JP7420771B2 - 電源制御装置および温度制御方法 - Google Patents

電源制御装置および温度制御方法 Download PDF

Info

Publication number
JP7420771B2
JP7420771B2 JP2021112931A JP2021112931A JP7420771B2 JP 7420771 B2 JP7420771 B2 JP 7420771B2 JP 2021112931 A JP2021112931 A JP 2021112931A JP 2021112931 A JP2021112931 A JP 2021112931A JP 7420771 B2 JP7420771 B2 JP 7420771B2
Authority
JP
Japan
Prior art keywords
temperature
current
heat
generating component
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021112931A
Other languages
English (en)
Other versions
JP2023009549A (ja
Inventor
弘真 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2021112931A priority Critical patent/JP7420771B2/ja
Priority to US17/833,267 priority patent/US20230010864A1/en
Priority to EP22180703.5A priority patent/EP4116792B1/en
Priority to CN202210802299.7A priority patent/CN115599141A/zh
Publication of JP2023009549A publication Critical patent/JP2023009549A/ja
Application granted granted Critical
Publication of JP7420771B2 publication Critical patent/JP7420771B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20945Thermal management, e.g. inverter temperature control

Description

本発明は、電源制御装置および温度制御方法に関する。
例えば車両に搭載される機器については、近年では通電により大きな発熱を伴う半導体デバイスを搭載した電装品が増えている。また、車両に搭載される機器には従来より小型化や軽量化が求められている。
しかし、発熱による温度上昇の悪影響を避けるために機器に十分な冷却能力を持たせようとすると、放熱器(ヒートシンク)や冷却ファンなどが大型化したり重量が増えてしまう。また、冷却能力が不足すると異常な温度上昇に起因して機器の誤動作が生じやすくなる。
例えば、特許文献1に画像監視装置の温度制御方法が開示されている。特許文献1においては、測定温度が設定温度を超えた場合に、冷却部に流す電流を調整することが示されている。
一方、特許文献2は電気自動車用電力変換装置の冷却方法を開示している。特許文献2において、冷却ファンの運転のために消費される電気エネルギーを節約し、冷却ファンの騒音を低減することを目的とする技術が開示されている。特許文献2は、電気自動車用電動機を制御する電力変換装置の半導体素子に取り付けられた放熱フィンの温度Tfnと素子に通じる電流値Ia、電圧値Vdcとを検出し、半導体素子の接合部温度Tjnを推定して、最高使用設定値Tjmax以下の場合、冷却風速を制御することを示している。また、特許文献2に記載された装置構成には、熱損失計算回路、熱抵抗計算回路、及び熱抵抗-風速データテーブルが含まれている。
特開2018-180257号公報 特開平8-33104号公報
例えば、特許文献2のように熱損失や熱抵抗を考慮した計算を行うことで、温度制御の精度を上げることが可能である。しかし、実際の温度制御においては、制御量を変更してからそれが出力の温度に反映されるまでに時間遅れが発生する。したがって、制御量の過不足が発生したり、制御結果の温度変動が大きくなる傾向がある。
また、様々な装置には機器毎に固有の個体差が存在する。したがって、個体差の影響で温度制御の性能にばらつきが生じる可能性がある。
本発明は、上記の状況に鑑みてなされたものであり、その目的は、機器毎の個体差の影響を受けにくく、しかも必要以上の温度変動を防止することが可能な電源制御装置および温度制御方法を提供することである。
前述した目的を達成するために、本発明に係る電源制御装置は、下記を特徴としている。
通電により発熱する発熱部品と冷却機構とを搭載した機器の温度を制御する電源制御装置であって、
少なくとも前記機器の熱抵抗および熱容量を含む固有特性を表す情報が前記発熱部品の電流毎に保持された不揮発性記憶部と、
前記発熱部品に流れる電流Iを測定する電流測定部と、
前記発熱部品の入出力間の電位差ΔVを測定する電位差測定部と、
前記発熱部品の現在の温度T1を測定する温度測定部と、
前記機器の冷却制御を行う制御部と、
を備え、
前記不揮発性記憶部は、前記発熱部品に流れる電流と前記機器の熱抵抗との対応関係である第1対応関係、及び、前記発熱部品に流れる電流と前記機器の熱容量との対応関係である第2対応関係、を表す情報を保持しており、
前記制御部は、前記電流測定部が測定した電流Iと前記第1対応関係とに基づいて得られる熱抵抗Rthと、前記電流測定部が測定した電流Iと前記第2対応関係とに基づいて得られる熱容量Cthと、前記電位差測定部が測定した電位差ΔVと、に基づいて一定の遅延時間t2後における温度上昇値ΔT2を推定し、前記温度測定部が測定した温度T1と前記推定された温度上昇値ΔT2とに基づいて得られる遅延時間t2後の推定温度T2を前記冷却制御に反映する、
電源制御装置。
また、前述した目的を達成するために、本発明に係る温度制御方法は、下記を特徴としている。
通電により発熱する発熱部品と冷却機構とを搭載した機器の温度を制御する温度制御方法であって、
事前に行うキャリブレーション工程において、前記機器の熱抵抗および熱容量の固有特性を表す情報を前記発熱部品の電流毎に算出し、前記発熱部品に流れる電流と前記機器の熱抵抗との対応関係である第1対応関係、及び、前記発熱部品に流れる電流と前記機器の熱容量との対応関係である第2対応関係として、記憶し、
前記発熱部品に流れる電流I、前記発熱部品の入出力間の電位差ΔV、および現在の温度T1を測定により取得し、
取得した前記電流Iと前記第1対応関係とに基づいて得られる熱抵抗Rthと、取得した前記電流Iと前記第2対応関係とに基づいて得られる熱容量Cthと、取得した前記電位差ΔVと、に基づいて一定の遅延時間t2後における温度上昇値ΔT2を推定し、取得した前記温度T1と前記推定された温度上昇値ΔT2とに基づいて得られる遅延時間t2後の推定温度T2を、前記機器の冷却制御に反映する、
温度制御方法。
本発明の電源制御装置および温度制御方法によれば、機器毎の個体差の影響を受けにくく、しかも必要以上の温度変動を防止することが可能になる。
以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。
図1は、本発明の実施形態における温度制御装置の構成例を示す電気回路図である。 図2は、冷却対象の熱源の近傍において、放熱器が取り付けられた状態を示す斜視図である。 図3は、冷却対象の熱源の近傍において、放熱器が取り外された状態を示す斜視図である。 図4は、温度制御装置のキャリブレーション処理の具体例を示すフローチャートである。 図5は、電流と熱抵抗との対応関係の例を示すグラフである。 図6は、温度制御装置の温度制御動作の例を示すフローチャートである。
本発明に関する具体的な実施の形態について、各図を参照しながら以下に説明する。以下の説明では、本発明の電源制御装置を、車両に搭載される温度制御装置に適用した例を示すが、本発明はこの例に限定されず、例えばDC/DCコンバータ―等といった、スイッチング機能を有する種々の電源制御装置に適用可能である。
<温度制御装置の概要>
-<装置の用途>
本発明の実施形態における温度制御装置100(電源制御装置)の構成例を図1に示す。
図1に示した温度制御装置100は、各種パワー半導体デバイスのように通電動作に伴って発熱する部品を有する電装品などを適正な状態で効率よく冷却する制御を実現するために利用できる。
例えばパワー半導体デバイスを通電すると、その内部抵抗により電力損失が発生し、電力損失に応じた発熱の影響で温度が上昇する。また、温度が異常に上昇すると半導体等の部品に誤動作が発生したり故障する可能性が高くなるので、冷却して異常な温度上昇を止める必要がある。
一般的な冷却方法として、放熱器(ヒートシンク)が用いられる。また、電動ファンやペルチェ素子を利用して強制的に冷却する場合も多い。すなわち、電動ファンを回転させて送風することで、送風量に応じた冷却が可能になる。また、ペルチェ素子に通電することで、熱源の近傍を冷却することができる。
しかし、必要以上に冷却能力を高めると、大型の放熱器や、大型の電動ファンが必要になる。また、電動ファンの高速回転により消費電力が増大したり、風切り音や機械振動などに起因する騒音が発生しやすくなる。また、ペルチェ素子が大きな電力を消費することになる。特に、車両に搭載する機器の場合には小型化、軽量化、消費電力の削減などが求められるので、冷却機構の外形、重量、消費電力などを増やすことなく十分な冷却性能を実現することが非常に重要になる。
-<温度制御装置100の構成>
図1に示した温度制御装置100は、スイッチング回路12の部位で発生する発熱の影響による温度上昇を適正な範囲内に維持するための制御機能を実現する。また、この温度制御装置100は後述するキャリブレーションにより得られる機器毎に固有のデータに基づいて温度制御を実施する。但し、事前に決定した固有のデータが不揮発性メモリ28等に保持されている場合には、温度制御装置100はキャリブレーションを必要としない。したがって、キャリブレーションでのみ必要とされる機能や構成要素については、必ずしも温度制御装置100に搭載する必要はない。
図1において、温度制御装置100が制御対象とする機器(被制御機器)は、電源11、スイッチング回路12、負荷13、及びゲートドライバ14を含んでいる。負荷13は、例えば車両に搭載されたモータ、照明用のランプ、ヒータなどに相当する。
この被制御機器において、電源11から供給される直流電源電力は、電源線15、入力端子12a、スイッチング回路12、出力端子12b、抵抗器25、及び電流経路16を通って負荷13に供給される。
スイッチング回路12の内部には、互いに逆極性の状態で直列に接続された2つの半導体スイッチ素子FET1、FET2が含まれている。半導体スイッチ素子FET1、FET2はパワーMOS FET(電界効果型トランジスタ)デバイスである。
すなわち、半導体スイッチ素子FET1のドレイン端子(D)が入力端子12aと接続され、半導体スイッチ素子FET1のソース端子(S)と半導体スイッチ素子FET2のソース端子(S)とが互いに接続されている。また、半導体スイッチ素子FET2のドレイン端子(D)が出力端子12bと接続されている。
二値信号である電気信号SG1をゲートドライバ14を介して半導体スイッチ素子FET1、FET2のゲート端子(G)に印加することで、半導体スイッチ素子FET1、FET2のオン(導通)オフ(非導通)を切り替えることができる。すなわち、スイッチング回路12における入力端子12aと出力端子12bの間の導通/非導通を電気信号SG1により切り替えることができる。
スイッチング回路12が導通状態の時に電流経路16に電流Iが流れ、負荷13に電源電力が供給される。スイッチング回路12が非導通の時には電流Iが遮断されるので負荷13への電力供給が遮断される。また、例えばスイッチング回路12のオンオフをパルス幅変調(PWM)により制御すれば、電流Iの大きさ(実効値)を調整可能である。
一方、上記被制御機器のスイッチング回路12における電流Iの測定を可能にするために、抵抗器25及び増幅器22が備わっている。なお、抵抗器25の抵抗値は電流Iに影響を及ぼさない程度に非常に小さい。増幅器22は、抵抗器25に流れる電流Iによる電圧降下を検出して増幅した電気信号SG3を生成する。
また、スイッチング回路12の入力端子12a及び出力端子12bの端子間の電位差を検出するために増幅器21が設けてある。増幅器21はスイッチング回路12の動作に影響を及ぼすことなくこの電位差を検出し、その電位差に相当する電気信号SG4を生成する。
一方、上記被制御機器においてはスイッチング回路12の通電により半導体スイッチ素子FET1、FET2の内部で電力損失が発生し発熱する。つまり、半導体スイッチ素子FET1、FET2が熱源となり、温度が上昇する。この温度上昇を抑制するために冷却ユニット17が備わっている。この冷却ユニット17は、後述する放熱器の他に例えば電動ファンやペルチェ素子のようにアクティブ制御が可能な冷却機構を備えている。
熱源温度測定器24は、例えばサーミスタのように温度を検出可能なセンサを備えており、熱源である半導体スイッチ素子FET1、FET2の近傍でその温度を検出することができる。熱源温度測定器24は、検出した温度を表す電気信号SG2を生成する。
温度測定器23は、熱源から少し離れた位置でその温度を検出する。具体的には、半導体スイッチ素子FET1、FET2を冷却する放熱器の外側の表面における温度を検出する。本実施形態では、例えば放射温度計のように非接触で測定可能な測定器を温度測定器23として採用している。温度測定器23は検出した温度の情報を表す電気信号SG5を生成する。
図1に示した温度制御装置100は制御部26により制御される。本実施形態では、制御部26としてマイクロコンピュータ(マイコン)を利用している。また、この制御部26は不揮発性メモリ28を内蔵している。
制御部26は、ポートP1から出力する電気信号SG1の制御によりスイッチング回路12のオンオフを切り替えることができる。熱源温度測定器24が出力する電気信号SG2は制御部26のポートP2に入力される。また、増幅器22が出力する電気信号SG3は制御部26のポートP3に入力される。また、増幅器21が出力する電気信号SG4は制御部26のポートP4に入力される。
制御部26は、各ポートP2~P4に入力される電気信号SG2~SG4のアナログレベルをそれぞれ逐次サンプリングしてデジタル信号に変換し、各信号の情報を取得することができる。また、制御部26は例えば通信により温度測定器23が出力する電気信号SG5の情報をポートP5で取得できる。
また、制御部26はポートP6に出力する電気信号SG6により、冷却ユニット17の状態を制御することができる。すなわち、冷却ユニット17が冷却を促進するように電気信号SG6で制御したり、冷却ユニット17が冷却を抑制するように電気信号SG6で制御することができる。
制御部26のポートP7に接続されている操作部27は、ユーザのスイッチ操作による指示を受け付けることができる。制御部26は、操作部27からの指示に従いモード切替などの制御を行うことができる。
<制御対象の例>
冷却対象の熱源近傍の外観の例を図2及び図3に示す。図2は放熱器が取り付けられた状態、図3は放熱器が取り外された状態をそれぞれ表す。
冷却対象(被制御対象)の機器においては、例えば図3に示すように筐体51上に回路基板52が設置され、回路基板52上に熱源53が取り付けられている。この熱源53は、図1中の半導体スイッチ素子FET1及びFET2に相当する。また、図1中に示した熱源温度測定器24は、熱源53の近傍における温度を測定できる位置、すなわち温度測定点TP1に設置されている。
熱源53の通電により発生する熱は、金属で構成されるバスバー54に熱伝導により伝達され、更にバスバー54から放熱器55に熱伝導により伝達される。十分な冷却性能を実現するために、図2に示した放熱器55は十分な大きさを有し、更に外気と接触可能な表面の面積を大きくするために多数のフィンを有している。
また、放熱器55を用いた自然空冷だけでは十分な冷却性能が得られない。したがって、図1に示した冷却ユニット17に含まれる電動ファンを用いた送風により、放熱器55の表面と接触する空気を強制的に流動させ、冷却性能を上げる。更に、電動ファンの回転速度を上げることで、単位時間あたりの送風量を増やして放熱器55及び電動ファンを含む冷却ユニット17全体の冷却性能を向上することができる。
図1中に示した温度測定器23は、図2に示した温度測定点TP2の温度を測定する。すなわち、放熱器55の外側の表面における中央付近で放熱器55の表面温度を測定する。なお、温度測定器23は後述するキャリブレーションの時のみ利用し、その後の実際の冷却制御においては利用しない。
<キャリブレーション処理>
温度制御装置100のキャリブレーション処理の内容を図4に示す。すなわち、冷却対象(被制御対象)の機器における固有の特性を表すデータを取得するために、図1に示した温度制御装置100の制御部26が図4のキャリブレーション処理を実行する。
例えば、ユーザが操作部27を操作することで、制御部26にモード切替の指示を与え、予め組み込まれているプログラムの実行により図4のキャリブレーション処理を開始することができる。この処理の内容について以下に説明する。
制御部26は、最初に電気信号SG1を制御し、スイッチング回路12に第1の既定値(i1)で電流Iが流れるようにS11で通電制御を実施する。
この制御により、電源11からスイッチング回路12内の半導体スイッチ素子FET1、FET2を通り、負荷13に第1の既定値i1の電流Iが流れる状態になる。
制御部26は、次のS12で熱源温度測定器24及び温度測定器23を用いて2箇所の温度をそれぞれ同時に測定し、第1の既定値i1の電流Iに対応する2点間の温度差ΔT(i1)を検出する。
なお、キャリブレーションを行う際には機器固有の静特性と無関係な温度の過渡的な変動の影響を排除する必要があるので、温度が飽和し安定している状態で測定を実施する。すなわち、電流Iを変更してから十分な時間を経過し、温度が十分に安定している状態でS12の測定を実施する。
制御部26は、次のS13で電気信号SG4の電圧を観測する。これにより、スイッチング回路12の入出力間の電位差ΔVを検出する。S13で検出される電位差ΔVは、電流Iの第1の既定値i1に対応付けられる。
制御部26は、第1の既定値i1に相当する電流Iと、S13で得られた電位差ΔVとに基づき、次のS14でスイッチング回路12における電力損失P(i1)を次式により算出する。
P(i1)=ΔV×I ・・・(1)
次のS15で、制御部26は電気信号SG1の制御量を変更し、スイッチング回路12に第2の既定値(i2)で電流Iが流れるように通電制御を実施する。これにより、電源11からスイッチング回路12内の半導体スイッチ素子FET1、FET2を通り、負荷13に第2の既定値i2の電流Iが流れる状態になる。
制御部26は、次のS16で熱源温度測定器24及び温度測定器23を用いて2箇所の温度をそれぞれ同時に測定し、第2の既定値i2の電流Iに対応する2点間の温度差ΔT(i2)を検出する。また、S12の場合と同様に、電流Iを変更してから十分な時間を経過し、温度が十分に安定している状態でS16の測定を実施する。
制御部26は、次のS17で電気信号SG4の電圧を再び観測する。これにより、スイッチング回路12の入出力間の電位差ΔVを検出する。S17で検出される電位差ΔVは、電流Iの第2の既定値i2に対応付けられる。
制御部26は、第2の既定値i2に相当する電流Iと、S17で得られた電位差ΔVとに基づき、次のS18でスイッチング回路12における電力損失P(i2)を次式により算出する。
P(i2)=ΔV×I ・・・(2)
制御部26は、上記S11~S18の処理で得られた結果に基づき、電流Iの様々な値に対する機器固有の熱抵抗Rth[℃/W]をS19でそれぞれ算出する。
Rth(I)=ΔT(I)/P(I) ・・・(3)
また、制御部26は次のS20で機器固有の熱容量Cth[J/℃]を電流Iのそれぞれの値について算出する。具体的には、次の式(4)、(5)を利用し、蓄熱の関数から比熱を求め、熱容量Cthを算出する。
ΔT1=(Rth×P)×(EXP(-t1/(Rth×Cth)))・・・(4)
Cth=K1×K2 ・・・(5)
ΔT1:既定電流を既定時間通電後の熱源温度上昇[℃]
Rth:既定電流の通電時に算出された熱抵抗[℃/W]
P :既定電流の通電時に算出された電力損失[W]
t1 :既定時間[sec]
K1:部品の比熱[J/kg℃]
K2:部品(放熱器、基板)の重量(既知)[kg]
EXP():括弧内をパラメータとする指数関数
制御部26は、上記S11~S19の処理で得られた結果に基づき、様々な電流Iの値に対する機器固有の熱抵抗Rth、及び熱容量Cthを含むデータを不揮発性メモリ28若しくは所定のROM(読み出し専用メモリ)に書き込む。
<特性の例>
スイッチング回路12の半導体スイッチ素子FET1、FET2に流れる電流Iと、これを熱源とする部位を冷却する際の温度変化特性に影響を及ぼす熱抵抗Rthとの対応関係の例を図5に示す。
図5に示した例では、電流Iと熱抵抗Rthとの関係が線形である場合を想定している。このように特性が線形の場合には、図4に示したステップS11~S18のように、2種類の既定の電流値i1、i2に対する熱抵抗Rthを特定できれば、他の各電流値に対応する熱抵抗RthもS19で計算により簡単に算出できる。すなわち、任意の電流値と電流値i1、又はi2との差分と、熱抵抗Rthの変化の傾きとに基づいて各電流値に対応する熱抵抗Rthを求めることができる。
なお、熱抵抗Rthの変化が線形でない場合であっても、3種類以上の既定の電流値のそれぞれについて図4のS11~S18と同様の処理を繰り返すことにより、任意の電流値に対する熱抵抗Rthを計算で推定することが可能になる。
<温度制御動作>
温度制御装置100における温度制御動作の例を図6に示す。
図6に示した動作を実行する温度制御装置100においては、図4に示したキャリブレーションの結果として得られた機器固有のデータが、例えば図1の不揮発性メモリ28上に予め格納されている。
すなわち、スイッチング回路12に流れる電流Iの様々な電流値のそれぞれに対応する熱抵抗Rth及び熱容量Cthのデータが不揮発性メモリ28上に存在している。したがって、制御部26は不揮発性メモリ28上の熱抵抗Rth及び熱容量Cthのデータを利用して温度制御を行うことができる。
また、本実施形態では図6に示した温度制御のために必要な遅延時間t2の定数データと、2種類の温度閾値を表す定数データTth1、及びTth2も予め決定し不揮発性メモリ28上に格納してある。
ここで、遅延時間t2の定数データは、熱源近傍の温度がデバイスの破壊、或いは機能故障に至る最大温度を下回る温度制御、及び動作保証が可能となる冷却制御の遅延時間の長さを表す。この遅延時間t2は、装置固有の冷却性能によって定められる。
また、定数データTth1は、冷却ユニット17における冷却性能増大制御が必要になる熱源近傍の温度[℃]を表す閾値である。また、定数データTth2は、冷却ユニット17における冷却性能を超える熱源近傍の温度[℃]、又は冷却制御が追従できず発熱の抑制又は停止が必要になる温度を表す閾値である。また、したがって、「Tth1<Tth2」の関係がある。
図1に示した温度制御装置100においては、例えばユーザが操作部27で所定の入力操作を行うことで、「推定モード」に切り替えるための指示を制御部26に与えることができる。「推定モード」に切り替わると、制御部26は図6に示した通常動作の処理を「推定モード」として実行する。図6の通常動作について以下に説明する。
制御部26は、S31でスイッチング回路12に流れる電流Iの電流値をモニタするために、電気信号SG3を逐次サンプリングしてその電圧を読み取る。
制御部26は、S31で取得した電流値に対応する熱抵抗Rthのデータを不揮発性メモリ28から取得する(S32)。更に、S31で取得した電流値に対応する熱容量Cthのデータを不揮発性メモリ28から取得する(S33)。
制御部26は、電気信号SG4をサンプリングしてその電圧値を電位差ΔVとして取得する。この電位差ΔVは、スイッチング回路12の入出力間の電圧の差分である。そして、制御部26は電位差ΔVと、S31で取得した電流Iの値との積としてスイッチング回路12の損失P[W]を算出する。
P=ΔV×I ・・・(6)
更に、制御部26は損失Pに対応する現在の温度上昇値TpをS34で算出する。
Tp=Rth×P ・・・(7)
次に、制御部26は定数データの前記遅延時間t2を用いて、現在から遅延時間t2を経過した後の時点における温度上昇値ΔT2を推定値としてS35で算出する。
ΔT2=Tp×(-EXP(t2/(Rth×Cth))) ・・・(8)
制御部26は、最新の電気信号SG2をサンプリングしてこの電圧値を熱源の現在の温度T1として取得する。そして、現在から遅延時間t2を経過した後の時点における熱源の推定温度T2を算出し、推定温度T2と温度の閾値Tth1をS36で比較する。
T2=T1+ΔT2 ・・・(9)
そして「T2<Tth1」の条件を満たす場合はS36からS37に進む。この場合は、現在の冷却状態に余裕があるので制御部26は冷却ユニット17の冷却性能を抑制するように制御する。具体的には、電動ファンの回転速度を下げる。これにより、騒音の低減や消費電力の低減が可能になる。
また、「T2≧Tth1」の場合はS36からS38に進み、更に推定温度T2と温度の閾値Tth2を比較する。そして、「Tth2>T2≧Tth1」の条件を満たす場合はS38からS39に進む。この場合は、現在の冷却性能が適正なレベルに対して不足しているので、制御部26は冷却ユニット17の冷却性能を上げるように制御する。具体的には、電動ファンの回転速度を上げる。
また、「T2≧Tth2」の条件を満たす場合はS38からS40に進む。この場合は、冷却ユニット17の冷却能力を超えるか、又は冷却制御が熱源の温度変化に対して適正に追従できない状態であるので、制御部26はS40で電気信号SG1の出力停止を実行し、スイッチング回路12の通電を遮断する。なお、スイッチング回路12の通電を抑制するようにS40で制御してもよい。
<温度制御装置の利点>
上述の温度制御装置100によれば、図4に示したキャリブレーションの処理を行うことにより、冷却対象の実際の装置における電流値毎の熱抵抗Rthなどの固有のデータを取得できる。このデータは、予め不揮発性メモリ28等に保存しておけば、温度制御装置100の制御部26が図6に示した推定モードで高精度の温度制御を実現するために利用できる。
また、図6に示した推定モードの動作においては、現在から遅延時間t2を経過した後の未来における温度上昇値ΔT2及び推定温度T2を算出し、この推定温度T2を閾値Tth1、Tth2と比較した結果を制御に反映する。よって、温度制御に遅れが生じるのを抑制できる。
<補足説明>
ここで、上述した本発明に係る電源制御装置および温度制御方法の実施形態の特徴をそれぞれ以下[1]~[4]に簡潔に纏めて列記する。
[1] 通電により発熱する発熱部品と冷却機構とを搭載した機器の温度を制御するための電源制御装置(温度制御装置100)であって、
少なくとも前記機器の熱抵抗および熱容量を含む固有特性を表す情報が前記発熱部品の電流毎に保持された不揮発性記憶部(不揮発性メモリ28)と、
前記発熱部品に流れる電流Iを測定する電流測定部(抵抗器25、増幅器22)と、
前記発熱部品の現在の温度T1を測定する温度測定部(熱源温度測定器24)と、
前記機器の冷却制御を行う制御部(26)と、
を備え、
前記制御部は、前記電流測定部が測定した電流Iと、前記温度測定部が測定した温度T1と、前記不揮発性記憶部が保持している前記固有特性の情報とに基づいて一定の遅延時間t2後における温度上昇値ΔT2を推定し、遅延時間t2後の推定温度T2を前記冷却制御に反映する(S35~S40)、
電源制御装置。
上記[1]の構成の電源制御装置によれば、前記制御部がある時点から一定の遅延時間t2後の推定温度を対象として制御を実施するので、実際の温度制御において発生する遅延の影響を抑制することが可能であり、高精度の温度制御が実現する。また、機器毎の固有特性を表す情報を前記不揮発性記憶部から取得するので、制御対象機器の個体差に起因する制御の誤差を減らすことができる。
[2] 前記制御部は、
「Tth1<Tth2」の関係にある2つの温度閾値Tth1、Tth2を定め、
現在の温度T1に前記温度上昇値ΔT2を加算して推定温度T2を算出し(S36)、
「T2<Tth1」の条件を満たす場合は前記冷却機構による冷却を抑制し(S37)、
「Tth1≦T2<Tth2」の条件を満たす場合は前記冷却機構による冷却を促進し(S39)、
「T2≧Tth2」の条件を満たす場合は前記発熱部品の通電を抑制する(S40)、
上記[1]に記載の電源制御装置。
上記[2]の構成の電源制御装置によれば、実際の機器の温度変化に応じて適切な制御が可能になる。すなわち、「T2<Tth1」の条件を満たす場合には、冷却を抑制しても現在から遅延時間t2後の実際の温度が温度閾値Tth2以下に維持される可能性が高い。また、「Tth1≦T2<Tth2」の条件を満たす場合には、冷却を促進することで現在から遅延時間t2後の実際の温度が温度閾値Tth2以下に維持される可能性が高くなる。また、「T2≧Tth2」の条件を満たす場合は冷却だけでは制御しきれないが、前記発熱部品の発熱量を減らすことで現在から遅延時間t2後の実際の温度が異常に上昇するのを避けることが可能になる。
[3] 前記制御部は、
互いに位置が異なる2点間の温度差ΔTを検出し(S12)、
検出した温度差ΔTに基づいて前記熱抵抗を算出して前記不揮発性記憶部に保持させる(S19)、
上記[1]又は[2]に記載の電源制御装置。
上記[3]の構成の電源制御装置によれば、実際に測定して得られる温度差ΔTを利用するので、機器の個体差の影響を補償可能な状態で、しかも高精度で前記熱抵抗を算出できる。
[4] 通電により発熱する発熱部品(半導体スイッチ素子FET1、FET2)と冷却機構(冷却ユニット17)とを搭載した機器の温度を制御する温度制御方法であって、
事前に行うキャリブレーション工程(図4参照)において、前記機器の熱抵抗(Rth)および熱容量(Cth)の固有特性を表す情報を前記発熱部品の電流毎に算出して記憶し(S21)、
前記発熱部品に流れる電流Iおよび現在の温度T1を測定により取得し(S31,S36)、
記憶されている前記熱抵抗および熱容量と、取得した前記電流Iとに基づいて、一定の遅延時間t2後における温度上昇値ΔT2を推定し(S35)、遅延時間t2後の推定温度(T2)を冷却制御に反映する(S36~S40)、
温度制御方法。
上記[4]の手順の温度制御方法によれば、ある時点から一定の遅延時間t2後の推定温度を対象として制御を実施できるので、実際の温度制御において発生する遅延の影響を抑制することが可能であり、高精度の温度制御が実現する。また、前記キャリブレーション工程で機器毎の固有特性を表す情報が得られるので、制御対象機器の個体差に起因する制御の誤差を減らすことができる。
11 電源
12 スイッチング回路
12a 入力端子
12b 出力端子
12c 制御入力
13 負荷
14 ゲートドライバ
15 電源線
16 電流経路
17 冷却ユニット
21,22 増幅器
23 温度測定器
24 熱源温度測定器
25 抵抗器
26 制御部
27 操作部
28 不揮発性メモリ
51 筐体
52 回路基板
53 熱源
54 バスバー
55 放熱器
100 温度制御装置(電源制御装置)
FET1,FET2 半導体スイッチ素子
P1,P2,P3,P4,P5,P6,P7 ポート
SG1,SG2,SG3,SG4,SG5,SG6,SG7 電気信号
TP1,TP2 温度測定点

Claims (4)

  1. 通電により発熱する発熱部品と冷却機構とを搭載した機器の温度を制御する電源制御装置であって、
    少なくとも前記機器の熱抵抗および熱容量を含む固有特性を表す情報が前記発熱部品の電流毎に保持された不揮発性記憶部と、
    前記発熱部品に流れる電流Iを測定する電流測定部と、
    前記発熱部品の入出力間の電位差ΔVを測定する電位差測定部と、
    前記発熱部品の現在の温度T1を測定する温度測定部と、
    前記機器の冷却制御を行う制御部と、
    を備え、
    前記不揮発性記憶部は、前記発熱部品に流れる電流と前記機器の熱抵抗との対応関係である第1対応関係、及び、前記発熱部品に流れる電流と前記機器の熱容量との対応関係である第2対応関係、を表す情報を保持しており、
    前記制御部は、前記電流測定部が測定した電流Iと前記第1対応関係とに基づいて得られる熱抵抗Rthと、前記電流測定部が測定した電流Iと前記第2対応関係とに基づいて得られる熱容量Cthと、前記電位差測定部が測定した電位差ΔVと、に基づいて一定の遅延時間t2後における温度上昇値ΔT2を推定し、前記温度測定部が測定した温度T1と前記推定された温度上昇値ΔT2とに基づいて得られる遅延時間t2後の推定温度T2を、前記冷却制御に反映する、
    電源制御装置。
  2. 前記制御部は、
    「Tth1<Tth2」の関係にある2つの温度閾値Tth1、Tth2を定め、
    現在の温度T1に前記温度上昇値ΔT2を加算して推定温度T2を算出し、
    「T2<Tth1」の条件を満たす場合は前記冷却機構による冷却を抑制し、
    「Tth1≦T2<Tth2」の条件を満たす場合は前記冷却機構による冷却を促進し、
    「T2≧Tth2」の条件を満たす場合は前記発熱部品の通電を抑制する、
    請求項1に記載の電源制御装置。
  3. 前記制御部は、
    互いに位置が異なる2点間の温度差ΔTを検出し、
    検出した温度差ΔTに基づいて前記熱抵抗を算出して前記不揮発性記憶部に保持させる、
    請求項1又は請求項2に記載の電源制御装置。
  4. 通電により発熱する発熱部品と冷却機構とを搭載した機器の温度を制御する温度制御方法であって、
    事前に行うキャリブレーション工程において、前記機器の熱抵抗および熱容量の固有特性を表す情報を前記発熱部品の電流毎に算出し、前記発熱部品に流れる電流と前記機器の熱抵抗との対応関係である第1対応関係、及び、前記発熱部品に流れる電流と前記機器の熱容量との対応関係である第2対応関係として、記憶し、
    前記発熱部品に流れる電流I、前記発熱部品の入出力間の電位差ΔV、および現在の温度T1を測定により取得し、
    取得した前記電流Iと前記第1対応関係とに基づいて得られる熱抵抗Rthと、取得した前記電流Iと前記第2対応関係とに基づいて得られる熱容量Cthと、取得した前記電位差ΔVと、に基づいて一定の遅延時間t2後における温度上昇値ΔT2を推定し、取得した前記温度T1と前記推定された温度上昇値ΔT2とに基づいて得られる遅延時間t2後の推定温度T2を、前記機器の冷却制御に反映する、
    温度制御方法。
JP2021112931A 2021-07-07 2021-07-07 電源制御装置および温度制御方法 Active JP7420771B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021112931A JP7420771B2 (ja) 2021-07-07 2021-07-07 電源制御装置および温度制御方法
US17/833,267 US20230010864A1 (en) 2021-07-07 2022-06-06 Power supply control apparatus and temperature control method
EP22180703.5A EP4116792B1 (en) 2021-07-07 2022-06-23 Power supply control apparatus and temperature control method
CN202210802299.7A CN115599141A (zh) 2021-07-07 2022-07-07 电源控制设备和温度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021112931A JP7420771B2 (ja) 2021-07-07 2021-07-07 電源制御装置および温度制御方法

Publications (2)

Publication Number Publication Date
JP2023009549A JP2023009549A (ja) 2023-01-20
JP7420771B2 true JP7420771B2 (ja) 2024-01-23

Family

ID=83050080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021112931A Active JP7420771B2 (ja) 2021-07-07 2021-07-07 電源制御装置および温度制御方法

Country Status (4)

Country Link
US (1) US20230010864A1 (ja)
EP (1) EP4116792B1 (ja)
JP (1) JP7420771B2 (ja)
CN (1) CN115599141A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318354A (ja) 2005-05-16 2006-11-24 Funai Electric Co Ltd 電子機器及び電源制御装置
JP2018088775A (ja) 2016-11-29 2018-06-07 三菱電機株式会社 系統連系インバータ装置、発電システムおよび系統連系インバータ装置の制御方法
JP2018207021A (ja) 2017-06-07 2018-12-27 株式会社デンソー 車載制御装置
JP2020088239A (ja) 2018-11-28 2020-06-04 株式会社デンソー 半導体装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833104A (ja) 1994-07-13 1996-02-02 Meidensha Corp 電気自動車用電力変換装置の冷却方法
US5712802A (en) * 1996-04-16 1998-01-27 General Electric Company Thermal protection of traction inverters
JP4789760B2 (ja) * 2006-09-19 2011-10-12 富士通株式会社 電子機器及びラック状装置
US20090116189A1 (en) * 2007-11-06 2009-05-07 Compucase Enterprise Co., Ltd. (Taiwan) Cooling System for a Computer Power Supply Unit
JP2009303394A (ja) * 2008-06-13 2009-12-24 Yazaki Corp 負荷回路の保護装置
EP2325992B1 (en) * 2008-09-11 2019-04-24 Kabushiki Kaisha Yaskawa Denki Inverter device, inverter control system, motor control system and inverter device control method
JP2013252053A (ja) * 2010-02-26 2013-12-12 Yazaki Corp 負荷回路の保護装置
US8482238B2 (en) * 2010-11-30 2013-07-09 Caterpillar Inc. System and method for estimating a generator rotor temperature in an electric drive machine
JP6299368B2 (ja) * 2014-04-18 2018-03-28 日産自動車株式会社 半導体素子温度推定装置
EP3299783B1 (en) * 2016-09-23 2020-11-04 ABB Power Grids Switzerland AG Thermal monitoring of a power device
JP6881840B2 (ja) 2017-04-12 2021-06-02 東芝エネルギーシステムズ株式会社 画像監視装置及び画像監視装置の温度制御方法
CN113544968A (zh) * 2019-03-15 2021-10-22 三菱电机株式会社 控制装置以及控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318354A (ja) 2005-05-16 2006-11-24 Funai Electric Co Ltd 電子機器及び電源制御装置
JP2018088775A (ja) 2016-11-29 2018-06-07 三菱電機株式会社 系統連系インバータ装置、発電システムおよび系統連系インバータ装置の制御方法
JP2018207021A (ja) 2017-06-07 2018-12-27 株式会社デンソー 車載制御装置
JP2020088239A (ja) 2018-11-28 2020-06-04 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
JP2023009549A (ja) 2023-01-20
US20230010864A1 (en) 2023-01-12
CN115599141A (zh) 2023-01-13
EP4116792A1 (en) 2023-01-11
EP4116792B1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
JP5639868B2 (ja) 負荷回路の保護装置
JP3701573B2 (ja) 負荷駆動回路
US10349562B2 (en) Semiconductor power converter
JP5575205B2 (ja) 電動パワーステアリング制御装置および電動パワーステアリング制御方法
JP2007157770A (ja) 電子部品用冷却装置、その温度制御方法及びその温度制御プログラム
KR20180003265A (ko) 다이오드 온도 감지의 자동 보정이 가능한 igbt 온도 감지 회로
KR20060131556A (ko) 온도 감지장치 및 이를 포함하는 컴퓨터
JP7420771B2 (ja) 電源制御装置および温度制御方法
WO2014129052A1 (ja) 温度推定装置および半導体装置
JP6218156B2 (ja) 電力変換装置及び電力変換装置の制御方法
JP5920492B2 (ja) 温度推定装置および半導体装置
JP7083338B2 (ja) スイッチモードにおける半導体スイッチの制御
US20060061339A1 (en) Temperature regulator for a multiphase voltage regulator
JP5776946B2 (ja) 電力供給制御装置
US11765862B2 (en) Thermal management system for electronic components with thermoelectric element
JP2007010436A (ja) 温度推定装置
JP7081523B2 (ja) 電力変換装置
US10707676B2 (en) Electric wire protection device
TW201723447A (zh) 包含一基材及一第一溫度測量元件的半導體構件以及測定流經一半導體構件之電流的方法以及車輛用的控制單元
JP2007322205A (ja) 信頼性試験装置
US20240044724A1 (en) Thermistor self-heating compensation
US20230404645A1 (en) Thermal management of an electrosurgical generator
JP2002148288A (ja) 電流検出装置
US20090295459A1 (en) Temperature control device
JP2002142492A (ja) 負荷制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

R150 Certificate of patent or registration of utility model

Ref document number: 7420771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150