JP7404056B2 - 非水系電解液及び非水系電解液二次電池 - Google Patents

非水系電解液及び非水系電解液二次電池 Download PDF

Info

Publication number
JP7404056B2
JP7404056B2 JP2019225839A JP2019225839A JP7404056B2 JP 7404056 B2 JP7404056 B2 JP 7404056B2 JP 2019225839 A JP2019225839 A JP 2019225839A JP 2019225839 A JP2019225839 A JP 2019225839A JP 7404056 B2 JP7404056 B2 JP 7404056B2
Authority
JP
Japan
Prior art keywords
less
negative electrode
active material
aqueous electrolyte
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019225839A
Other languages
English (en)
Other versions
JP2020098778A (ja
Inventor
英司 中澤
和矢 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2020098778A publication Critical patent/JP2020098778A/ja
Priority to JP2023083925A priority Critical patent/JP7458534B2/ja
Application granted granted Critical
Publication of JP7404056B2 publication Critical patent/JP7404056B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水系電解液、及び非水系電解液二次電池に関し、詳しくは特定の化合物を特定量含有する非水系電解液、及びこの非水系電解液を用いた非水系電解液二次電池に関する。
スマートフォン等の携帯電話、ノートパソコン等のいわゆる民生用の小型機器用の電源や、電気自動車用等の駆動用車載電源等の広範な用途において、リチウム二次電池等の非水系電解液二次電池が実用化されている。
しかし、金属イオンを吸蔵及び放出可能な、Liと合金化可能な金属と黒鉛とを含有する負極活物質を含む負極を用いると、充放電を繰り返すことで負極の厚みが膨化することにより電池が膨れてしまうという問題点があった。
非水系電解液二次電池の電池特性を改善する手段として、正極や負極の活物質、非水系電解液の添加剤分野において数多くの検討がなされている。
例えば、特許文献1及び特許文献6には、非水系電解液に特定ケイ素化合物を含有させることにより、電池の内部抵抗を低減させる検討が開示されている。
特許文献2には、非水系電解液に特定シラン化合物を含有させることにより、非水電解液の遊離酸量を抑制する検討が開示されている。
特許文献3には、非水系電解液に特定ケイ素化合物を含有させることにより、サイクル容量維持率を改善する検討が開示されている。
特許文献4には、正極にコバルト酸リチウム、負極に炭素活物質、電解液にアルキル(トリメチルシリル)アセテート化合物を含有する非水系電解液を用いることにより、初期容量、サイクル特性を改善する検討が開示されている。
特許文献5には、非水系電解液にアルキル(トリメチルシリル)アセテート化合物を含有させることにより、非水電解液中の水分、及びハロゲン化水素を捕捉する検討が開示されている。
特開平3-236168号公報 特開2001-307772号公報 特開昭62-211873号公報 特開2002-313416号公報 特開2004-206907号公報 特開平3-236169号公報
近年、電気自動車の車載用途電源や、スマートフォン等の携帯電話用電源等にリチウム二次電池の高容量化が加速されており、負極には炭素と比較して活物質重量当たりの容量が大きいケイ素系活物質の導入が検討されている。負極活物質に炭素とケイ素化合物とを組み合わせて用いた時、充放電を繰り返すことで負極の厚みが膨化することにより、電池が膨れてしまうという問題点があった。このため、充放電に伴う負極の膨化を抑制することが重要である。
しかしながら、本発明者等の検討によれば、特許文献1に開示された不飽和結合を少なくとも2つ以上含む特定ケイ素化合物を含む電解液を用いると、金属イオンを吸蔵及び放出可能な、Liと合金化可能な金属と黒鉛と、を含有する負極活物質を含む負極の充放電時の電池の厚み抑制には課題があった。
上記特許文献1~6には、アルキル(トリメチルシリル)アセテート化合物に代表される特定ケイ素化合物を非水系電解液に添加することにより、サイクル容量維持率の改善や電解液中の遊離酸分を捕捉する検討がなされているが、金属イオンを吸蔵及び放出可能な、Liと合金化可能な金属と黒鉛と、を含有する負極活物質を含む負極の充放電時の電池の厚み抑制に関することは何ら開示されておらず、電極の膨れに関しては依然として課題があった。
本発明者は、上記課題を解決すべく鋭意検討した結果、特定のケイ素化合物を含有する非水系電解液を用いることにより、金属イオンを吸蔵及び放出可能な、Liと合金化可能な金属と黒鉛と、を含有する負極活物質を含む負極の充放電時の電極膨れを抑制できることを見出し、本発明に到達した。
すなわち、本発明は、以下[1]~[14]に示す具体的態様等を提供する。
[1] 金属イオンを吸蔵及び放出可能な正極と、
金属イオンを吸蔵及び放出可能な、Liと合金化可能な金属系材料と、黒鉛と、を含有する負極活物質を含む負極と、
非水系溶媒と該非水系溶媒に溶解される電解質とを含む非水系電解液とを備える非水系電解液二次電池に用いられる非水系電解液であって、
前記非水系電解液が下記条件(i)あるいは(ii)を満たす非水系電解液。
条件(i):トポロジカル極性表面積(TPSA)値が0平方オングストロームより大きく、45平方オングストローム以下であり、且つ、下記一般式(A)で表される化合物を少なくとも一種含有する。
Figure 0007404056000001
(前記一般式(A)で表される構造を有する化合物において、R~Rは、それぞれ独立に、F以外の置換基である。ただし、R~Rの任意の置換基が結合して環を形成していてもよい。)
条件(ii):TPSA値が0平方オングストロームであり、且つ、下記一般式(B)で表される化合物を少なくとも一種含有する。
Figure 0007404056000002
(前記一般式(B)で表される構造を有する化合物において、R~Rは、それぞれ独立に、F以外の置換基である。また、nは1~10の整数値を示す。)
[2] 前記条件(i)が条件(iii)である、前記[1]に記載の非水系電解液。
条件(iii):トポロジカル極性表面積(TPSA)値が10平方オングストローム以上、40平方オングストローム以下であり、且つ、下記一般式(A)で表される化合物を少なくとも一種含有する。
Figure 0007404056000003
(前記一般式(A)で表される構造を有する化合物において、R~Rは、それぞれ独立に、F以外の置換基である。ただし、R~Rの任意の置換基が結合して環を形成していてもよい。)
[3] 前記一般式(A)で表される化合物が下記一般式(a)で表される化合物である、前記[1]または[2]に記載の非水系電解液。
Figure 0007404056000004
(前記一般式(a)中、R~Rは、それぞれ独立に、ハロゲン原子で置換されていてもよい炭素数1~20の炭化水素基であり、かつ、該炭化水素において、少なくとも1つの炭素原子が酸素原子、窒素原子、硫黄原子で置換されていてもよく、Xは炭素数1~10のアルキレン基であり、かつ、該アルキレン基において、少なくとも1つの炭素原子が酸素原子、窒素原子、硫黄原子で置換されていてもよく、Yはシアノ基、チオール基及び下記一般式(1)で表される基からなる群から選択される構造を示す。)
Figure 0007404056000005
(前記一般式(1)中、Rは、ハロゲン原子で置換されていてもよい炭素数1~20の炭化水素基を示す。)
[4] 前記Liと合金化可能な金属系材料がSi、Sn、As、Sb、Al、Zn及びWからなる群より選ばれる少なくとも1種の金属又はその金属化合物である、前記[1]~[3]のいずれか1つに記載の非水系電解液。
[5] 前記Liと合金化可能な金属系材料がSi又はSi金属酸化物である、前記[4]に記載の非水系電解液。
[6] 前記Liと合金化可能な金属系材料と黒鉛とを含有する負極活物質が、金属系材料と黒鉛との複合体及び/又は混合体である、前記[1]~[5]のいずれか1つに記載の非水系電解液。
[7] 前記負極活物質における、前記Liと合金化可能な金属系材料と黒鉛との合計に対する、前記Liと合金化可能な金属系材料の含有量が、0.1~25質量%である、前記[1]~[6]のいずれか1つに記載の非水系電解液。
[8] 前記条件(i)及び(ii)を満たす化合物群から選ばれた少なくとも1種の化合物の合計の含有量が、非水系電解液の全量に対して0.001~10質量%である、前記[1]~[7]のいずれか1つに記載の非水系電解液。
[9] 非水系電解液二次電池用の非水系電解液であって、該非水系電解液が電解質及び非水系溶媒とともに、炭素-炭素不飽和結合を有する環状カーボネート及びハロゲン化環状カーボネートからなる群より選ばれる少なくとも一種の化合物を含有し、且つ、前記非水系電解液が下記条件(i)あるいは(ii)を満たす、非水系電解液。
条件(i):トポロジカル極性表面積(TPSA)値が0平方オングストロームより大きく、45平方オングストローム以下であり、且つ、下記一般式(A)で表される化合物を少なくとも一種含有する。
Figure 0007404056000006
(前記一般式(A)で表される構造を有する化合物において、R~Rは、それぞれ独立に、F以外の置換基である。ただし、R~Rの任意の置換基が結合して環を形成していてもよい。)
条件(ii):TPSA値が0平方オングストロームであり、且つ、下記一般式(B)で表される化合物を少なくとも一種含有する。
Figure 0007404056000007
(前記一般式(B)で表される構造を有する化合物において、R~Rは、それぞれ独立に、F以外の置換基である。また、nは1~10の整数値を示す。)
[10] 前記条件(i)が下記条件(iii)である、前記[9]に記載の非水系電解液。条件(iii):トポロジカル極性表面積(TPSA)値が10平方オングストローム以上、40平方オングストローム以下であり、且つ、下記一般式(A)で表される化合物を少なくとも一種含有する。
Figure 0007404056000008
(前記一般式(A)で表される構造を有する化合物において、R~Rは、それぞれ独立に、F以外の置換基である。ただし、R~Rの任意の置換基が結合して環を形成していてもよい。)
[11] 前記一般式(A)で表される化合物が下記一般式(a)で表される化合物である、前記[10]に記載の非水系電解液。
Figure 0007404056000009
(前記一般式(a)中、R~Rは、それぞれ独立に、ハロゲン原子で置換されていてもよい炭素数1~20の炭化水素基であり、かつ、該炭化水素において、少なくとも1つの炭素原子が酸素原子、窒素原子、硫黄原子で置換されていてもよく、Xは炭素数1~10のアルキレン基であり、かつ、該アルキレン基において、少なくとも1つの炭素原子が酸素原子、窒素原子、硫黄原子で置換されていてもよく、Yはシアノ基、チオール基及び下記一般式(1)で表される基からなる群から選択される構造を示す。)
Figure 0007404056000010
(前記一般式(1)中、Rは、ハロゲン原子で置換されていてもよい炭素数1~20の炭化水素基を示す。)
[12] 前記一般式(A)で表される化合物及び(B)で表される化合物の合計の含有量が、非水系電解液の全量に対して0.001~10質量%である、前記[9]~[11]のいずれか1つに記載の非水系電解液。
[13] 非水系電解液二次電池用の非水系電解液であって、該非水系電解液が電解質及び非水系溶媒とともに下記一般式(c)で表される化合物を含有する非水系電解液。
Figure 0007404056000011
(前記一般式(c)中、R~Rは、それぞれ独立に、ハロゲン原子で置換されていてもよい炭素数1~20の炭化水素基であり、かつ、該炭化水素において、少なくとも1つの炭素原子が酸素原子、窒素原子、硫黄原子で置換されていてもよく、Xは炭素数1~10のアルキレン基であり、かつ、該アルキレン基において、少なくとも1つの炭素原子が酸素原子、窒素原子、硫黄原子で置換されていてもよい。)
[14] 前記一般式(c)で表される化合物の含有量が、前記非水系電解液の全量に対して0.001~10質量%である、前記[13]に記載の非水系電解液。
本発明によれば、充放電に伴う電池の膨化抑制に優れる非水系電解液二次電池を得ることが出来る。
中でも、金属イオンを吸蔵及び放出可能な、Liと合金化可能な金属と黒鉛と、を含有する負極活物質を含む負極と特定ケイ素化合物を含有する非水系電解液を組み合わせることにより、繰り返し充放電における電池膨れを抑制できる非水系電解液二次電池を得ることが出来る。
本願実施例で製造した電池における電池膨れとTPSAとの関係を示すグラフである。
以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の実施態様の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。
なお、本明細書において、「~」とは、特に断りのない限り、その前後に記載される数
値を下限値および上限値として含む意味で使用される。
また、2つ以上の対象を併せて説明する際に用いる「それぞれ独立に」とは、それらの2つ以上の対象が同じであっても異なっていてもよいという意味で使用される。
<1.非水系電解液>
本発明の実施形態に係る非水系電解液(以下、「第一の実施形態」とも称する)は、下記条件(i)あるいは条件(ii)を満たし、特に、該条件(i)が下記条件(iii)であることが好ましい。また、下記条件(i)と条件(ii)とを比較した場合、化合物のSi粒子との反応活性が高く、Si表面を好適に改質する観点から、条件(i)を満たすことが好ましい。
条件(i):トポロジカル極性表面積(TPSA)値が0平方オングストロームより大きく、45平方オングストローム以下であり、且つ、下記一般式(A)で表される化合物を少なくとも一種含有する。
条件(ii):TPSA値が0平方オングストロームであり、且つ、下記一般式(B)で表される化合物を少なくとも一種含有する。
条件(iii):トポロジカル極性表面積(TPSA)値が10平方オングストローム以上、40平方オングストローム以下であり、且つ、下記一般式(A)で表される化合物を少なくとも一種含有する。
上記条件(i)~(iii)より、非水系電解液は、少なくとも下記一般式(A)または(B)で表される化合物を含む。
<1-1.一般式(A)または(B)で表される化合物>
Figure 0007404056000012
前記一般式(A)で表される構造を有する化合物において、R~Rは、それぞれ独立に、F以外の置換基である。ただし、R~Rの任意の置換基が結合して環を形成していてもよい。
Figure 0007404056000013
前記一般式(B)で表される構造を有する化合物において、R~Rは、それぞれ独立に、F以外の置換基である。また、nは1~10の整数値を示す。
前記一般式(A)で表される化合物は、下記一般式(a)で表される構造を有する化合
物であることが好ましい。
Figure 0007404056000014
前記一般式(a)中、R~Rは、それぞれ独立に、ハロゲン原子で置換されていてもよい炭素数1~20の炭化水素基であり、かつ、該アルキレン基において、少なくとも1つの炭素原子が酸素原子、窒素原子、硫黄原子で置換されていてもよく、Xは炭素数1~10のアルキレン基であり、かつ、該アルキレン基において、少なくとも1つの炭素原子が酸素原子、窒素原子、硫黄原子で置換されていてもよく、Yはシアノ基、チオール基及び下記一般式(1)で表される基からなる群から選択される構造を示す。
Figure 0007404056000015
前記一般式(1)中、Rは、ハロゲン原子で置換されていてもよい炭素数1~20の炭化水素基を示す。
ここで、前記一般式(A)中、F以外の置換基であるR~Rとしては、それぞれ独立に、シアノ基、イソシアナト基、チオール基、アミノ基(-N-(R)、アミド基(-N-(R)-(C=O)-R)、アシル基(-(C=O)-R)、アシルオキシ基(-O(C=O)-R)、アルコキシカルボニル基(-(C=O)O-R)、スルホニル基(-SO-R)、スルホニルオキシ基(-O(SO)-R)、アルコキシスルホニル基(-(SO)-O-R)、アルコキシカルボニルオキシ基(-O-(C=O)-O-R)、エーテル基(-O-R)、アクリル基、メタクリル基、トリフルオロメチル基等が挙げられる。本明細書においては、これらの官能基を、「R~Rの任意の置換基」とも称する。
これらの置換基の中でも好ましくは、シアノ基、イソシアナト基、チオール基、アミノ基(-N-(R)、アミド基(-N-(R)-(C=O)-R)であり、更に好ましくは、シアノ基、イソシアナト基、チオール基、である。
また、これら置換基はアルキレン基等の炭化水素基を介してケイ素に結合していてもよく、該炭化水素において、少なくとも1つの炭素原子が酸素原子、窒素原子、硫黄原子で置換されていてもよい。特に、化合物の極性が最適であり、Si粒子と好適に反応するという理由から、窒素原子が好ましい。また、R~Rは、上記一般式(a)におけるR~Rで表される官能基、及び(-X-Y)を満たす官能基であることが好ましい。
なお、Rは、フッ素原子で置換されていてもよい炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、またはトリメチルシリル基を示す。
前記一般式(a)中のR~Rおよび前記一般式(1)中のRにおける炭化水素基の具体例としては、アルキル基、アルケニル基、アルキニル基、アリール基が挙げられる
前記一般式(A)中のR~R、前記一般式(a)中のR~Rおよび(1)中のRにおけるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。中でも好ましくはメチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、ヘキシル基、さらに好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、特に好ましくはメチル基、エチル基、n-ブチル基、tert-ブチル基が挙げられる。化合物の負極活物質表面への濃縮が進行しやすくなることからメチル基、エチル基が好ましい。
前記一般式(A)中のR~R、前記一般式(a)中のR~Rおよび(1)中のRにおけるアルケニル基の具体例としては、ビニル基、アリル基、メタリル基、2-ブテニル基、3-メチル2-ブテニル基、3-ブテニル基、4-ペンテニル基等が挙げられる。中でも好ましくは、ビニル基、アリル基、メタリル基、2-ブテニル基、さらに好ましくは、ビニル基、アリル基、メタリル基、特に好ましくは、ビニル基が挙げられる。前記炭化水素基が上述のアルケニル基であると、負極活物質改質反応が好適に制御できるためである。
前記一般式(A)中のR~R、前記一般式(a)中のR~Rおよび(1)中のRにおけるアルキニル基の具体例としては、エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基等が挙げられる。中でも好ましくは、エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、さらに好ましくは、2-プロピニル基、3-ブチニル基、特に好ましくは、2-プロピニル基が挙げられる。前記炭化水素基が上述のアルキニル基であると、負極活物質改質反応が好適に制御できるためである。
前記一般式(a)中のR~Rおよび(1)中のRにおけるアリール基の具体例としては、フェニル基、トリル基、ベンジル基、フェネチル基等が挙げられる。中でも、化合物の負極活物質への濃縮が進行しやすくなることからフェニル基が好ましい。
前記一般式(B)におけるRおよびRの条件は、上記の一般式(A)におけるR~Rの条件を同様に適用することができる。なお、一般式(A)において、R~Rの任意の置換基が結合して環を形成している場合、一般式(A)で表される化合物と一般式(B)で表される化合物とが同様の構造となる場合がある。
前記一般式(A)または(B)で表される化合物の具体的な構造及びTPSA値を以下に示す。
Figure 0007404056000016
Figure 0007404056000017
Figure 0007404056000018
Figure 0007404056000019
Figure 0007404056000020
Figure 0007404056000021
Figure 0007404056000022
Figure 0007404056000023
Figure 0007404056000024
Figure 0007404056000025
Figure 0007404056000026
Figure 0007404056000027
Figure 0007404056000028
Figure 0007404056000029
Figure 0007404056000030
Figure 0007404056000031
Figure 0007404056000032
Figure 0007404056000033
Figure 0007404056000034
Figure 0007404056000035
Figure 0007404056000036
Figure 0007404056000037
Figure 0007404056000038
Figure 0007404056000039
Figure 0007404056000040
Figure 0007404056000041
Figure 0007404056000042
Figure 0007404056000043
Figure 0007404056000044
Figure 0007404056000045
Figure 0007404056000046
Figure 0007404056000047
Figure 0007404056000048
Figure 0007404056000049
Figure 0007404056000050
Figure 0007404056000051
Figure 0007404056000052
Figure 0007404056000053
Figure 0007404056000054
Figure 0007404056000055
Figure 0007404056000056
Figure 0007404056000057
Figure 0007404056000058
Figure 0007404056000059
Figure 0007404056000060
Figure 0007404056000061
Figure 0007404056000062
Figure 0007404056000063
Figure 0007404056000064
Figure 0007404056000065
Figure 0007404056000066
Figure 0007404056000067
Figure 0007404056000068
Figure 0007404056000069
Figure 0007404056000070
Figure 0007404056000071
Figure 0007404056000072
Figure 0007404056000073
Figure 0007404056000074
Figure 0007404056000075
Figure 0007404056000076
Figure 0007404056000077
Figure 0007404056000078
Figure 0007404056000079
Figure 0007404056000080
Figure 0007404056000081
Figure 0007404056000082
Figure 0007404056000083
Figure 0007404056000084
Figure 0007404056000085
Figure 0007404056000086
Figure 0007404056000087
Figure 0007404056000088
Figure 0007404056000089
Figure 0007404056000090
Figure 0007404056000091
Figure 0007404056000092
Figure 0007404056000093
Figure 0007404056000094
Figure 0007404056000095
Figure 0007404056000096
Figure 0007404056000097
Figure 0007404056000098
Figure 0007404056000099
Figure 0007404056000100
Figure 0007404056000101
Figure 0007404056000102
Figure 0007404056000103
Figure 0007404056000104
Figure 0007404056000105
Figure 0007404056000106
Figure 0007404056000107
Figure 0007404056000108
Figure 0007404056000109
Figure 0007404056000110
Figure 0007404056000111
Figure 0007404056000112
Figure 0007404056000113
Figure 0007404056000114

Figure 0007404056000115
Figure 0007404056000116
Figure 0007404056000117
Figure 0007404056000118
Figure 0007404056000119
Figure 0007404056000120
Figure 0007404056000121
Figure 0007404056000122
Figure 0007404056000123
Figure 0007404056000124
Figure 0007404056000125
Figure 0007404056000126
Figure 0007404056000127
Figure 0007404056000128
Figure 0007404056000129
Figure 0007404056000130
Figure 0007404056000131
Figure 0007404056000132
Figure 0007404056000133
Figure 0007404056000134
Figure 0007404056000135
Figure 0007404056000136
Figure 0007404056000137
Figure 0007404056000138
Figure 0007404056000139
Figure 0007404056000140
Figure 0007404056000141
Figure 0007404056000142
Figure 0007404056000143
Figure 0007404056000144
Figure 0007404056000145
Figure 0007404056000146
Figure 0007404056000147
Figure 0007404056000148
Figure 0007404056000149
Figure 0007404056000150
Figure 0007404056000151
Figure 0007404056000152
Figure 0007404056000153
Figure 0007404056000154
Figure 0007404056000155
Figure 0007404056000156
Figure 0007404056000157
Figure 0007404056000158
Figure 0007404056000159
Figure 0007404056000160
Figure 0007404056000161
Figure 0007404056000162
Figure 0007404056000163
Figure 0007404056000164
Figure 0007404056000165
Figure 0007404056000166
Figure 0007404056000167
Figure 0007404056000168
Figure 0007404056000169
Figure 0007404056000170
Figure 0007404056000171
Figure 0007404056000172
Figure 0007404056000173
Figure 0007404056000174
Figure 0007404056000175
Figure 0007404056000176
Figure 0007404056000177
Figure 0007404056000178
Figure 0007404056000179
Figure 0007404056000180
Figure 0007404056000181
Figure 0007404056000182
Figure 0007404056000183
Figure 0007404056000184
Figure 0007404056000185
Figure 0007404056000186
Figure 0007404056000187
Figure 0007404056000188
Figure 0007404056000189
Figure 0007404056000190
Figure 0007404056000191
Figure 0007404056000192
Figure 0007404056000193
Figure 0007404056000194
Figure 0007404056000195
Figure 0007404056000196
Figure 0007404056000197
Figure 0007404056000198
Figure 0007404056000199
Figure 0007404056000200
Figure 0007404056000201
Figure 0007404056000202
Figure 0007404056000203
Figure 0007404056000204
Figure 0007404056000205
Figure 0007404056000206
Figure 0007404056000207
Figure 0007404056000208
Figure 0007404056000209
Figure 0007404056000210
Figure 0007404056000211
Figure 0007404056000212
Figure 0007404056000213
Figure 0007404056000214
Figure 0007404056000215
非水系電解液全量に対する、一般式(A)および(B)で表される化合物の含有量の合計は、通常0.001質量%以上であり、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、通常10質量%以下であり、好ましくは4.5質量%以下であり、より好ましくは4.0質量%以下、さらに好ましくは3.5質量%以下、特に好ましくは3.0質量%以下、最も好ましくは2.0質量%以下である。
非水系電解液全量に対する一般式(A)および(B)で表される化合物の含有量の合計が、上記の範囲であれば、負極活物質の改質反応が好適に進行し、充放電時の負極膨化が抑制され、膨れにくい電池の作製が可能となる。
<1-2.トポロジカル極性表面積(TPSA)>
トポロジカル極性表面積(TPSA)とは分子の極性を帯びている部分の表面積の計算値で、J.Med.Chem. 2000,43,3714.に記載の方法で極性を持った部分構造からの寄与を足し合わせることにより計算することができる。なお、本発明におけるトポロジカル極性表面積(TPSA)とは、J.Med.Chem. 2000,43,3714.に記載の方法で算出した値のことをいう。
前記一般式(A)で表される化合物のTPSAの範囲は0平方オングストロームより大きく、好ましくは5平方オングストローム以上であり、さらに好ましくは10平方オングストローム以上である。また、45平方オングストローム以下であり、40平方オングストローム以下が好ましい。
また、前記一般式(B)で表される化合物のTPSAの範囲は0平方オングストロームである。
非水系電解液には、前記一般式(A)または(B)で表される化合物の他に、後述の炭素-炭素不飽和結合を有する環状カーボネート及びハロゲン化環状カーボネートから選択される一種以上を併用することで、充放電に伴う負極の膨化がさらに抑制され、膨れにくい電池を得ることができる。
前記一般式(A)または(B)の化合物を含有することで、Liと合金化可能な金属と黒鉛と、を含有する負極活物質を含む負極の充放電時の電池の厚み変化抑制効果が得られるメカニズムは明らかではないが、以下の様に推測する。
炭素活物質とSi系活物質(例えばSi)の満充電時の体積変化はそれぞれ10%、300%である。炭素とSiをブレンドした負極は満充電時に、Si負極の膨化により、隣接している炭素が押し出され、炭素単体、またはSi単体を活物質として用いた場合よりも電極の膨化が顕著に表れ、電池自体の厚みが増加してしまう課題があった。また、Si系活物質は繰り返し充放電により粒子が微粉化することにより、活性の高い新生面(ダングリングボンド)が露出する。この露出した表面と電解液が反応することにより、活物質表面の変質が起こり、Si粒子が繰り返し充放電により、繰り返し前よりも活物質が膨化するといった課題も同時に存在する。
この問題に対し、本発明ではTPSAの値が特定の値を有する一般式(A)、(B)で表される化合物を電解液中に含有させる。TPSAは上述のように分子表面のうち極性を帯びている部分の面積を表す。TPSAの値が高い場合は分子内に分極構造を有する極性官能基の割合が多いことから、Si粒子との反応活性が高く、Si表面を改質する。しかしながら、TPSAの値が高すぎると、Si粒子と化合物の反応生成物の極性が高く、電極表面の絶縁性が不十分になり、電解液の分解反応を抑制することはできない。これより、TPSAの値が特定の範囲であることが必要と考える。また、一般式(A)で表される化合物は構造内に、Si系活物質との反応活性が高い、例えば、Yといった部位を有する。また、一般式(B)で表される化合物は、TPSAの値が0であるが、一般式(B)で表される化合物は環構造のひずみが大きいため、Si系活物質表面と好適に反応をすることで表面を改質する。
以上より、TPSAの値が特定の値を有する一般式(A)または(B)で表される化合物を少なくとも非水電解液中に含有させることで、繰り返し充放電に伴う負極活物質の膨化が抑制されるため、電池の厚み変化抑制に資すると考える。
なお、電解液に、一般式(A)または(B)で表される化合物を含有する方法は、特に制限されない。上記化合物を直接電解液に添加する方法の他に、電池内又は電解液中において上記化合物を発生させる方法が挙げられる。
一般式(A)または(B)で表される化合物の含有量とは、非水系電解液製造時点、非水系電解液の電池への注液時点又は電池として出荷された時点の何れかの時点での含有量を意味する。
以下の2つの別の実施形態である非水系電解液は、上述の非水系電解液の態様を適宜組み合わせて用いることができる。
本発明の別の実施形態である非水系電解液は、非水系電解液二次電池用の非水系電解液であって、該非水系電解液が電解質及び非水系溶媒とともに、炭素-炭素不飽和結合を有する環状カーボネート及びハロゲン化環状カーボネートからなる群より選ばれる少なくとも一種の化合物を含有し、且つ、前記非水系電解液が下記条件(i)あるいは(ii)を満たす、非水系電解液である。なお、下記条件(i)および(ii)の条件は、上述の条件(i)および(ii)と同様である。
条件(i):トポロジカル極性表面積(TPSA)値が0平方オングストロームより大き
く、45平方オングストローム以下であり、且つ、下記一般式(A)で表される化合物を少なくとも一種含有する。
Figure 0007404056000216
一般式(A)で表される構造を有する化合物において、R~Rの条件は、それぞれ独立に、上述した一般式(A)におけるR~Rの条件を同様に適用することができる。
条件(ii):TPSA値が0平方オングストロームであり、且つ、下記一般式(B)で表される化合物を少なくとも一種含有する。
Figure 0007404056000217
一般式(B)で表される構造を有する化合物において、R~Rの条件は、それぞれ独立に、上述した一般式(B)におけるR~Rの条件を同様に適用することができる。
本発明のさらに別の実施形態である非水系電解液は、非水系電解液二次電池用の非水系電解液であって、該非水系電解液が電解質及び非水系溶媒とともに下記一般式(c)で表される化合物を含有する非水系電解液である。
Figure 0007404056000218
前記一般式(c)で表される化合物において、R~Rの条件は、それぞれ独立に、上述した一般式(A)におけるR~Rの条件を同様に適用することができ;Xの条件は、上述した一般式(a)におけるXの条件を同様に適用することができる。
非水系電解液全量に対する、一般式(C)で表される化合物の含有量は、通常0.001
質量%以上であり、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、通常10質量%以下であり、好ましくは4.5質量%以下であり、より好ましくは4.0質量%以下、さらに好ましくは3.5質量%以下、特に好ましくは3.0質量%以下、最も好ましくは2.0質量%以下である。
非水系電解液全量に対する一般式(C)で表される化合物の含有量が、上記の範囲であれば、負極活物質の改質反応が好適に進行し、充放電時の負極膨化が抑制され、膨れにくい電池の作製が可能となる。
<1-3.炭素-炭素不飽和結合を有する環状カーボネート化合物>
炭素-炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と記載する場合がある)としては、炭素-炭素二重結合または炭素-炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環または炭素-炭素二重結合または炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。
ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、4,5-ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート等が挙げられる。
芳香環または炭素-炭素二重結合または炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネート、4-アリル-5-エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5-ジフェニルエチレンカーボネート、4-フェニル-5-ビニルエチレンカーボネート、4-アリル-5-フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート等が挙げられる。
中でも、好ましい不飽和環状カーボネートとしては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネートが挙げられる。
また、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートはさらに安定な界面保護被膜を形成するので、特に好ましい。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、80以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは85以上であり、また、より好ましくは150以下である。不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせおよび比率で併用してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上であり、更に好ましくは0.5質量%以上、特に好ましくは1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、特に好ましくは2質量%以下である。この範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<1-4.ハロゲン原子を有する環状カーボネート>
ハロゲン原子を有する環状カーボネート化合物の例として、主にフッ素原子で置換された酸無水物の例を以下に挙げるが、これらのフッ素原子の一部又は全部を塩素原子、臭素原子、ヨウ素原子に置換して得られる酸無水物も、例示化合物に含まれるものとする。
ハロゲン原子を有する環状カーボネート化合物としては、炭素原子数2~6のアルキレン基を有する環状カーボネートのフッ素化物、及びその誘導体が挙げられ、例えばエチレンカーボネートのフッ素化物、及びその誘導体が挙げられる。エチレンカーボネートのフッ素化物の誘導体としては、例えば、アルキル基(例えば、炭素原子数1~4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられる。中でもフッ素原子を1~8個有するエチレンカーボネート、及びその誘導体が好ましい。
具体的には、モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4-フルオロ-4-メチルエチレンカーボネート、4,5-ジフルオロ-4-メチルエチレンカーボネート、4-フルオロ-5-メチルエチレンカーボネート、4,4-ジフルオロ-5-メチルエチレンカーボネート、4-(フルオロメチル)-エチレンカーボネート、4-(ジフルオロメチル)-エチレンカーボネート、4-(トリフルオロメチル)-エチレンカーボネート、4-(フルオロメチル)-4-フルオロエチレンカーボネート、4-(フルオロメチル)-5-フルオロエチレンカーボネート、4-フルオロ-4,5-ジメチルエチレンカーボネート、4,5-ジフルオロ-4,5-ジメチルエチレンカーボネート、4,4-ジフルオロ-5,5-ジメチルエチレンカーボネート等が挙げられる。
中でも、モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート及び4,5-ジフルオロエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。
ハロゲン原子を有する環状カーボネート化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
非水系電解液全体に対するハロゲン原子を有する環状カーボネートの配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、非水系電解液100質量%中、
通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上、特に好ましくは1質量%以上であり、また、通常10質量%以下、好ましくは7質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下である。ただし、モノフルオロエチレンカーボネートは溶媒として用いてもよく、その場合は上記の含有量に限定されない。
<1-5.電解質>
<リチウム塩>
非水系電解液における電解質は、特段制限されないが、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
リチウム塩としては、例えば、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;LiPF等のフルオロリン酸リチウム塩類;LiWOF等のタングステン酸リチウム塩類;HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;CHSOLi等のスルホン酸リチウム塩類;LiN(FCO、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;その他、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;等が挙げられる。
本発明で得られる繰り返し充放電に伴う負極の膨化抑制効果に加え、充放電レート充放電特性、インピーダンス特性の向上効果を更に高める点から、無機リチウム塩類、フルオロリン酸リチウム塩類、スルホン酸リチウム塩類、リチウムイミド塩類の中から選ばれるものが好ましい。
中でも、LiPF、LiBF、LiSbF、LiTaF、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO等が、低温出力特性やハイレート充放電特性、インピーダンス特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。また、上記電解質塩は、単独で用いても、2種以上を併用してもよい。
非水系電解液中のこれらの電解質の総濃度は、特に制限はないが、非水系電解液の全量に対して、通常8質量%以上、好ましくは8.5質量%以上、より好ましくは9質量%以上であり、また、通常18質量%以下、好ましくは17質量%以下、より好ましくは16質量%以下である。電解質の総濃度が上記範囲内であると、電気伝導率が電池動作に適正となるため、十分な出力特性が得られる傾向にある。
<1-6.非水系溶媒>
非水系電解液は、一般的な非水系電解液と同様、通常はその主成分として、上述した電
解質を溶解する非水系溶媒を含有する。ここで用いる非水系溶媒について特に制限はなく、公知の有機溶媒を用いることができる。有機溶媒としては、飽和環状カーボネート類、鎖状カーボネート類、エーテル系化合物、スルホン類等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
<1-6-1.飽和環状カーボネート>
飽和環状カーボネートとしては、通常炭素数2~4のアルキレン基を有するものが挙げられ、リチウムイオン解離度の向上に由来する電池特性向上の点から炭素数2~3の飽和環状カーボネートが好ましく用いられる。
飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートが好ましく、酸化・還元されにくいエチレンカーボネートがより好ましい。飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
飽和環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の含有量の下限は、非水系電解液の溶媒全量に対して、通常3体積%以上、好ましくは5体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなり、また、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。この範囲とすることで、非水系電解液の酸化・還元耐性が向上し、高温保存時の安定性が向上する傾向にある。
なお、本発明における体積%とは25℃、1気圧における体積を意味する。
<1-6-2.鎖状カーボネート>
鎖状カーボネートとしては、通常炭素数3~7のものが用いられ、電解液の粘度を適切な範囲に調整するために、炭素数3~5の鎖状カーボネートが好ましく用いられる。
具体的には、鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、n-プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネート、n-ブチルメチルカーボネート、イソブチルメチルカーボネート、t-ブチルメチルカーボネート、エチル-n-プロピルカーボネート、n-ブチルエチルカーボネート、イソブチルエチルカーボネート、t-ブチルエチルカーボネート等が挙げられる。
中でも、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、n-プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と略記する場合がある。)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフ
ルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート誘導体としては、2-フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2-ジフルオロエチルメチルカーボネート、2-フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、2,2-ジフルオロエチルフルオロメチルカーボネート、2-フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
フッ素化ジエチルカーボネート誘導体としては、エチル-(2-フルオロエチル)カーボネート、エチル-(2,2-ジフルオロエチル)カーボネート、ビス(2-フルオロエチル)カーボネート、エチル-(2,2,2-トリフルオロエチル)カーボネート、2,2-ジフルオロエチル-2’-フルオロエチルカーボネート、ビス(2,2-ジフルオロエチル)カーボネート、2,2,2-トリフルオロエチル-2’-フルオロエチルカーボネート、2,2,2-トリフルオロエチル-2’,2’-ジフルオロエチルカーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート等が挙げられる。
鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カーボネートの含有量は特に限定されないが、非水系電解液の溶媒全量に対して、通常15体積%以上であり、好ましくは20体積%以上、より好ましくは25体積%以上であり、また、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。鎖状カーボネートの含有量を上記範囲とすることによって、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の出力特性を良好な範囲としやすくなる。
さらに、特定の鎖状カーボネートに対して、エチレンカーボネートを特定の含有量で組み合わせることにより、電池性能を著しく向上させることができる。
例えば、特定の鎖状カーボネートとしてジエチルカーボネートとエチルメチルカーボネートを選択した場合、エチレンカーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液の溶媒全量に対して、通常15体積%以上、好ましくは20体積%以上、また、通常45体積%以下、好ましくは40体積%以下であり、ジエチルカーボネートの含有量は、非水系電解液の溶媒全量に対して、通常20体積%以上、好ましくは30体積%以上、また、通常50体積%以下、好ましくは45体積%以下であり、エチルメチルカーボネートの含有量は通常20体積%以上、好ましくは30体積%以上、また、通常50体積%以下、好ましくは45体積%以下である。含有量を上記範囲内とすることで、高温安定性に優れ、ガス発生が抑制される傾向がある。
<1-6-3.エーテル系化合物>
エーテル系化合物としては、炭素数3~10の鎖状エーテル、及び炭素数3~6の環状エーテルが好ましい。
炭素数3~10の鎖状エーテルとしては、ジエチルエーテル、ジ(2-フルオロエチル)エーテル、ジ(2,2-ジフルオロエチル)エーテル、ジ(2,2,2-トリフルオロエチル)エーテル、エチル(2-フルオロエチル)エーテル、エチル(2,2,2-トリフルオロエチル)エーテル、エチル(1,1,2,2-テトラフルオロエチル)エーテル、(2-フルオロエチル)(2,2,2-トリフルオロエチル)エーテル、(2-フルオロエチル)(1,1,2,2-テトラフルオロエチル)エーテル、(2,2,2-トリフルオロエチル)(1,1,2,2-テトラフルオロエチル)エーテル、エチル-n-プロピルエーテル、エチル(3-フルオロ-n-プロピル)エーテル、エチル(3,3,3-トリフルオロ-n-プロピル)エーテル、エチル(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、エチル(2,2,3,3,3-ペンタフルオロ-n-プロピル)
エーテル、2-フルオロエチル-n-プロピルエーテル、(2-フルオロエチル)(3-フルオロ-n-プロピル)エーテル、(2-フルオロエチル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(2-フルオロエチル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(2-フルオロエチル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、2,2,2-トリフルオロエチル-n-プロピルエーテル、(2,2,2-トリフルオロエチル)(3-フルオロ-n-プロピル)エーテル、(2,2,2-トリフルオロエチル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(2,2,2-トリフルオロエチル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、1,1,2,2-テトラフルオロエチル-n-プロピルエーテル、(1,1,2,2-テトラフルオロエチル)(3-フルオロ-n-プロピル)エーテル、(1,1,2,2-テトラフルオロエチル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(1,1,2,2-テトラフルオロエチル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(1,1,2,2-テトラフルオロエチル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ-n-プロピルエーテル、(n-プロピル)(3-フルオロ-n-プロピル)エーテル、(n-プロピル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(n-プロピル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(3-フルオロ-n-プロピル)エーテル、(3-フルオロ-n-プロピル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(3-フルオロ-n-プロピル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(3-フルオロ-n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(3,3,3-トリフルオロ-n-プロピル)エーテル、(3,3,3-トリフルオロ-n-プロピル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(3,3,3-トリフルオロ-n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(2,2,3,3-テトラフルオロ-n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ-n-ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2-フルオロエトキシ)メタン、メトキシ(2,2,2-トリフルオロエトキシ)メタンメトキシ(1,1,2,2-テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2-フルオロエトキシ)メタン、エトキシ(2,2,2-トリフルオロエトキシ)メタン、エトキシ(1,1,2,2-テトラフルオロエトキシ)メタン、ジ(2-フルオロエトキシ)メタン、(2-フルオロエトキシ)(2,2,2-トリフルオロエトキシ)メタン、(2-フルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)メタンジ(2,2,2-トリフルオロエトキシ)メタン、(2,2,2-トリフルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)メタン、ジ(1,1,2,2-テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2-フルオロエトキシ)エタン、メトキシ(2,2,2-トリフルオロエトキシ)エタン、メトキシ(1,1,2,2-テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2-フルオロエトキシ)エタン、エトキシ(2,2,2-トリフルオロエトキシ)エタン、エトキシ(1,1,2,2-テトラフルオロエトキシ)エタン、ジ(2-フルオロエトキシ)エタン、(2-フルオロエトキシ)(2,2,2-トリフルオロエトキシ)エタン、(2-フルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)エタン、ジ(2,2,2-トリフルオロエトキシ)エタン、(2,2,2-トリフルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)エタン、ジ(1,1,2,2-テトラフルオロエトキシ)エタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
これらの中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましい。特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
炭素数3~6の環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン、1,3-ジオキサン、2-メチル-1,3-ジオキサン、4-メチル-1,3-ジオキサン、1,4-ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
エーテル系化合物の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系溶媒100体積%中、通常1体積%以上、好ましくは2体積%以上、より好ましくは3体積%以上、また、通常30体積%以下、好ましくは25体積%以下、より好ましくは20体積%以下である。エーテル系化合物の含有量が前記好ましい範囲内であれば、エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすい。また、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入される現象を抑制できることから、入出力特性や充放電レート特性を適正な範囲とすることができる。
<1-6-4.スルホン系化合物>
スルホン系化合物としては、環状スルホン、鎖状スルホンであっても特に制限されないが、環状スルホンの場合、通常炭素数が3~6、好ましくは炭素数が3~5であり、鎖状スルホンの場合、通常炭素数が2~6、好ましくは炭素数が2~5である化合物が好ましい。また、スルホン系化合物1分子中のスルホニル基の数は、特に制限されないが、通常1又は2である。
環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と略記する場合がある。)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
中でも、2-メチルスルホラン、3-メチルスルホラン、2-フルオロスルホラン、3-フルオロスルホラン、2,2-ジフルオロスルホラン、2,3-ジフルオロスルホラン、2,4-ジフルオロスルホラン、2,5-ジフルオロスルホラン、3,4-ジフルオロスルホラン、2-フルオロ-3-メチルスルホラン、2-フルオロ-2-メチルスルホラン、3-フルオロ-3-メチルスルホラン、3-フルオロ-2-メチルスルホラン、4-フルオロ-3-メチルスルホラン、4-フルオロ-2-メチルスルホラン、5-フルオロ-3-メチルスルホラン、5-フルオロ-2-メチルスルホラン、2-フルオロメチルスルホラン、3-フルオロメチルスルホラン、2-ジフルオロメチルスルホラン、3-ジフルオロメチルスルホラン、2-トリフルオロメチルスルホラン、3-トリフルオロメチルスルホラン、2-フルオロ-3-(トリフルオロメチル)スルホラン、3-フルオロ-3-(トリフルオロメチル)スルホラン、4-フルオロ-3-(トリフルオロメチル)スルホラン、5-フルオロ-3-(トリフルオロメチル)スルホラン等がイオン伝導度が高く
入出力が高い点で好ましい。
また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n-プロピルメチルスルホン、n-プロピルエチルスルホン、ジ-n-プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n-ブチルメチルスルホン、n-ブチルエチルスルホン、t-ブチルメチルスルホン、t-ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル-n-プロピルスルホン、ジフルオロメチル-n-プロピルスルホン、トリフルオロメチル-n-プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル-n-プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル-n-プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル-n-ブチルスルホン、トリフルオロエチル-t-ブチルスルホン、ペンタフルオロエチル-n-ブチルスルホン、ペンタフルオロエチル-t-ブチルスルホン等が挙げられる。
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n-プロピルメチルスルホン、イソプロピルメチルスルホン、n-ブチルメチルスルホン、t-ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル-n-プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル-n-ブチルスルホン、トリフルオロエチル-t-ブチルスルホン、トリフルオロメチル-n-ブチルスルホン、トリフルオロメチル-t-ブチルスルホン等が電解液の高温保存安定性が向上する点で好ましい。
スルホン系化合物の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液の溶媒全量に対して、通常0.3体積%以上、好ましくは0.5体積%以上、より好ましくは1体積%以上であり、また、通常40体積%以下、好ましくは35体積%以下、より好ましくは30体積%以下である。スルホン系化合物の含有量が前記範囲内であれば、高温保存安定性に優れた電解液が得られる傾向にある。
<2.非水系電解液二次電池>
上述した非水系電解液が用いられる非水系電解液二次電池は、金属イオンを吸蔵及び放出可能な正極と、金属イオンを吸蔵及び放出可能な、Liと合金化可能な金属系材料と、黒鉛と、を含有する負極活物質を含む負極と、上述した非水系電解液とを備えるものである。
<2-1.電池構成>
非水系電解液二次電池は、上述した非水系電解液以外の構成については、従来公知の非水系電解液二次電池と同様である。通常は、非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。従って、非水系電解液二次電池の形状は特に制限されるものではなく、円筒型
、角形、ラミネート型、コイン型、大型等の何れであってもよい。
<2-2.非水系電解液>
非水系電解液としては、上述の非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において、非水系電解液に対し、その他の非水系電解液を配合して用いることも可能である。
<2-3.負極>
負極は、集電体上に負極活物質層を有するものであってよく、負極活物質層は負極活物質を含有する。以下、負極活物質について述べる。
負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、金属合金系材料、リチウム含有金属複合酸化物材料等が挙げられ、炭素質材料として黒鉛を含むことが好ましい。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
<2-3-1.炭素質材料>
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400~3200℃の範囲で一回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスがよく好ましい。また、(1)~(4)の炭素質材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい
上記(2)の人造炭素質物質並びに人造黒鉛質物質の具体的な例としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、あるいはこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物、及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。
<2-3-2.炭素質負極の構成、物性、調製方法>
炭素質材料についての性質や炭素質材料を含有する負極電極及び電極化手法、集電体、非水系電解液二次電池については、次に示す(1)~(13)の何れか1項又は複数項を同時に満たしていることが望ましい。
(1)X線パラメータ
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335~0.340nmであり、好ましくは0.335~0.338nmであり、とりわけ0.335~0.337nmであるものが好ましい。
また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、通常1.0nm以上、好ましくは1.5nm以上、特に好ましくは2nm以上である。
(2)体積基準平均粒子径
炭素質材料の体積基準平均粒子径(メジアン径d50)は、特に限定されないが、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以
下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
なお、平均粒子径(d50)は、レーザー回折・散乱式粒度分布測定方法等で求められる。
体積基準平均粒子径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(例えば、堀場製作所社製LA-700)を用いて行なう。該測定で求められるメジアン径d50を、炭素質材料の体積基準平均粒子径と定義する。
(3)ラマンR値、ラマン半値幅
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値が、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。すなわち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
また、炭素質材料の1580cm-1付近のラマン半値幅は特に制限されないが、通常10cm-1以上であり、15cm-1以上が好ましく、また、通常100cm-1以下であり、80cm-1以下が好ましく、60cm-1以下がさらに好ましく、40cm-1以下が特に好ましい。
ラマン半値幅が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。すなわち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
ラマンスペクトルの測定は、ラマン分光器(例えば、日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm-1付近のピークPAの強度IAと、1360cm-1付近のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出する。該測定で算出されるラマンR値を、本発明における炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm-1付近のピークPAの半値幅を測定し、これを本発明における炭素質材料のラマン半値幅と定義する。
また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15~25mW
・分解能 :10~20cm-1
・測定範囲 :1100cm-1~1730cm-1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
(4)BET比表面積
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.1m・g-1以上であり、0.7m・g-1以上が好ましく、1.0m・g-1以上がさらに好ましく、1.5m・g-1以上が特に好ましく、また、通常100m・g-1以下であり、25m・g-1以下が好ましく、15m・g-1以下がさらに好ましく、10m・g-1以下が特に好ましい。
BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
BET法による比表面積の測定は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明における炭素質材料のBET比表面積と定義する。
(5)円形度
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒子径が3~40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上がより好ましく、0.8以上がさらに好ましく、0.85以上が特に好ましく、0.9以上が最も好ましい。
高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(例えば、シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6~400μmに指定し、粒子径が3~40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明における炭素質材料の円形度と定義する。
円形度を向上させる方法は、特に限定されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダー若しくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
(6)タップ密度
炭素質材料のタップ密度は、通常0.1g・cm-3以上であり、0.5g・cm-3以上が好ましく、0.7g・cm-3以上がさらに好ましく、1g・cm-3以上が特に好ましく、また、通常2g・cm-3以下が好ましく、1.8g・cm-3以下がさらに好ましく、1.6g・cm-3以下が特に好ましい。
タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、
高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明における炭素質材料のタップ密度として定義する。
(7)配向比
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がより好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m-2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明における炭素質材料の配向比と定義する。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター・スリット:
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
(8)アスペクト比(粉)
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がより好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
アスペクト比の測定は、炭素質材料粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50ミクロン以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Pと、それと直交する最短となる径Qを測定し、P/Qの平均値を求める。該測定で求められるアスペクト比(P/Q)を、本発明における炭素質材料のアスペクト比と定義する。
(9)電極作製
負極の製造は、本発明の効果を著しく制限しない限り、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
電池の非水系電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは、通常15μm以上であり、20μm以上が好ましく、30μm以上がより好ましく、また、通常150μm以下であり、120μm以下が好ましく、100μm以下がより好ましい。負極活物質の厚さが、この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合があるためである。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合があるためである。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
(10)集電体
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu-Cr-Zr合金等)を用いることができる。
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上がより好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下がより好ましい。集電体の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、1mmより厚くなると、捲回等の電極の形を変形させる場合がある。なお、集電体は、メッシュ状でもよい。
(11)集電体と負極活物質層の厚さの比
集電体と負極活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値は、通常150以下、20以下が好ましく、10以下がより好ましく、また、通常0.1以上、0.4以上が好ましく、1以上がより好ましい。
集電体と負極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(12)電極密度
負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している負極活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上がより好ましく、1.3g・cm-3以上がさらに好ましく、また、通常2.2g・cm-3以下が好ましく、2.1g・cm-3以下がより好ましく、2.0g・cm-3以下がさらに好ましく、1.9g・cm-3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
(13)バインダー
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に
対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒の例としては水、アルコール等が挙げられ、有機系溶媒の例としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、特に限定されないが、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、0.6質量%以上がさらに好ましく、また、通常20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がより好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がより好ましい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分として含有する場合、負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がより好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がより好ましい。
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸
化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
さらに、増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、特に限定されないが、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
<2-3-3.金属化合物系材料、及び金属化合物系材料を用いた負極の構成、物性、調製方法>
負極活物質として用いられる金属化合物系材料としては、リチウムを吸蔵・放出可能であれば、リチウム合金を形成する単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物、燐化物等の化合物の何れであっても特に限定はされない。このような金属化合物としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、Pb、Sb、Si、Sn、Sr、Zn等の金属を含有する化合物が挙げられる。なかでも、リチウム合金を形成する単体金属若しくは合金であることが好ましく、13族又は14族の金属・半金属元素(すなわち炭素を除く)を含む材料あることがより好ましく、さらには、ケイ素(Si)、スズ(Sn)又は鉛(Pb)(以下、これら3種の元素を「特定金属元素」という場合がある。)の単体金属若しくはこれら原子を含む合金、又は、それらの金属(特定金属元素)の化合物であることが好ましく、ケイ素の単体金属、合金及び化合物、並びにスズの単体金属、合金及び化合物が特に好ましい。これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質の例としては、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、又は、その化合物の酸化物・炭化物・窒化物・珪化物・硫化物・燐化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
また、これらの複合化合物が、金属単体、合金、又は非金属元素等の数種の元素と複雑に結合した化合物も例として挙げることができる。より具体的には、例えばケイ素やスズでは、これらの元素と負極として動作しない金属との合金を用いることができる。また例えばスズでは、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで5~6種の元素を含むような複雑な化合物も用いることができる。
これらの負極活物質の中でも、電池にしたときに単位質量当りの容量が大きいことから、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物や炭化物、窒化物等が好ましく、特に、ケイ素及び/又はスズの金属単体、合金、酸化物や炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。
また、金属単体又は合金を用いるよりは単位質量当りの容量には劣るものの、サイクル特性に優れることから、ケイ素及び/又はスズを含有する以下の化合物も好ましい。
・ケイ素及び/又はスズの酸素に対する元素比が、通常0.5以上であり、好ましくは0.7以上、より好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、より好ましくは1.1以下の「ケイ素及び/又はスズの酸化物」。
・ケイ素及び/又はスズの窒素に対する元素比が、通常0.5以上であり、好ましくは0
.7以上、より好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、より好ましくは1.1以下の「ケイ素及び/又はスズの窒化物」。
・ケイ素及び/又はスズの炭素に対する元素比が、通常0.5以上であり、好ましくは0.7以上、より好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、より好ましくは1.1以下の「ケイ素及び/又はスズの炭化物」。
なお、上述の負極活物質は、何れか1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
非水系電解液二次電池における負極は、公知の何れの方法を用いて製造することが可能である。具体的に、負極の製造方法としては、例えば、上述の負極活物質に結着剤や導電材等を加えたものをそのままロール成型してシート電極とする方法や、圧縮成形してペレット電極とする方法も挙げられるが、通常は負極用の集電体(以下「負極集電体」という場合がある。)上に塗布法、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法が用いられる。この場合、上述の負極活物質に結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、これを負極集電体に塗布、乾燥した後にプレスして高密度化することにより、負極集電体上に負極活物質層を形成する。
負極集電体の材質としては、鋼、銅合金、ニッケル、ニッケル合金、ステンレス等が挙げられる。これらのうち、薄膜に加工し易いという点及びコストの点から、銅箔が好ましい。
負極集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、また、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
なお、表面に形成される負極活物質層との結着効果を向上させるため、これら負極集電体の表面は、予め粗面化処理しておくことが好ましい。表面の粗面化方法としては、ブラスト処理、粗面ロールによる圧延、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線等を備えたワイヤーブラシ等で集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法等が挙げられる。
負極活物質層を形成するためのスラリーは、通常は負極材に対して結着剤、増粘剤等を加えて作製される。なお、本明細書における「負極材」とは、負極活物質と導電材とを合わせた材料を指すものとする。
負極材中における負極活物質の含有量は、通常70質量%以上、特に75質量%以上が好ましく、また、通常97質量%以下、特に95質量%以下が好ましい。負極活物質の含有量が少な過ぎると、得られる負極を用いた二次電池の容量が不足する傾向があり、多過ぎると相対的に結着剤等の含有量が不足することにより、得られる負極の強度が不足する傾向にあるためである。なお、2以上の負極活物質を併用する場合には、負極活物質の合計量が上記範囲を満たすようにすればよい。
負極に用いられる導電材としては、銅やニッケル等の金属材料;黒鉛、カーボンブラック等の炭素材料等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。特に、導電材として炭素材料を用いると、炭素材料が活物質としても作用するため好ましい。負極材中における導電材の含有量は、通常3質量%以上、特に5質量%以上が好ましく、また、通常30質量%以下、特に25質量%以下が好ましい。導電材の含有量が少な過ぎると導電性が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や強度が低下する傾向となるためである。なお、2以上の導電材を併用する場合には、導電材の合計量が上記範
囲を満たすようにすればよい。
負極に用いられる結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム・イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体、エチレン・メタクリル酸共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。結着剤の含有量は、負極材100質量部に対して通常0.5質量部以上、特に1質量部以上が好ましく、また、通常10質量部以下、特に8質量部以下が好ましい。結着剤の含有量が少な過ぎると得られる負極の強度が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や導電性が不足する傾向となるためである。なお、2以上の結着剤を併用する場合には、結着剤の合計量が上記範囲を満たすようにすればよい。
負極に用いられる増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。増粘剤は必要に応じて使用すればよいが、使用する場合には、負極活物質層中における増粘剤の含有量が通常0.5質量%以上、5質量%以下の範囲で用いることが好ましい。
負極活物質層を形成するためのスラリーは、上記負極活物質に、必要に応じて導電材や結着剤、増粘剤を混合し、水系溶媒又は有機溶媒を分散媒として用いて調製される。水系溶媒としては、通常は水が用いられるが、エタノール等のアルコール類やN-メチルピロリドン等の環状アミド類等の水以外の溶媒を、水に対して30質量%以下程度の割合で併用することもできる。また、有機溶媒としては、通常、N-メチルピロリドン等の環状アミド類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の直鎖状アミド類、アニソール、トルエン、キシレン等の芳香族炭化水素類、ブタノール、シクロヘキサノール等のアルコール類が挙げられ、中でも、N-メチルピロリドン等の環状アミド類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の直鎖状アミド類等が好ましい。なお、これらは何れか1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーの粘度は、集電体上に塗布することが可能な粘度であれば、特に制限されない。塗布が可能な粘度となるように、スラリーの調製時に溶媒の使用量等を変えて、適宜調製すればよい。
得られたスラリーを上述の負極集電体上に塗布し、乾燥した後、プレスすることにより、負極活物質層が形成される。塗布の手法は特に制限されず、それ自体既知の方法を用いることができる。乾燥の手法も特に制限されず、自然乾燥、加熱乾燥、減圧乾燥等の公知の手法を用いることができる。
上記手法により負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上がさらに好ましく、1.3g・cm-3以上が特に好ましく、また、通常2.2g・cm-3以下が好ましく、2.1g・cm-3以下がより好ましく、2.0g・cm-3以下がさらに好ましく、1.9g・cm-3以下が特に好ましい。
集電体上に存在している活物質の密度が、上記範囲を上回ると、活物質粒子が破壊され、初期不可逆容量の増加や、集電体/活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、活物質間の
導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
<2-3-4.炭素質材料と金属系材料を用いた負極の構成、物性、調製方法>
負極活物質として、金属系材料と前記炭素質材料を含有してもよい。ここで、金属系材料と炭素質材料を含有する負極活物質とは、リチウムと合金化可能な単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物等の化合物の何れかと、炭素質材料が互いに独立した粒子の状態で混合されている混合体でもよいし、リチウムと合金化可能な単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物等の化合物が炭素質材料の表面又は内部に存在している複合体でもよく、特に、金属系材料と炭素質材料(特に黒鉛)との複合体及び/又は混合体であることが好ましい。本明細書において、複合体とは、特に、金属系材料および炭素質材料が含まれていれば特に制限はないが、好ましくは、金属系材料および炭素質材料が物理的及び/又は化学的な結合によって一体化している。より好ましい形態としては、金属系材料および炭素質材料が、少なくとも複合体表面及びバルク内部の何れにも存在する程度に各々の固体成分が分散して存在している状態にあり、それらを物理的及び/又は化学的な結合によって一体化させるために、炭素質材料が存在しているような形態である。
このような形態は、走査型電子顕微鏡による粒子表面観察、粒子を樹脂に包埋させて樹脂の薄片を作製し粒子断面を切り出す、あるいは粒子からなる塗布膜をクロスセクションポリッシャーによる塗布膜断面を作製し粒子断面を切り出した後、走査型電子顕微鏡による粒子断面観察等々の観察方法にて、観察が可能である。
金属系材料と炭素質材料とを含有する負極活物質(特に黒鉛)の合計に対する、金属系材料の含有量は、特に限定されないが、通常0.1質量%以上、好ましくは1質量%以上、より好ましくは1.5質量%以上、さらに好ましくは2質量%以上、特に好ましくは3質量%以上であり、また、通常99質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、特に好ましくは25質量%以下、最も好ましくは15質量%以下である。この範囲であると、十分な容量を得ることが可能となる点で好ましい。
金属系材料と炭素質材料を含有する負極活物質に用いられる炭素質材料については、前記<2-3-2>に記載の要件を満たすことが好ましい。また、金属系材料については、下記を満たすことが望ましい。
リチウムと合金化可能な金属系材料としては、従来公知のいずれのものも使用可能であるが、容量とサイクル寿命との点から、リチウムと合金化可能な金属系材料は、例えば、Fe、Co、Sb、Bi、Pb、Ni、Ag、Si、Sn、Al、Zr、Cr、V、Mn、Nb、Mo、Cu、Zn、Ge、In、Ti等からなる群から少なくとも選ばれる1種の金属又はその金属化合物が好ましい。また、リチウムと合金化可能な合金としては、Si、Sn、As、Sb、Al、Zn及びWからなる群から少なくとも選ばれる1種の金属又はその金属化合物が好ましい。
リチウムと合金化可能な単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物等の化合物とは、金属酸化物、金属炭化物、金属窒化物、金属珪化物、金属硫化物等が挙げられる。また、2種以上の金属からなる合金を使用してもよい。この中でも、Si又はSi化合物(特に、Si金属酸化物)が高容量化の点で、好ましい。本明細書では、Si又はSi化合物を総称してSi化合物と呼ぶ。Si化合物としては、具体的には、一般式で表すと、SiO,SiN,SiC、SiZ(Zは、C又はNである。)などが挙げられ、好ましくはSiOxである。なお、上記一般式中のxの値は特に限定されないが、通常、0≦x<2である。上記SiOは、二酸化ケイ素(SiO)と金属ケイ素(Si)とを原料として得られる。SiOは、黒鉛と比較して理論容量が大きく、さらに非晶質SiあるいはナノサイズのSi結晶は、リチウムイオン等
のアルカリイオンの出入りがしやすく、高容量を得ることが可能となる。
SiO中のxの値は特に限定されないが、通常、xは0≦x<2であり、好ましくは0.2以上、より好ましくは0.4以上、さらに好ましくは0.6以上であり、また、好ましくは1.8以下、より好ましくは1.6以下、さらに好ましくは1.4以下である。この範囲であれば、高容量であると同時に、Liと酸素との結合による不可逆容量を低減させることが可能となる。
なお、金属系材料が、リチウムと合金化可能な金属系材料であることを確認するための手法としては、X線回折による金属粒子相の同定、電子顕微鏡による粒子構造の観察および元素分析、蛍光X線による元素分析などが挙げられる。
金属系材料の体積基準平均粒子径(メジアン径d50)は、特に限定されないが、サイクル寿命の観点から、通常0.01μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.3μm以上であり、また、通常10μm以下、好ましくは9μm以下、より好ましくは8μm以下である。平均粒子径(d50)が前記範囲内であると、充放電に伴う体積膨張が低減され、充放電容量を維持しつつ、良好なサイクル特性の得ることができる。
なお、平均粒子径(d50)は、レーザー回折・散乱式粒度分布測定方法等で求められる。
金属系材料と炭素質材料を含有する負極活物質に用いられる金属系材料のBET法により比表面積は、特に限定されないが、通常0.5m/g以上、好ましくは1m/g以上、また、通常、60m/g以下、好ましくは40m/g以下である。Liと合金化可能な金属粒子のBET法による比表面積が前記範囲内であると、電池の充放電効率および放電容量が高く、高速充放電においてリチウムの出し入れが速く、レート特性に優れるので好ましい。
金属系材料と炭素質材料を含有する負極活物質に用いられる金属系材料の含有酸素量は、特に制限はないが、通常0.01質量%以上、好ましくは0.05質量%以上、また、通常8質量%以下、好ましくは5質量%以下である。粒子内の酸素分布状態は、表面近傍に存在、粒子内部に存在、粒子内一様に存在していてもかまわないが、特に表面近傍に存在していることが好ましい。金属系材料の含有酸素量が前記範囲内であると、SiとOとの強い結合により、充放電に伴う体積膨張が抑制され、サイクル特性に優れるので好ましい。
また、金属系材料と炭素質材料を含有する負極活物質に用いられる金属系材料の負極作製については、前記<2-3-1>炭素質材料に記載のものを用いることができる。
<2-3-5.リチウム含有金属複合酸化物材料、及びリチウム含有金属複合酸化物材料を用いた負極の構成、物性、調製方法>
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば特に限定はされないが、チタンを含むリチウム含有複合金属酸化物材料が好ましく、リチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する。)が特に好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、非水系電解液二次電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
上記金属酸化物が、組成式(4)で表されるリチウムチタン複合酸化物であり、組成式(4)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。
LiTi (4)
上記の組成式(4)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。
上記の組成式(4)で表される組成の中でも、
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(a)ではLi4/3Ti5/3、(b)ではLiTi、(c)ではLi4/5Ti11/5である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
負極活物質としてのリチウムチタン複合酸化物は、上記した要件に加えて、さらに、下記の(1)~(13)に示した物性及び形状等の特徴の内、少なくとも1種を満たしていることが好ましく、2種以上を同時に満たすことが特に好ましい。
(1)BET比表面積
負極活物質として用いられるリチウムチタン複合酸化物のBET比表面積は、BET法を用いて測定した比表面積の値が、0.5m・g-1以上が好ましく、0.7m・g-1以上がより好ましく、1.0m・g-1以上がさらに好ましく、1.5m・g-1以上が特に好ましく、また、通常200m・g-1以下が好ましく、100m・g-1以下がより好ましく、50m・g-1以下がさらに好ましく、25m・g-1以下が特に好ましい。
BET比表面積が、上記範囲を下回ると、負極材料として用いた場合の非水系電解液と接する反応面積が減少し、出力抵抗が増加する場合がある。一方、上記範囲を上回ると、チタンを含有する金属酸化物の結晶の表面や端面の部分が増加し、また、これに起因して、結晶の歪も生じるため、不可逆容量が無視できなくなり、好ましい電池が得られにくい場合がある。
BET法による比表面積の測定は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明におけるリチウムチタン複合酸化物のBET比表面積と定義する。
(2)体積基準平均粒子径
リチウムチタン複合酸化物の体積基準平均粒子径(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折・散乱法により求めた体積基準の平均粒子径(メジアン径d50)で定義される。
リチウムチタン複合酸化物の体積基準平均粒子径は、通常0.1μm以上であり、0.5μm以上が好ましく、0.7μm以上がより好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がより好ましく、25μm以下がさらに好ましい。
体積基準平均粒子径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(例えば、堀場製作所社製LA-700)を用いて行なう。該測定で求められるメジアン径d50を、本発明における炭素質材料の体積基準平均粒子径と定義する。
リチウムチタン複合酸化物の体積平均粒子径が、上記範囲を下回ると、電極作製時に多量の結着剤が必要となり、結果的に電池容量が低下する場合がある。また、上記範囲を上回ると、電極極板化時に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
(3)平均一次粒子径
一次粒子が凝集して二次粒子を形成している場合においては、リチウムチタン複合酸化物の平均一次粒子径が、通常0.01μm以上であり、0.05μm以上が好ましく、0.1μm以上がより好ましく、0.2μm以上がさらに好ましく、また、通常2μm以下であり、1.6μm以下が好ましく、1.3μm以下がより好ましく、1μm以下がさらに好ましい。体積基準平均一次粒子径が、上記範囲を上回ると、球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下したりするために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達になるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
なお、一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、粒子が確認できる倍率、例えば10000~100000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(4)形状
リチウムチタン複合酸化物の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。
通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子の活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐためである。
また、板状等軸配向性の粒子であるよりも、球状又は楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作製する際の導電材との混合においても、均一に混合されやすいため好ましい。
(5)タップ密度
リチウムチタン複合酸化物のタップ密度は、0.05g・cm-3以上が好ましく、0.1g・cm-3以上がより好ましく、0.2g・cm-3以上がさらに好ましく、0.4g・cm-3以上が特に好ましく、また、通常2.8g・cm-3以下がより好ましく、2.4g・cm-3以下がさらに好ましく、2g・cm-3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、また粒子間の接触面積が減少するため、粒子間の抵抗が増加し、出力抵抗が増加する場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、非水系電解液の流路が減少することで、出力抵抗が増加する場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明におけるリチウムチタン複合酸化物のタップ密度として定義する。
(6)円形度
リチウムチタン複合酸化物の球形の程度として、円形度を測定した場合、以下の範囲に収まることが好ましい。円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
リチウムチタン複合酸化物の円形度は、1に近いほど好ましく、通常0.10以上であり、0.80以上が好ましく、0.85以上がより好ましく、0.90以上がさらに好ましい。高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(例えば、シスメックス社製FPIA)を用いて行なう。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6~400μmに指定し、粒子径が3~40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明におけるリチウムチタン複合酸化物の円形度と定義する。
(7)アスペクト比
リチウムチタン複合酸化物のアスペクト比は、通常1以上、また、通常5以下であり、4以下が好ましく、3以下がより好ましく、2以下がさらに好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、短時間高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、リチウムチタン複合酸化物のアスペクト比の理論下限値である。
アスペクト比の測定は、リチウムチタン複合酸化物の粒子を走査型電子顕微鏡で拡大観察して行なう。厚さ50μm以下の金属の端面に固定した任意の50個の粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の粒子の最長となる径P’と、それと直交する最短となる径Q’を測定し、P’/Q’の平均値を求める。該測定で求められるアスペクト比(P’/Q’)を、本発明におけるリチウムチタン複合酸化物のアスペクト比と定義する。
(8)負極活物質の製造法
リチウムチタン複合酸化物の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
例えば、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質とLiOH、LiCO、LiNO等のLi源を均一に混合し、高温で焼成して活物質を得る方法が挙げられる。
特に、球状又は楕円球状の活物質を作製するには種々の方法が考えられる。一例として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これ
を必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
また、別の例として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
さらに別の方法として、酸化チタン等のチタン原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
また、これらの工程中に、Ti以外の元素、例えば、Al、Mn、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、C、Si、Sn、Agを、チタンを含有する金属酸化物構造中及び/又はチタンを含有する酸化物に接する形で存在していることも可能である。これらの元素を含有することで、電池の作動電圧、容量を制御することが可能となる。
(9)電極作製
電極の製造は、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
電池の非水系電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、また、通常150μm以下、好ましくは120μm以下、より好ましくは100μm以下が望ましい。
この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合がある。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
(10)集電体
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも好ましくは銅(Cu)及び/又はアルミニウム(Al)を含有する金属箔膜であり、より好ましくは銅箔、アルミニウム箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu-Cr-Zr合金等)を用いることができる。またアルミニウム箔は、その比重が軽いことから、集電体として用いた場合に、電池の質量を減少させることが可能となり、好ましく用いることができる。
圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。
電解銅箔は、例えば、銅イオンが溶解された非水系電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法により銅を析出させていてもよい。銅箔の片面又は両面には、粗面化処理や表面処理(例えば、厚さが数nm~1μm程度までのクロメート処理、Ti等の下地処理等)がなされていてもよい。
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上がより好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下がより好ましい。
集電体の厚さが、上記範囲内であると、強度が向上し塗布が容易となったり、電極の形が安定したりといった点で好ましい。
(11)集電体と活物質層の厚さの比
集電体と活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の活物質層の厚さ)/(集電体の厚さ)」の値が、通常150以下であり、20以下が好ましく、10以下がより好ましく、また、通常0.1以上であり、0.4以上が好ましく、1以上がより好ましい。
集電体と負極活性物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(12)電極密度
負極活物質の電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上がより好ましく、1.3g・cm-3以上がさらに好ましく、1.5g・cm-3以上が特に好ましく、また、3g・cm-3以下が好ましく、2.5g・cm-3以下がより好ましく、2.2g・cm-3以下がさらに好ましく、2g・cm-3以下が特に好ましい。
集電体上に存在している活物質の密度が、上記範囲を上回ると、集電体と負極活物質の結着が弱くなり、電極と活物質が乖離する場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大する場合がある。
(13)バインダー
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有
する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーを形成するための溶媒としては、負極活物質、バインダー、必要に応じて使用される増粘剤及び導電材を、溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒の例としては水、アルコール等が挙げられ、有機系溶媒の例としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセトアミド、ヘキサメリルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、上述の増粘剤に併せて分散剤等を加え、SBR等のラテックスを用いてスラリー化する。なお、これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がより好ましく、また、通常20質量%以下であり、15質量%以下が好ましく、10質量%以下がより好ましく、8質量%以下がさらに好ましい。
負極活物質に対するバインダーの割合が、上記範囲内であるとバインダー量が電池容量に寄与しないバインダー割合が低下し電池容量が増加し、また負極電極の強度が保たれるので、電池作製工程上好ましい。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がより好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がより好ましい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がより好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がより好ましい。
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
さらに、増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がより好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がより好ましい。負極活物質に対する増粘剤の割合が、上記範囲内であると、粘着剤の塗布性の点で好ましく、また、負極活性物質層に占める活物質の割合が好適であり、電池の容量や負極活性物質間の抵抗の点で好ましい。
<2-4.正極>
以下に非水系電解液二次電池に使用される正極について説明する。
<2-4-1.正極活物質>
以下に正極に使用される正極活物質について説明する。
(1)組成
正極活物質としては、少なくともNiとCoを含有し、遷移金属のうち50モル%以上がNiとCoである遷移金属酸化物であり、電気化学的に金属イオンを吸蔵・放出可能なものであれば特に制限はないが、例えば、電気化学的にリチウムイオンを吸蔵・放出可能なものが好ましく、リチウムと少なくともNiとCoを含有し、遷移金属のうち50モル%以上がNiとCoである遷移金属酸化物が好ましい。Ni及びCoは、酸化還元の電位が二次電池の正極材として用いるのに好適であり、高容量用途に適しているためである。
リチウム遷移金属酸化物の遷移金属成分としては、必須元素として、NiとCoが含まれるが、その他の金属としてMn、V、Ti、Cr、Fe、Cu、Al、Mg、Zr、Er等が挙げられ、Mn、Ti、Fe、Al、Mg、Zr等が好ましい。リチウム遷移金属酸化物の具体例としては、例えば、LiNi0.85Co0.10Al0.05、LiNi0.80Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.05Ni0.33Mn0.33Co0.33、LiNi0.5Co0.2Mn0.3、Li1.05Ni0.50Mn0.29Co0.21、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.1Mn0.1等が挙げられる。
中でも、下記組成式(5)で示される遷移金属酸化物であることが好ましい。
Lia1Nib1Coc1d1・・・(5)
上記組成式(5)中、0.9≦a1≦1.1、0.3≦b1≦0.9、0.1≦c1≦0.5、0.0≦d1≦0.5の数値を示し、0.5≦b1+c1かつb1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。
上記組成式(5)中、0.1≦d1≦0.5の数値を示すことが好ましい。
NiやCoの組成比およびその他の金属種の組成比が所定の通りであることで、正極から遷移金属が溶出しにくく、かつ、たとえ溶出したとしてもNiやCoは非水系二次電池内での悪影響が小さいためである。
中でも、下記組成式(6)で示される遷移金属酸化物であることがより好ましい。
Lia2Nib2Coc2Md・・・(6)
上記組成式(6)中、0.9≦a2≦1.1、0.3≦b2≦0.9、0.1≦c2≦0.5、0.0≦d2≦0.5の数値を示し、c2≦b2かつ0.6≦b2+c2かつb2+c2+d2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。
上記組成式(6)中、0.1≦d2≦0.5の数値を示すことが好ましい。
NiおよびCoが主成分であり、かつNiの組成比がCoの組成比と同じか、もしくはより大きいことで、非水系二次電池正極として用いた際に、安定であり、かつ高容量を取り出すことが可能となるからである。
中でも、下記組成式(7)で示される遷移金属酸化物であることがさらに好ましい。
Lia3Nib3Coc3d3・・・(7)
(組成式(7)中、0.9≦a3≦1.1、0.35≦b3≦0.9、0.1≦c3≦0.5、0.0≦d3≦0.5の数値を示し、c3<b3かつ0.6≦b3+c3かつb3+c3+d3=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
組成式(7)中、0.1≦d3≦0.5の数値を示すことが好ましい。
中でも、下記組成式(8)で示される遷移金属酸化物であることが特に好ましい。
Lia4Nib4Coc4d4・・・(8)
(組成式(8)中、0.9≦a4≦1.1、0.5≦b4≦0.9、0.1≦c4≦0.2、0.0≦d4≦0.3の数値を示し、c4<b4かつ0.7≦b4+c4かつb4+c4+d4=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
組成式(8)中、0.1≦d4≦0.3の数値を示すことが好ましい。
上記の組成であることで、非水系二次電池正極として用いた際に、特に高容量を取り出すことが可能となるからである。
また、上記の正極活物質のうち2種類以上を混合して使用してもよい。同様に、上記の正極活物質のうち少なくとも1種以上と他の正極活物質とを混合して使用してもよい。他の正極活物質の例としては、上記に挙げられていない遷移金属酸化物、遷移金属燐酸化合物、遷移金属ケイ酸化合物、遷移金属ホウ酸化合物が挙げられる。
中でも、スピネル型構造を有するリチウムマンガン複合酸化物やオリビン型構造を有するリチウム含有遷移金属燐酸化合物が好ましい。具体的にはスピネル型構造を有するリチウムマンガン複合酸化物として、LiMn、LiMn1.8Al0.2、LiMn1.5Ni0.5等が挙げられる。中でも最も構造が安定であり、非水系電解液二次電池の異常時にも酸素放出しにくく、安全性に優れるためである。
また、リチウム含有遷移金属燐酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等の燐酸鉄類、LiCoPO等の燐酸コバルト類、LiMnPO等の燐酸マンガン類、これらのリチウム遷移金属燐酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の金属で置換したもの等が挙げられる。
中でも、リチウム鉄燐酸化合物が好ましい、鉄は資源量も豊富で極めて安価な金属であり、かつ有害性も少ないためである。すなわち、上記の具体例のうち、LiFePOをより好ましい具体例として挙げることができる。
(2)表面被覆
上記の正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質(以後、適宜「表面付着物質」という)が付着したものを用いることもできる。表面付着物質の例としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により、正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることができる。
正極活物質の表面に付着している表面付着物質の質量は、正極活物質の質量に対して、好ましくは0.1ppm以上であり、1ppm以上がより好ましく、10ppm以上が更
に好ましい。また、好ましくは20%以下であり、10%以下がより好ましく、5%以下が更に好ましい。
表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。また、付着量が上記範囲内にあると、その効果を十分に発現することができ、リチウムイオンの出入りを阻害することなく抵抗も増加し難くなる。
(3)形状
正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられる。また、一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状又は楕円球状であってもよい。
(4)タップ密度
正極活物質のタップ密度は、好ましくは0.5g・cm-3以上であり、1.0g・cm-3以上がより好ましく、1.5g・cm-3以上が更に好ましい。また、好ましくは4.0g・cm-3以下であり、3.7g・cm-3以下がより好ましい。
タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。正極活物質のタップ密度が上記範囲内にあると、正極活物質層形成時に必要な分散媒の量が適度なものとなるため、導電材やバインダーの量も適量となるため、正極活物質層への正極活物質の充填率が制約されることなく、電池容量への影響も少なくなる。
正極活物質のタップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明における正極活物質のタップ密度として定義する。
(5)メジアン径d50
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折/散乱式粒度分布測定装置を用いて測定することができる。
メジアン径d50は、好ましくは0.1μm以上であり、0.5μm以上がより好ましく、1μm以上が更に好ましく、3μm以上が特に好ましく、また、好ましくは30μm以下であり、20μm以下がより好ましく、16μm以下が更に好ましく、15μm以下が特に好ましい。メジアン径d50が上記範囲内であると、高嵩密度品を得易くなり、さらに、粒子内のリチウムの拡散に時間がかからないため、電池特性が低下し難くなる。また、電池の正極作製すなわち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際には、スジ引き等も生じ難くなる。
なお、異なるメジアン径d50をもつ正極活物質を2種類以上、任意の比率で混合することで、正極作製時の充填性を更に向上させることもできる。
正極活物質のメジアン径d50の測定は、0.1質量%ヘキサメタ燐酸ナトリウム水溶液を分散媒として用い、粒度分布計(例えば、堀場製作所社製LA-920)を用いて、正極活物質の分散液に対して5分間の超音波分散後に測定屈折率1.24に設定して測定する。
(6)平均一次粒子径
一次粒子が凝集して二次粒子を形成している場合、正極活物質の平均一次粒子径は、好
ましくは0.01μm以上であり、0.05μm以上がより好ましく、0.08μm以上が更に好ましく、0.1μm以上が特に好ましく、また、好ましくは3μm以下であり、2μm以下がより好ましく、1μm以下が更に好ましく、0.6μm以下が特に好ましい。上記範囲内であると、球状の二次粒子を形成し易くなり、粉体充填性が適度なものとなり、比表面積を十分確保できるため、出力特性等の電池性能の低下を抑制することができる。
なお、正極活物質の平均一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(7)BET比表面積
正極活物質のBET比表面積は、BET法を用いて測定した比表面積の値が、好ましくは0.2m・g-1以上であり、0.3m・g-1以上がより好ましく、0.4m・g-1以上が更に好ましく、また、好ましくは4.0m・g-1以下であり、2.5m・g-1以下がより好ましく、1.5m・g-1以下が更に好ましい。BET比表面積の値が、上記範囲内であると、電池性能の低下を防ぎ易い。さらに、十分なタップ密度を確保でき、正極活物質形成時の塗布性が良好となる。
正極活物質のBET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用いて測定する。具体的には、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって測定する。該測定で求められる比表面積を、本発明における正極活物質のBET比表面積と定義する。
(8)正極活物質の製造法
正極活物質の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、例えばその1例として、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
また、別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
更に別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
<2-4-2.正極構造と作製法>
以下に、正極の構成及びその作製法について説明する。
(正極の作製法)
正極は、正極活物質粒子とバインダーとを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、公知のいずれの方法でも作製することができる。例えば、正極活物質とバインダー、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
正極活物質の正極活物質層中の含有量は、好ましくは60質量%以上であり、70質量%以上がより好ましく、80質量%以上が更に好ましく、また、好ましくは99.9質量%以下であり、99質量%以下がより好ましい。正極活物質の含有量が、上記範囲内であると、電気容量を十分確保できる。さらに、正極の強度も十分なものとなる。なお、正極活物質粉体は、1種を単独で用いてもよく、異なる組成又は異なる粉体物性の2種以上を任意の組み合わせ及び比率で併用してもよい。2種以上の活物質を組み合わせて用いる際は、前記リチウムとマンガンを含有する複合酸化物を粉体の成分として用いることが好ましい。コバルト又はニッケルは、資源量も少なく高価な金属であり、自動車用途等の高容量が必要とされる大型電池では活物質の使用量が大きくなることから、コストの点で好ましくないため、より安価な遷移金属としてマンガンを主成分に用いることが望ましいためである。
(導電材)
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中の導電材の含有量は、好ましくは0.01質量%以上であり、0.1質量%以上がより好ましく、1質量%以上が更に好ましく、また、好ましくは50質量%以下であり、30質量%以下がより好ましく、15質量%以下が更に好ましい。含有量が上記範囲内であると、導電性を十分確保できる。さらに、電池容量の低下も防ぎやすい。
(バインダー)
正極活物質層の製造に用いるバインダーは、非水系電解液や電極製造時用いる溶媒に対して安定な材料であれば、特に限定されない。
塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であれば特に限定されないが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を
単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中のバインダーの含有量は、好ましくは0.1質量%以上であり、1質量%以上がより好ましく、3質量%以上が更に好ましく、また、好ましくは80質量%以下であり、60質量%以下がより好ましく、40質量%以下が更に好ましく、10質量%以下が特に好ましい。バインダーの割合が、上記範囲内であると、正極活物質を十分保持でき、正極の機械的強度を確保できるため、サイクル特性等の電池性能が良好となる。さらに、電池容量や導電性の低下を回避することにもつながる。
(液体媒体)
正極活物質層を形成するためのスラリーの調製に用いる液体媒体としては、正極活物質、導電材、バインダー、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系媒体の例としては、例えば、水、アルコールと水との混合媒体等が挙げられる。有機系媒体の例としては、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類;N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルフォキシド等の非プロトン性極性溶媒等を挙げることができる。なお、これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
(増粘剤)
スラリーを形成するための液体媒体として水系媒体を用いる場合、増粘剤と、スチレンブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。
増粘剤としては、本発明の効果を著しく制限しない限り制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、燐酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
増粘剤を使用する場合には、正極活物質に対する増粘剤の割合は、好ましくは0.1質量%以上であり、0.5質量%以上がより好ましく、0.6質量%以上が更に好ましく、また、好ましくは5質量%以下であり、3質量%以下がより好ましく、2質量%以下が更に好ましい。増粘剤の割合が、上記範囲内であると、塗布性が良好となり、さらに、正極活物質層に占める活物質の割合が十分なものとなるため、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題を回避し易くなる。
(圧密化)
集電体への上記スラリーの塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、1g・cm-3以上が好ましく、1.5g・cm-3以上が更に好ましく、2g・cm-3以上が特に好ましく、また、4g・cm-3以下が好ましく、3.5g・cm-3以下が更に好ましく、3g・cm-3以下が特に好ましい。正極活物質層の密度が、上記範囲内であると、集電体/活物質界面付近への非水系電解液の
浸透性が低下することなく、特に高電流密度での充放電特性が良好となる。さらに、活物質間の導電性が低下し難くなり、電池抵抗が増大し難くなる。
(集電体)
正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は、適宜メッシュ状に形成してもよい。
集電体の厚さは任意であるが、好ましくは1μm以上であり、3μm以上がより好ましく、5μm以上が更に好ましく、また、好ましくは1mm以下であり、100μm以下がより好ましく、50μm以下が更に好ましい。集電体の厚さが、上記範囲内であると、集電体として必要な強度を十分確保することができる。さらに、取り扱い性も良好となる。
集電体と正極活物質層の厚さの比は特には限定されないが、(非水系電解液注液直前の片面の活物質層厚さ)/(集電体の厚さ)が、好ましくは150以下であり、20以下がより好ましく、10以下が特に好ましく、また、好ましくは0.1以上であり、0.4以上がより好ましく、1以上が特に好ましい。集電体と正極活物質層の厚さの比が、上記範囲内であると、高電流密度充放電時に集電体がジュール熱による発熱を生じ難くなる。さらに、正極活物質に対する集電体の体積比が増加し難くなり、電池容量の低下を防ぐことができる。
(電極面積)
高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、非水系電解液二次電池の外装の表面積に対する前記正極の電極面積の総和を、面積比で20倍以上とすることが好ましく、更に40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
(放電容量)
非水系電解液を用いる場合、非水系電解液二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、1アンペアーアワー(Ah)以上であると、低温放電特性の向上効果が大きくなるため好ましい。そのため、正極板は、放電容量が満充電で、好ましくは3Ah以上であり、より好ましくは4Ah以上、また、好ましくは100Ah以下であり、より好ましくは70Ah以下であり、特に好ましくは50Ah以下になるように設計する。非水系電解液二次電池の1個の電池外装に収納される電池要素のもつ電気容量が、上記範囲内であると、大電流の取り出し時に電極反応抵抗による電圧低下が大きくなり過ぎず、電力効率の悪化を防ぐことができる。さらに、パルス充放電時の電池内部発熱による温度分布が大きくなり過ぎず、充放電繰り返しの耐久性が劣り、また、過充電や内部短絡等の異常時の急激な発熱に対して放熱効率も悪くなるといった現象を回避することができる。
(正極板の厚さ)
正極板の厚さは、特に限定されないが、高容量かつ高出力、高レート特性の観点から、集電体の厚さを差し引いた正極活物質層の厚さは、集電体の片面に対して、10μm以上が好ましく、20μm以上がより好ましく、また、200μm以下が好ましく、100μm以下がより好ましい。
<2-5.セパレータ>
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限は無く、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上がより好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がより好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がより好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がより好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物類、窒化アルミや窒化ケイ素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状若しくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、樹脂製の結着剤を用いて前記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、フッ素樹脂を結着剤として用いて、90%粒子径が1μm未満のアルミナ粒子を含有する複合多孔層を、正極の両面の表層に形成させることが挙げられる。
<2-6.電池設計>
[電極群]
電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する。)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
[集電構造]
集電構造は特に限定されるものではないが、非水系電解液による放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、非水系電解液を使用した効果は特に良好に発揮される。
電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。1枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
[外装ケース]
外装ケースの材質は、用いられる非水系電解液に対して安定な物質であれば、特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
前記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して前記金属類を用いてかしめ構造とするものが挙げられる。前記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、前記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変性樹脂が好適に用いられる。
[保護素子]
前述の保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
[外装体]
非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外
装体内に収納して構成される。この外装体に制限は無く、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
以下、実施例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
本実施例及び比較例に使用した化合物を以下に示す。なお、各化合物のTPSAの値は表2に示した通りである。
Figure 0007404056000219
Figure 0007404056000220
Figure 0007404056000221
Figure 0007404056000222
Figure 0007404056000223
Figure 0007404056000224
Figure 0007404056000225
Figure 0007404056000226
Figure 0007404056000227
Figure 0007404056000228
Figure 0007404056000229
Figure 0007404056000230
Figure 0007404056000231
Figure 0007404056000232
Figure 0007404056000233
Figure 0007404056000234
Figure 0007404056000235
Figure 0007404056000236
Figure 0007404056000237
<実施例1-1~1-13、比較例1-1~1-7>
[正極の作製]
正極活物質としてリチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)85質量%と、導電材としてアセチレンブラック10質量%と、結着材としてポリフッ化ビニリデン(PVDF)5質量%とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ21μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
[負極の作製]
平均粒子径0.2μmのSi微粒子50gを平均粒子径35μmの鱗片状黒鉛2000
g中に分散させ、ハイブリダイゼーションシステム(奈良機械製作所製)に投入し、ローター回転数7000rpm、180秒間、装置内を循環又は滞留させて処理し、Siと黒鉛粒子との複合体を得た。得られた複合体を、焼成後の被覆率が、7.5%になるように炭素質物となる有機化合物としてコールタールピッチを混合し、2軸混練機により混練・分散させた。得られた分散物を、焼成炉に導入し、窒素雰囲気下で1000℃、3時間、焼成した。得られた焼成物は、更にハンマーミルで粉砕後、篩(45μm)を実施し、負極活物質を作製した。前記測定法で測定した、珪素元素の含有量、平均粒子径d50、タップ密度、比表面積はそれぞれ、2.0質量%、20μm、1.0g/cm、7.2m/gであった。
負極活物質に対して、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、及び、スチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)を加え、ディスパーザーで混合してスラリー化した。このスラリーを厚さ10μmの銅箔の片面に均一に塗布、乾燥した後、プレスして負極とした。なお、乾燥後の負極において、負極活物質:カルボキシメチルセルロースナトリウム:スチレン-ブタジエンゴム=97.5:1.5:1の質量比となるように作製した。
[非水系電解液の調製]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合物(体積容量比3:7)に、十分に乾燥させたLiPFを1.2モル/L(非水系電解液中の濃度として)溶解させたものに対して、さらに、ビニレンカーボネート(VC)を2.0質量%添加した(これを基準電解液1と呼ぶ)。実施例1-1~実施例1-13、比較例1-2~比較例1-7では、調整後が下表2に記載の含有量になるように基準電解液1に各化合物1~16を加えて非水系電解液を調製した。ただし、比較例1-1は基準電解液1そのものである。なお、表2中の「含有量(質量%)」は、非水系電解液100質量%中の濃度である。
[非水系電解液二次電池の製造]
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、上記電解液を袋内に注入し、真空封止を行い、ラミネート型セルの非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
[高温サイクル試験]
25℃の恒温槽中、ラミネート型セルの非水系電解液二次電池を0.05Cに相当する電流で4.0Vまで定電流-定電圧(CC-CV)充電した。その後、0.05Cで2.5Vまで放電した。続いて0.2Cで4.0VまでCC-CV充電した後、0.2Cで2.5Vまで放電し、0.2Cで4.2VまでCC-CV充電した後、0.2Cで2.5Vまで放電し非水系電解液二次電池を安定させた。その後、0.2Cで4.3VまでCC-CV充電を行った後、0.2Cで2.5Vまで放電させ初期のコンディショニングを行った。
初期コンディショニング終了後にマイクロメーター(Mitutoyo社製、型番:ID-C112XB)を用いて電池の厚みを測定したのち、セルを45℃の恒温槽中、0.5Cで4.2VまでCC-CV充電した後、0.5Cの定電流で2.5Vまで放電する過程を1サイクルとして、100サイクル実施した。その後、初期コンディショニング終了後と同様に電池の厚みを測定し、サイクル充放電に伴う電池の厚み変化を求めた。なお、
下表2には比較例1-1の電池の厚み変化を100としたときの、各実施例における電池の厚み変化の割合を「電池膨れ」として示した。すなわち、「電池膨れ」が100を下回る場合、比較例1-1に比べて電池の厚み変化が小さいことを示し、100を上回る場合、比較例1-1に比べて電池の厚み変化が大きいことを示す。また、縦軸に電池膨れをとり、横軸にTPSAをとり、表2の実験結果をプロットしたグラフを図1に示した。
Figure 0007404056000238
表2から明らかなように、実施例1-1~実施例1-13で製造した電池は、比較例1-1で製造した電池に対して、電池の膨れを好適に抑制していることがわかる。また、一般式(A)または(B)に該当する化合物でもTPSAの値が特定範囲に入っていない場合(比較例1-2~比較例1-7)は電池の膨れを抑制する効果は不十分であることがわかる。これより、特定のTPSAの値を有する一般式(A)または(B)で表される化合物と、Liと合金化可能な金属粒子と、黒鉛粒子と、を含有する負極活物質とを組み合わせることで、充放電に伴う電池の膨れを好適に抑制できる。
本発明の実施形態に係る非水系電解液によれば、非水系電解液二次電池の繰り返し充放
電に伴う電池の膨化を改善でき、非水系電解液二次電池用の非水系電解液として有用である。
また、本発明の実施形態に係る非水系電解液及びこれを用いた非水系電解液二次電池は、非水系電解液二次電池を用いる公知の各種用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、家庭用バックアップ電源、事業所用バックアップ電源、負荷平準化用電源、自然エネルギー貯蔵電源、リチウムイオンキャパシタ等が挙げられる。

Claims (9)

  1. 金属イオンを吸蔵及び放出可能な正極と、
    金属イオンを吸蔵及び放出可能な、Liと合金化可能な金属系材料と、黒鉛と、を含有する負極活物質を含む負極と、
    非水系溶媒と該非水系溶媒に溶解される電解質とを含む非水系電解液とを備える非水系電解液二次電池に用いられる非水系電解液であって、
    下記条件(i)及び(ii)の少なくとも一方を満たす非水系電解液。
    条件(i):前記Liと合金化可能な金属材料は、Si又はSi化合物であって、
    前記負極活物質における、前記Liと合金化可能な金属系材料と黒鉛との合計に対する、前記Liと合金化可能な金属系材料の含有量は30質量%以下であり、
    前記非水系電解液が、トポロジカル極性表面積(TPSA)値が0平方オングストロームより大きく、40平方オングストローム以下であり、且つ、下記一般式(A)で表される化合物を少なくとも一種含有する。
    Figure 0007404056000239

    (前記一般式(A)で表される構造を有する化合物において、R~Rは、それぞれ独立に、F以外の置換基である。ただし、R~Rの任意の置換基が結合して環を形成していてもよい。)
    条件(ii):TPSA値が0平方オングストロームであり、且つ、下記一般式(B)で表される化合物を少なくとも一種含有する。
    Figure 0007404056000240

    (前記一般式(B)で表される構造を有する化合物において、R~Rは、それぞれ独立に、F以外の置換基である。また、nは1~10の整数値を示す。)
  2. 前記条件(i)が下記条件(iii)である、請求項1に記載の非水系電解液。
    条件(iii):前記Liと合金化可能な金属系材料は、Si又はSi化合物であって、前記負極活物質における、前記Liと合金化可能な金属系材料と黒鉛との合計に対する、前記Liと合金化可能な金属系材料の含有量は30質量%以下であり、
    前記非水系電解液が、トポロジカル極性表面積(TPSA)値が10平方オングストローム以上、40平方オングストローム以下であり、且つ、下記一般式(A)で表される化合物を少なくとも一種含有する。
    Figure 0007404056000241

    (前記一般式(A)で表される構造を有する化合物において、R~Rは、それぞれ独立に、F以外の置換基である。ただし、R~Rの任意の置換基が結合して環を形成していてもよい。)
  3. 前記一般式(A)で表される化合物が下記一般式(a)で表される化合物である、請求項1または2に記載の非水系電解液。
    Figure 0007404056000242

    (前記一般式(a)中、R~Rは、それぞれ独立に、ハロゲン原子で置換されていてもよい炭素数1~20の炭化水素基であり、かつ、該炭化水素において、少なくとも1つの炭素原子が酸素原子、窒素原子、硫黄原子で置換されていてもよく、Xは炭素数1~10のアルキレン基であり、かつ、該アルキレン基において、少なくとも1つの炭素原子が酸素原子、窒素原子、硫黄原子で置換されていてもよく、Yはシアノ基、チオール基及び下記一般式(1)で表される基からなる群から選択される構造を示す。)
    Figure 0007404056000243

    (前記一般式(1)中、Rは、ハロゲン原子で置換されていてもよい炭素数1~20の炭化水素基を示す。)
  4. 前記条件(ii)において、前記Liと合金化可能な金属系材料がSi、Sn、As、Sb、Al、Zn及びWからなる群より選ばれる少なくとも1種の金属又はその金属化合物である、請求項1~3のいずれか1項に記載の非水系電解液。
  5. 前記Liと合金化可能な金属系材料がSi又はSi金属酸化物である、請求項4に記載の非水系電解液。
  6. 前記Liと合金化可能な金属系材料と黒鉛とを含有する負極活物質が、金属系材料と黒鉛との複合体及び/又は混合体である、請求項1~5のいずれか1項に記載の非水系電解液。
  7. 前記負極活物質における、前記Liと合金化可能な金属系材料と黒鉛との合計に対する、前記Liと合金化可能な金属系材料の含有量が、0.1~25質量%である、請求項1~6のいずれか1項に記載の非水系電解液。
  8. 前記条件(i)及び(ii)を満たす化合物群から選ばれた少なくとも1種の化合物の合計の含有量が、非水系電解液の全量に対して0.001~10質量%である、請求項1~7のいずれか1項に記載の非水系電解液。
  9. 請求項1~8のいずれか1項に記載の非水系電解液を用いた非水系電解液二次電池。
JP2019225839A 2018-12-13 2019-12-13 非水系電解液及び非水系電解液二次電池 Active JP7404056B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023083925A JP7458534B2 (ja) 2018-12-13 2023-05-22 非水系電解液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018233816 2018-12-13
JP2018233816 2018-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023083925A Division JP7458534B2 (ja) 2018-12-13 2023-05-22 非水系電解液

Publications (2)

Publication Number Publication Date
JP2020098778A JP2020098778A (ja) 2020-06-25
JP7404056B2 true JP7404056B2 (ja) 2023-12-25

Family

ID=71106138

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019225839A Active JP7404056B2 (ja) 2018-12-13 2019-12-13 非水系電解液及び非水系電解液二次電池
JP2023083925A Active JP7458534B2 (ja) 2018-12-13 2023-05-22 非水系電解液

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023083925A Active JP7458534B2 (ja) 2018-12-13 2023-05-22 非水系電解液

Country Status (1)

Country Link
JP (2) JP7404056B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261579A1 (ja) * 2020-06-26 2021-12-30 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
CN113013487A (zh) * 2021-02-25 2021-06-22 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的锂离子电池
WO2024005522A1 (ko) * 2022-06-28 2024-01-04 자인에너지 주식회사 신규한 음이온 수용체 화합물 및 이를 함유한 전해질
CN115579522B (zh) * 2022-11-10 2023-03-17 合肥国轩高科动力能源有限公司 电解液及锂离子电池

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243440A (ja) 1999-02-19 2000-09-08 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2002313416A (ja) 2001-04-13 2002-10-25 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005293942A (ja) 2004-03-31 2005-10-20 Nec Corp 二次電池用負極の製造方法
WO2012029420A1 (ja) 2010-09-02 2012-03-08 日本電気株式会社 二次電池
JP2013189556A (ja) 2012-03-14 2013-09-26 Jsr Corp 新規ポリカルボシラン、電解質、蓄電デバイスおよび電解質形成用組成物
JP2015005328A (ja) 2012-06-13 2015-01-08 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2015109235A (ja) 2013-12-05 2015-06-11 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムイオン(Lithiumion)二次電池
JP2015133278A (ja) 2014-01-15 2015-07-23 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2015213014A (ja) 2014-05-02 2015-11-26 ソニー株式会社 電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システム
JP2017095416A (ja) 2015-11-26 2017-06-01 国立大学法人鳥取大学 ケイ素含有スルホン酸塩
JP2018505512A (ja) 2015-09-28 2018-02-22 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG リチウムイオン電池用電解質成分としてのニトリルおよびアミン
JP2018508112A (ja) 2015-03-16 2018-03-22 アルケマ フランス リチウムイオン電池のための電解質配合組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211873A (ja) * 1986-03-11 1987-09-17 Hitachi Maxell Ltd リチウム二次電池
JPH03236168A (ja) * 1990-02-13 1991-10-22 Nippon Telegr & Teleph Corp <Ntt> 化学電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243440A (ja) 1999-02-19 2000-09-08 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2002313416A (ja) 2001-04-13 2002-10-25 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005293942A (ja) 2004-03-31 2005-10-20 Nec Corp 二次電池用負極の製造方法
WO2012029420A1 (ja) 2010-09-02 2012-03-08 日本電気株式会社 二次電池
JP2013189556A (ja) 2012-03-14 2013-09-26 Jsr Corp 新規ポリカルボシラン、電解質、蓄電デバイスおよび電解質形成用組成物
JP2015005328A (ja) 2012-06-13 2015-01-08 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2015109235A (ja) 2013-12-05 2015-06-11 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムイオン(Lithiumion)二次電池
JP2015133278A (ja) 2014-01-15 2015-07-23 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2015213014A (ja) 2014-05-02 2015-11-26 ソニー株式会社 電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システム
JP2018508112A (ja) 2015-03-16 2018-03-22 アルケマ フランス リチウムイオン電池のための電解質配合組成物
JP2018505512A (ja) 2015-09-28 2018-02-22 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG リチウムイオン電池用電解質成分としてのニトリルおよびアミン
JP2017095416A (ja) 2015-11-26 2017-06-01 国立大学法人鳥取大学 ケイ素含有スルホン酸塩

Also Published As

Publication number Publication date
JP2020098778A (ja) 2020-06-25
JP7458534B2 (ja) 2024-03-29
JP2023109905A (ja) 2023-08-08

Similar Documents

Publication Publication Date Title
JP7265673B2 (ja) 非水系電解液、非水系電解液二次電池、及びエネルギーデバイス
US11688881B2 (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
JP6380600B2 (ja) フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP7404056B2 (ja) 非水系電解液及び非水系電解液二次電池
EP2571090B9 (en) Nonaqueous-electrolyte secondary battery
JP6604014B2 (ja) 非水系電解液及び非水系電解液二次電池
JP6167470B2 (ja) 非水系電解液電池
US11302966B2 (en) Amine borate compound containing nonaqueous electrolytic solution and power storage device
JP5277686B2 (ja) リチウム二次電池及びそれに使用されるリチウム二次電池用正極
JP7231615B2 (ja) 非水系電解液及び非水系電解液電池
JP2019135730A (ja) 非水系電解液及び非水系電解液二次電池
JP2013206843A (ja) 非水系電解液電池
JP5906761B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2019040676A (ja) 非水系電解液及び非水系電解液二次電池
JP2018073738A (ja) 非水系電解液及び非水系電解液二次電池
JP6756250B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2019096629A (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2019145347A (ja) 非水系電解液電池
JP2017142940A (ja) 非水系電解液及び非水系電解液二次電池

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231213

R150 Certificate of patent or registration of utility model

Ref document number: 7404056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150