JP7517805B2 - 光学ガラス、プリフォーム及び光学素子 - Google Patents

光学ガラス、プリフォーム及び光学素子 Download PDF

Info

Publication number
JP7517805B2
JP7517805B2 JP2019202690A JP2019202690A JP7517805B2 JP 7517805 B2 JP7517805 B2 JP 7517805B2 JP 2019202690 A JP2019202690 A JP 2019202690A JP 2019202690 A JP2019202690 A JP 2019202690A JP 7517805 B2 JP7517805 B2 JP 7517805B2
Authority
JP
Japan
Prior art keywords
component
less
glass
optical
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019202690A
Other languages
English (en)
Other versions
JP2021075417A (ja
Inventor
健介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2019202690A priority Critical patent/JP7517805B2/ja
Priority to PCT/JP2020/035528 priority patent/WO2021090589A1/ja
Priority to CN202080075029.XA priority patent/CN114599617A/zh
Priority to TW109138739A priority patent/TW202124310A/zh
Publication of JP2021075417A publication Critical patent/JP2021075417A/ja
Application granted granted Critical
Publication of JP7517805B2 publication Critical patent/JP7517805B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光学ガラス及び光学素子に関する。
デジタルカメラやビデオカメラ等の光学系は、その大小はあるが、収差と呼ばれるにじみを含んでいる。この収差は単色収差と色収差に分類されるが、特に色収差は、光学系に使用されるレンズの材料特性に強く依存している。
一般に色収差は、低分散の凸レンズと高分散の凹レンズとを組み合わせて補正されるが、この組み合わせでは赤色領域と緑色領域の収差の補正しかできず、青色領域の収差が残る。この除去しきれない青色領域の収差を二次スペクトルと呼ぶ。二次スペクトルを補正するには、青色領域のg線(435.835nm)の動向を加味した光学設計を行う必要がある。このとき、光学設計で着目される光学特性の指標として、部分分散比(θg,F)が用いられている。上述の低分散のレンズと高分散のレンズとを組み合わせた光学系では、低分散側のレンズに部分分散比(θg,F)の大きい光学材料を用い、高分散側のレンズに部分分散比(θg,F)の小さい光学材料を用いることで、二次スペクトルが良好に補正される。
近年光学設計において、部分分散比(θg,F)の小さいガラスのニーズが高まっている。
部分分散比(θg,F)は、下式(1)により示される。
θg,F=(n-n)/(n-n)・・・・・・(1)
光学ガラスには、短波長域の部分分散性を表す部分分散比(θg,F)とアッベ数(ν)との間に、およそ直線的な関係がある。この関係を表す直線は、部分分散比(θg,F)を縦軸に、アッベ数(ν)を横軸に採用した直交座標上で、NSL7とPBM2の部分分散比及びアッベ数をプロットした2点を結ぶ直線で表され、ノーマルラインと呼ばれている。ノーマルラインの基準となるノーマルガラスは光学ガラスメーカー毎によっても異なるが、各社ともほぼ同等の傾きと切片で定義している(NSL7とPBM2は株式会社オハラ社製の光学ガラスであり、PBM2のアッベ数(ν)は36.3、部分分散比(θg,F)は0.5828、NSL7のアッベ数(ν)は60.5、部分分散比(θg,F)は0.5436である。)。
光学ガラスから光学素子を作製する方法としては、例えば、光学ガラスから形成されたゴブ又はガラスブロックに対して研削及び研磨を行って光学素子の形状を得る方法、光学ガラスから形成されたゴブ又はガラスブロックを再加熱して成形(リヒートプレス成形)して得られたガラス成形体を研削及び研磨する方法、及び、ゴブ又はガラスブロックから得られたプリフォーム材を超精密加工された金型で成形(精密モールドプレス成形)して光学素子の形状を得る方法が知られている。いずれの方法であっても、熔融したガラス原料からゴブ又はガラスブロックを形成する際に、安定なガラスが得られることが求められる。ここで、得られるゴブ又はガラスブロックを構成するガラスの失透に対する安定性(耐失透性)が低下してガラスの内部に結晶が発生した場合、もはや光学素子として好適なガラスを得ることができない。
特開2006-248897号公報 特開2012-240909号公報
特許文献1のガラスは、小さい部分分散比(θg,F)のガラスを得ることが困難であり、また失透性が悪化しやすい。
特許文献2のガラスは、部分分散比(θg,F)を小さくするという課題は共通しているものの、Ta成分を必須成分として含有しているため、製造コストが高いうえに、熔融性が悪いため、成形性が良好ではない。
本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは部分分散比(θg,F)が所望の範囲内にありながら、耐失透性が高く、リヒートプレス成形性が良好な光学ガラスを得ることにある。
より具体的には、部分分散比(θg,F)がアッベ数(ν)との間で、(-0.00162×ν+0.624≦(θg,F)≦(-0.00162×ν+0.654)を満たし、かつ液相温度が1150℃以下であり、リヒートプレス成形性が良好な光学ガラスを得ることにある。
本発明者は、上記課題を解決するために鋭意試験研究を重ねた結果、SiO成分及び、Nb成分を含有するガラスにおいて、Ln成分及びLiO成分の含有率の関係を調整することにより、低い部分分散比、耐失透性が高く、並びに良好なリヒートプレス特性を両立し得る光学ガラスを製造し得ることを見出し、本発明を完成するに至った。
(1)酸化物換算組成の質量%で、
SiO成分を10.0~35.0%
Nb成分を10.0~40.0%
ZrO成分を1.0~15.0%、
LiO成分を1.0~15.0%
Ln成分(式中、LnはLa、Y、Gd、Ybからなる群より選択される1種以上)を1.0~20.0% 含有し、
質量比(LiO+La)/SiOが0.35以上であり、
質量比LiO/(LiO+NaO+KO)が0.50以上であり、
部分分散比(θg,F)がアッベ数(ν)との間で、(-0.00162×ν+0.624)≦(θg,F)≦(-0.00162×ν+0.654)の関係を満たす光学ガラス。
(2)酸化物換算組成の質量%で、
成分 0~20.0%、
La成分 0~20.0%
CaO成分 0~20.0%、
SrO成分 0~20.0%、
BaO成分 0~20.0%、
NaO成分 0~10.0%、
含有する(1)に記載の光学ガラス。
(3)SiO成分をB成分より多く含有し、
質量比(ZnO+TiO+P)/(ZrO+La+LiO)が0.15未満であり、
質量和BaO+CaO+SrOが5.0~20.0%である、
(1)又は(2)いずれかに記載の光学ガラス。
(4)屈折率(n)が1.70000~1.80000であり、アッベ数(ν)が30.00~40.00である(1)から(3)に記載の光学ガラス。
(5)液相温度が1150℃以下の(1)から(4)に記載の光学ガラス。
(6)(1)から(5)のいずれか記載の光学ガラスからなる光学素子。
(7)(1)から(5)のいずれか記載の光学ガラスからなる研磨加工用及び/又は精密プレス成形用のプリフォーム。
(8)(6)又は(7)のいずれか記載の光学素子を備える光学機器。
本発明によれば、低い部分分散比(θg,F)を有し、液相温度が低く、且つリヒートプレス成形性が良好な光学ガラスを得ることができる。
本願の実施例のガラスについての部分分散比(θg,F)とアッベ数(ν )の関係を示す図である。
本発明の光学ガラスの実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施できる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。
[ガラス成分]
本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中で特に断りがない場合、各成分の含有量は、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
<必須成分、任意成分について>
SiO成分は、安定なガラス形成を促し、光学ガラスとして好ましくない失透(結晶物の発生)を低減する必須成分である。
特に、SiO成分の含有量を10.0%以上にすることで、部分分散比を大幅に高めることなく、耐失透性に優れたガラスを得られる。また、液相温度を低減することができる。従って、SiO成分の含有量は、好ましくは10.0%以上、より好ましくは13.0%以上、さらに好ましくは15.0%以上、さらに好ましくは18.0%以上、最も好ましくは20.0%以上を下限とする。
他方で、SiO成分の含有量を35.0%以下にすることで、部分分散比の上昇を抑えられる。従って、SiO成分の含有量は、好ましくは35.0%以下、より好ましくは33.0%以下、最も好ましくは31.0%以下を上限とする。
Nb成分は、屈折率を高め、アッベ数を低くできる必須成分である。
特に、Nb成分の含有量を10.0%以上にすることで、屈折率を高めることができる。従って、Nb成分の含有量は、好ましくは10.0%以上、より好ましくは12.0%以上、さらに好ましくは15.0%以上、さらに好ましくは20.0%以上、最も好ましくは23.0%以上を下限とする。
他方で、Nb成分の含有量を40.0%以下にすることで、熱的安定性が得られ、ガラスの材料コストを低減できる。さらに、ガラスの失透を低減させることができる。従って、Nb成分の含有量は、好ましくは40.0%以下、より好ましくは38.0%以下、さらに好ましくは36.0%以下、最も好ましくは34.0%以下を上限とする。
ZrO成分は、ガラスの屈折率及びアッベ数を高め、部分分散比を小さくできる必須成分である。
特に、ZrO成分の含有量を1.0%以上にすることで、部分分散比を下げつつ、安定したガラスを得ることができる。従って、ZrO成分の含有量は、好ましくは1.0%以上、より好ましくは2.0%以上、さらに好ましくは3.0%以上、さらに好ましくは5.0%以上、最も好ましくは6.0%以上を下限としてもよい。
他方で、ZrO成分の含有量を15.0%以下にすることで、失透を低減でき、且つ、より均質なガラスを得易くできる。従って、ZrO成分の含有量は、好ましくは15.0%以下、より好ましくは12.0%以下、より好ましくは11.0%以下、さらに好ましくは10.0%以下、最も好ましくは9.0%以下を上限とする。
LiO成分は、他のアルカリ金属と異なり、部分分散比を小さくできる必須成分である。
特に、LiO成分の含有量を1.0%以上にすることで、ガラスの熔融性を上げつつ、部分分散比を小さくできる。従って、LiO成分の含有量は、好ましくは1.0%以上、より好ましくは1.5%以上、さらに好ましくは2.0%以上、最も好ましくは2.5%以上を下限としてもよい。
他方で、LiO成分の含有量を15.0%以下にすることで、且つ過剰な含有による失透を低減でき、リヒートプレスの失透性も低減できる。
従って、LiO成分の含有量は、好ましくは15.0%以下、より好ましくは12.0%以下、さらに好ましくは10.0%以下、さらに好ましくは9.0%以下、最も好ましくは8.0%以下を上限とする。
成分は、安定なガラス形成を促し、また液相温度を下げることができ、耐失透性を高められ、且つガラス原料の熔解性を高められる任意成分である。
特に、B成分の含有量を0%以上にすることで、液相温度の上昇を抑えることができる。従って、B成分の含有量は、好ましくは0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.2%以上、最も好ましくは0.3%以上を下限としてもよい。
他方で、B成分の含有量を20.0%以下にすることで、屈折率の低下を抑えられ、且つ部分分散比の上昇を抑えられる。従って、B成分の含有量は、好ましくは20.0%以下、より好ましくは18.0%以下、より好ましくは16.0%以下、より好ましくは14.0%以下、さらに好ましくは12.0%以下、最も好ましくは11.0%以下を上限とする。
SiO成分は、B成分より多く含有していることが好ましい。B成分がSiO成分より多いと、部分分散比が上昇してしまうため、SiO成分をB成分より多く含有することによって、ガラスを安定化させながら部分分散比を下げることができる。
La成分は、失透を低減させながら、部分分散比を小さくできる成分であり、含有させることで失透しやすくなる他の希土類とは異なった効果を奏する。
特に、La成分の含有量を0%以上にすることで、屈折率を高め、本発明の範囲の成分内で調整することで異常分散性を小さくすることができる。従って、La成分の含有量は、好ましくは0%以上、より好ましくは1.0%以上、より好ましくは2.0%以上、さらに好ましくは3.0%以上、さらに好ましくは4.0%以上、最も好ましくは5.0%以上を下限とする。
他方で、La成分の含有量を20.0%以下にすることで、アッベ数の上昇を抑えられ、失透を低減でき、且つ着色を低減できる。従って、La成分の含有量は、好ましくは20.0%以下、より好ましくは19.0%以下、さらに好ましくは17.0%以下、最も好ましくは16.0%以下を上限とする。
Gd成分、Y成分及びYb成分は、少なくとも0%超いずれかを含有することで、屈折率を高め、且つ部分分散比を小さくできる任意成分である。
一方で、Gd成分、Y成分及びYb成分は、多量に含有すると、液相温度が下がり、ガラスを失透させてしまう。
特に、Gd成分、Y成分及びYb成分のそれぞれの含有量を10.0%以下にすることで、失透を低減でき、且つ着色を低減できる。従って、Gd成分、Y成分及びYb成分のそれぞれの含有量は、好ましくは10.0%以下、より好ましくは8.0%以下、さらに好ましくは5.0%以下、最も好ましくは3.0%以下を上限とする。
NaO成分及びKO成分は、0%超含有する場合に、ガラス原料の熔融性を高められ、着色を低減する任意成分である。
一方で、NaO成分及びKO成分は、多量に含有すると、ガラスの安定性が悪くなり、耐失透性を下げてしまう。
他方で、NaO成分及びKO成分の含有量を10.0%以下にすることで、失透を低減できる。従って、NaO成分及びKO成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%以下、さらに好ましくは7.0%以下、さらに好ましくは6.0%以下、最も好ましくは5.0%以下を上限とする。
MgO成分は、熔融性を改善し、液相温度を下げることができる任意成分であるが、多量に含有することで、ガラスが失透してしまう。
他方で、MgO成分の含有量を10.0%以下にすることで、失透を低減できる。従って、MgO成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%以下、さらに好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは2.0%を上限とする。
CaO成分は、ガラスの安定性を向上することができる任意成分である。
特に、CaO成分の含有量は、0%以上にすることで熔融性を高めることができる。従って、CaO成分の含有量は、好ましくは0%以上、より好ましくは0.1%以上、さらに好ましくは0.5%以上、さらに好ましくは1.0%以上、最も好ましくは2.0%以上を下限とする。
他方で、CaO成分の含有量を20.0%以下にすることで、プレス成形性が良好となり、且つ部分分散比の上昇を抑えられる。従って、CaO成分の含有量は、好ましくは20.0%以下、より好ましくは17.0%以下、さらに好ましくは14.0%以下、さらに好ましくは12.0%以下、最も好ましくは10.0%以下を上限とする。
SrO成分は、ガラスの安定性を向上することができる任意成分である。
他方で、SrO成分の含有量を20.0%以下にすることで、プレス成形性が良好となり、且つ部分分散比の上昇を抑えられる。従って、SrO成分の含有量は、好ましくは20.0%以下、より好ましくは17.0%以下、さらに好ましくは14.0%以下、さらに好ましくは12.0%以下、最も好ましくは10.0%以下を上限とする。
BaO成分は、ガラスの安定性を向上することができる任意成分である。
他方で、BaO成分の含有量を20.0%以下にすることで、プレス成形性が良好となり、且つ部分分散比の上昇を抑えられる。従って、BaO成分の含有量は、好ましくは20.0%以下、より好ましくは17.0%以下、さらに好ましくは14.0%以下、さらに好ましくは12.0%以下、最も好ましくは10.0%以下を上限とする。
TiO成分は、屈折率を高め、アッベ数を低くする任意成分である。一方で、TiO成分は、多量に含有すると部分分散比が大きくなる。
特に、TiO成分の含有量を10.0%以下にすることで、部分分散比の上昇を抑えつつ、アッベ数を低くすることができる。従って、TiO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは2.0%以下を上限とする。
ZnO成分は、安価であり且つ高分散側へ調整することができる任意成分である。一方で、ZnO成分は、多量に含有すると部分分散比が大きくなる。
特に、ZnO成分の含有量を10.0%以下にすることで、失透や着色を低減することができる。従って、ZnO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%未満、最も好ましくは1.0%以下を上限とする。
Ta成分は、屈折率を高め、アッベ数及び部分分散比を下げ、且つ耐失透性を高められる任意成分である。
特に、Ta成分の含有量を10.0%以下にすることで、希少鉱物資源であるTa成分の使用量が減り、且つガラスがより低温で熔解し易くなるため、ガラスの生産コストを低減できる。また、これによりTa成分の過剰な含有によるガラスの失透を低減できる。従って、Ta成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。特に、ガラスの材料コストを低減させる観点では、Ta成分を含有しなくてもよい。
WO成分は、屈折率を高めてアッベ数を低くし且つガラス原料の熔解性を高められる任意成分である。WO成分の含有量を10.0%以下にすることで、ガラスの部分分散比を上昇し難くでき、且つ、ガラスの着色を低減して内部透過率を高められる。従って、WO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。
成分は、ガラスの安定性を高められる任意成分である。
他方で、P成分の含有量を10.0%以下にすることで、P成分の過剰な含有による部分分散比の上昇を低減できる。従って、P成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、さらに好ましくは2.0%未満、最も好ましくは1.0%以下を上限とする。
GeO成分は、屈折率を高め、且つ失透を低減できる任意成分である。GeO成分の含有量を10.0%以下にすることで、高価なGeO成分の使用量が低減されるため、ガラスの材料コストを低減できる。従って、GeO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。
Al成分は、屈折率を高め、且つ耐失透性を向上できる任意成分である。
他方で、Al成分の含有量を10.0%以下にすることで、Al成分の過剰な含有による失透を低減できる。従って、Al成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。
Ga成分は、屈折率を高め、且つ耐失透性を向上できる任意成分である。
他方で、Ga成分の含有量を10.0%以下にすることで、Ga成分の過剰な含有による失透を低減できる。従って、Ga成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。
Bi成分は、屈折率を高めてアッベ数を低くでき、且つガラス転移点を低くできる任意成分である。Bi成分の含有量を10.0%以下にすることで、部分分散比を上昇し難くでき、且つ、ガラスの着色を低減して内部透過率を高めることができる。従って、Bi成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。
TeO成分は、屈折率を高め、部分分散比を低くでき、且つガラス転移点を低くできる任意成分である。TeO成分の含有量を10.0%以下にすることで、ガラスの着色を低減して内部透過率を高めることができる。また、高価なTeO成分の使用を低減することで、より材料コストの安いガラスを得られる。従って、TeO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%、最も好ましくは1.0%以下を上限とする。特に、ガラスの材料コストを低減させる観点では、TeO成分を含有しなくてもよい。
SnOは、熔解したガラスを清澄(脱泡)でき、且つガラスの可視光透過率を高められる任意成分である。SnOの含有量を1.0%以下にすることで、熔融ガラスの還元によるガラスの着色や、ガラスの失透を生じ難くすることができる。また、SnOと熔解設備(特にPt等の貴金属)との合金化が低減されるため、熔解設備の長寿命化を図ることができる。従って、SnOの含有量は、好ましくは1.0%以下、より好ましくは0.5%以下、さらに好ましくは0.1%以下を上限とする。
Sb成分は、ガラスの脱泡を促進し、ガラスを清澄する成分であり、本発明の光学ガラス中の任意成分である。Sb成分は、ガラス全質量に対する含有量を1.0%以下にすることで、ガラス熔融時における過度の発泡を生じ難くすることができ、Sb成分が熔解設備(特にPt等の貴金属)と合金化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するSb成分の含有量は、好ましくは1.0%以下、より好ましくは0.5%以下、さらに好ましくは0.3%以下、最も好ましくは0.1%以下を上限とする。
なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤や脱泡剤、或いはそれらの組み合わせを用いることができる。
Ln成分(式中、LnはLa、Y、Gd、Ybからなる群より選択される1種以上)は、含有量の和(質量和)が、1.0%以上含有する場合に、屈折率を高めながら、部分分散比を小さくすることができる。従って、Ln成分の和は、好ましくは1.0%以上、より好ましくは3.0%以上、さらに好ましくは5.0%以上、最も好ましくは7.0%以上を下限とする。
他方で、Ln成分の含有量の和(質量和)は、20.0%以下とすることで、過剰な含有による失透を低減できる。従って、好ましくは20.0%以下、より好ましくは18.0%以下、さらに好ましくは17.0%以下、最も好ましくは16.0%以下を上限とする。
RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)は、含有量の和(質量和)が、1.0%以上含有する場合に、ガラスの安定性を向上することができる。従って、RnO成分の和は、好ましくは1.0%以上、より好ましくは2.5%以上、さらに好ましくは3.0%以上、最も好ましくは3.5%以上を下限とする。
他方で、RnO成分の含有量の和(質量和)は、15.0%以下とすることで、屈折率の低下を抑えられ、且つ過剰な含有による失透を低減できる。従って、好ましくは15.0%以下、より好ましくは14.0%以下、さらに好ましくは13.0%以下、最も好ましくは12.0%以下を上限とする。
RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の和は、5.0%以上とする場合に、低温熔融性を向上させることができる。従って、RO成分の含有量の和は、好ましくは5.0%、より好ましくは5.3%以上、さらに好ましくは5.8%以上、最も好ましくは6.0%以上を下限とする。
一方で、RO成分の含有量の和は、過剰な含有による耐失透性の低下を抑えられるために、20.0%以下が好ましい。従って、RO成分の質量和は、好ましくは20.0%以下、より好ましくは19.0%以下、さらに好ましくは18.0%以下、最も好ましくは16.0%以下を上限とする。
質量和BaO+CaO+SrOは、5.0%以上とする場合に、低温熔融性を向上させることができる。従って、質量和BaO+CaO+SrOは、好ましくは5.0%以上、より好ましくは5.3%以上、さらに好ましくは5.8%以上、最も好ましくは6.0%以上を下限とする。
一方で、質量和BaO+CaO+SrOは、過剰に含有させると、屈折率や分散を大きくしてしまい、所望の光学特性を得ることが難しくなり、且つ失透性を悪化させてしまうため、20.0%以下が好ましい。従って、質量和BaO+CaO+SrOは、好ましくは20.0%以下、より好ましくは19.0%以下、さらに好ましくは18.0%以下、最も好ましくは16.0%以下を上限とする。
質量比(LiO+La)/SiOは、0.35以上とする場合に、ガラスを安定させつつ、部分分散比を下げることができる。従って、質量比(LiO+La)/SiOは、好ましくは0.35以上、より好ましくは0.36以上、さらに好ましくは0.38以上、最も好ましくは0.40以上を下限とする。
一方で、質量比(LiO+La)/SiOは、液相温度の上昇を抑えるためには、1.00以下が好ましい。従って、質量比(LiO+La)/SiOは、好ましくは1.00以下、より好ましくは0.90以下、さらに好ましくは0.88以下、最も好ましくは0.85以下を上限とする。
質量比LiO/(LiO+NaO+KO)は、0.50以上とする場合に、部分分散比の低下に作用するLiO成分の効果を最も効果的に発揮し、熔融性を上昇させながら、失透を抑えることができる。従って、質量比LiO/(LiO+NaO+KO)は、好ましくは0.50以上、より好ましくは0.52以上、さらに好ましくは0.54以上、最も好ましくは0.55以上を下限とする。
質量比(SiO+B+Ln)/RnOは、3.50以上とする場合に、失透を抑制しつつ、液相温度を下げることができる。従って、質量比(SiO+B+Ln)/RnOは、好ましくは3.50以上、より好ましくは3.55以上、さらに好ましくは3.58超、最も好ましくは3.60以上を下限とする。
一方で、質量比(SiO+B+Ln)/RnOは、12.0以下とする場合に、アッベ数(ν)を維持することができる。従って、質量比(SiO+B+Ln)/RnOは、好ましくは12.0以下、より好ましくは11.80以下、さらに好ましくは11.50以下、最も好ましくは11.20以下を上限とする。
質量比(ZnO+TiO+P)/(ZrO+La+LiO)は、0.15未満とする場合に、ZnO成分、TiO成分及びP成分による部分分散比の上昇を抑えることができる。従って、質量比(ZnO+TiO+P)/(ZrO+La+LiO)は、好ましくは0.15未満、より好ましくは0.12以下、さらに好ましくは0.10以下、最も好ましくは0.08以下を上限とする。
<含有すべきでない成分について>
次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加できる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。
また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。
さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物質として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。
[製造方法]
本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝、石英坩堝又はアルミナ坩堝に投入して粗熔融した後、金坩堝、白金坩堝、白金合金坩堝又はイリジウム坩堝に入れて1000~1400℃の温度範囲で2~5時間熔融し、攪拌均質化して泡切れ等を行った後、950~1250℃の温度に下げてから仕上げ攪拌を行って脈理を除去し、金型に鋳込んで徐冷することにより作製される。
<物性>
本発明の光学ガラスは、所定の範囲の屈折率(n)とアッベ数(ν)を有する。
本発明の光学ガラスの屈折率(n)は、好ましくは1.70000以上、より好ましくは1.73000以上、さらに好ましくは1.75000以上を下限とする。この屈折率の上限は、好ましくは1.80000以下、より好ましくは1.79000以下を上限とする。
本発明の光学ガラスのアッベ数(ν)は、好ましくは30.00以上、より好ましくは32.00以上、さらに好ましくは33.00以上を下限とする。他方で、本発明の光学ガラスのアッベ数(ν)は、好ましくは40.00以下、より好ましくは38.00以下、さらに好ましくは37.00以下を上限とする。
このような屈折率及びアッベ数を有する本発明の光学ガラスは光学設計上有用であり、特に高い結像特性等を図りながらも、光学系の小型化を図ることができるため、光学設計の自由度を広げることができる。
本発明の光学ガラスは、低い部分分散比(θg,F)を有する。
より具体的には、本発明の光学ガラスの部分分散比(θg,F)は、下限は特に限定されないが、好ましくは0.560以上、より好ましくは0.565以上であってもよい。他方で、本発明の光学ガラスの部分分散比(θg,F)は、好ましくは0.600以下、より好ましくは0.595以下、さらに好ましくは0.593以下を上限とする。また、本発明の光学ガラスの部分分散比(θg,F)は、アッベ数(ν)との関係において、好ましくは(-0.00162×ν+0.624)≦(θg,F)≦(-0.00162×ν+0.654)の関係を満たす。
このように、本発明の光学ガラスでは、SiO成分及びNb成分を多く含有する従来公知のガラスよりも低い部分分散比(θg,F)を有する。そのため、この光学ガラスから形成される光学素子を、色収差の補正に好ましく用いることができる。
ここで、本発明の光学ガラスのアッベ数(ν)との関係における部分分散比(θg,F)は、下限は特に限定されないが、好ましくは(-0.00162×ν+0.624)以上、より好ましくは(-0.00162×ν+0.627)以上、さらに好ましくは(-0.00162×ν+0.630)以上であってもよい。他方で、本発明の光学ガラスのアッベ数(ν)との関係における部分分散比(θg,F)の上限は、好ましくは(-0.00162×ν+0.654)以下、より好ましくは(-0.00162×ν+0.651)以下、さらに好ましくは(-0.00162×ν+0.648)以下とする。
本発明の光学ガラスは、可視光透過率、特に可視光のうち短波長側の光の透過率が高く
、それにより着色が少ないことが好ましい。
特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分
光透過率80%を示す波長(λ80)は、好ましくは420nm以下、より好ましくは417nm以下、さらに好ましくは410nm以下を上限とする。
また、本発明の光学ガラスにおける、厚み10mmのサンプルで分光透過率5%を示す最も短い波長(λ)は、好ましくは345nm以下、より好ましくは343nm以下、さらに好ましくは342nm以下を上限とする。
これらにより、ガラスの吸収端が紫外領域の近傍になり、可視光に対するガラスの透明性が高められるため、この光学ガラスを、レンズ等の光を透過させる光学素子に好ましく用いることができる。
本発明の光学ガラスは、耐失透性が高いこと、より具体的には、低い液相温度を有することが好ましい。
すなわち、本発明の光学ガラスの液相温度は、好ましくは1150℃以下、より好ましくは1148℃以下、さらに好ましくは1145℃以下を上限とする。これにより、より低い温度で熔融ガラスを流出しても、作製されたガラスの結晶化が低減されるため、特に熔融状態からガラスを成形したときの失透を低減でき、ガラスを用いた光学素子の光学特性への影響を低減できる。また、ガラスの熔解温度を低くしてもガラスを成形できるため、ガラスの成形時に消費するエネルギーを抑えることで、ガラスの製造コストを低減できる。
[プリフォーム及び光学素子]
作製された光学ガラスから、例えばリヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製できる。すなわち、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、例えば研磨加工を行って作製したプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりできる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
このようにして作製されるガラス成形体は、様々な光学素子に有用であるが、その中でも特に、レンズやプリズム等の光学素子の用途に用いることが好ましい。これにより、光学素子が設けられる光学系の透過光における、色収差による色のにじみが低減される。そのため、この光学素子をカメラに用いた場合は撮影対象物をより正確に表現でき、この光学素子をプロジェクタに用いた場合は所望の映像をより高精彩に投影できる。
本発明の実施例(No.1~No.20)及び比較例Aの組成、並びに、屈折率(n)、アッベ数(ν)、部分分散比(θg,F)、液相温度、透過率λ及びλ80の結果を表1~表2に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例にのみ限定されるものではない。
実施例及び比較例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度の原料を選定し、表に示した各実施例及び比較例の組成の割合になるように秤量して均一に混合した後、石製坩堝(ガラスの熔融性によっては白金坩堝、アルミナ坩堝を用いても構わない)に投入し、ガラス組成の熔融難易度に応じて電気炉で1100~1400℃の温度範囲で0.5~5時間熔解した後、白金坩堝に移して攪拌均質化して泡切れ等を行った後、1000~1200℃に温度を下げて攪拌均質化してから金型に鋳込み、徐冷してガラスを作製した。
実施例及び比較例のガラスの屈折率(n)、アッベ数(ν)及び部分分散比(θg,F)は、JIS B 7071-2:2018に規定されるVブロック法に準じて測定した。ここで、屈折率(n)は、ヘリウムランプのd線(587.56nm)に対する測定値で示した。また、アッベ数(ν)は、ヘリウムランプのd線に対する屈折率(n)と、水素ランプのF線(486.13nm)に対する屈折率(n)、C線(656.27nm)に対する屈折率(n)の値を用いて、アッベ数(ν)=[(n-1)/(n-n)]の式から算出した。また、部分分散比(θg,F)は、Hgランプのg線に対する屈折率(n)と、水素ランプのF線(486.13nm)に対する屈折率(n)、C線(656.27nm)に対する屈折率(n)の値を用いて、部分分散比(θg,F)=(n-n)/(n-n)の式から算出した。これらの屈折率(n)、アッベ数(ν)及び部分分散比(θg,F)は、徐冷降温速度を-25℃/hrにして得られたガラスについて測定を行うことで求めた。
そして、測定により得られたアッベ数(ν)及び部分分散比(θg,F)の値から、関係式(θg,F)=-a×ν+bにおける、傾きaが0.00162のときの切片bを求めた。
実施例及び比較例のガラスの透過率は、日本光学硝子工業会規格JOGIS02-2003に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、分光透過率が80%及び5%を示す波長(λ80、λ)を求めた。
実施例及び比較例のガラスの液相温度は、粉砕したガラス試料を10mm間隔で白金板上に載せ、これを800℃から1200℃の温度傾斜のついた炉内で30分間保持した後で取り出し、冷却後にガラス試料中の結晶の有無を倍率80倍の顕微鏡にて観察することで測定した。この際、サンプルとして光学ガラスを直径2mm程度の粒状に粉砕した。
Figure 0007517805000001

Figure 0007517805000002
表に表されるように、本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.70000以上であるとともに、1.80000以下であり所望の範囲内であった。
また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が30.00以上であるとともに40.00以下であり所望の範囲内であった。
表に表されるように、本発明の実施例の光学ガラスは、アッベ数(ν)及び部分分散比(θg,F)の関係式 (-0.00162×ν+0.624)≦(θg,F)≦(-0.00162×ν+0.654)を満たしていた。
表に表されるように、本発明の実施例の光学ガラスは、液相温度が1150℃以下であった。また、本発明の実施例の光学ガラスは、液相温度が低いため、高いリヒートプレス成形性を有することが推察される。
表に表されるように、実施例の光学ガラスは、いずれも分光透過率80%を示す波長(λ80)が420nm以下であり、かつ分光透過率5%を示す波長(λ)が345nm以下だった。
比較例Aのガラスは、質量比(LiO+La)/SiOが0.35未満のため、激しく失透し、ガラス化しなかった。
以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。



Claims (6)

  1. 酸化物換算組成の質量%で、
    SiO2成分を10.0~35.0%、
    Nb25成分を10.0~40.0%、
    ZrO2成分を1.0~15.0%、
    Li2O成分を1.0~15.0%、
    WO3成分を0~5.0%、
    Ln23成分(式中、LnはLa、Y、Gd、Ybからなる群より選択される1種以上)を1.0~20.0%、
    含有し、
    SiO 2 成分をB 2 3 成分より多く含有し、
    質量和BaO+CaO+SrOが5.0~20.0%、
    質量比(Li2O+La23)/SiO2が0.53以上、
    質量比Li2O/(Li2O+Na2O+K2O)が0.50以上、
    質量比(SiO2+B23+Ln23)/Rn2Oが3.58超12.0以下(式中、RnはLi、Na、Kからなる群より選択される1種以上)、
    質量比(ZnO+TiO2+P25)/(ZrO2+La23Li 2 )が0.12以下、
    であり、
    屈折率(n )が1.70000~1.80000であり、アッベ数(ν )が30.00~40.00であり、
    部分分散比(θg,F)がアッベ数(ν)との間で、(-0.00162×ν+0.624≦(θg,F)≦(-0.00162×ν+0.654)の関係を満たす光学ガラス。
  2. 酸化物換算組成の質量%で、
    23成分 0~20.0%、
    La23成分 0~20.0%、
    CaO成分 0~20.0%、
    SrO成分 0~20.0%、
    BaO成分 0~20.0%、
    Na2O成分 0~10.0%、
    含有する請求項1に記載の光学ガラス。
  3. 液相温度が1150℃以下である請求項1または2に記載の光学ガラス。
  4. 請求項1から3のいずれかに記載の光学ガラスからなる光学素子。
  5. 請求項1から3のいずれかに記載の光学ガラスからなる研磨加工用及び/又は精密プレス成形用のプリフォーム。
  6. 請求項に記載の光学素子を備える光学機器。
JP2019202690A 2019-11-07 2019-11-07 光学ガラス、プリフォーム及び光学素子 Active JP7517805B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019202690A JP7517805B2 (ja) 2019-11-07 光学ガラス、プリフォーム及び光学素子
PCT/JP2020/035528 WO2021090589A1 (ja) 2019-11-07 2020-09-18 光学ガラス、プリフォーム及び光学素子
CN202080075029.XA CN114599617A (zh) 2019-11-07 2020-09-18 光学玻璃、预成型体以及光学元件
TW109138739A TW202124310A (zh) 2019-11-07 2020-11-06 光學玻璃、預形體以及光學元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019202690A JP7517805B2 (ja) 2019-11-07 光学ガラス、プリフォーム及び光学素子

Publications (2)

Publication Number Publication Date
JP2021075417A JP2021075417A (ja) 2021-05-20
JP7517805B2 true JP7517805B2 (ja) 2024-07-17

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016830A (ja) 1998-04-30 2000-01-18 Hoya Corp 光学ガラスおよび光学製品
JP2014080317A (ja) 2012-10-16 2014-05-08 Ohara Inc 光学ガラス、プリフォーム及び光学素子
CN104876440A (zh) 2015-05-13 2015-09-02 湖北新华光信息材料有限公司 光学玻璃
JP2017007933A (ja) 2015-06-23 2017-01-12 成都光明光▲電▼股▲分▼有限公司 光学ガラス及び光学素子
WO2018051754A1 (ja) 2016-09-14 2018-03-22 旭硝子株式会社 強化レンズおよび強化レンズの製造方法
WO2019069553A1 (ja) 2017-10-02 2019-04-11 株式会社 オハラ 光学ガラス、プリフォーム及び光学素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016830A (ja) 1998-04-30 2000-01-18 Hoya Corp 光学ガラスおよび光学製品
JP2014080317A (ja) 2012-10-16 2014-05-08 Ohara Inc 光学ガラス、プリフォーム及び光学素子
CN104876440A (zh) 2015-05-13 2015-09-02 湖北新华光信息材料有限公司 光学玻璃
JP2017007933A (ja) 2015-06-23 2017-01-12 成都光明光▲電▼股▲分▼有限公司 光学ガラス及び光学素子
WO2018051754A1 (ja) 2016-09-14 2018-03-22 旭硝子株式会社 強化レンズおよび強化レンズの製造方法
WO2019069553A1 (ja) 2017-10-02 2019-04-11 株式会社 オハラ 光学ガラス、プリフォーム及び光学素子

Similar Documents

Publication Publication Date Title
JP6014301B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7089844B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7427068B2 (ja) 光学ガラス、プリフォーム及び光学素子
JPWO2007094373A1 (ja) ガラス組成物
TWI789340B (zh) 光學玻璃、預成形體及光學元件
TWI777931B (zh) 光學玻璃、預成形體及光學元件
JP7112856B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7478889B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2022167990A (ja) 光学ガラス、プリフォーム及び光学素子
JP6937540B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2023017903A (ja) 光学ガラスおよび光学素子
JPWO2019031095A1 (ja) 光学ガラス、光学素子及び光学機器
JP7064282B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7064283B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7462713B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2022125089A (ja) 光学ガラス、プリフォーム及び光学素子
JP7517805B2 (ja) 光学ガラス、プリフォーム及び光学素子
TW201726573A (zh) 光學玻璃、預成形體及光學元件
JP7126350B2 (ja) 光学ガラス、光学素子およびプリフォーム
JP7089870B2 (ja) 光学ガラス、光学素子およびプリフォーム
WO2021090589A1 (ja) 光学ガラス、プリフォーム及び光学素子
JP7320110B2 (ja) 光学ガラスおよび光学素子
JP7142118B2 (ja) 光学ガラスおよび光学素子
JP7334133B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7354109B2 (ja) 光学ガラス及び光学素子