JP7412675B2 - 車両の電源制御装置 - Google Patents

車両の電源制御装置 Download PDF

Info

Publication number
JP7412675B2
JP7412675B2 JP2019177438A JP2019177438A JP7412675B2 JP 7412675 B2 JP7412675 B2 JP 7412675B2 JP 2019177438 A JP2019177438 A JP 2019177438A JP 2019177438 A JP2019177438 A JP 2019177438A JP 7412675 B2 JP7412675 B2 JP 7412675B2
Authority
JP
Japan
Prior art keywords
power
vehicle
engine
storage device
idling stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019177438A
Other languages
English (en)
Other versions
JP2021055577A (ja
Inventor
勇樹 高原
篤 岡本
陽樹 山根
慧 山岡
啓 渡部
郁成 追坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2019177438A priority Critical patent/JP7412675B2/ja
Publication of JP2021055577A publication Critical patent/JP2021055577A/ja
Application granted granted Critical
Publication of JP7412675B2 publication Critical patent/JP7412675B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両の電源制御装置に関し、特に、エンジンの動力により発電を行い、生成された電力を蓄電装置に蓄積する車両の電源制御装置に関する。
特開2005-45883号公報(特許文献1)にはハイブリッド車両が記載されている。このハイブリッド車両に備えられているECU(Engine Control Unit)は、アイドルストップ中に高電圧バッテリの残容量SOCが規定SOC1より小さくなると、電動コンプレッサの出力制限を実行して消費される電力を減少させる。また、残容量SOCが規定SOC2より小さくなると、DC/DCコンバータの出力制限を実行して消費される電力を減少させる。更に残容量SOCが規定SOC3より小さくなると、エンジンを再始動する。また、エンジンを始動できずに、残容量SOCが規定SOC4より小さくなると、メインコンタクタ手段とエアコンコンタクタ手段を切断して、高電圧バッテリの放電を完全に停止する。このように、特許文献1記載のハイブリッド車両では、高電圧バッテリの残容量に基づいて、高電圧バッテリの電気的な負荷を調整し、高電圧バッテリ(蓄電装置)の過放電を回避している。
特開2005-45883号公報
しかしながら、蓄電装置に蓄積されている残容量が、エンジンを再始動するために必要な電力以上であっても、エンジンの再始動性が悪くなり、エンジンの再始動に要する時間が長くなる等の問題が発生する場合がある。
従って、本発明は、アイドリングストップからの十分な再始動性を確保することができる車両の電源制御装置を提供することを目的としている。
上述した課題を解決するために、本発明は、エンジンの動力により発電を行い、生成された電力を蓄電装置に蓄積する車両の電源制御装置であって、エンジンの動力により発電すると共に、エンジンのアイドリングストップからの再始動時において、エンジンの動力軸にトルクを付与する回転電気機械と、この回転電気機械が生成した電力を蓄積すると共に、エンジンの再始動時においては回転電気機械に電力を供給する高電圧蓄電装置と、この高電圧蓄電装置よりも出力電圧が低く、車両に搭載された低電圧電気負荷に電力を供給する低電圧蓄電装置と、高電圧蓄電装置の出力電圧を降圧して、低電圧蓄電装置に充電するDC-DCコンバータと、エンジンのアイドリングストップ、及びDC-DCコンバータを制御する制御ユニットと、を有し、制御ユニットは、所定のアイドリングストップ条件が成立したときは、車両の停車時及び有車速時においてアイドリングストップを実行すると共に、停車時に実行されているアイドリングストップからのエンジンの再始動時には、DC-DCコンバータの作動を停止させて低電圧蓄電装置への充電を中止する一方、有車速時に実行されているアイドリングストップからのエンジンの再始動時には、DC-DCコンバータの作動を継続し、さらに、制御ユニットは、アイドリングストップの実行中においてはDC-DCコンバータを作動させ、低電圧蓄電装置への充電を行う一方、アイドリングストップの実行中に、高電圧蓄電装置の蓄電量が、エンジンの再始動が可能な所定の蓄電量まで低下すると、DC-DCコンバータを停止させ、低電圧蓄電装置への充電を中止することを特徴としている。
このように構成された本発明においては、回転電気機械がエンジンの動力により発電を行い、生成された電力は高電圧蓄電装置に蓄積される。エンジンのアイドリングストップからの再始動時においては、高電圧蓄電装置から供給された電力により、回転電気機械がエンジンの動力軸にトルクを付与して再始動させる。DC-DCコンバータは、高電圧蓄電装置の出力電圧を降圧して、低電圧蓄電装置に充電する。制御ユニットは、車両の停車時及び有車速時にアイドリングストップを実行し、停車時のアイドリングストップからのエンジンの再始動時にはDC-DCコンバータを停止させる一方、有車速時のアイドリングストップからの再始動時には、DC-DCコンバータの作動を継続する。
このように構成された本発明によれば、制御ユニットが、停車時のアイドリングストップからのエンジンの再始動時にはDC-DCコンバータを停止させるので、高電圧蓄電装置からの出力電流はDC-DCコンバータに流れず、回転電気機械に供給される。このため、回転電気機械に十分な電流を供給することが可能になり、エンジンの再始動性を向上させることができる。一方、制御ユニットは、有車速時のアイドリングストップからのエンジンの再始動時にはDC-DCコンバータの作動を継続させるので、走行中において、低電圧蓄電装置から電力が供給される低電圧電気負荷に十分な電流を供給することができる。さらに、有車速時においては、エンジンの再始動に要するトルクが比較的小さいため、DC-DCコンバータの作動を継続しても、再始動性が大きく低下することはなく、十分な再始動性を確保することができる。
このように構成された本発明によれば、アイドリングストップの実行中においてはDC-DCコンバータを作動させ、高電圧蓄電装置の蓄電量が低下すると、低電圧蓄電装置への充電が中止されるので、高電圧蓄電装置の過放電を防止することができる。また、低電圧蓄電装置への充電を中止させる蓄電量は、エンジンの再始動が可能な蓄電量に設定されているので、低電圧蓄電装置への充電により、エンジンが再始動不能になるリスクを軽減することができる。
また、本発明は、エンジンの動力により発電を行い、生成された電力を蓄電装置に蓄積する車両の電源制御装置であって、エンジンの動力により発電すると共に、エンジンのアイドリングストップからの再始動時において、エンジンの動力軸にトルクを付与する回転電気機械と、この回転電気機械が生成した電力を蓄積すると共に、エンジンの再始動時においては回転電気機械に電力を供給する高電圧蓄電装置と、この高電圧蓄電装置よりも出力電圧が低く、車両に搭載された低電圧電気負荷に電力を供給する低電圧蓄電装置と、高電圧蓄電装置の出力電圧を降圧して、低電圧蓄電装置に充電するDC-DCコンバータと、エンジンのアイドリングストップ、及びDC-DCコンバータを制御する制御ユニットと、を有し、制御ユニットは、所定のアイドリングストップ条件が成立したときは、車両の停車時及び有車速時においてアイドリングストップを実行すると共に、停車時に実行されているアイドリングストップからのエンジンの再始動時には、DC-DCコンバータの作動を停止させて低電圧蓄電装置への充電を中止する一方、有車速時に実行されているアイドリングストップからのエンジンの再始動時には、DC-DCコンバータの作動を継続し、さらに、制御ユニットは、高電圧蓄電装置の蓄電量が所定の閾値蓄電量以上である場合にアイドリングストップを実行するように構成されており、有車速時においてアイドリングストップを実行する第1の閾値蓄電量は、停車時においてアイドリングストップを実行する第2の閾値蓄電量よりも高く設定されていることを特徴としている
このように構成された本発明によれば、有車速時においてアイドリングストップを許容する第1の閾値蓄電量が、第2の閾値蓄電量よりも高く設定されているので、有車速時のアイドリングストップは、停車時よりも蓄電量に余裕のある状態で実行される。このため、車両の走行中に必要とされる電力が、アイドリングストップによって不足するリスクを軽減することができる。
本発明において、好ましくは、低電圧蓄電装置から電力が供給される低電圧電気負荷には、車両に搭載されたライト、及び電動パワーステアリングの駆動モータを含む。
このように構成された本発明によれば、有車速時に実行されているアイドリングストップからの再始動時には、DC-DCコンバータが作動され、低電圧蓄電装置への充電が継続される。このため、低電圧蓄電装置から供給されるライトや、電動パワーステアリングへの電力が走行中に不足するのを防止することができる。
本発明において、好ましくは、高電圧蓄電装置は、キャパシタから構成されている。
このように構成された本発明によれば、停車時に実行されているアイドリングストップからの再始動時には、DC-DCコンバータの作動が停止されるので、比較的蓄電量の少ないキャパシタが高電圧蓄電装置として使用された場合でも、十分な再始動性を確保することができる。
本発明の車両の電源制御装置によれば、アイドリングストップからの十分な再始動性を確保することができる。
本発明の実施形態による車両の電源制御装置が適用されたハイブリッド車両の全体構成を概略的に示すブロック図である。 本発明の実施形態による車両の電源制御装置の電気的構成を概略的に示すブロック図である。 本発明の実施形態による車両の電源制御装置の作用を示すフローチャートである。 本発明の実施形態による車両の電源制御装置の作用の一例を示すタイムチャートである。 本発明の実施形態による車両の電源制御装置の作用の一例を示すタイムチャートである。 本発明の実施形態による車両の電源制御装置の作用の一例を示すタイムチャートである。 本発明の実施形態による車両の電源制御装置の作用の一例を示すタイムチャートである。
次に、添付図面を参照して、本発明の実施形態による車両の電源制御装置を説明する。
[装置構成]
まず、本発明の実施形態による車両の電源制御装置に関する装置構成について説明する。図1は、本発明の実施形態による車両の電源制御装置が適用されたハイブリッド車両の全体構成を概略的に示すブロック図である。図1に示すように、ハイブリッド車両1は、エンジン11と、ギヤ駆動式スタータ12と、回転電気機械であるISG(Integrated Starter Generator)13と、高電圧蓄電装置であるキャパシタ14と、DC-DCコンバータ17と、低電圧蓄電装置である鉛蓄電池19と、低電圧電気負荷であるライト20、電動パワーステアリングの駆動モータ21、及びアクセサリ類22と、を有する。
エンジン11は、ハイブリッド車両1の駆動力を発生する内燃機関(ガソリンエンジンやディーゼルエンジン)である。エンジン11の駆動力は、出力軸9、トランスミッション2、減速機3及び駆動軸4を介して、車輪5に伝達される。エンジン11の出力軸9には、ギヤを介してギヤ駆動式スタータ12が連結されている。ギヤ駆動式スタータ12は、ユーザによりイグニッションスイッチ(図示省略)がオンにされると、鉛蓄電池19から供給される電力を用いて、エンジン11を始動する。一方、エンジン11がアイドリングストップから再始動される場合には、キャパシタ14から供給される電力を用いて、ISG13がエンジン11を再始動させる。また、ハイブリッド車両1は、ドライバによるブレーキペダルの操作に応じた制動力を車両1に付与するためのブレーキシステム7を有する。このブレーキシステム7は、例えば電動ブレーキにより構成される。
ISG13は、エンジン11により駆動されて発電する発電機能と、ハイブリッド車両1の駆動力を発生する電動機能と、エンジン11を再始動させる機能と、を備えるモータジェネレータである。ISG13は、ベルト8を介してエンジン11の出力軸9に連結されている。また、ISG13は、キャパシタリレー6aを介して、キャパシタ14に電気的に接続されるようになっている。このキャパシタリレー6aは、キャパシタ14とISG13の接続、非接続を切り替えるリレー装置として機能する。通常走行時にはキャパシタリレー6aは接続状態にされ、キャパシタ14に不具合が生じた場合等に非接続状態に切り替えられる。
さらに、DC-DCコンバータ17には、バイパスリレー6bが並列に接続されている。通常時には、バイパスリレー6bは非接続状態にされており、キャパシタ14はDC-DCコンバータ17を介して鉛蓄電池19に接続されている。また、ライト20等の低電圧電気負荷の消費電力が増大して、ISG13及びキャパシタ14側から鉛蓄電池19に供給すべき電流が増大すると、DC-DCコンバータ17の能力を超える場合がある。このような場合には、バイパスリレー6bが接続状態に切り替えられ、ISG13の発電電流が直接鉛蓄電池19に直接供給される。
また、ISG13は、発電機能により動作する際は、エンジン11の出力軸9と連動して回転するロータを磁界中で回転させることにより発電を行う発電機として機能する。ISG13は、整流器(図示省略)を内蔵しており、この整流器を用いて、発電した交流電力を直流電力に変換する。ISG13の発電により生成された電力は、キャパシタ14に供給されて充電される。他方で、ISG13は、電動機能により動作する際は、キャパシタ14に充電された電力を用いて、ベルト8を介してエンジン11の出力軸9を駆動する。なお、ISG13における発電機能による動作と電動機能による動作との切り替え時などにおいてベルト8のテンションを調整するために、振り子式可変張力テンショナー(デカップリング・オルタネータ・テンショナー)をベルト8に適用するのがよい。
鉛蓄電池19は、直列接続された複数の鉛蓄電池を含む。また、本実施形態においては、キャパシタ14が作動する電圧はDC12.5~25Vであり、鉛蓄電池19の公称電圧はDC12Vである。キャパシタ14は急速な充放電が可能であるが、蓄電可能な容量を大きくすることが困難である。また、キャパシタ14に蓄積されている蓄電量は、キャパシタ14の端子間電圧(キャパシタ14の電圧)に基づいて求めることができ、キャパシタ14の電圧を蓄電量とすることができる。一方、鉛蓄電池19は、化学反応によって電気エネルギーを蓄えるものであるため、急速な充放電には不向きであるが、充電容量を確保し易いため、比較的多量の電力を蓄えることができるという特性を有する。
DC-DCコンバータ17は、キャパシタ14と鉛蓄電池19との間に設けられている。DC-DCコンバータ17は、例えば、内蔵するスイッチング素子のオンオフスイッチングによって入力電圧を変化させて出力する。具体的には、DC-DCコンバータ17は、キャパシタ14の出力電圧を降圧して鉛蓄電池19側へ供給し、鉛蓄電池19に充電する。例えば、DC-DCコンバータ17は、キャパシタ14側から供給されるDC20V程度の電圧をDC12V程度に降圧して鉛蓄電池19側へと出力する。
車両に搭載された低電圧電気負荷であるライト20、電動パワーステアリングの駆動モータ21、アクセサリ類22等は、キャパシタ14の電圧よりも低い、例えばDC12V程度の電圧で動作する電気負荷である。また、低電圧電気負荷には、ISG13の発電により生成されてキャパシタ14に充電され、DC-DCコンバータ17により降圧された電力、及び鉛蓄電池19に充電された電力の少なくともいずれかが供給される。また、低電圧電気負荷には、エアコンや、オーディオ機器なども含まれる。
[車両の電源制御装置の電気的構成]
次に、図2を参照して、本発明の実施形態による車両の電源制御装置の電気的構成を説明する。図2は、本発明の実施形態による車両の電源制御装置の電気的構成を概略的に示すブロック図である。
本実施形態においては、ハイブリッド車両1は、図2に示すような制御ユニットである制御器10によって制御される。この制御器10は、1つ以上のプロセッサ、当該プロセッサ上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及びプログラムや各種のデータを記憶するためのROMやRAMの如き内部メモリを備えるコンピュータにより構成される。
具体的には、図2に示すように、制御器10は、主に、車速センサ30、アクセル開度センサ34、ブレーキセンサ35、蓄電量センサであるキャパシタ電圧センサ36、及びコンバータ出力電流センサ18のそれぞれによって検出されたパラメータに対応する検出信号が入力される。車速センサ30は、ハイブリッド車両1の車速を検出する。アクセル開度センサ34は、運転者によるアクセルペダル(図示せず)の踏込量を検出する。ブレーキセンサ35は、運転者によるブレーキペダル(図示せず)の踏込量を検出する。キャパシタ電圧センサ36は、キャパシタ14の蓄電量を求めるために、キャパシタ14の端子間電圧を検出する。
コンバータ出力電流センサ18は、DC-DCコンバータ17から出力される電流を検出する。このコンバータ出力電流センサ18には、DC-DCコンバータ17から鉛蓄電池19、低電圧電気負荷等に供給される電流が流れ、これらの電流の合計値を測定することができる。
また、制御器10は、上述した各センサ18、30、34、35、36からの検出信号に基づき、ISG13、DC-DCコンバータ17、ギヤ駆動式スタータ12、キャパシタリレー6a、バイパスリレー6b、及び低電圧電気負荷のそれぞれに対して制御信号を出力する。こうして、制御器10は、ISG13の発電動作及び電動動作と、DC-DCコンバータ17による降圧動作と、低電圧電気負荷及びギヤ駆動式スタータ12の駆動及び停止と、リレー6a、6bのオンオフと、を制御する。
典型的には、制御器10は、燃費の改善などを目的としてハイブリッド車両1の運転状態に応じて規定された複数の制御を、少なくともISG13を用いて実行するよう構成されている。この複数の制御は、ハイブリッド車両1が加速するときに、ISG13から動力を発生させてエンジン11による加速をアシストするための加速アシスト制御と、ハイブリッド車両1が減速するときに、ISG13を回生発電させる減速回生制御と、ハイブリッド車両1が停止したときにエンジン11を自動停止させ、この後にハイブリッド車両1が発進するときにISG13から動力を発生させてエンジン11を再始動させるアイドリングストップ制御と、を含む。
更に、制御器10は、低電圧電気負荷のそれぞれを動作させるための制御を行う。具体的には、制御器10は、低電圧電気負荷を動作させる場合には、キャパシタ14に充電され、DC-DCコンバータ17によって降圧された電力、及び鉛蓄電池19に充電された電力の少なくともいずれかを各低電圧電気負荷に供給するための制御を行う。
なお、本発明の実施形態による「車両の電源制御装置」は、主に、「回転電気機械」としてのISG13と、「高電圧蓄電装置」としてのキャパシタ14と、「低電圧蓄電装置」としての鉛蓄電池19と、DC-DCコンバータ17と、「制御ユニット」としての制御器10と、によって構成される。
[車両の電源制御装置の作用]
次に、図3乃至図7を参照して、本発明の実施形態による車両の電源制御装置の作用を説明する。
図3は、本発明の実施形態による車両の電源制御装置の作用を示すフローチャートである。図4乃至図7は、本発明の実施形態による車両の電源制御装置の作用の一例を示すタイムチャートである。なお、図4乃至図7のタイムチャートは、上段から順に、車速、エンジン回転数、キャパシタ14の端子間電圧、DC-DCコンバータ17の作動/停止を時系列で示している。また、図3に示すフローチャートによる処理は、ハイブリッド車両1の作動中、制御器10において、所定の時間間隔で繰り返し実行される。
まず、図3のステップS1においては、センサからの各種信号が、制御器10に読み込まれる。ステップS1において読み込まれる信号には、車速センサ30、アクセル開度センサ34、ブレーキセンサ35、キャパシタ電圧センサ36、及びコンバータ出力電流センサ18からの信号が含まれている。なお、車速センサ30はハイブリッド車両1の車速に関する信号を出力する。アクセル開度センサ34はアクセルペダル(図示せず)の踏込量に関する信号を出力し、ブレーキセンサ35はブレーキペダル(図示せず)の踏込量に関する信号を出力する。また、キャパシタ電圧センサ36は、キャパシタ14の端子間電圧に関する信号を出力し、コンバータ出力電流センサ18は、DC-DCコンバータ17の出力電流に関する信号を出力する。
次に、ステップS2においては、ステップS1において読み込まれた信号に基づいて、所定のアイドリングストップ条件が成立しているか否かが判断される。アイドリングストップ条件が成立している場合にはステップS3に進み、成立していない場合にはステップS7に進む。具体的には、ステップS2において、アイドリングストップ条件は、車速センサ30、アクセル開度センサ34、ブレーキセンサ35、及びキャパシタ電圧センサ36の検出信号に基づいて判断される。これらのセンサの検出信号に基づいて、ハイブリッド車両1が停車していると判断されるとき、又はハイブリッド車両1が直後に停車すると予想されるときは、基本的には、アイドリングストップ条件が成立していると判断される。また、ハイブリッド車両1が停車していると判断された場合には、停車時のアイドリングストップ(停車アイドリングストップ)が実行され、直後に停車すると予想された場合には、有車速時のアイドリングストップ(有車速アイドリングストップ)が実行される。
しかしながら、ハイブリッド車両1が停車、又は直後に停車すると判断された場合であっても、キャパシタ14の蓄電量が所定の蓄電量未満である場合には、アイドリングストップ条件が成立したとは判断されない。即ち、制御器10は、キャパシタ電圧センサ36の検出電圧に基づいてキャパシタ14の蓄電量を推定し、この蓄電量が所定の閾値蓄電量未満である場合には、アイドリングストップは実行されない。これにより、キャパシタ14の蓄電量が少ない状態でアイドリングストップが実行され、再始動時にキャパシタ14からISG13に供給する電力が不足するのを防止している。なお、キャパシタ14の蓄電量は、キャパシタ14の端子間電圧から容易に換算できるので、蓄電量に関する閾値を、電圧値で設定しても良い。
ここで、ハイブリッド車両1が直後に停車すると予想された場合には、閾値蓄電量として、第1の閾値蓄電量が適用され、停車していると判断された場合には、第2の閾値蓄電量が適用される。本実施形態においては、ハイブリッド車両1がまだ停車していない有車速時に適用される第1の閾値蓄電量は、停車時に適用される第2の閾値蓄電量よりも大きく設定されている。このため、有車速時においては、停車時よりも多くの電力がキャパシタ14に充電されている状態でなければ、アイドリングストップは実行されない。また、第1の閾値蓄電量よりも小さい第2の閾値蓄電量についても、上記のように、アイドリングストップからの再始動時において、ISG13に十分な電力を供給可能な蓄電量に設定されている。
ステップS2においてアイドリングストップ条件が成立していると判断されると、ステップS3において、アイドリングストップFlagの値が「1」に設定されると共に、アイドリングストップによりエンジン11を停止させる。このアイドリングストップFlagの値は、エンジン11がアイドリングストップにより停止している間は「1」に維持される。
図4に示すタイムチャートの例では、時刻t1においてハイブリッド車両1が減速を始め、時刻t2において、車速センサ30の検出値が3[km/h]未満となり、停車したと判断されている。なお、車速センサにより車速=0を精度良く検出することは、一般に困難であるため、本実施形態においては、検出値が3[km/h]未満となったとき、停車したと判断している。また、時刻t2においては、キャパシタ14の蓄電量が第2の閾値蓄電量を超えているため、停車アイドリングストップ条件が成立している。このため、時刻t2において、停車アイドリングストップが実行され、エンジン11の回転数が低下する。
次に、ステップS4においては、キャパシタ電圧センサ36による検出電圧が所定電圧α以上であるか否かが判断され、所定電圧以上である場合にはステップS5に進み、所定電圧未満である場合にはステップS6に進む。なお、所定電圧αに対応するキャパシタ14の蓄電量は、上記の第2の閾値蓄電量よりも少なく、且つ、アイドリングストップからの再始動時において、ISG13に十分な電力を供給可能な蓄電量に相当する。また、ステップS4において、所定電圧αに代えて、所定電圧αに対応する所定の蓄電量に基づいて、判断を行うこともできる。
ステップS5においては、キャパシタ14の電圧が所定電圧α以上であるため、DC-DCコンバータ17の作動が継続され、図3に示すフローチャートの1回の処理を終了する。これにより、キャパシタ14の出力電圧がDC-DCコンバータ17によって降圧され、鉛蓄電池19への充電が行われる。図4に示す例では、時刻t2において停車アイドリングストップ条件が成立したとき、キャパシタ14の電圧が所定電圧α以上であるため、DC-DCコンバータ17の作動が継続されている。これにより、キャパシタ14から放電され、DC-DCコンバータ17によって降圧された電力が鉛蓄電池19に充電されるため、時刻t2の後、キャパシタ14の電圧が低下する。この間、図3に示すフローチャートにおいては、ステップS1→S2→S3→S4→S5→リターンの処理が繰り返し実行される。
次に、図4の時刻t3において、例えば、運転者がアクセルペダルを踏み込むことにより、アイドリングストップ条件が成立しなくなると、図3のフローチャートにおける処理は、ステップS2→S7へ進む。
ステップS7においては、アイドリングストップFlagの値が「1」であるか否かが判断される。即ち、図3のフローチャートが前回実行された時、アイドリングストップ条件が成立しており、ステップS3以下の処理が実行されていた場合には、アイドリングストップFlagの値は「1」にされている。この場合には、アイドリングストップFlagの値が「1」であるため、ステップS8以下の処理が実行される。
ステップS8においては、アイドリングストップFlagの値が「0」にリセットされる。さらに、ステップS9においては、制御器10は、ISG13に制御信号を送って、ISG13を回転駆動し、エンジン11の動力軸である出力軸9にトルクを付与する。
次いで、ステップS10においては、図3のフローチャートが前回実行された時に実行されていたアイドリングストップが、停車アイドリングストップであったか否かが判断される。停車アイドリングストップであった場合にはステップS11に進み、有車速アイドリングストップであった場合にはステップS12に進む。さらに、ステップS11においては、制御器10は、DC-DCコンバータ17に制御信号を送り、これの作動を所定期間停止させ、図3のフローチャートの1回の処理を終了する。
図4に示す例においては、時刻t3で再始動が行われると、図3のフローチャートにおいてステップS2→S7に処理が進むようになる。次いで、ステップS8でアイドリングストップFlagの値が「0」にリセットされ、ステップS9でISG13がエンジン11にトルクを付与して再始動が行われる。さらに、時刻t2~t3におけるアイドリングストップは停車アイドリングストップであったため、図3のフローチャートにおいてはステップS10→S11に処理が進む。これにより、ステップS11の処理が実行され、DC-DCコンバータ17の作動が図4の時刻t3~t4の間停止される。
また、図4に示すように、時刻t3の再始動時においては、キャパシタ14からISG13に電流が流れるため、キャパシタ14の電圧は急激に低下している。しかしながら、ISG13への電流供給開始と共に、DC-DCコンバータ17の作動が停止されることにより、キャパシタ14からDC-DCコンバータ17へ流れる電流がなくなるため、キャパシタ14電圧の落ち込みは比較的小さくされている。これにより、キャパシタ14からISG13へ供給可能な電流が大きくなり、エンジン11の再始動性が向上する。
さらに、再始動によりエンジン11の回転数が上昇した後、時刻t4において、DC-DCコンバータ17の作動が再開される。時刻t4の後は、アイドリングストップ条件は成立しておらず、アイドリングストップFlagの値が「0」にリセットされているため、図3のフローチャートにおいては、ステップS1→S2→S7→S12→リターンの処理が繰り返される。
次に、図5を参照して、本発明の実施形態による車両の電源制御装置の他の作動例を説明する。
まず、図5の時刻t11においてハイブリッド車両1が減速を開始し、時刻t12において車速が3[km/h]未満に低下する。しかしながら、時刻t12におけるキャパシタ14の電圧は、第2の閾値蓄電量に対応する電圧よりも低いため、停車アイドリングストップ条件は成立しない。このため、図3のフローチャートにおいては、時刻t12の後もステップS1→S2→S7→S12→リターンの処理が繰り返される。このように、キャパシタ14の蓄電量が少ない(電圧が低い)状態では、アイドリングストップを実行すると、エンジン11の再始動時にISG13に十分な電力を供給することができず、再始動不能となる虞があるため、ハイブリッド車両1が停車してもアイドリングストップは実行されない。このため、時刻t12にハイブリッド車両1が停車した後、時刻t13に発車するまでアイドリングストップは実行されず、DC-DCコンバータ17の作動も継続される。
次に、図6を参照して、本発明の実施形態による車両の電源制御装置のさらに別の作動例を説明する。
まず、図6の時刻t21においてハイブリッド車両1が減速を開始し、時刻t22において車速が3[km/h]未満に低下する。時刻t22において、キャパシタ14の電圧は、第2の閾値蓄電量に対応する電圧以上であるため、停車アイドリングストップ条件が成立し、エンジン11が停止される。これにより、図3のフローチャートにおいては、時刻t22の後、ステップS1→S2→S3→S4→S5→リターンの処理が繰り返される。即ち、エンジン11が停止されると共に、DC-DCコンバータ17の作動は継続される。このため、キャパシタ14から放電された電力がDC-DCコンバータ17によって降圧され、鉛蓄電池19に充電されるので、キャパシタ14の電圧が低下する。
次いで、時刻t23において、キャパシタ14の電圧が所定電圧αまで低下すると、図3のフローチャートにおける処理は、ステップS4→S6へ進むようになる。これにより、図3のフローチャートにおいては、時刻t23の後、ステップS1→S2→S3→S4→S6→リターンの処理が繰り返されるようになり、ステップS6の処理により、DC-DCコンバータ17の作動が停止される。このように、アイドリングストップ中にキャパシタ14の蓄電量が所定の蓄電量(所定電圧α)まで低下した場合には、DC-DCコンバータ17の作動が停止され、キャパシタ14の蓄電量の低下が抑制される。これにより、再始動時に必要な電力を確実に確保しておくことができる。
さらに、図6の例では、時刻t24において再始動が行われ、これに伴い、引き続き時刻t24~t25の間、DC-DCコンバータ17の作動が停止される。即ち、図3のフローチャートにおいては、ステップS1→S2→S7→S8→S9→S10→S11→リターンの処理が実行される。これにより、ISG13の駆動時にDC-DCコンバータ17へ流れる電流を止めることができ、十分な駆動力でエンジン11を再始動させることができる。さらに、時刻t25の後は、ステップS1→S2→S7→S12→リターンの処理が繰り返される。
次に、図7を参照して、本発明の実施形態による車両の電源制御装置のさらに別の作動例を説明する。
まず、図7の時刻t31においてハイブリッド車両1が減速を開始し、時刻t32において車速が10[km/h]未満に低下し、ハイブリッド車両1が直後に停車することが予想される。さらに、車速が10[km/h]まで低下した時刻t32の時点において、キャパシタ14の電圧は、第1の閾値蓄電量に対応する電圧以上であるため、有車速アイドリングストップ条件が成立する。このため、停車していない有車速の状態でエンジン11が停止される。これにより、図3のフローチャートにおいては、時刻t32の後、ステップS1→S2→S3→S4→S5→リターンの処理が繰り返される。即ち、エンジン11が停止されると共に、DC-DCコンバータ17の作動は継続される。このため、キャパシタ14から放電された電力がDC-DCコンバータ17によって降圧され、鉛蓄電池19に充電されるので、キャパシタ14の電圧が低下する。
さらに、時刻t33においては、有車速でアイドリングストップが実行されている状態で(車速が3[km/h]まで低下しない状態で)、運転者がアクセルペダル(図示せず)を踏み込んだため、アイドリングストップが成立しなくなっている。これにより、図3のフローチャートにおいては、ステップS1→S2→S7→S8→S9の処理が実行され、ISG13が駆動され、再始動が行われる。次いで、ステップS10においては、実行されていたアイドリングストップが停車アイドリングストップであるか否かが判断される。ここで、時刻t33まで実行されていたアイドリングストップは、有車速アイドリングストップであるため、図3のフローチャートにおける処理は、ステップS10→S12に移行する。ステップS12においては、DC-DCコンバータ17の作動が継続され、図3のフローチャートの1回の処理を終了する。
このように、有車速アイドリングストップからエンジン11が再始動される場合には、DC-DCコンバータ17の作動は停止されず、DC-DCコンバータ17による降圧、鉛蓄電池19への充電が継続される。これにより、走行状態(有車速状態)において、DC-DCコンバータ17の作動が停止されることにより、ライト20等の低電圧電気負荷への電力供給が不足するのを防止している。また、有車速アイドリングストップからのエンジン11の再始動は、ハイブリッド車両1が走行状態にあるため、ISG13に要求されるトルクが比較的小さい。このため、DC-DCコンバータ17の作動を継続しても、ISG13に供給する電力が不足するリスクは小さく、再始動性に与える影響は殆どない。
次いで、時刻t33においてエンジン11が再始動された後は、図3のフローチャートにおいては、ステップS1→S2→S7→S12→リターンの処理が繰り返し実行される。
本発明の実施形態の車両の電源制御装置によれば、制御器10が、停車時のアイドリングストップからのエンジン11の再始動時にはDC-DCコンバータ17を停止させる(図3のステップS11、図4の時刻t3~t4)ので、高電圧蓄電装置であるキャパシタ14からの出力電流はDC-DCコンバータ17に流れず、回転電気機械であるISG13に供給される。このため、ISG13に十分な電流を供給することが可能になり、エンジン11の再始動性を向上させることができる。一方、制御器10は、有車速時のアイドリングストップからのエンジンの再始動時(図3のステップS10→S12、図7の時刻t33)にはDC-DCコンバータ17の作動を継続させるので、走行中において、低電圧蓄電装置である鉛蓄電池19から電力が供給される低電圧電気負荷(ライト20等)に十分な電流を供給することができる。さらに、有車速時においては、エンジン11の再始動に要するトルクが比較的小さいため、DC-DCコンバータ17の作動を継続しても、再始動性が大きく低下することはなく、十分な再始動性を確保することができる。
また、本実施形態の車両の電源制御装置によれば、アイドリングストップの実行中においてはDC-DCコンバータ17を作動させ、キャパシタ14の蓄電量が低下すると(図3のステップS4→S6、図6の時刻t23)、鉛蓄電池19への充電が中止されるので、キャパシタ14の過放電を防止することができる。また、鉛蓄電池19への充電を中止させる蓄電量(キャパシタ14の電圧αに相当する蓄電量)は、エンジン11の再始動が可能な蓄電量に設定されているので、鉛蓄電池19への充電により、エンジン11が再始動不能になるリスクを軽減することができる。
さらに、本実施形態の車両の電源制御装置によれば、有車速時においてアイドリングストップを許容する第1の閾値蓄電量が、第2の閾値蓄電量よりも高く設定されている(図7)ので、有車速時のアイドリングストップは、停車時よりも蓄電量に余裕のある状態で実行される。このため、ハイブリッド車両1の走行中に必要とされる電力が、アイドリングストップによって不足するリスクを軽減することができる。
また、上記のように、有車速時に実行されているアイドリングストップからの再始動時には、DC-DCコンバータ17が作動され(図3のステップS12、図7の時刻t33~)、鉛蓄電池19への充電が継続される。このため、鉛蓄電池19から供給されるライト20や、電動パワーステアリングの駆動モータ21への電力が走行中に不足するのを防止することができる。
さらに、本実施形態の車両の電源制御装置によれば、停車時に実行されているアイドリングストップからの再始動時には、DC-DCコンバータ17の作動が停止される(図3のステップS11、図4の時刻t3~t4)ので、比較的蓄電量の少ないキャパシタ14が高電圧蓄電装置として使用されていても、十分な再始動性を確保することができる。
以上、本発明の好ましい実施形態を説明したが、上述した実施形態に種々の変更を加えることができる。特に、上述した実施形態においては、本発明をハイブリッド車両に適用していたが、エンジンを備えた種々の車両に本発明を適用することができる。また、上述した実施形態においては、高電圧蓄電装置としてキャパシタが使用され、低電圧蓄電装置として鉛蓄電池が使用されていたが、高電圧蓄電装置、及び低電圧蓄電装置には、リチウムイオンバッテリ等、任意の蓄電装置を使用することができる。
1 ハイブリッド車両
2 トランスミッション
3 減速機
4 駆動軸
5 車輪
6a キャパシタリレー
6b バイパスリレー
7 ブレーキシステム
8 ベルト
9 出力軸(動力軸)
10 制御器(制御ユニット)
11 エンジン
12 ギヤ駆動式スタータ
13 ISG(回転電気機械)
14 キャパシタ(高電圧蓄電装置)
17 DC-DCコンバータ
18 コンバータ出力電流センサ
19 鉛蓄電池(低電圧蓄電装置)
20 ライト(低電圧電気負荷)
21 電動パワーステアリングの駆動モータ(低電圧電気負荷)
22 アクセサリ類(低電圧電気負荷)
30 車速センサ
34 アクセル開度センサ
35 ブレーキセンサ
36 キャパシタ電圧センサ

Claims (4)

  1. エンジンの動力により発電を行い、生成された電力を蓄電装置に蓄積する車両の電源制御装置であって、
    エンジンの動力により発電すると共に、上記エンジンのアイドリングストップからの再始動時において、上記エンジンの動力軸にトルクを付与する回転電気機械と、
    この回転電気機械が生成した電力を蓄積すると共に、上記エンジンの再始動時においては上記回転電気機械に電力を供給する高電圧蓄電装置と、
    この高電圧蓄電装置よりも出力電圧が低く、車両に搭載された低電圧電気負荷に電力を供給する低電圧蓄電装置と、
    上記高電圧蓄電装置の出力電圧を降圧して、上記低電圧蓄電装置に充電するDC-DCコンバータと、
    上記エンジンのアイドリングストップ、及び上記DC-DCコンバータを制御する制御ユニットと、
    を有し、
    上記制御ユニットは、所定のアイドリングストップ条件が成立したときは、車両の停車時及び有車速時においてアイドリングストップを実行すると共に、停車時に実行されているアイドリングストップからの上記エンジンの再始動時には、上記DC-DCコンバータの作動を停止させて上記低電圧蓄電装置への充電を中止する一方、有車速時に実行されているアイドリングストップからの上記エンジンの再始動時には、上記DC-DCコンバータの作動を継続し、さらに、
    上記制御ユニットは、アイドリングストップの実行中においては上記DC-DCコンバータを作動させ、上記低電圧蓄電装置への充電を行う一方、アイドリングストップの実行中に、上記高電圧蓄電装置の蓄電量が、上記エンジンの再始動が可能な所定の蓄電量まで低下すると、上記DC-DCコンバータを停止させ、上記低電圧蓄電装置への充電を中止することを特徴とする車両の電源制御装置。
  2. エンジンの動力により発電を行い、生成された電力を蓄電装置に蓄積する車両の電源制御装置であって、
    エンジンの動力により発電すると共に、上記エンジンのアイドリングストップからの再始動時において、上記エンジンの動力軸にトルクを付与する回転電気機械と、
    この回転電気機械が生成した電力を蓄積すると共に、上記エンジンの再始動時においては上記回転電気機械に電力を供給する高電圧蓄電装置と、
    この高電圧蓄電装置よりも出力電圧が低く、車両に搭載された低電圧電気負荷に電力を供給する低電圧蓄電装置と、
    上記高電圧蓄電装置の出力電圧を降圧して、上記低電圧蓄電装置に充電するDC-DCコンバータと、
    上記エンジンのアイドリングストップ、及び上記DC-DCコンバータを制御する制御ユニットと、
    を有し、
    上記制御ユニットは、所定のアイドリングストップ条件が成立したときは、車両の停車時及び有車速時においてアイドリングストップを実行すると共に、停車時に実行されているアイドリングストップからの上記エンジンの再始動時には、上記DC-DCコンバータの作動を停止させて上記低電圧蓄電装置への充電を中止する一方、有車速時に実行されているアイドリングストップからの上記エンジンの再始動時には、上記DC-DCコンバータの作動を継続し、さらに、
    上記制御ユニットは、上記高電圧蓄電装置の蓄電量が所定の閾値蓄電量以上である場合にアイドリングストップを実行するように構成されており、有車速時においてアイドリングストップを実行する第1の閾値蓄電量は、停車時においてアイドリングストップを実行する第2の閾値蓄電量よりも高く設定されていることを特徴とする車両の電源制御装置。
  3. 上記低電圧蓄電装置から電力が供給される低電圧電気負荷には、車両に搭載されたライト、及び電動パワーステアリングの駆動モータを含む請求項1又は2に記載の車両の電源制御装置。
  4. 上記高電圧蓄電装置は、キャパシタから構成されている請求項1又は2に記載の車両の電源制御装置。
JP2019177438A 2019-09-27 2019-09-27 車両の電源制御装置 Active JP7412675B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019177438A JP7412675B2 (ja) 2019-09-27 2019-09-27 車両の電源制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019177438A JP7412675B2 (ja) 2019-09-27 2019-09-27 車両の電源制御装置

Publications (2)

Publication Number Publication Date
JP2021055577A JP2021055577A (ja) 2021-04-08
JP7412675B2 true JP7412675B2 (ja) 2024-01-15

Family

ID=75270213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019177438A Active JP7412675B2 (ja) 2019-09-27 2019-09-27 車両の電源制御装置

Country Status (1)

Country Link
JP (1) JP7412675B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070103A (ja) 2001-08-24 2003-03-07 Toyota Motor Corp ハイブリッド車の制御装置
JP2004084515A (ja) 2002-08-26 2004-03-18 Honda Motor Co Ltd 車両制御装置
JP2011230679A (ja) 2010-04-28 2011-11-17 Mitsubishi Electric Corp アイドルストップ車の電力制御装置
WO2013042717A1 (ja) 2011-09-21 2013-03-28 ダイムラー・アクチェンゲゼルシャフト ハイブリッド電気自動車の電源制御装置および制御方法
JP2016103907A (ja) 2014-11-28 2016-06-02 富士通テン株式会社 車両用電源装置
JP2017116019A (ja) 2015-12-25 2017-06-29 いすゞ自動車株式会社 エンジンの再始動制御システム、ハイブリッド車両及びエンジンの再始動制御方法
JP2017131106A (ja) 2012-09-11 2017-07-27 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited 車の電気システムの制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070103A (ja) 2001-08-24 2003-03-07 Toyota Motor Corp ハイブリッド車の制御装置
JP2004084515A (ja) 2002-08-26 2004-03-18 Honda Motor Co Ltd 車両制御装置
JP2011230679A (ja) 2010-04-28 2011-11-17 Mitsubishi Electric Corp アイドルストップ車の電力制御装置
WO2013042717A1 (ja) 2011-09-21 2013-03-28 ダイムラー・アクチェンゲゼルシャフト ハイブリッド電気自動車の電源制御装置および制御方法
JP2017131106A (ja) 2012-09-11 2017-07-27 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited 車の電気システムの制御方法
JP2016103907A (ja) 2014-11-28 2016-06-02 富士通テン株式会社 車両用電源装置
JP2017116019A (ja) 2015-12-25 2017-06-29 いすゞ自動車株式会社 エンジンの再始動制御システム、ハイブリッド車両及びエンジンの再始動制御方法

Also Published As

Publication number Publication date
JP2021055577A (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
US8467924B2 (en) Control apparatus and control method for hybrid vehicle
JP6465907B2 (ja) 車両用電源システム
JP3750608B2 (ja) 車両における蓄電装置の制御装置
JP3568840B2 (ja) ハイブリッド車両の制御装置
JP6003743B2 (ja) 電源装置
GB2536559A (en) Apparatus and method to maximize vehicle functionality and fuel economy with improved drivability during engine auto stop-start operations
GB2406362A (en) A system and method for controlling starting and stopping, in particular standby mode, of a hybrid vehicle engine
JP5598555B2 (ja) 車両および車両用制御方法
JP2014012998A (ja) アイドルストップ付きエンジン搭載車の電源装置
JP7128661B2 (ja) バッテリ診断装置
JP2018131040A (ja) 車両用制御装置
CN109109668A (zh) 车辆用控制装置
JP2020089031A (ja) 車両の電源制御装置
JP6346397B2 (ja) 車両制御装置
JP6221659B2 (ja) 車両用電源装置
JP6560713B2 (ja) 車両用電源装置
JP7373113B2 (ja) 車両用電源制御装置
JP7412675B2 (ja) 車両の電源制御装置
JP7373114B2 (ja) 車両用電源制御装置
JP2020089038A (ja) 車両の電源制御装置
JP7114026B2 (ja) 車両の電源制御装置
JP7254267B2 (ja) ハイブリッド車両の制御装置
JP7369350B2 (ja) 車両の電源制御装置
CN110884351A (zh) 车辆用电源装置
JP4285638B2 (ja) 車両の充電制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231210

R150 Certificate of patent or registration of utility model

Ref document number: 7412675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150