the entire semiconductor active layer (3) is in contact with the oxide insulating layer (2), and the seeds of crystal growth are recrystallized with a plane, which is the most dominant crystal growth direction in polycrystalline silicon. However, as shown in Figure 2, a part of the semiconductor active layer (3) to be recrystallized was brought into contact with the Noricon substrate +1. ), and the same effect as in the above embodiment can be obtained. In this case, the plane orientation of the silicon substrate [11] can be grown for a long time while always being mutually corrected in the adjacent semiconductor active regions (6) in the connection region (7).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば反射防止膜のス!、ラ
イブの少なくとも一部を隣接する領域と連結したので、
反射防止膜に挟まれた領域内で単結晶化するだけでなく
、全面に亘り単結晶化が行える半導体層の再結晶化方法
が得られるという効果がある。
As described above, according to the present invention, the anti-reflection film is , since we have connected at least part of the live with adjacent regions,
There is an effect that a method for recrystallizing a semiconductor layer can be obtained in which single crystallization can be performed not only in the region sandwiched between the antireflection films but also over the entire surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ia)、 fb)はこの発明の一実施例による半
導体活性層の再結晶化方法を示す断面図および上面図、
第2図はこの発明の他の実施例による半導体活性層の再
結晶化方法を示す断面図、第3図(a)〜telは従来
の半導体活性層の再結晶化方法を示す断面図および上面
図である。 (11ばシリコン基板、(2)は絶縁層、(3)は半導
体活性層、(4)は反射防止膜、(5)はレーザ光、(
6)は半導体層1す[9r1域、(7)は連結領域、(
8)は種。 なお、図中、同一符号は同一または相当部分を示す。
FIGS. 1a) and 1f) are a cross-sectional view and a top view showing a method for recrystallizing a semiconductor active layer according to an embodiment of the present invention,
FIG. 2 is a sectional view showing a method for recrystallizing a semiconductor active layer according to another embodiment of the present invention, and FIGS. It is a diagram. (11 is a silicon substrate, (2) is an insulating layer, (3) is a semiconductor active layer, (4) is an antireflection film, (5) is a laser beam, (
6) is the semiconductor layer 1 [9r1 region, (7) is the connection region, (
8) is a seed. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁体上に堆積した半導体層の半導体活性領域を
レーザ、電子線等のエネルギー線により溶融再結晶化す
る半導体層の再結晶化方法において、上記エネルギー線
の反射を抑え他の部分より多くのエネルギーを入射させ
る領域を選択的に形成する反射防止膜を上記半導体活性
領域を分割しないようにパターニングしたことを特徴と
する半導体層の再結晶化方法。
(1) In a semiconductor layer recrystallization method in which a semiconductor active region of a semiconductor layer deposited on an insulator is melted and recrystallized by energy rays such as a laser or an electron beam, the reflection of the energy rays is suppressed and the area is isolated from other parts. 1. A method for recrystallizing a semiconductor layer, comprising patterning an antireflection film that selectively forms regions into which a large amount of energy is incident so as not to divide the semiconductor active region.
(2)上記半導体活性領域に接し結晶成長の種となる部
分を備えたことを特徴とする特許請求の範囲第1項記載
の半導体層の再結晶化方法。
(2) The method for recrystallizing a semiconductor layer according to claim 1, further comprising a portion that is in contact with the semiconductor active region and serves as a seed for crystal growth.
(3)上記反射防止膜の形状が多角形であることを特徴
とする特許請求の範囲の第1項記載の半導体層の再結晶
化方法。
(3) The method for recrystallizing a semiconductor layer according to claim 1, wherein the antireflection film has a polygonal shape.
JP19821585A 1985-09-05 1985-09-05 Recrystallization of semiconductor layer Pending JPS6255917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19821585A JPS6255917A (en) 1985-09-05 1985-09-05 Recrystallization of semiconductor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19821585A JPS6255917A (en) 1985-09-05 1985-09-05 Recrystallization of semiconductor layer

Publications (1)

Publication Number Publication Date
JPS6255917A true JPS6255917A (en) 1987-03-11

Family

ID=16387404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19821585A Pending JPS6255917A (en) 1985-09-05 1985-09-05 Recrystallization of semiconductor layer

Country Status (1)

Country Link
JP (1) JPS6255917A (en)

Similar Documents

Publication Publication Date Title
JPH06112121A (en) Semiconductor device and manufacture thereof
US4661167A (en) Method for manufacturing a monocrystalline semiconductor device
KR100271813B1 (en) A method of crystallizing a silicon layer, a tft and a method thereof using the same
JPS62132311A (en) Recrystallizing method for conductor film
JPH0450746B2 (en)
US5431126A (en) Method of forming semiconductor crystal and semiconductor device
JPS5893220A (en) Preparation of semiconductor single crystal film
US4678538A (en) Process for the production of an insulating support on an oriented monocrystalline silicon film with localized defects
JPH027415A (en) Formation of soi thin film
JPS6255917A (en) Recrystallization of semiconductor layer
JPS6236809A (en) Single crystal growth
JPS5821854A (en) Semiconductor circuit element
JPS59121823A (en) Fabrication of single crystal silicon film
JPH0523492B2 (en)
JPS6379953A (en) Production of thin single crystal film
JPS62219510A (en) Formation of single crystal island region
JPH0396225A (en) Manufacture of semiconductor substrate
JPH01140677A (en) Manufacture of thin film solar cell
JPH0461491B2 (en)
JPH03250620A (en) Manufacture of semiconductor device
JPS60106124A (en) Formation of semiconductor thin film on insulating substrate
JPH0797555B2 (en) Method for manufacturing SOI substrate
JPH01239093A (en) Method for crystal growth
JPS6362893B2 (en)
JPH0799734B2 (en) Single crystal growth method