JP7367614B2 - 噴射制御装置 - Google Patents

噴射制御装置 Download PDF

Info

Publication number
JP7367614B2
JP7367614B2 JP2020093308A JP2020093308A JP7367614B2 JP 7367614 B2 JP7367614 B2 JP 7367614B2 JP 2020093308 A JP2020093308 A JP 2020093308A JP 2020093308 A JP2020093308 A JP 2020093308A JP 7367614 B2 JP7367614 B2 JP 7367614B2
Authority
JP
Japan
Prior art keywords
time
energization
current
fuel
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020093308A
Other languages
English (en)
Other versions
JP2021188549A (ja
Inventor
洋平 菅沼
諒平 高橋
寛之 福田
雅司 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020093308A priority Critical patent/JP7367614B2/ja
Priority to US17/331,212 priority patent/US11384704B2/en
Publication of JP2021188549A publication Critical patent/JP2021188549A/ja
Application granted granted Critical
Publication of JP7367614B2 publication Critical patent/JP7367614B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2013Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost voltage source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • F02D2200/0608Estimation of fuel temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、燃料噴射弁を開弁・閉弁制御する噴射制御装置に関する。
噴射制御装置は、燃料噴射弁を開弁・閉弁することで燃料を内燃機関に噴射するために用いられる(例えば、特許文献1参照)。噴射制御装置は、電気的に駆動可能な燃料噴射弁に電流を通電することで開弁制御する。近年では、指令噴射量に基づく通電電流の理想電流プロファイルが定められており、噴射制御装置は、理想電流プロファイルに基づいて燃料噴射弁に電流を印加することで開弁制御している。
特開2016-33343号公報
燃料噴射弁の通電電流の勾配が、周辺温度環境、経年劣化等の様々な要因を理由として理想電流プロファイルよりも低下してしまうと、実噴射量が指令噴射量から大きく低下してA/F値の悪化や失火の虞がある。これらを防ぐためには、予めばらつきを見込んで燃料噴射弁への通電指示時間を長めに調整することが望ましいが、通電指示時間を長めに確保すると反対に燃費が悪化してしまう虞がある。
そこで出願人は、目標ピーク電流に達するまでの目標となる理想電流プロファイルの積算電流と検出電流の積算電流との電流の面積補正技術により通電時間を補正することを提案している。この提案した面積補正制御は、主にパーシャルリフト噴射時に実ピーク電流が目標ピーク電流に到達しないときに通電時間補正量を算出して通電時間を延長する制御である。このとき、実ピーク電流が目標ピーク電流に到達すれば、面積補正制御は理論上不要であるため、実ピーク電流が目標ピーク電流に到達すれば、面積補正制御を実行しない。
しかしながら、電流検出精度が悪化したり計算誤差を生じると、実際のピーク電流と目標ピーク電流との間に誤差を生じ、目標ピーク電流に到達するか否かの場合分けに応じて面積補正を実施したり実施しなかったりすることになる。すると、通電指示時間のわずかな変化に対して噴射量が急変することがある。このとき、A/F値が目標A/F値から大きくずれる場合があり好ましくない。
本発明の目的は、通電指示時間のわずかな変化に対して噴射量を急変させることなく噴射制御できるようにした噴射制御装置を提供することにある。
請求項1記載の発明によれば、燃料噴射弁を電流駆動して燃料噴射弁から燃料を噴射させる際に、変換係数設定部は噴射の度に変換係数を設定する。面積補正部は、燃料噴射弁の駆動時の電流をモニタして通電電流の傾きを検出し、傾きに応じて今回の駆動時の通電時間を延ばすように補正するように構成され、燃料噴射弁の駆動電流が目標ピーク電流に到達/未到達に拘わらず変換係数を用いた面積補正を前記噴射の度に実施して通電時間補正量を算出するようにしている。この場合、面積補正が噴射毎に常時実施されることになるため、通電指示時間のわずかな変化に対して噴射量が急変することもなくなり、通電指示時間のわずかな変化に対しても噴射量を連続的に変化させることができる。
第1実施形態における噴射制御装置の電気的構成図 マイコンと制御ICとの間で通信する情報の説明図 マップ説明図 積算電流差の算出方法の説明図 ピーク電流推定値の算出方法の説明図 噴射量の段差領域の説明図 第2実施形態における補正係数の設定処理及び通電時間補正量の算出処理を示すフローチャート 通常領域用のマップの説明図 段差領域用のマップの説明図 噴射量の段差領域の説明図
以下、噴射制御装置の幾つかの実施形態について図面を参照しながら説明する。図1に示すように、電子制御装置1(ECU:Electronic Control Unit)は、例えば自動車などの車両に搭載された内燃機関に燃料を噴射するソレノイド式の燃料噴射弁2(インジェクタとも称される)を駆動制御する噴射制御装置として構成される。ここでは4気筒分の燃料噴射弁2を示しているが、3気筒、6気筒、8気筒でも適用できる。以下では、ガソリンエンジン制御用の電子制御装置1に適用した形態を説明するが、ディーゼルエンジン制御用の電子制御装置に適用しても良い。
電子制御装置1は、昇圧回路3、マイクロコンピュータ4(以下、マイコン4と略す)、制御IC5、駆動回路6、及び電流検出部7としての電気的構成を備え、燃料を噴射制御する噴射制御装置として用いられる。マイコン4は、1又は複数のコア4a、ROM、RAMなどのメモリ4b、A/D変換器などの周辺回路4cを備えて構成され、メモリ4bに記憶されたプログラム、及び、各種のセンサ8から取得されるセンサ信号Sに基づいて各種制御を行う。
例えばガソリンエンジン用のセンサ8は、クランク軸が所定角回転するごとにパルス信号を出力するクランク角センサ、内燃機関のシリンダブロックに配置され冷却水温を検出する水温センサ、吸気量を検出する吸気量センサ、内燃機関に噴射する際の燃料圧力を検出する燃圧センサ9、内燃機関の空燃比すなわちA/F値を検出するA/Fセンサ、などである。またマイコン4は、内燃機関に噴射する際の燃料圧力を燃圧センサ9から周辺回路4cを通じて取得できる。図1にはセンサ8を簡略化して示した。
マイコン4は、クランク角センサのパルス信号によりエンジン回転数を算出すると共に、アクセル信号からアクセル開度を取得する。マイコン4は、水温センサの冷却水温から燃料噴射弁2の温度を推定すると共に、アクセル開度、油圧、及びA/F値に基づいて、内燃機関に要求される目標トルクを算出し、この目標トルクに基づいて目標となる要求噴射量を算出する。
またマイコン4は、この目標となる要求噴射量、及び、燃圧センサ9により検出される燃料圧力に基づいて指令TQの通電指令時間Tiを算出する。マイコン4は、前述した各種のセンサ8から入力されるセンサ信号Sに基づいて各気筒に対する噴射指令タイミングを算出し、この噴射指令タイミングにおいて燃料の指令TQを制御IC5に出力する。
なおマイコン4は、クランク角センサのパルス信号により算出されるエンジン回転数に基づいて、各気筒に対する噴射開始時刻を算出できる。
制御IC5は、例えばASICによる集積回路装置であり、例えばロジック回路、CPUなどによる制御主体と、RAM、ROM、EEPROMなどの記憶部、コンパレータを用いた比較器など(何れも図示せず)を備え、ハードウェア及びソフトウェアに基づいて各種制御を実行するように構成される。制御IC5は、昇圧制御部5a、通電制御部5b1、及び電流モニタ部5cとしての機能を備える。
昇圧回路3は、昇圧型のDCDCコンバータにより構成されバッテリ電圧VBを入力して動作する。昇圧制御部5aは、昇圧回路3に入力されたバッテリ電圧VBを昇圧制御し、昇圧回路3から昇圧電圧Vboostを駆動回路6に供給させる。
駆動回路6は、バッテリ電圧VB及び昇圧電圧Vboostを入力して構成され、制御IC5の通電制御部11の通電制御により、各気筒の燃料噴射弁2のソレノイドコイル2aに電圧、すなわち昇圧電圧Vboost又はバッテリ電圧VBを印加することで燃料噴射弁2を駆動して燃料を噴射させる。
電流検出部7は、電流検出抵抗により構成される。制御IC5の電流モニタ部5cは、例えばコンパレータによる比較部及びA/D変換器等(何れも図示せず)を用いて構成され、燃料噴射弁2のソレノイドコイル2aに流れる電流を電流検出部7を通じてモニタする。
また、図2にはマイコン4及び制御IC5の機能的構成の一部を概略的に示している。マイコン4は、コア4aがメモリ4bに記憶されたプログラムを実行することで、通電指令時間算出部10、及び変換係数設定部11として動作する。また制御IC5は、前述した昇圧制御部5a、通電制御部5b、電流モニタ部5cとしての機能の他、面積補正部としての通電時間補正量算出部5dの機能も備える。
通電指令時間算出部10は、内燃機関に係る各種センサ8のセンサ信号Sに基づいて噴射制御の開始時に要求噴射量を演算し、指示TQの通電指示時間Tiを演算する。指示TQの通電指示時間Tiは、噴射制御時に電圧、例えば昇圧電圧Vboostを燃料噴射弁2に印加指示する時間を示している。
変換係数設定部11は、補正係数α、βを設定する。補正係数αは、燃料噴射弁2に流す通常電流プロファイルPIと実際の通電電流EIとの電流差を推定するために用いられる係数である。補正係数αは、燃料噴射弁2の負荷特性などにより予め算出されるゼロ以上の値に設定される係数であり、αマップ12によってメモリ4bに予め記録されている。αマップ12は、マトリクス状に補正係数αを割り当てたマップである。変換係数設定部11は、燃圧センサ9の燃圧情報及びαマップ12を参照して補正係数αを設定する。
αマップ12は、図3に例示したように、指示TQの通電指示時間Tiと噴射時の燃圧センサ9による燃圧とから補正係数αを導出するためのマップを示すもので、ピーク電流未到達~ピーク電流到達を超える範囲まで補正係数αを設定するために設けられる。補正係数αは、後述する(1)式~(4)式において通電時間補正量ΔTiを算出するために設けられる。変換係数設定部11が、補正係数αを大きく設定することで通電時間補正量ΔTiを大きくでき、ゼロに設定することで通電時間補正量ΔTiをゼロにもできる。なお、時間T1~T8は、時間T1<T2<…<T8を満たす値を示し、燃圧P1~P6も燃圧P1<P2<…<P6を満たす圧力値を示す。
αマップ12の時間T1の欄には燃圧P1~P6に応じた補正係数α11~α61が記憶されている。時間T1の欄には、燃圧P1~P6が大きくなるに従って補正係数α11~α61が大きくなるように設定されている。αマップ12の時間T2の欄にも燃圧P1~P6に応じた補正係数α12~α62が記憶されている。同様に、時間T2の欄には、燃圧P1~P6が大きくなるに従って補正係数α12~α62が大きくなるように設定されている。
αマップ12の時間T3の欄にも燃圧P1~P6に応じた補正係数α13~α63が記憶されている。時間T3の欄には、燃圧P1~P6が大きくなるに従って補正係数α13~α63が大きくなるように設定されている。αマップ12の時間T4の欄にも燃圧P1~P6に応じた補正係数α14~α64が記憶されている。時間T4の欄には、燃圧P1~P6が大きくなるに従って補正係数α14~α64が大きくなるように設定されている。
αマップ12の時間T5の欄にも燃圧P1~P6に応じた補正係数α15~α65が記憶されている。時間T5の欄には、燃圧P1~P6が大きくなるに従って補正係数α15~α65が大きくなるように設定されている。αマップ12の時間T6の欄にも燃圧P1~P6に応じた補正係数α16~α66が記憶されている。時間T6の欄には、燃圧P1~P6が大きくなるに従って補正係数α15~α66が大きくなるように設定されている。
αマップ12の時間T7の欄にも燃圧P1~P6に応じた補正係数α17~α67が記憶されている。時間T7の欄には、燃圧P1~P6が大きくなっても補正係数α17~α67が等しくなるように設定されている。
αマップ12の時間T8の欄には燃圧P1~P6に応じた補正係数α18~α68が記憶されている。パーシャルリフト噴射時に目標ピーク電流に到達する通電時間は、時間T7と時間T8の間に設定されている。ただし時間T8の補正係数α18~α68は、全ての燃圧P1~P6の欄にゼロが設定されている。
例えば、燃料噴射弁2に対する通電時間が時間T8程度であれば、パーシャルリフト噴射時に目標ピーク電流Ipkに必ず到達するため、補正係数α18~α68を乗算して通電時間補正量ΔTiを算出しても、その延長時間がゼロとなるように設定されている。ここでは簡略化した例を挙げて説明したが、補正係数αは、設定可能な通電時間の全てに対応してαマップ12に記録されている。
また補正係数βは、噴射制御のピーク電流推定値Ipa1を推定するために用いられる係数であり、燃料噴射弁2の負荷特性などにより予め算出される係数である。
制御IC5の通電制御部5bは指示TQの通電指示時間Tiを入力し、通電時間補正量算出部5dは補正係数α、βを入力する。制御IC5の通電制御部5bは、指示TQの通電指示時間Tiを入力すると駆動回路6から電源(例えば昇圧電圧Vboost)を燃料噴射弁2に通電制御する。他方、制御IC5の通電時間補正量算出部5dは、通電制御部5bにより燃料噴射弁2を電流駆動して燃料噴射弁2から燃料を噴射する際に、燃料噴射弁2に流れる電流を取得して当該電流の面積補正を実施することで通電時間補正量ΔTiを算出する。
通電時間補正量算出部5dは、通電時間補正量ΔTiを算出すると通電制御部5bにフィードバックする。通電制御部5bは、ある噴射に対応して入力される指示TQの通電指令時間Tiに対して通電時間補正量ΔTiをリアルタイムに反映して燃料噴射弁2に通電制御する。
以下、燃料噴射弁2から多段筒内噴射する場合の詳細動作説明を行う。パーシャルリフト噴射では、燃料噴射弁2が完全に開弁完了するまでに弁を閉塞する噴射処理を実行する。
バッテリ電圧VBが電子制御装置1に与えられると、マイコン4及び制御IC5は起動する。制御IC5の昇圧制御部5aは、昇圧制御パルスを昇圧回路3に出力することで昇圧回路3の出力電圧を昇圧させる。昇圧電圧Vboostは、バッテリ電圧VBを超えた所定の昇圧完了電圧に充電される。
マイコン4は、通電指令をするオンタイミングt0にて通電指令時間算出部10によりピーク電流制御の通電開始時に要求噴射量を演算すると共に、指示TQの通電指令時間Tiを演算し、制御IC5の通電制御部5bに出力する。これによりマイコン4は、制御IC5に対し指示TQにより通電指令時間Tiを指令する。
他方、マイコン4は、通電指令をするオンタイミングt0の直前の燃圧の情報を燃料噴射弁2の燃圧センサ9から取得すると共に、αマップ12を参照し、変換係数設定部11により補正係数αを設定する。またマイコン4は、変換係数設定部11により補正係数α、βを通電時間補正量算出部5dに出力する。
制御IC5は、燃料噴射弁2に通電する目標電流となる通常電流プロファイルPIを内部メモリに記憶しており、通常電流プロファイルPIに基づいて、通電制御部5bの制御により燃料噴射弁2aに昇圧電圧Vboostを印加することで目標ピーク電流Ipkに達するようにピーク電流制御を行う。
制御IC5は、指示TQの通電指令時間Tiに基づいて通常電流プロファイルPIの示すピーク電流目標値Ipkに達するまで燃料噴射弁2aの端子間に昇圧電圧Vboostを印加し続ける。燃料噴射弁2aの通電電流EIが急激に上昇し開弁する。図4に示すように、燃料噴射弁2aの通電電流EIは、燃料噴射弁2aの構造に基づいて非線形的に変化する。
通電時間補正量算出部5dは、通常電流プロファイルPIと燃料噴射弁2aに通電する実電流EIとの積算電流差ΣΔIを算出する。積算電流差ΣΔIは、非線形の電流曲線に囲われた領域となるため、詳細に算出するには演算負荷が大きくなりやすい。このため、図4および(1)式に示すように、(t、I)=(t1n、It1)、(t、It1)、(t2n、It2)、(t、It2)、を頂点とした台形の面積を積算電流差ΣΔIと見做して簡易的に算出すると良い。
Figure 0007367614000001
通電時間補正量算出部5dは、電流閾値It1に達する理想到達時間t1nから電流閾値It2に達する理想到達時間t2nまでの通常電流プロファイルPIと、実際に電流閾値It1に達する到達時間tから電流閾値It2に達する到達時間tまでの燃料噴射弁2aの通電電流EIとの間の積算電流差ΣΔIを算出する。これにより、通電時間補正量算出部5dは、電流閾値It1、It2に達する到達時間t、tを検出することで積算電流差ΣΔIを簡易的に算出できる。
また通電時間補正量算出部5dは、(2)式に示すように、変換係数設定部11から入力される補正係数αを積算電流差ΣΔIに乗ずることで不足エネルギEiを算出する。
Figure 0007367614000002
通電時間補正量算出部5dは、図5に示すように、噴射指令信号のオンタイミングt0から電流閾値It1に達する到達時間tまでの電流勾配を算出し、補正係数βを切片として加算し、指示TQの示す通電指令時間Tiを経過した時点のピーク電流推定値Ipa1を算出する。このとき(3)式に基づいてピーク電流推定値Ipa1を算出すると良い。
Figure 0007367614000003
補正係数βは、印加オフタイミング時のピーク電流推定値Ipa1を精度良く推定するためのオフセット項を示している。またここでは、噴射指令信号のオンタイミングt0から電流閾値It1に達する到達時間tまでの電流勾配を(3)式の第1項に用いたが、オンタイミングt0から電流閾値It2に達する到達時間tまでの電流勾配を(3)式の第1項に用いても良い。
次に、通電時間補正量算出部5dは、図4に例示したように、不足エネルギEiを補うための通電時間補正量ΔTiを算出する。具体的には、通電時間補正量算出部5dは、(4)式に示すように、推定したピーク電流推定値Ipa1により、算出された不足エネルギEiを除することで通電時間補正量ΔTiを算出する。
Figure 0007367614000004
この(4)式における分母、分子の1/(1024×0.03)は、検出電流IのA/D変換値を物理量に変換するためのゲインを表している。またα2=α/2である。不足分のエネルギEi及びピーク電流推定値Ipa1に依存した(4)式を用いて通電時間補正量ΔTiを導出することで、不足分のエネルギEiを補うだけの延長時間を簡易的に算出でき、演算量を劇的に少なくできる。
通電時間補正量算出部5dは、算出した通電時間補正量ΔTiを通電制御部5aに出力すると、通電制御部5aは、電流モニタ部5cの検出電流Iがピーク電流推定値Ipa1に達するタイミングまでの間に、指示TQの通電指令算出値+通電時間補正量ΔTiを実行TQの実効通電指令時間として通電指令時間Tiを補正する。これにより、指示TQの通電指令時間Tiを簡易的に補正でき、通電時間を延長できる。このような方式を用いることで、失火を防ぐために予めばらつきを見込んで通電指令時間Tiを調整しておく必要がなくなり、燃費を極力悪化させることなく失火対策できる。
通電時間補正量算出部5dは、電流閾値It2に到達してからピーク電流推定値Ipa1に達するタイミングtbまでの間に通電時間補正量ΔTiを算出している。このため、余裕をもって通電指令時間を補正できる。(1)式~(4)式に基づいて通電指令時間補正量ΔTiを算出する形態を示したが、この数式は一例を示すものであり、この方法に限られるものではない。
前述したように、補正係数αは、設定可能な通電時間の全てに対応してαマップ12に記録されており、通電時間補正量算出部5dは、燃料噴射弁2の駆動電流が目標ピーク電流Ipkに到達/未到達に拘わらず、変換係数α、βを用いた面積補正を噴射毎に常時実施することで、通電時間補正量ΔTiを算出する。変換係数設定部11は、面積補正を実施する度に変換係数αを設定するため、通電時間補正量算出部5dは、噴射毎に変換係数αを変更した通電指令時間補正量ΔTiを設定できる。
図6はマイコン4が指令出力する通電指令時間Tiの変化に対して、制御IC5によりロジック制御する噴射量の変化例を概略的に示している。この図6には、理想的な噴射量を破線を用いて表しており、実際の噴射量を実線を用いて表している。
図6に示すように、通電時間が連続的に変化したとしても噴射量が連続的に滑らかに変化せず、噴射量に段差を生じていることがわかる。これは、噴射毎に目標ピーク電流に到達するか否かで通電時間補正量ΔTiの算出処理を実施する否かを変更しているため、目標ピーク電流Ipkに到達するか否かで通電時間補正量ΔTiによる補正有無を生じ、実際の通電時間が大きく変化し、噴射量に段差を生じていることを示している。
そこで本実施形態では、燃料噴射弁2から噴射させる度に変換係数設定部11が変換係数を設定し、通電時間補正量算出部5dは、燃料噴射弁2の駆動電流が目標ピーク電流Ipkに到達/未到達に拘わらず、変換係数αを用いた面積補正を噴射の度に実施して通電時間補正量ΔTiを算出するようにしている。
燃料噴射弁2の通電電流が目標ピーク電流Ipkに到達するか否かに拘わらず、制御IC5が面積補正を噴射毎に常時実施しているため、マイコン4がαマップ12により補正係数αを適切に設定することで通電時間の微小変化に対して噴射量が急変する事象を極力なくすことができる。これにより、通電指示時間Tiのわずかな変化に対しても噴射量を連続的に変化させることができる。このとき、A/F値を所望の目標A/F値に制御できる。なお、補正係数設定部11がαマップ12により補正係数αを設定する形態を示したが、補正係数αを数式換算できればαマップ12は必要に応じて設ければ良い。
(第2実施形態)
図7から図10は、第2実施形態の説明図を示す。マイコン4は、その内部のメモリ4bにプログラムなどの各種情報を記憶している。このため、メモリ4bの記憶容量に制約条件を生じ、αマップ12の補正係数αの記録点数も制限されることがある。このような場合、通常の領域(以下、通常領域)と噴射量に段差を生じる領域(以下、段差領域と称す)とでαマップ12a、12bを切り替えると良い。
第2マップとしてのαマップ12aは、噴射量に段差を生じる時間領域以外の時間領域に適用した通電指示時間Tiと変換係数αとの対応を示すマップである。第1マップとしてのαマップ12bは、噴射量に段差を生じる時間領域に適用した通電指示時間Tiと変換係数αとの対応を示すマップである。図8は通常領域で用いるαマップ12aを概略的に示し、図9は段差領域で用いるαマップ12bを概略的に示す。
通常領域で用いるαマップ12aには、図8に例示したように、通電時間T1、T2、T5に対応した補正係数αが記録されている。通電時間T1、T2は、図10に例示したように、燃料噴射弁2の通電電流が目標ピーク電流Ipkに到達しない時間である。通電時間T5は、燃料噴射弁2の通電電流が目標ピーク電流Ipkに必ず到達する時間である。ここでは簡略化して示しているが、αマップ12aには、あらゆる通常領域に対応した補正係数αが用意されている。
αマップ12aの時間T1の欄には燃圧P1、P3、P6に対応した補正係数α11、α31、α61が記憶されている。時間T1の欄には、燃圧P1、P3、P6が大きくなるに従って補正係数α11、α31、α61が大きくなるように設定されている。
αマップ12aの時間T2の欄には燃圧P1、P3、P6に対応した補正係数α12、α32、α62が記憶されている。時間T2の欄には、燃圧P1、P3、P6が大きくなるに従って補正係数α12、α32、α62が大きくなるように設定されている。
αマップ12aの時間T5の欄には燃圧P1、P3、P6に対応した補正係数α15、α35、α65が記憶されている。ただし時間T5の補正係数α15、α35、α65は、全ての燃圧P1、P3、P6の欄にゼロが設定されている。
本実施形態では、例えば、燃料噴射弁2に通電する時間が時間T5程度であれば、パーシャルリフト噴射時に目標ピーク電流Ipkに必ず到達するため、通電時間補正量算出部5dが補正係数α15、α35、α65を用いて通電時間補正量ΔTiを算出しても、その延長時間がゼロとなるように設定されている。ここでは、簡略化した例を挙げて説明したが、補正係数αは、設定可能な通電時間の全てに対応してαマップ12aに記録されている。
段差領域で用いるαマップ12bには、パーシャルリフト噴射時の目標ピーク電流Ipkに到達するか否かの境界付近に相当する通電時間T4a~T4dに対応した補正係数αが記録されている。通電時間T4a~T4dは、図10に例示したように、段差領域を細かく分割した時間を示す。すなわち、段差領域では、わずかに通電時間が変化しても噴射量が急変するため、補正係数αを詳細に記録している。
αマップ12bの時間T4a~T4dの各欄には、燃圧P1、P3~P5に対応した補正係数α14a~α54a、α14b~α54b、α14c~α54c、α14d~α54d、がそれぞれ記憶されている。時間T4a~T4dの欄には、燃圧P1、P3~P5が大きくなるに従って補正係数α14a~α54a、α14b~α54b、α14c~α54c、α14d~α54dがそれぞれ大きくなるように設定されている。
αマップ12bの時間T5の欄には、燃圧P1、P3~P5に対応した補正係数α15~α55が記憶されている。時間T5の欄にはゼロが設定されている。
図7に例示したように、マイコン4は、噴射開始時に指示TQの通電指示時間Tiを通電指令時間算出部10により算出すると、S1において通電指示時間Tiが噴射量の段差領域であるか否かを判定する。通電指示時間Tiが段差領域に属していれば、変換係数設定部11はS2において段差領域用のαマップ12bを選択して補正係数αを設定し通電時間補正量算出部5dに出力する。そして、制御IC5の通電時間補正量算出部5dは、この設定された補正係数αを用いて通電時間補正量ΔTiを算出する。
他方、S1において通電指示時間Tiが噴射量の段差領域であるか否かを判定した結果、通電指示時間Tiが通常領域に属していれば、変換係数設定部11はS4において通常領域用のαマップ12aを選択して補正係数αを設定し通電時間補正量算出部5dに出力する。そして、制御IC5の通電時間補正量算出部5dは、この設定された補正係数αを用いて通電時間補正量ΔTiを算出する。これ以外の動作は第1実施形態と同様であるため説明を省略する。
本実施形態によれば、変換係数設定部11は、通電指示時間に応じてαマップ12a、12bを切り替えて変換係数αを設定している。通常領域、段差領域で用いられる個々のαマップ12a、12bのマトリクスを縮小でき、メモリ4bの記憶容量を削減できる。しかも、変換係数設定部11は、段差領域用のαマップ12bを用いて通電指示時間Tiに対応した補正係数αを詳細に設定でき、噴射制御量の精度を向上できる。
(他の実施形態)
本発明は、前述した実施形態に限定されるものではなく、種々変形して実施することができ、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。例えば以下に示す変形又は拡張が可能である。前述した複数の実施形態を必要に応じて組み合わせて構成しても良い。
前述実施形態では、内燃機関の燃焼室の中に直接噴射する筒内噴射に適用したが、これに限定されることはなく、周知の吸気バルブの手前で燃料を噴射するポート噴射に適用しても良い。
前述実施形態では台形の面積を算出することで簡易的に積算電流差ΣΔI1を算出する形態を示したが、これに限られない。
燃料噴射弁2aの通電電流EIは、ピーク電流Ipkに達する前、ピーク電流Ipkに達した後の何れにおいても非線形的に変化する。このため、三角形、長方形、台形などの多角形を用いて電流の積算電流を近似して算出することで、簡易的に積算電流差を算出すると良い。これにより演算量を劇的に削減できる。
マイコン4と制御IC5が別体の集積回路により構成されている形態を適用して説明したが一体に構成しても良い。一体構成する場合には、高速処理可能な演算処理装置などを用いて構成すると良い。
マイコン4、制御IC5が提供する手段及び/又は機能は、実体的なメモリ装置に記録されたソフトウェア及びそれを実行するコンピュータ、ソフトウェア、ハードウェア、あるいはそれらの組み合わせによって提供することができる。例えば制御装置がハードウェアである電子回路により提供される場合、1又は複数の論理回路を含むデジタル回路、または、アナログ回路により構成できる。また、例えば制御装置がソフトウェアにより各種制御を実行する場合には、記憶部にはプログラムが記憶されており、制御主体がこのプログラムを実行することで当該プログラムに対応する方法が実施される。
前述した複数の実施形態を組み合わせて構成しても良い。また、特許請求の範囲に記載した括弧内の符号は、本発明の一つの態様として前述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。前述実施形態の一部を、課題を解決できる限りにおいて省略した態様も実施形態と見做すことが可能である。また、特許請求の範囲に記載した文言によって特定される発明の本質を逸脱しない限度において、考え得るあらゆる態様も実施形態と見做すことが可能である。
本発明は、前述した実施形態に準拠して記述したが、本発明は当該実施形態や構造に限定されるものではないと理解される。本発明は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本発明の範畴や思想範囲に入るものである。
図面中、1は電子制御装置(噴射制御装置)、2は燃料噴射弁、5dは通電時間補正量算出部(面積補正部)、11は変換係数設定部、12aは通常領域のαマップ(第2マップ)、12bは段差領域のαマップ(第1マップ)、ΔTiは通電時間補正量、を示す。

Claims (2)

  1. 燃料噴射弁(2)を電流駆動して前記燃料噴射弁から燃料を噴射させる際に当該噴射の度に変換係数を設定する変換係数設定部(11)と、
    前記燃料噴射弁の駆動時の電流をモニタして通電電流の傾きを検出し、傾きに応じて今回の駆動時の通電時間を延ばすように補正するように構成され、前記燃料噴射弁の駆動電流が目標ピーク電流に到達/未到達に拘わらず前記変換係数を用いた面積補正を前記噴射の度に実施して通電時間補正量(ΔTi)を算出する面積補正部(5d)と、
    を備える噴射制御装置。
  2. 噴射量に段差を生じる時間領域に適用した通電指示時間と前記変換係数との対応を示す第1マップ(12b)、及び、前記段差を生じる時間領域以外の時間領域に適用した通電指示時間と前記変換係数との対応を示す第2マップ(12a)、を備え、
    前記変換係数設定部は、前記通電指示時間に応じて前記第1マップ及び前記第2マップを切り替えて前記変換係数を設定する請求項1記載の噴射制御装置。
JP2020093308A 2020-05-28 2020-05-28 噴射制御装置 Active JP7367614B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020093308A JP7367614B2 (ja) 2020-05-28 2020-05-28 噴射制御装置
US17/331,212 US11384704B2 (en) 2020-05-28 2021-05-26 Injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020093308A JP7367614B2 (ja) 2020-05-28 2020-05-28 噴射制御装置

Publications (2)

Publication Number Publication Date
JP2021188549A JP2021188549A (ja) 2021-12-13
JP7367614B2 true JP7367614B2 (ja) 2023-10-24

Family

ID=78705849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020093308A Active JP7367614B2 (ja) 2020-05-28 2020-05-28 噴射制御装置

Country Status (2)

Country Link
US (1) US11384704B2 (ja)
JP (1) JP7367614B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367625B2 (ja) * 2020-06-29 2023-10-24 株式会社デンソー 噴射制御装置
JP7347347B2 (ja) * 2020-06-29 2023-09-20 株式会社デンソー 噴射制御装置
JP7428094B2 (ja) * 2020-07-16 2024-02-06 株式会社デンソー 噴射制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053317A1 (ja) 2002-12-10 2004-06-24 Mikuni Corporation 燃料噴射制御方法及び燃料噴射制御装置
JP2010048214A (ja) 2008-08-25 2010-03-04 Toyota Motor Corp 燃料噴射制御装置
JP2014159772A (ja) 2013-02-20 2014-09-04 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2016033343A (ja) 2014-07-31 2016-03-10 株式会社デンソー 燃料噴射制御装置
JP2019056378A (ja) 2014-11-19 2019-04-11 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
JP2019090339A (ja) 2017-11-10 2019-06-13 株式会社デンソー 燃料噴射制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098985A (ja) * 1999-09-30 2001-04-10 Mazda Motor Corp 火花点火式直噴エンジンの燃料制御装置及び燃料制御方法
JP2004218571A (ja) * 2003-01-16 2004-08-05 Aisan Ind Co Ltd エンジンの燃料供給装置
JP4643550B2 (ja) * 2006-12-12 2011-03-02 トヨタ自動車株式会社 空燃比制御装置
JP4429336B2 (ja) * 2007-06-15 2010-03-10 トヨタ自動車株式会社 空燃比制御装置
JP2010084613A (ja) 2008-09-30 2010-04-15 Honda Motor Co Ltd 燃料噴射装置
JP4884507B2 (ja) * 2009-09-25 2012-02-29 三菱電機株式会社 エンジンの燃料噴射制御装置
JP6349608B2 (ja) * 2014-04-23 2018-07-04 株式会社ケーヒン エンジン制御システム
JP2018184861A (ja) 2017-04-25 2018-11-22 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射制御装置
JP7172753B2 (ja) 2019-03-07 2022-11-16 株式会社デンソー 噴射制御装置
JP7131479B2 (ja) * 2019-05-21 2022-09-06 トヨタ自動車株式会社 ハイブリッド車両および、その制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053317A1 (ja) 2002-12-10 2004-06-24 Mikuni Corporation 燃料噴射制御方法及び燃料噴射制御装置
JP2010048214A (ja) 2008-08-25 2010-03-04 Toyota Motor Corp 燃料噴射制御装置
JP2014159772A (ja) 2013-02-20 2014-09-04 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2016033343A (ja) 2014-07-31 2016-03-10 株式会社デンソー 燃料噴射制御装置
JP2019056378A (ja) 2014-11-19 2019-04-11 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
JP2019090339A (ja) 2017-11-10 2019-06-13 株式会社デンソー 燃料噴射制御装置

Also Published As

Publication number Publication date
US11384704B2 (en) 2022-07-12
US20210372338A1 (en) 2021-12-02
JP2021188549A (ja) 2021-12-13

Similar Documents

Publication Publication Date Title
JP7367614B2 (ja) 噴射制御装置
JP7380425B2 (ja) 噴射制御装置
JP7298555B2 (ja) 噴射制御装置
JP7322816B2 (ja) 噴射制御装置
JP7415821B2 (ja) 噴射制御装置
US11421620B2 (en) Injection control device
JP7428094B2 (ja) 噴射制御装置
JP7367625B2 (ja) 噴射制御装置
JP2001032742A (ja) 内燃機関の制御方法および装置
JP7347347B2 (ja) 噴射制御装置
JP4066954B2 (ja) 内燃機関の燃料噴射装置
JP7298554B2 (ja) 噴射制御装置
JP7354940B2 (ja) 噴射制御装置
JP2022025426A (ja) 噴射制御装置
JP7318594B2 (ja) 噴射制御装置
JP7306339B2 (ja) 噴射制御装置
US11674467B2 (en) Injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R151 Written notification of patent or utility model registration

Ref document number: 7367614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151