JP7467203B2 - 放射線治療システム、および、放射線治療装置の運転方法 - Google Patents

放射線治療システム、および、放射線治療装置の運転方法 Download PDF

Info

Publication number
JP7467203B2
JP7467203B2 JP2020064381A JP2020064381A JP7467203B2 JP 7467203 B2 JP7467203 B2 JP 7467203B2 JP 2020064381 A JP2020064381 A JP 2020064381A JP 2020064381 A JP2020064381 A JP 2020064381A JP 7467203 B2 JP7467203 B2 JP 7467203B2
Authority
JP
Japan
Prior art keywords
radiation
radiation source
irradiation
isocenter
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020064381A
Other languages
English (en)
Other versions
JP2021159331A (ja
Inventor
周史 金子
邦夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020064381A priority Critical patent/JP7467203B2/ja
Priority to US17/195,685 priority patent/US11697031B2/en
Priority to CN202110259260.0A priority patent/CN113457023A/zh
Priority to EP21161916.8A priority patent/EP3888747A1/en
Publication of JP2021159331A publication Critical patent/JP2021159331A/ja
Priority to US18/200,189 priority patent/US20230302299A1/en
Application granted granted Critical
Publication of JP7467203B2 publication Critical patent/JP7467203B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • A61N5/1047X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT with movement of the radiation head during application of radiation, e.g. for intensity modulated arc therapy or IMAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • A61N5/1082Rotating beam systems with a specific mechanical construction, e.g. gantries having multiple beam rotation axes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries

Description

本発明は、放射線治療装置に関し、特に、放射線の照射範囲を所望の形状に制限するマルチリーフコリメータを備えた放射線治療装置に関する。
放射線治療法としては、リニアックと呼ばれる直線加速器を放射線源として用い、予めX線CT装置やMRI装置等により撮影しておいた患者の患部に対して、立体的に様々な方向から放射線を照射する方法が用いられている。
例えば、マルチリーフコリメータ(MLC)を用いて、放射線源から出射された放射線ビームの一部を遮蔽し、放射線が照射される領域の放射線強度分布を変調させながら患部に照射する強度変調放射線治療(IMRT:Intensity Modulated Radiation Therapy)法や、その際にマルチリーフコリメータと放射線を患者の周囲で回転させる強度変調回転放射線治療(回転IMRT)が知られている。
また、放射線治療装置にX線撮像装置を搭載した装置を用い、放射線を照射する直前にX線画像を撮影し、事前に撮像した画像と比較することにより、事前に撮像した画像に基づいて定めておいたX線の照射位置を調整する画像誘導放射線治療(IGRT: Image-Guided Radiotherapy)法も知られている。
患部が呼吸動等により移動する場合には、X線撮像装置により撮影した画像等から患部の位置を求め、放射線源の向きをジンバル機構により傾斜させて、放射線照射方向を患部の位置に追従させる動体追尾照射法もある。
強度変調回転放射線治療(回転IMRT)と画像誘導放射線治療(IGRT)を組み合わせ、さらに患者が搭載されたカウチを移動させながら、ヘリカル照射を行うトモセラピー法も知られている。
一方、患者の放射線照射範囲を広げるため、特許文献1には、同じ位置の放射線源から放射軸を傾斜させることにより、隣り合う照射範囲に対して順にファンビームを照射する方法が提案されている。また、特許文献2には、放射線を照射しながら放射線源の向きを変化させることにより照射領域を移動させ、放射線照射範囲を広げる方法が提案されている。
特開2008-173182号公報 特開2016-174674号公報
放射線治療装置において、患者へ放射線を照射可能な範囲を広げ、かつ、放射線の照射量を大きくすることが望まれている。一例としては、大きな腫瘍の周囲の広範囲に小さな腫瘍が散らばった患者を治療する際に、それぞれの腫瘍に短時間で放射線を照射することが可能になり、患者のメリットが大きい。
しかしながら、従来の放射線治療装置において放射線の照射範囲を広げようとすると、多数枚の金属製の薄板を微小な隙間で並べて、それぞれの薄板を移動させるマルチリーフコリメータ(MLC)を大型化する必要があり、重量が増加する。MLCの重量が増加すると、それを支持する構造にたわみが生じ、照射精度が低下する。MLCを放射線源とともに回転させる強度変調回転放射線治療や、MLCを放射線源とともにジンバルで揺動させる動体追尾照射も、MLCの重量が増加すると、揺動の制御応答性が下がり、かつ構造体のたわみにより精度が低下する。
また、特許文献1のように、同じ位置の放射線源から放射軸を傾斜させることにより、隣り合う照射範囲に対して順次放射線を照射する方法は、一つの照射範囲に照射後、いったん放射線を停止させ、ジンバル機構により隣の照射範囲に放射線源を向け、再び放射線を照射するという処理になるため、照射に時間がかかる。また、照射領域の重なりや隙間の精度が、ジンバル機構の放射軸の角度制御の精度に依存する。このため、本来、放射線源とMLCの重量を支えて直交2軸に揺動させ動体に追従する動作を行うジンバル機構に対して、間欠的に精度よく回転を停止させるという動作をさせる必要があり、ジンバル機構に対する要求が大きくなる。
同様に、特許文献2の技術においては、放射線を照射しながら放射線源の放射軸の向きを一定の速度で精度よく変化させる必要があるため、放射線源とMLCの重量を支えるジンバル機構への要求が大きい。
本発明の目的は、構造体への負担を増大させることなく、患者へ放射線の照射範囲を広げることのできる放射線治療システムを提供することにある。
上記目的を達成するために、本発明の放射線治療装置は、放射線源と、放射線源を支持し、アイソセンタを中心に放射線源を回転させる回転機構と、アイソセンタに患者の治療対象部位を配置するカウチと、放射線源と回転機構との間に配置され、放射線源を揺動させて、放射線源の照射する放射線の照射軸を揺動させる首振り機構と、放射線源、回転機構および首振り機構を制御する制御部とを有する。制御部は、首振り機構により、放射線源の放射線の照射軸をアイソセンタから所定の方向に所定量ずらした状態で保持させ、首振り機構の状態を保ったまま放射線源から放射線を照射させつつ、回転機構により放射線源を回転させる。
本発明によれば、首振り機構により照射軸をアイソセンタから所定の方向に所定量ずらした状態で保持させ、その状態で回転機構を回転させるため、首振り機構および回転機構等の構造体への負担を増大させることなく、患者へ放射線の照射範囲を広げることができる。
本発明の実施形態の放射線治療システム10のブロック図。 実施形態の放射線治療装置20の斜視図。 図2の放射線治療装置20内の首振り機構301の概略構成を示す説明図。 図3の放射線照射装置24の断面図。 実施形態の放射線治療システムの動作を示すフローチャート。 実施形態の放射線治療システムの動作を示すフローチャート。 図4のマルチリーフコリメータ60のリーフ群70Gの構成例を示す斜視図。 (a-1)および(a-2)実施形態の放射線照射装置において第1および第2の照射方向701、703と、照射範囲702,704を示す説明図、(b-1)および(b-2)比較例の照射方向と照射範囲を示す説明図。 (a)実施形態の放射線照射装置の第1および第2照射方向のビームで照射される線量分布と、それらの合計線量分布を示す説明図、(b)比較例のビームで照射される線量分布を示す説明図。 実施形態の放射線照射装置の第1および第2照射方向のビームで照射される線量分布と、それらの合計線量分布を示す説明図。 実施形態の放射線照射装置の照射範囲の重なりを示す説明図。 実施形態の放射線照射装置の第1照射方向を半径方向にずらした場合の照射範囲を示す説明図。 比較例の照射範囲を示す説明図。 実施形態の放射線照射装置の第1照射方向を半径方向および回転軸方向にずらした場合の照射範囲を示す説明図。 実施形態の放射線照射装置の第2照射方向を半径方向および回転軸方向にずらした場合の照射範囲を示す説明図。 実施形態の放射線照射装置の照射範囲にアイソセンタを含むように照射方向を半径方向にずらした場合、アイソセンタ付近において周囲よりも線量分布が大きくなることを示す説明図。
本発明の一実施形態の放射線治療システムについて説明する。
<放射線治療システムの装置構成>
まず、本実施形態の放射線治療システムの装置構成について説明する。
図1に示すように、放射線治療システム10は、治療計画装置11と、制御装置(制御部)12と、放射線治療装置20と、を備えている。
治療計画装置11は、患者Bについて予め撮影した3次元画像データを受け取って、放射線治療の内容に応じて患者Bに放射すべき放射線の性状(患者Bに放射する放射線の線量、時間、角度、位置、放射領域等)を治療計画として作成する。さらに治療計画装置11は、治療計画の放射線の線量、時間、角度等により放射線を照射するために、後述の放射線源の首振り機構301の傾斜角度や、回転リング22のリングフレーム21に対する回転角度や、回転軸25、放射線照射装置24の照射タイミング等の制御用パラメータ値を制御装置12に出力する。
制御装置12は、治療計画装置11から受け取った制御用パラメータ値に基づいて、放射線治療装置20の動作を制御する。制御装置12は、CPUとメモリを備え構成され、CPUがメモリに予め格納されたプログラムを読み込んで実行することにより、制御動作をソフトウエアにより実行する。
図2は、放射線治療装置20の概略構成を示す斜視図である。
図2に示すように、放射線治療装置20は、放射線照射装置24と、回転機構302と、カウチ28と、首振り機構301とを備えている。回転機構302は、放射線源照射装置24を支持し、アイソセンタC0を中心に放射線源24を回転させる。カウチ28は、アイソセンタC0に患者の治療対象部位を配置する。首振り機構301は、放射線照射装置24と回転機構302との間に配置され、放射線照射装置301を揺動させることにより、放射線照射装置301の照射する放射線の照射軸を揺動させる。
回転機構302は、リングフレーム21と、回転リング22と、を備えている。
リングフレーム21は、中心軸C1がほぼ水平方向を向くように配置されている。回転リング22は、その外周面がリングフレーム21の内周面に支持され、かつ、リングフレーム21の内周面に沿って回転可能な構造である。回転リング22は、回転駆動機構(図示せず)により駆動され、回転中心軸C1の回りで回動する。
リングフレーム21の下端部21aの外周面には、下方に向けて延びる回転軸25が一体に形成されており、この回転軸25は、その鉛直な中心軸(旋回軸)C2を中心に回動(旋回)可能な状態で基台(図示せず)に支持されている。旋回駆動機構(図示せず)は、リングフレーム21を旋回軸C2の回りで旋回させる。
放射線照射装置24は、図3に示すようにジンバル構造の首振り機構301に搭載され、首振り機構301を介して回転リング22に支持されている。
首振り機構301が動作していない場合、放射線照射装置24から放射される放射線Srは、回転リング22の中心軸C1と、リングフレーム21の旋回軸C2との交点であるアイソセンタC0を通るように調整されている。
放射線治療装置20は、センサアレイ23を更に備えている。センサアレイ23は、放射線照射装置24により放射されてアイソセンタC0の周辺の被写体を透過した放射線を受光して、その被写体の透過画像を生成する。センサアレイ23としては、FPD(Flat Panel Detector)、X線II(Image Intensifier)等を用いることができる。
また、放射線治療装置20は、撮像用X線源26A,26Bと、センサアレイ27A,27Bと、を備えている。撮像用X線源26A,26Bおよびセンサアレイ27A,27Bは、回転リング22の内周側に配置され、回転リング22により支持されている。撮像用X線源26A,26Bは、アイソセンタC0に向けて撮像用X線101を放射するように向けられている。撮像用X線101は、円錐状のコーンビームである。センサアレイ27A,27BはアイソセンタC0を挟んで撮像用X線源26A,26Bと対向する位置に配置され、撮像用X線源26A,26Bから放射され、アイソセンタC0の周辺の被写体を透過した撮像用X線101を受光して、その被写体の透過画像を生成する。センサアレイ27A,27Bとしては、例えばFPD、X線II等を用いることができる。
カウチ駆動装置29は、制御装置12により制御されて、カウチ28を少なくとも回転の中心軸C1に並行に移動させることができる。
首振り機構301は、放射線照射装置24を搭載したジンバル構造であり、パン軸301aとチルト軸301bの2軸を中心に放射線照射装置24を傾斜させることができる。パン軸301aは、回転中心軸C1および旋回中心軸C2のいずれにも垂直な軸である。チルト軸301bは、回転中心軸C1に平行な軸である。
図4に示すように、放射線照射装置24は、放射線源50と、1次コリメータ53と、フラットニングフィルタ54と、2次コリメータ55と、マルチリーフコリメータ(MLC)60とを備えている。
ここでは、放射線源50は、電子ビーム加速装置51と、X線ターゲット52とを含むX線源である。電子ビーム加速装置51は、電子を加速して生成される電子ビームS0をX線ターゲット52に照射する。X線ターゲット52は、タングステン、タングステン合金等から形成されている。X線ターゲット52は、電子ビームS0が照射されると放射線S1を放出する。
1次コリメータ53および2次コリメータ55は、貫通孔53h、55hをそれぞれ備えたX線の遮蔽体(鉛、タングステン等)からなり、放射線S1の一部を遮蔽し、貫通孔53h、55hを通過した放射線S1を照射する。
フラットニングフィルタ54は、アルミニウム等から形成された円錐形の突起54aを有し、1次コリメータ53の貫通孔53hの出口側に配置されている。フラットニングフィルタ54は、放射線S1の放射方向に垂直な面内における放射線S1の線量分布を一様にする。
1次コリメータ53、フラットニングフィルタ54、2次コリメータ55を経ることで、一様な強度分布を有する放射線S2は、マルチリーフコリメータ60に入射する。マルチリーフコリメータ60は、制御装置12により制御を受けて放射線S2の照射野を制限する。
マルチリーフコリメータ60は、図7に示すように、放射線を遮蔽する材質(鉛、タングステン等)の複数のリーフ(薄板)70を厚さ方向に並べたリーフ群70Gを、2組対向させ、リーフ70の主平面を放射線の照射軸にほぼ平行に配置した構造である。制御装置12の制御下で、駆動部が各リーフを放射線の照射軸を遮る方向に突出させたり後退させたりすることにより、放射線S2の照射野を制限したり、照射野内の放射線の線量分布を変調させることができる。
<放射線治療システムの動作>
以下、本実施形態の放射線システムにおいて、患者に放射線を照射して治療を行う際に、照射範囲拡張モードで治療する動作について説明する。
制御装置12は、照射範囲拡張モードでは、首振り機構301により、放射線の放射線の照射軸ScをアイソセンタC0から所定の方向に所定量ずらした状態で保持させ、首振り機構の状態を保ったまま放射線源から放射線を照射させつつ、回転機構302により放射線源50(放射線照射装置24)を回転させる。
まず、図5のフローのように、治療計画装置11は、患者Bについて予め撮影した治療計画用の3次元画像データを取り込む(ステップ501)。治療計画装置11は、3次元画像を画像処理により領域を抽出するか、もしくは、ユーザから領域の特定を受け付けることにより、放射線を照射すべき領域や避けるべき領域等の関心領域を設定する(ステップ502)。つぎに、治療計画装置11は、ユーザから関心領域毎に照射すべき放射線の線量や許容される最大放射線線量等の治療計画に必要な情報を受け取って(ステップ503)、患者Bに放射する放射線の線量、時間、角度、位置、放射領域等を治療計画として作成する。さらに、放射線治療装置の照射線量率や各機械動作軸の動作範囲も考慮に入れた最適化計算を行って、放射線治療装置で照射可能でかつ各関心領域の放射線線量制約を満たす最適な放射線の強度分布を計算により求める(ステップ505)。尚この時の各機械動作軸には、MLCの各リーフ駆動軸、回転リング21の回転中心軸C1回りの回動、リングフレーム21を旋回軸C2の回りにおける旋回等が選択し利用される。
このステップ504、505において、治療計画装置11は、首振り機構301により放射線の放射線の照射軸ScをアイソセンタC0からずらす量と方向を定め、この首振り機構301の状態を保ったまま放射線源50から放射線を照射しながら、回転機構302により放射線源50(放射線照射装置24)を回転させるための制御信号のパラメータ値と、そのときの最適な放射線の強度分布を実現するためのMLC60の各リーフの開閉の動作させる制御信号のパラメータ値も算出する。
治療計画装置11は、求めた治療計画の結果をユーザに表示する(ステップ506)。
制御装置12は、治療計画装置11が治療計画を実現するために算出した制御信号のパラメータ値を受け取って、首振り機構301、回転リング22の回転角度、MLC60のリーフの開閉を制御することにより、以下のように放射線を患者に照射する。
具体的には、図6のフローのステップ601のように、制御装置12は、首振り機構301のパン軸301aおよび/またはチルト軸301bを回転させ、放射線照射装置24の放射線照射軸Scを、アイソセンタC0から所定量ずらした第1の照射方向701に設定し、その状態を保持したまま、放射線源50から放射線を照射させつつ、回転機構302により放射線源50(放射線照射装置24)を所定の角度範囲(ここでは360度)だけ回転させる(ステップ601)。このとき、回転させながら、制御装置12は、MLC60を動作させ、放射線ビームに強度分布を生じさせる。
これにより、例えば図8(a-1)のように第1の照射方向701をパン軸301aの回転により中心軸C1上に設定した場合、図8(a-2)のように円筒形状の照射範囲702に放射線が照射される。
つぎに、ステップ602のように、制御装置12は、首振り機構301のパン軸301aおよび/またはチルト軸301bを回転させ、放射線照射装置24の放射線照射軸Scを、アイソセンタC0から所定量ずらした第2の照射方向701に設定し、その状態を保持したまま、放射線源50から放射線を照射させつつ、回転機構302により放射線源50(放射線照射装置24)を所定の角度範囲(ここでは360度)だけ回転させる(ステップ602)。このとき、回転させながら、制御装置12は、MLC60を動作させ、放射線ビームに強度分布を生じさせる。この時、回転機構での回転は第1の照射と逆向きの場合は更に時間短縮できる。あるいはヘリカルスキャン式の場合は、第1の照射と同じ方向に回転機構で回転しながら第2の照射方向701に設定し回転させることでも良い。
これにより、例えば図8(a-1)のように第2の照射方向703をずらす方向を、第1の照射方向701とは逆向き(回転軸C1の負の方向)に設定した場合、図8(a-2)のように円筒形状の照射範囲704に放射線が照射される。
これを治療計画にしたがってN回繰り返す(ステップ603)。
これにより、比較例のようにアイソセンタC0に放射線照射軸Scを向けて回転機構302により放射線源50を回転させた場合に形成される照射範囲705と比べ、本実施形態では、照射範囲702と703の合計の範囲に照射することができる。よって、放射線の照射範囲を効率よく広げることができる。
また、本実施形態の上記動作では、重量の大きなMLC60と放射線源50と保持した首振り機構301をいったん第1の照射方向701または第2の照射方向702に向けたならば、その向きを保持したまま回転機構302により回転させればよく、首振り機構301の負担が小さい。よって、首振り機構301のたわみ等による照射精度の低下を生じにくく、高精度に放射線を患部に照射することができる。
また、図8(a-1)のように、第1の照射方向701の放射線ビームによる照射範囲702および第2の照射方向703の放射線ビームによる照射範囲704(すなわち、放射線の広がり角の角度範囲)がそれぞれアイソセンタC0を含むように治療計画を設定することが可能である。この場合、照射範囲702と照射範囲703に重なり合う範囲が生じる。この重なり合う範囲に所望の線量分布をMLC60により生じさせることにより、照射範囲702と703の合計の照射範囲の線量分布を所望の分布に設計することができる。
例えば、図9(a)のように、照射範囲702と703が重なり合う範囲のそれぞれの線量分布を回転軸C1方向について漸減と漸増に設計することにより、回転軸C1方向の合計の線量分布をフラットにすることができる。これにより、図9(b)の比較例のアイソセンタC0に放射線の照射軸Scを一致させた場合と同様にフラットな線量分布を、拡大させた照射範囲においても図9(a)のように得ることができる。
また、図10のように、照射範囲702と703が重なり合う範囲の回転軸C1方向の線量分布の漸減と漸増の度合いを変化させることにより、アイソセンタC0に周囲で合計の線量が周囲よりも多くすることもできる。これにより、アイソセンタに位置する腫瘍に周囲よりも多くの線量を照射することが可能になる。
すなわち、図11に示すように、照射範囲702、703が重なり合う範囲705において、複雑な線量分布を生じさせることができる。
<照射範囲を回転機構302の回転半径方向に拡張する例>
上述した図8~図11では、回転軸C1の方向に照射範囲を拡張する例を示したが、本実施形態では、回転半径方向に照射範囲拡張することも可能である。
具体的には図12に示したように、制御装置12は、首振り機構301のチルト軸301bを回転させ、回転軸C1および旋回軸C2に直交する軸C3の方向に放射線照射軸Scをずらし、第1の照射方向701を設定する。その状態を保持したまま、放射線源50から放射線を照射させつつ、回転機構302により放射線源50(放射線照射装置24)を所定の角度範囲(ここでは360度)だけ回転させる(ステップ601)。このとき、回転させながら、制御装置12は、MLC60を動作させ、放射線ビームに強度分布を生じさせる。
これにより、図12のように円筒形状の照射範囲801に放射線が照射される。図12の照射範囲801は、比較例である図13のように放射線照射軸ScがアイソセンタC0に一致している場合の照射範囲802と比較して、半径が2倍になっており、照射範囲が拡張されている。また、首振り機構301の負担が小さいため、首振り機構301のたわみ等による照射精度の低下を生じにくく、高精度に放射線を患部に照射することができる。
<照射範囲を回転機構302の回転軸方向と回転半径方向に拡張する例>
図14に示したように、制御装置12は、首振り機構301のパン軸301aとチルト軸301bの両方を回転させ、回転軸C1および軸C3の方向に放射線照射軸Scをずらし、第1の照射方向701を設定してもよい。この状態を保持したまま、放射線源50から放射線を照射させつつ、回転機構302により放射線源50(放射線照射装置24)を所定の角度範囲(ここでは360度)だけ回転させる(ステップ601)。このとき、回転させながら、制御装置12は、MLC60を動作させ、放射線ビームに強度分布を生じさせる。
これにより、図14のように円筒形状の照射範囲803に放射線が照射される。図14の照射範囲803は、半径方向に照射範囲が拡張されている。
つぎに、図15に示したように、制御装置12は、首振り機構301のパン軸301aとチルト軸301bの両方を回転させ、回転軸C1および軸C3の方向に放射線照射軸Scをずらし、第2の照射方向702を設定する。第2の照射方向702は、首振り機構301のパン軸301aの回転方向が図14の場合とは逆向きである。この状態を保持したまま、放射線源50から放射線を照射させつつ、回転機構302により放射線源50(放射線照射装置24)を所定の角度範囲(ここでは360度)だけ回転させる(ステップ602)。このとき、回転させながら、制御装置12は、MLC60を動作させ、放射線ビームに強度分布を生じさせる。
これにより、図15のように半径方向に2倍拡張された円筒形状の照射範囲804に放射線を照射する。
また、図12、図14、図15の例では、首振り機構301によりずらした照射範囲701、702がいずれもアイソセンタC0を含まない構成であったが、図16に示すように、照射範囲701がアイソセンタC0を含むように設定することももちろん可能である。この場合、放射線源50を回転機構302が360度回転させた場合、アイソセンタC0およびその近傍では照射範囲702が二重になるため、アイソセンタC0付近Aの合計線量は周囲Bよりも大きくなる。よって、図10に示した合計線量分布と同様に、アイソセンタC0位置する腫瘍Aに周囲Bよりも多くの線量を照射することが可能になる。
この場合も、首振り機構301の負担が小さいため、首振り機構301のたわみ等による照射精度の低下を生じにくく、高精度に放射線を患部に照射することができる。
10 放射線治療システム
11 治療計画装置
12 制御装置
20 放射線治療装置
21 リングフレーム
22 回転リング
23 センサアレイ
24 放射線照射装置
25 回転軸
26A,26B 線源
27A,27B センサアレイ
28 カウチ
29 カウチ駆動装置
50 放射線源
51 電子ビーム加速装置
52 X線ターゲット
53 1次コリメータ
53h 貫通孔
54 フラットニングフィルタ
54a 突起
55 2次コリメータ
55h 貫通孔
60 マルチリーフコリメータ
B 患者
C0 アイソセンタ
C1 回転軸
C2 旋回軸
S0 電子ビーム
Sr 治療用放射線

Claims (8)

  1. 放射線源と、
    前記放射線源を支持し、アイソセンタを中心に前記放射線源を回転させる回転機構と、
    前記アイソセンタに患者の治療対象部位を配置するカウチと、
    前記放射線源と前記回転機構との間に配置され、前記放射線源を揺動させて、前記放射線源の照射する放射線の照射軸を揺動させ患部の位置に追従させるジンバル構造を搭載した首振り機構と、
    前記放射線源、前記回転機構および前記首振り機構を制御する制御部とを有し、
    前記制御部は、前記首振り機構により、前記放射線源の放射線の照射軸を前記アイソセンタから所定の方向に所定量ずらした状態で保持させ、前記首振り機構の状態を保ったまま前記放射線源から放射線を照射させつつ、前記回転機構により前記放射線源を回転させる照射範囲拡張モードを備えることを特徴とする放射線治療システム。
  2. 請求項1に記載の放射線治療システムであって、前記放射線源から照射される放射線の広がり角の範囲内に前記アイソセンタが含まれるように、前記制御部は、前記首振り機構による前記放射線の照射軸の前記アイソセンタからのずらし量を設定することを特徴とする放射線治療システム。
  3. 請求項1に記載の放射線治療システムであって、前記制御部が前記照射軸を前記アイソセンタからずらす方向は、前記回転機構の回転の半径方向の成分を含むことを特徴とする放射線治療システム。
  4. 請求項1に記載の放射線治療システムであって、前記制御部が前記照射軸を前記アイソセンタからずらす方向は、前記回転機構の回転軸方向の成分を含み、
    前記制御部は、前記照射軸を前記アイソセンタから前記回転軸方向の正の向きにずらして、その状態で前記回転機構により前記放射線源を回転させた後、前記照射軸を前記アイソセンタから前記回転軸方向の負の向きにずらして、その状態で前記回転機構により前記放射線源を回転させることを特徴とする放射線治療システム。
  5. 請求項1に記載の放射線治療システムであって、前記放射線源と前記アイソセンタとの間には、マルチリーフコリメータが配置され、前記放射線源とともに前記回転機構により回転しながら、前記放射線源から照射された放射線の一部を遮ることを特徴とする放射線治療システム。
  6. 請求項2に記載の放射線治療システムであって、前記アイソセンタが含まれる領域の放射線の照射線量が、それよりも外側の照射線量よりも大きいことを特徴とする放射線治療システム。
  7. 放射線源の放射線の照射軸を患部の位置に追従させるジンバル構造を搭載した前記放射線源の首振り機構によりアイソセンタから所定の方向に所定量ずらし、
    前記ずらした状態を保ったまま、前記放射線源から放射線を照射させつつ、回転機構により前記放射線源を回転させる照射範囲拡張モードを実施することを特徴とする放射線治療装置の運転方法。
  8. 請求項1に記載の放射線治療システムであって、前記首振り機構により前記放射線源の放射線の照射軸を前記アイソセンタからずらす量は治療計画装置によって定められることを特徴とする放射線治療システム。
JP2020064381A 2020-03-31 2020-03-31 放射線治療システム、および、放射線治療装置の運転方法 Active JP7467203B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020064381A JP7467203B2 (ja) 2020-03-31 2020-03-31 放射線治療システム、および、放射線治療装置の運転方法
US17/195,685 US11697031B2 (en) 2020-03-31 2021-03-09 Radiation therapy system and method of operating radiation therapy apparatus
CN202110259260.0A CN113457023A (zh) 2020-03-31 2021-03-10 放射线治疗系统及放射线治疗装置的运转方法
EP21161916.8A EP3888747A1 (en) 2020-03-31 2021-03-11 Radiation therapy system and method of operating radiation therapy apparatus
US18/200,189 US20230302299A1 (en) 2020-03-31 2023-05-22 Radiation therapy system and method of operating radiation therapy apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064381A JP7467203B2 (ja) 2020-03-31 2020-03-31 放射線治療システム、および、放射線治療装置の運転方法

Publications (2)

Publication Number Publication Date
JP2021159331A JP2021159331A (ja) 2021-10-11
JP7467203B2 true JP7467203B2 (ja) 2024-04-15

Family

ID=74871188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064381A Active JP7467203B2 (ja) 2020-03-31 2020-03-31 放射線治療システム、および、放射線治療装置の運転方法

Country Status (4)

Country Link
US (2) US11697031B2 (ja)
EP (1) EP3888747A1 (ja)
JP (1) JP7467203B2 (ja)
CN (1) CN113457023A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11712583B2 (en) * 2020-06-30 2023-08-01 Accuray Incorporated Utilizing an offset multi-leaf collimator to improve dose conformality and homogeneity
JP7458515B1 (ja) 2023-01-05 2024-03-29 株式会社東芝 粒子線照射システムおよびx線撮影装置配置方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173182A (ja) 2007-01-16 2008-07-31 Mitsubishi Heavy Ind Ltd 放射線照射方法および放射線治療装置制御装置
US20180256920A1 (en) 2014-03-25 2018-09-13 Varian Medical Systems, Inc. Pivoting multileaf collimator and method for large field coverage

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE384552T1 (de) * 2001-08-24 2008-02-15 Mitsubishi Heavy Ind Ltd Radiotherapie-gerät
JP4126318B2 (ja) * 2006-06-23 2008-07-30 三菱重工業株式会社 放射線治療装置制御装置および放射線治療装置の制御方法
JP2010054309A (ja) * 2008-08-27 2010-03-11 Mitsubishi Heavy Ind Ltd 透過型線量計を用いた放射線治療装置
DE102010032131A1 (de) * 2009-07-22 2011-01-27 Friedrich-Alexander-Universität Erlangen-Nürnberg Linearkinematik mit drehbarem Strahlerkopf
JP5260572B2 (ja) * 2010-02-17 2013-08-14 三菱重工業株式会社 放射線治療装置制御装置および放射線治療装置の作動方法
EP2664360B1 (en) 2010-02-24 2015-09-09 Accuray Incorporated Gantry image guided radiotherapy system and related tracking methods
JP5611091B2 (ja) * 2011-03-18 2014-10-22 三菱重工業株式会社 放射線治療装置制御装置、その処理方法、及びプログラム
JP2014000210A (ja) * 2012-06-18 2014-01-09 Toshiba Corp 放射線治療システム
JP2014138671A (ja) * 2013-01-21 2014-07-31 Toshiba Corp 放射線治療システム
JP6181459B2 (ja) * 2013-08-05 2017-08-16 株式会社日立製作所 放射線治療システム
EP3037130B1 (en) * 2013-10-08 2017-12-13 Hitachi, Ltd. Device for controlling radiation therapy device, radiation therapy system and program
JP2015100455A (ja) 2013-11-22 2015-06-04 三菱重工業株式会社 治療計画装置、治療計画生成方法およびプログラム
US10478641B2 (en) * 2015-01-29 2019-11-19 Hitachi, Ltd. Radiotherapy device control apparatus and control method
JP6530933B2 (ja) 2015-03-19 2019-06-12 株式会社日立製作所 放射線治療装置制御装置、放射線治療システム、放射線治療装置制御方法およびプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173182A (ja) 2007-01-16 2008-07-31 Mitsubishi Heavy Ind Ltd 放射線照射方法および放射線治療装置制御装置
US20180256920A1 (en) 2014-03-25 2018-09-13 Varian Medical Systems, Inc. Pivoting multileaf collimator and method for large field coverage

Also Published As

Publication number Publication date
EP3888747A1 (en) 2021-10-06
US11697031B2 (en) 2023-07-11
US20230302299A1 (en) 2023-09-28
JP2021159331A (ja) 2021-10-11
US20210299473A1 (en) 2021-09-30
CN113457023A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
JP5950575B2 (ja) 荷電粒子治療による患者の腫瘍の治療
US5267294A (en) Radiotherapy apparatus
US10850123B2 (en) Treatment planning method, apparatus and radiotherapy system
US20080170663A1 (en) Radiation irradiation method and radiotherapy apparatus controller
US20230302299A1 (en) Radiation therapy system and method of operating radiation therapy apparatus
JP3305348B2 (ja) 定位的放射線治療装置
JP2002210028A (ja) 放射線照射システム及び放射線照射方法
CA2634071A1 (en) Radiation treatment apparatus
US9999787B1 (en) Beam limiting device for intensity modulated proton therapy
JP4381422B2 (ja) 放射線治療システム
JP4486610B2 (ja) 放射線照射装置
JPH05200126A (ja) 定位的放射線治療装置
JP2015100455A (ja) 治療計画装置、治療計画生成方法およびプログラム
JP4382014B2 (ja) 放射線治療装置
US11331516B2 (en) Treatment planning method and radiotherapy system
JP7460426B2 (ja) X線ct装置
US20230101051A1 (en) Radiation treatment system and method of operating radiation treatment system
JP2004121406A (ja) 放射線治療装置
JPH05337207A (ja) 定位的放射線治療装置
US20140169519A1 (en) Cone-beam CT Scanning
WO2023184420A1 (zh) 放射治疗头、设备、方法、控制装置及非易失性存储介质
JPH0739592A (ja) 放射線治療装置
JP3087769B2 (ja) 放射線照射装置
JP2004167000A (ja) 放射線治療装置
CN115253091A (zh) 一种立体定向放射治疗设备的靶点剂量场形成方法及系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240403