JP7343756B2 - 給湯装置及び給湯システム - Google Patents

給湯装置及び給湯システム Download PDF

Info

Publication number
JP7343756B2
JP7343756B2 JP2019116282A JP2019116282A JP7343756B2 JP 7343756 B2 JP7343756 B2 JP 7343756B2 JP 2019116282 A JP2019116282 A JP 2019116282A JP 2019116282 A JP2019116282 A JP 2019116282A JP 7343756 B2 JP7343756 B2 JP 7343756B2
Authority
JP
Japan
Prior art keywords
hot water
flow rate
path
value
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019116282A
Other languages
English (en)
Other versions
JP2021001712A (ja
Inventor
剛英 長谷川
篤史 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2019116282A priority Critical patent/JP7343756B2/ja
Priority to US15/930,622 priority patent/US11639813B2/en
Priority to CN202010435670.1A priority patent/CN112128839B/zh
Publication of JP2021001712A publication Critical patent/JP2021001712A/ja
Application granted granted Critical
Publication of JP7343756B2 publication Critical patent/JP7343756B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0026Domestic hot-water supply systems with conventional heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/04Domestic or like local pipe systems
    • E03B7/045Domestic or like local pipe systems diverting initially cold water in warm water supply
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/04Water-basin installations specially adapted to wash-basins or baths
    • E03C1/044Water-basin installations specially adapted to wash-basins or baths having a heating or cooling apparatus in the supply line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/104Inspection; Diagnosis; Trial operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/04Water-basin installations specially adapted to wash-basins or baths
    • E03C1/0411Taps specially designed for dispensing boiling water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/044Flow sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/269Time, e.g. hour or date
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

本発明は給湯装置及び給湯システムに関し、より特定的には、即湯機能を有する給湯装置及び給湯システムに関する。
給湯装置の一型式として、給湯が長時間オフされた後であっても給湯開始直後から適温の湯を出力する、いわゆる、即湯機能を具備するものがある。通常、即湯機能を実現するためには、給湯オフ中にも熱源を経由する循環経路を形成するモード(以下、「即湯運転モード」)を設ける必要がある。
特開平6-249507号公報(特許文献1)には、循環保温式給湯装置において、単一の流量センサによって、循環保温時の流量と出湯流量とを検出するとともに、少量の出湯であっても給湯栓の使用を確実に検出するための構成が示される。
又、米国特許第6536464明細書(特許文献2)には、ワックスサーモを用いたサーモスタット制御のバイパスバルブ(以下、「クロスオーババルブ」とも称する)を外部接続することで上記即湯機能のための循環経路を形成する構成が開示されている。これにより、給湯装置側に当該クロスオーババルブの制御機能を追加しなくても、簡易な取り付け工事によって、即湯機能が実現できる。
特開平6-249507号公報 米国特許第6536464明細書
特許文献1では、循環ポンプの運転時及び停止時で、給湯使用と判断するための流量値(給湯使用流量)を異ならせる構成とされる。そして、循環ポンプ運転時の給湯使用流量については、給湯管路及び戻り経路の配設長が最短のときの循環流量を暫定流量として予め登録した後、循環保温運転時に循環流量を検出し、実際に検出した循環流量に基づいて更新されることが記載されている。
しかしながら、特許文献1の構成では、循環ポンプの作動時に形成される循環流路の状態が経年的に変化したときに、給湯栓の使用の検出精度が低下することが懸念される。特に、特許文献2に記載されるようなクロスオーババルブの接続によって循環流路が形成される場合には、上述の経年的変化が起こり易くなることが懸念される。
本発明はこのような問題点を解決するためになされたものであって、本発明の目的は、即湯運転モード中における給湯栓の使用の検出精度を向上することである。
本発明のある局面では、給湯栓に対して出湯する給湯装置であって、低温水が導入される入水ポートと、加熱機構と、加熱機構による加熱後の高温水を出力するための出湯ポートと、入水経路と、出湯経路と、流量検出器と、制御器とを備える。入水経路は、入水ポート及び加熱機構の間に形成される。出湯経路は、加熱機構及び出湯ポートの間に形成される。給湯装置は、給湯栓の閉止時に循環ポンプが作動する即湯運転モードにおいて、入水経路の少なくとも一部と、加熱機構と、出湯経路とを含む内部経路と、給湯装置の外部で給湯栓をバイパスする外部経路とを併せて、流体が加熱機構を通過する即湯循環経路を形成するように構成される。流量検出器は、即湯循環経路の流量を検出する。制御器は、加熱機構及び循環ポンプの作動及び停止を指示する。制御器は、即湯運転モード毎に当該即湯運転モード中の予め定められたタイミングでの流量検出器による流量検出値を記憶して、記憶された複数個の流量検出値を用いて流量学習値を算出する。更に、制御器は、即湯運転モード中において、流量学習値に従って設定される判定値よりも流量検出値が高くなると、給湯栓の使用を検出して循環ポンプを停止する。
本発明の他のある局面では、給湯システムであって、入水ポート及び出湯ポートを有する給湯装置と、低温水配管と、高温水配管と、循環ポンプとを備える。低温水配管は、給湯装置の入水ポートに低温水を導入する。高温水配管は、給湯装置の出湯ポートと給湯栓との間を接続する。循環ポンプは、給湯装置の内部又は外部に配置される。給湯装置は、加熱機構と、入水ポート及び加熱機構の間に形成される入水経路と、加熱機構及び出湯ポートの間に形成される出湯経路と、流量検出器と、加熱機構及び循環ポンプの作動及び停止を指示する制御器とを含む。給湯装置は、給湯栓の閉止時に循環ポンプが作動する即湯運転モードにおいて、入水経路の少なくとも一部と、加熱機構と、出湯経路とを含む内部経路と、給湯装置の外部で給湯栓をバイパスする外部経路とを併せて、流体が加熱機構を通過する即湯循環経路を形成するように構成される。流量検出器は、即湯循環経路の流量を検出する。制御器は、即湯運転モード毎に当該即湯運転モード中の予め定められたタイミングでの流量検出器による流量検出値を記憶して、記憶された複数個の流量検出値を用いて流量学習値を算出する。更に、制御器は、即湯運転モード中において、流量学習値に従って設定される判定値よりも流量検出値が高くなると、給湯栓の使用を検出して循環ポンプを停止する。
本発明によれば、即湯運転モード中における給湯栓の使用の検出精度を向上することができる。
本実施の形態に係る給湯装置を含む給湯システムの構成を説明するブロック図である。 図1に示されたコントローラのハードウェア構成例を説明するブロック図である。 図1に示されたクロスオーババルブにおける流路の切替を説明する図表である。 本実施の形態に係る給湯装置による即湯運転モードでの制御処理を説明するフローチャートである。 即湯運転モードにおける流量検出値の概念的な波形図が示される。 流量検出値の学習処理を説明するフローチャートである。 給湯割り込みの検出により流量値学習が非実行とされる例を説明する概念的な波形図である。 流量変動が大きいため流量値学習が非実行とされる例を説明する概念的な波形図である。 循環運転モードでの流量値学習を説明する概念図である。 本実施の形態に係る給湯システムでの即湯循環経路の異常診断を説明するフローチャートである。 本実施の形態に係る給湯システムの構成の第1の変形例を説明するブロック図である。 本実施の形態に係る給湯システムの構成の第2の変形例を説明するブロック図である。 本実施の形態に係る給湯システムの構成の第3の変形例を説明するブロック図である。
以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお以下では、図中の同一又は相当部分には同一符号を付して、その説明は原則的に繰返さないものとする。
図1は、本実施の形態に係る給湯装置を含む給湯システム1Aの構成を説明するブロック図である。
図1を参照して、給湯システム1Aは、給湯装置100と、低温水配管110と、高温水配管120と、クロスオーババルブ200とを備える。給湯装置100は、入水ポート11と、出湯ポート12と、循環ポート13とを有する。
低温水配管110には、逆止弁112を介して、低温水が供給される。低温水は、代表的には、図示しない水道管から供給される。低温水配管110は、入水ポート11及び循環ポート13と接続される。
給湯装置100は、コントローラ10と、入水経路20と、出湯経路25と、循環経路28と、バイパス経路29と、燃焼機構30と、熱交換器40と、循環ポンプ80と、流量調整弁90とを備える。
入水経路20は、逆止弁21を経由して、入水ポート11と、熱交換器40の入力側(上流側)との間に形成される。燃焼機構30は、代表的には、ガス又は石油等の燃焼による熱量を発生するバーナによって構成される。
熱交換器40は、燃焼機構30が発生した熱量を用いて、入水経路20によって導入された低温水(流体)の温度を上昇させる。従って、燃焼機構30及び熱交換器40によって「加熱機構」の一実施例を構成することができる。或いは、ヒートポンプ又は発電時の排熱を利用して「加熱機構」を構成することも可能である。
出湯経路25は、熱交換器40の出力側(下流側)と、出湯ポート12との間に形成される。バイパス経路29は、熱交換器40を経由することなく、入水経路20及び出湯経路25の間を接続する。コントローラ10による流量調整弁90の制御によって、トータル流量(熱交換器40の流量及びバイパス経路29の流量の和)に対する、バイパス経路29の流量の比率(バイパス流量比)を調整することができる。
このようなバイパス構成では、低温水の一部が熱交換器40をバイパスされて非加熱のまま、熱交換器40の下流で混合されることによって、出湯ポート12から高温水が供給される。これにより、熱交換器40(加熱機構)からの出力温度を高くすることができるので、燃焼機構30の排気が熱交換器40の表面で冷却されることによって発生するドレンの抑制に有利である。
入水経路20には、低温水の流量値を出力する流量センサ81が配置され、循環経路28には、流量センサ82が配置される。流量センサ81は、後述する即湯循環経路に含まれるように配置される。流量センサ81及び82による検出値は、コントローラ10へ入力される。
更に、出湯経路25には、温度センサ71が配置され、入水経路20には、温度センサ73が配置される。循環経路28には、温度センサ72が配置される。温度センサ71~73によって検出された流体温度は、コントローラ10へ入力される
図2は、コントローラ10のハードウェア構成例を説明するブロック図である。
図2を参照して、コントローラ10は、代表的にはマイクロコンピュータによって構成される。コントローラ10は、CPU(Central Processing Unit)15と、メモリ16と、入出力(I/O)回路17と、電子回路18とを含む。CPU15、メモリ16及びI/O回路17は、バス19を経由して、相互に信号の授受が可能である。電子回路18は、所定の演算処理を専用のハードウェアによって実行するように構成される。電子回路18は、CPU15及びI/O回路17との間で信号の授受が可能である。
CPU15は、I/O回路17を通じて、温度センサ71~73及び流量センサ81,82を含む各センサからの出力信号(検出値)を受ける。更に、CPU15は、I/O回路17を通じて、リモートコントローラ92に入力された操作指示を示す信号を受ける。操作指示は、例えば、給湯装置100の運転スイッチのオンオフ操作、給湯設定温度、及び、各種の時刻予約設定(「タイマ設定」とも称する)を含む。CPU15は、当該操作指示に従って給湯装置100が動作するように、燃焼機構30及び循環ポンプ80を含む各構成機器の動作を制御する。
CPU15は、報知装置95を制御することによって、視覚又は聴覚によって認識できる情報を出力することが可能である。例えば、報知装置95は、文字及び図形等の視認可能な情報を画面表示することによって情報を出力できる。この場合には、報知装置95は、リモートコントローラ92に設けられた表示画面によって構成することができる。或いは、報知装置95は、スピーカによって構成されて、音声又はメロディ等を用いて情報を出力することも可能である。
再び図1を参照して、給湯装置100の動作を説明する。
給湯栓330が開放される給湯使用時には、低温水の供給圧力によって、入水経路20に低温水が導入される。給湯装置100の運転スイッチのオン中に、流量センサ81によって、最小作動流量(MOQ)を超える流量が検出されると、コントローラ10が燃焼機構30を作動させる。
この結果、燃焼機構30及び熱交換器40によって加熱された高温水は、バイパス経路29を通過する低温水と混合された後、出湯ポート12を経由して、高温水配管120に出力される。
通常の給湯運転時には、コントローラ10によって、循環ポンプ80は停止されるとともに、温度センサ71によって検出される流体温度(出湯温度Th)が、リモートコントローラ92に入力された給湯設定温度Trに制御される。具体的には、燃焼機構30(加熱機構)による加熱量(発生熱量)の制御と、流量調整弁90によるバイパス流量比の制御との組み合わせによって、出湯温度制御を行なうことができる。
循環経路28は、循環ポート13及び入水経路20(接続点22)の間に形成される。循環ポンプ80は、循環経路28に接続される。或いは、循環ポンプ80は、給湯装置100の外部で循環ポート13に対して接続されてもよい。循環ポンプ80の作動及び停止は、コントローラ10によって制御される。
給湯運転の停止時には、出湯経路25及び高温水配管120内に滞留する流体の温度が低下するため、次回の給湯運転の開始後に、給湯栓330に対して高温水を供給するまでに長時間を要することが懸念される。このため、給湯装置100には、給湯運転の開始後、速やかに高温水を供給するための即湯機能が設けられる。即湯機能は、給湯栓330が閉止された閉栓時に、循環ポンプ80の作動によって、燃焼機構30及び熱交換器40を含む即湯循環経路を形成することで実現される。
例えば、ユーザは、タイマ設定によって即湯運転の実行期間を指定することができる。当該タイマ設定は、例えば、リモートコントローラ92の操作によって入力することが可能である。或いは、即湯運転の実行期間は、ユーザの過去の使用履歴の学習により、自動的に設定されてもよい。又、ユーザのスイッチ操作に直接応じて、即湯運転の実行期間を開始又は終了することも可能である。
給湯システム1Aでは、クロスオーババルブ200を用いて、循環ポンプ80の作動を伴う即湯運転モードを実行することができる。クロスオーババルブ200は、特許文献2に記載されたサーモスタット制御のバイパスバルブと同様に構成されて、ポート201~204と、ワックスサーモ210とを有する。ポート201及び203は内部で連通しており、ポート202及び204は内部で連通している。ワックスサーモ210は、ポート201及び203と、ポート202及び204との間に接続される。
ワックスサーモ210は、低温時には、ポート201及び203と、ポート202及び204との間に感熱バイパス経路を形成する。一方で、ワックスサーモ210は、高温時には熱膨張力によって当該感熱バイパス経路を閉塞するように構成される。感熱バイパス経路の形成及び閉塞の切替温度は、ワックスサーモ210の材質及び構成等によって、予め設計される。以下では、クロスオーババルブ200での流体温度が上記切替温度よりも高いときを高温時、流体温度が上記切替温度よりも低いときを低温時とも称する。
このように、クロスオーババルブ200は、「感熱止水バイパス弁」の一実施例に対応する。又、感熱バイパス経路の圧損は、ポート201及び203が連通する経路、及び、ポート202及び204が連通する経路の各々の圧損よりも高くなるように設計される。
ポート201は、高温水配管120と接続され、ポート202は、低温水配管110と接続される。ポート203及び204は、給湯栓330と接続される。給湯栓330は、ポート203からの高温水と、ポート204からの低温水を混合する混合カランとして設けられる。ポート203及び204と給湯栓330との間には、高温水及び低温水の混合比率を調整するためのバルブ331及び332を設けることができる。
図3には、図1に示されたクロスオーババルブ200による流路の切替を説明する図表が示される。
図3及び図1を参照して、ポート203及び204から給湯栓330への経路が形成される開栓時には、上述した圧損の関係により、高温時及び低温時のいずれにおいても、高温水配管120及び給湯栓330の間の流路Pa、及び、低温水配管110及び給湯栓330の間の流路Pbが形成される。
一方で、ポート203及び204から給湯栓330への経路が遮断される閉栓時には、低温時と高温時との間で流路が切替えられる。低温時には、ワックスサーモ210による感熱バイパス経路により、ポート201及び202の間、即ち、高温水配管120及び低温水配管110の間に、感熱バイパス経路Pcが形成される。一方で、高温時には、上記感熱バイパス経路が閉塞されることにより、高温水配管120及び低温水配管110の間の流路が遮断される。
給湯システム1Aでは、給湯運転時には、低温水配管110から入水ポート11に導入された低温水を、燃焼機構30及び熱交換器40(加熱機構)で加熱して高温水が得られる。当該高温水は、出湯ポート12及び高温水配管120、並びに、クロスオーババルブ200(流路Pa)を経由して、給湯栓330から出力される。
即湯運転モードでは、循環ポンプ80の作動により、給湯装置100の外部に、出湯ポート12から、高温水配管120、クロスオーババルブ200(感熱バイパス経路Pc)、及び、低温水配管110を経由して、循環ポート13に至る流体経路(外部経路)を形成することができる。更に、給湯装置100の内部には、循環ポート13、循環経路28、入水経路20(接続点22よりも下流側)、熱交換器40(加熱機構)、出湯経路25、及び、出湯ポート12を含む流体経路(内部経路)を形成することができる。このような内部経路及び外部経路によって即湯循環経路を形成することにより、閉栓時にも当該即湯循環経路に高温水を通流することにより、開栓直後から給湯栓330に高温水を供給することが可能となる。
給湯装置100がバイパス構成(バイパス経路29及び流量調整弁90)を有する構成では、即湯運転モードにおけるバイパス流量比は、予め定められた同一値に固定されることが好ましい。特に、ワックスサーモ210による感熱バイパス経路の圧損が大きいため、クロスオーババルブ200を含む即湯循環経路の流量が小さいことを考慮すると、即湯運転モード中には、バイパス流量比を最小値(全閉を含む)に維持するように流量調整弁90を制御することが好ましい。
以下、本実施の形態では、即湯運転モードにおける給湯装置100でのバイパス比率r(0≦r<1.0)は、流量調整弁90を全閉することでr=0に制御されているものとして説明を進める。この場合には、即湯循環経路の流量は、流量センサ81による流量検出値と一致する。但し、バイパス比率r≠0の場合にも、流量センサ81での流量検出値Qを、そのとき流量調整弁90の開度に従うバイパス比率を用いて、1/(1-r)倍に補正することで、後述のものと同様の制御処理を適用することが可能である。
即湯運転モード中に、給湯栓330が使用されると、循環ポンプ80を停止することが好ましい。上述のように、通常の給湯運転では、循環ポンプ80が停止されているため、循環ポンプ80の作動を維持したままで給湯すると、通常の給湯運転時と比較して、流路Pb(図1)による低温水の供給圧力が低下する。この結果、給湯栓330において、高温水の圧力及び低温水の圧力のバランスが通常の給湯運転時と変化すると、高温水及び低温水の混合バランス変化によって給湯栓330からの出力温度が変化することで、ユーザの使用性低下が懸念される。このため、即湯運転中には、給湯栓330の使用開始(以下、「給湯割り込み」とも称する)を精度良く検出することが求められる。
再び図1を参照して、一般的には、循環経路28が設けられた構成では、即湯運転モード中において、循環ポンプ80の作動に応じて流量センサ82によって検出される流量と、流量センサ81によって検出される流量との差が、給湯栓330の開栓の前後で変化する。従って、流量センサ81及び82の検出流量差に基づいて、即湯運転モード中の給湯割り込みを検出することができる。
しかしながら、クロスオーババルブ200が接続された構成では、上述の様に、ワックスサーモ210の感熱バイパス経路の圧損が大きいため、即湯運転モードにおける流量センサ82での流量が小さい。このため、流量センサ81及び82での検出流量差は、給湯栓330の開栓前と開栓後との間でそれ程変化しない。従って、流量センサ81及び82での検出流量差に基づいて、給湯割り込みを精度良く検出することが困難である。
これら点を考慮して、本実施の形態では、即湯運転モード中の給湯栓330の使用、即ち、給湯割り込みの検出を、下記のように実行する。
図4は、本実施の形態に係る給湯装置による即湯運転モードでの制御処理を説明するフローチャートである。図4に示された制御処理は、タイマ設定等によって設けられた即湯運転の実行期間において、コントローラ10により繰り返し実行される。
図4を参照して、コントローラ10は、ステップ(以下、単に「S」とも表記する)100により、即湯運転モードの開始条件が成立しているか否かを判定する。例えば、当該開始条件は、給湯運転停止中(閉栓中)であり、かつ、温度センサ71の検出温度が予め定められた温度よりも低下したときに成立する。
コントローラ10は、開始条件の成立時(S100のYES判定時)には、S110以降の処理を起動することによって、即湯運転モードを開始する。一方で、開始条件の非成立時(S100のNO判定時)には、S110以降の処理は起動されない。
コントローラ10が、S130により循環ポンプ80を起動すると、給湯システム1Aにおいて上述の即湯循環経路が形成される。燃焼機構30は、即湯運転モード中には作動可能な状態とされて、流量センサ81で最小作動流量(MOQ)を超える流量が検出される期間において、作動して熱量を発生する。
コントローラ10は、循環ポンプ80の起動(S130)に際して、S110により、即湯運転モードでの流量学習値Qlnを読出すとともに、S120により、読出した流量学習値Qlnに従って、給湯割り込み検出の判定値Qthを設定する。
コントローラ10は、循環ポンプ80が作動する即湯運転モード中には、S140により、流量センサ81による流量検出値Qと、S120で設定された判定値Qthとの比較により、給湯割り込みの有無を判定する。
流量検出値Qが判定値Qthを超えない間(S140のNO判定時)には、S150により、即湯運転モードが継続される。コントローラ10は、即湯運転モードの継続中には、S160により、流量の学習条件が成立しているか否かを判定する。学習条件の成立時(S160のYES判定時)には、S170により、後述する流量学習値の更新処理が実行された後、処理はS140へ戻される。一方で、学習条件の非成立時(S160のNO判定時)には、S170をスキップして、処理はS140に戻される。このように、即湯運転モード中には、S140による給湯割り込み検出の判定が繰り返し実行される。
一方で、コントローラ10は、流量検出値Qが一定時間(例えば、0.3秒程度)連続して判定値Qthを超えると、S140をYESとして、S180により、給湯割り込みを検出する。更に、コントローラ10は、S190により、循環ポンプ80を停止する。この結果、即湯運転モードは一旦終了されて、給湯運転が開始される。この場合には、処理はS100に戻されて、即湯運転の実行期間内に、給湯運転が停止され、かつ、温度センサ71の検出温度が予め定められた温度よりも低下すると、S100がYES判定とされるのに応じて、即湯運転モードが再び開始されることになる。
尚、即湯運転モードの継続中(S150)に、温度センサ71の検出温度が上昇した場合にも、図中に点線で示されるように、S190に処理が進められて、循環ポンプ80の停止により、即湯運転モードが一旦終了される。この場合にも、給湯割り込みの検出時と同様に、処理はS100に戻される。
図5には、即湯運転モードにおける流量検出値の概念的な波形図が示される。図5の縦軸には、流量センサ81による流量検出値Qが示される。
図5を参照して、時刻t0で、S100(図4)がYES判定とされて即湯運転モードが開始される。即湯運転モードの開始時には、滞留した流体の温度が低下しているので、クロスオーババルブ200はワックスサーモ210による感熱バイパス経路が形成された状態である。従って、時刻t0からは、循環ポンプ80の作動に応じて、即湯循環経路の流量が上昇することにより、流量検出値Qは上昇する。ワックスサーモ210が高温となって感熱バイパス経路を閉塞するまでの間、即湯循環経路の流量(流量検出値Q)は、ほぼ一定である。従って、当該期間での流量検出値Qを学習するために、時刻t0から予め定められた時間Ta(例えば、5秒程度)が経過したタイミング(時刻tx)において、図6に示される学習処理が起動される。図5の例では、時刻txの後で、流量検出値Qが、図4のS120で設定された判定値Qthを超えることにより、時刻t1において、給湯割り込みが検出されている。
図6は、流量検出値の学習処理を説明するフローチャートである。図6に示されたフローチャートは、時刻txにおいて起動される。
図6を参照して、コントローラ10は、S210により、時刻txにおける流量検出値Qを実績流量値Qxとして記憶する。更に、コントローラ10は、S220~S240により学習条件の成立可否を判定する。
S220では、実績流量値Qxの上下限チェックが実行される。例えば、予め定められた上限値Qxmax及び下限値Qxminと、実績流量値Qx(S210)との比較により、Qxmin<Qx<QxmaxのときにS220はYES判定とされる一方で、そうでないときには、S220はNO判定とされる。実績流量値Qxが上下限チェック範囲内でない場合(S220のNO判定時)には、S260により、S210での実績流量値Qxを用いた学習は非実行とされる。
S230では、時刻tx以降での流量検出値Qを監視することにより、時刻t0から予め定められた時間Tb(Tb>Taであり、例えば、10秒程度)が経過するまでに給湯割り込みが非発生であるかが判定される。図5の例では、時刻t1が、時刻t0からの所定時間Tbの経過後であるので、S230はYES判定とされる。
一方で、図7の例のように、時刻t0から所定時間Tbが経過するまでに、Q>Qthとなって給湯割り込みが検出されると、S230はNO判定とされる。
更に、S240では、時刻tx以降における流量検出値Qの変化が所定値以下であるか否かが判定される。
例えば、図8に示されるように、時刻txから予め定められた時間Tc(例えば、4秒程度)が経過するまでの間、各タイミングでの流量検出値Qが、所定の基準値βを用いて、Qx-β<Q<Qx+βの範囲内であるか否かが判定される。時刻t0からTcが経過するまでの間、Qx-β<Q<Qx+βが維持されると、S240はYES判定とされる。
一方で、図8の例のように、時刻txからTcが経過する前の時刻tyにおいて、Q<Qx-βとなると、S240はNO判定とされる。
再び、図6を参照して、S220~S240が全てYES判定になると、S250により、学習条件が成立したと判定されて、S160(図4)がYES判定とされる。この結果、図4のS170により、今回の即湯運転モードで記憶された実績流量値Qx(S210)を用いて、流量学習値Qlnが更新される。これにより、次回の即湯運転モードのS110で読み出される流量学習値Qlnが更新される。S170が実行された以降では、当該即湯運転モードが終了される迄、S160はNO判定に維持される。
一方で、図6のS220~S240の少なくともいずれかがNO判定とされると、S260に処理が進められて、S160の判定結果が「No」とされる。S160がYES判定になることなく即湯運転モードが終了すると、当該即湯運転モードのS210での実績流量値Qxを用いた学習は非実行とされる。即ち、次回の即湯運転モードのS110で読み出される流量学習値Qlnは、今回の即湯運転モードのS110で読み出された値から変化しない。
図9には、循環運転モードでの流量値学習を説明する概念図が示される。
図9を参照して、タイマ等で設定された即湯運転の実行期間内において、即湯運転モードは、S100がYES判定となる毎に開始され、S190による循環ポンプ80の停止によって終了される態様で間欠的に設けられる。図9の例では、即湯運転の実行期間T1及びT2において、期間P1~P4で即湯運転モードが設けられている。
期間P1~P4の各々で、図5の時刻txに相当するタイミングにおいて、実績流量値Qxが読み込まれる。その後、図6のS220~S240の判定により、例えば、期間P1,P2,P4では、流量学習値の更新(S170)が行われる一方で、期間P3では、S220~S240の全てがYES判定になることがなく、流量学習値Qlnは更新されない。
流量学習値Qlnは、学習値更新処理が実行される即湯運転モードでの実績流量値Qxと、過去の即湯運転モードでの実績流量値Qxとの、複数の実績流量値Qxを用いて算出される。好ましくは、流量学習値Qlnは、下記の式(1)に従う、指数移動平均値として求めることができる。
Qln*=(N×Qn+Qx)/(N+1) …(1)
式(1)において、Qln*は、更新後の流量学習値、Qlnは現在(更新前)の流量学習値、Qxは、学習値更新処理が実行される即湯運転モードで記憶された実績流量値である。又、N(N>0)は平滑化係数であり、Nが大きい程、新たな実績流量値Qxが流量学習値に反映される速度(学習速度)が遅くなる。
尚、学習値Qlnの初期値は、工場出荷時に標準的な値を、コントローラ10のメモリ16に書き込むことで初期設定することができる。或いは、クロスオーババルブ200の取り付け施工時に、当該クロスオーババルブ200に対応した標準値を、リモートコントローラ92の予め定められた専用操作等によって上記メモリ16に書き込むことで初期設定を行うことも可能である。
又、更新後の流量学習値Qln*については、上下限チェックを行うことが好ましい。例えば、S170では、予め定められた上限値Qlnmax及び下限値Qlnminに対して、式(1)によって算出されたQln*が上限値Qlnmaxよりも大きいとき(Qln*>Qnmax)は、Qln*=Qlnmaxに修正される。同様に、式(1)によって算出されたQln*が下限値Qlnminよりも小さいとき(Qln*<Qlnmin)は、Qln*=Qlnminに修正される。
以上説明したように、図1で説明した給湯システム1Aでは、クロスオーババルブ200のワックスサーモ210による感熱バイパス経路を含んで形成された即湯循環経路に経年的な流量変化が生じても、流量値学習を通じて、当該流量変化を給湯割り込み検出の判定値に適切に反映することができる。従って、給湯システム1Aでの即湯運転中における給湯栓の使用の検出精度を向上することができる。
又、当該流量学習値を用いた給湯割り込み判定は、循環経路28に配置された流量センサ82の流量検出値を用いることなく、流量センサ81の流量検出値のみで実行可能である。この結果、給湯運転時には不要な流量センサ82の配置を省略することも可能となる。
尚、図4のS120において、判定値Qth(S120)は、流量学習値Qln(S110)よりも高い値、例えば、Qth=Qln+αに設定されることが好ましい。上述のように、即湯運転モード中には、バイパス流量比を最小値とするように流量調整弁90が制御されている。このため、低流量の間に給湯運転に移行すると、流量センサ81の流量検出値が最小作動流量(MOQ)以下となって燃焼機構30が作動できない虞がある。このため、即湯運転モードから給湯運転に移行する判定値Qthをある程度高く設定することで、給湯割り込み検出直後において、燃焼機構30の作動を確保することが可能となる。
又、図6の学習処理でのS220~S240により、即湯循環経路の流量変化とは異なる要因の流量変動を取り込むことによって、流量学習値Qlnの誤学習を抑制することができる。
更に、本実施の形態に係る給湯システム1Aでは、上述の流量学習値を用いて即湯循環経路の異常診断を実行することも可能である。
図10は、本実施の形態に係る給湯システムでの即湯循環経路の異常診断を説明するフローチャートである。
図10を参照して、コントローラ10は、S170(図4)によって流量学習値が更新されると、S310をYES判定として、S320以降の異常診断を実行する。コントローラ10は、ステップS320により、更新後の流量学習値Qlnが、予め定められた正常範囲(Ql~Qh)内の値であるか否かを判定する。
クロスオーババルブ200内でのバイパス流路等の閉塞が生じた場合には、即湯循環経路の流量が正常範囲よりも低下する。一方で、クロスオーババルブ200内で破損等が生じた場合には、即湯循環経路の流量が正常範囲よりも上昇する。
従って、コントローラ10は、Qln<Ql、又は、Qln>Qhのときには(S320のNO判定時)には、S340により、即湯循環経路の異常を検知する。S340では、報知装置95により、ユーザに対して異常検知を報知することが好ましい。その場合には、Qln<Qlのときと、Qln>Qhのときとの間で、異なった情報を報知することができる。
一方で、コントローラ10は、Ql≦Qln≦Qhのときには(S320のYES判定時)には、S330により、即湯循環経路の異常を検知しない。尚、正常範囲の下限値Ql及び上限値Qhは、上述した流量学習値の上下限チェックでの上限値Qlnmax及び下限値Qlnminと共通の値としてもよく、個別の値としてもよい。
このように、本実施の形態に係る給湯システムでは、即湯運転モードでの流量学習値により、即湯循環経路の異常診断を実行することができる。特に、流量学習値を用いた判定とすることにより、クロスオーババルブ200の一時的な作動不良等に起因する、突発的な異常値が検出されたときの異常誤検出を抑制した異常診断を実現することができる。
次に、本実施の形態による即湯運転モードでの給湯割り込み検出の適用が可能な給湯システムの構成の変形例について更に説明する。
図11には、本実施の形態に係る給湯システムの構成の第1の変形例を説明するブロック図が示される。
図11を参照して、給湯システム1Bは、給湯装置100Xと、低温水配管110と、高温水配管120と、クロスオーババルブ200とを備える。給湯装置100Xは、循環ポート13を具備することなく、入水ポート11及び出湯ポート12を有する。従って、給湯装置100Xの内部には、図1の給湯装置100とは異なり、循環経路28が設けられない。
逆止弁112を介して低温水の供給を受ける低温水配管110は、給湯装置100Xの入水ポート11と接続される第一端と、クロスオーババルブ200のポート202と接続される第二端とを有する。クロスオーババルブ200と、低温水配管110、高温水配管120、及び、給湯栓330との接続は、図1に示した給湯システム1Aと同様である。循環ポンプ80は、入水ポート11に対して接続される。
給湯システム1Bにおいて、給湯運転時には、低温水配管110から入水ポート11に導入された低温水の少なくとも一部が、加熱機構(燃焼機構30及び熱交換器40)によって加熱される。給湯システム1Aと同様に、加熱によって得られた高温水は、出湯ポート12及び高温水配管120、並びに、クロスオーババルブ200(流路Pa)を経由して、給湯栓330から出力される。これにより、給湯装置100Xでも、給湯装置100と同様に給湯運転を実行できる。
即湯運転モードでは、閉栓時に循環ポンプ80が作動することにより、給湯装置100の外部に、出湯ポート12から、高温水配管120、クロスオーババルブ200(感熱バイパス経路Pc)、及び、低温水配管110を経由して、入水ポート11に至る流体経路(外部経路)を形成することができる。更に、給湯装置100Xの内部において、図1と同様に、入水ポート11、入水経路20、熱交換器40(加熱機構)、出湯経路25、及び、出湯ポート12を通過する内部経路を形成することができる。当該内部経路及び外部経路によって、給湯システム1Bにおいても、即湯循環経路を形成することができる。又、即湯運転モードでは、流量センサ81によって、即湯循環経路の流量を検出できるとともに、温度センサ73によって、即湯循環経路の流体温度を検出することができる。
給湯システム1Bにおいても、流量センサ81での流量検出値の挙動は給湯システム1Aと同様となるので、図4及び図6の制御処理に従って、即湯運転中の給湯割り込みを検出することができる。更に、図10の制御処理に従って、流量学習値を用いた異常診断を給湯システム1Aと同様に実行することも可能である。
又、本実施の形態で示した、特許文献1に記載されたクロスオーババルブ200は、「感熱止水バイパス弁」の一例に過ぎず、温度に応じて形成及び閉塞が切替えられる感熱バイパス経路を有するバルブであれば、本実施の形態において、クロスオーババルブ200に代えて用いることが可能である。
更に、本実施の形態による即湯運転モード中の給湯割り込み検出は、クロスオーババルブ200(即ち、「感熱止水バイパス弁」)を用いることなく、循環配管の配設によって即湯循環経路が配設される構成の給湯システムにも適用することが可能である。
図12には、本実施の形態に係る給湯システムの構成の第2の変形例を説明するブロック図が示される。
図12を参照して、給湯システム2Aは、図1と同様の給湯装置100と、低温水配管110と、高温水配管120と、循環配管130とを備える。一方で、図1に示されたクロスオーババルブ200は、給湯装置100に外部接続されていない。
図1と同様に、逆止弁112を介して低温水の供給を受ける低温水配管110は、入水ポート11と接続され、高温水配管120は、出湯ポート12及び給湯栓330の間を接続する。更に、循環配管130は、高温水配管120及び循環ポート13の間を接続する。
給湯システム2Aにおいても、閉栓時に循環ポンプ80を作動することで、給湯装置100の内部には、給湯システム1Aと同様の流体経路(内部経路)を形成することができる。更に、給湯装置100の外部には、出湯ポート12、高温水配管120、循環配管130、及び、循環ポート13を含む、給湯栓330をバイパスする流体経路(外部経路)を形成することができる。この結果、上記内部経路と当該外部経路とによって、即湯循環経路を形成することができるので、給湯システム1Aと同様の即湯運転モードを実行することが可能である。
給湯システム2Aにおいても、図4及び図6の制御処理に従って、即湯運転モード中の流量センサ81での流量検出値の学習によって、即湯運転モード中の給湯割り込みを検出することができる。これより、循環経路28の流量センサ82を用いることなく、即湯循環経路での経年変化を反映して、即湯運転中における給湯栓の使用の検出精度を向上することができる。又、即湯運転モードでの流量学習値を用いた即湯循環経路の異常診断についても実行可能である。
図13には、本実施の形態に係る給湯システムの構成の第3の変形例を説明するブロック図が示される。
図13を参照して、給湯システム2Bは、図11と同様の給湯装置100Xと、低温水配管110と、高温水配管120と、循環配管130とを備える。一方で、図11に示されたクロスオーババルブ200は、給湯装置100に外部接続されていない。
図11と同様に、逆止弁112を介して低温水の供給を受ける低温水配管110は、給湯装置100Xの入水ポート11と接続され、高温水配管120は、給湯装置100Xの出湯ポート12及び給湯栓330の間を接続する。更に、循環配管130は、高温水配管120及び低温水配管110の間を接続する。
循環ポンプ80は、循環配管130に接続することができる。循環ポンプ80が停止される給湯運転時には、給湯栓330の開放により、低温水配管110から入水ポート11へ導入された低温水の少なくとも一部が、加熱機構(燃焼機構30及び熱交換器40)によって加熱される。加熱によって得られた高温水は、出湯ポート12から高温水配管120を経由して、給湯栓330から出力される。これにより、給湯システム2Bにおいても、給湯装置100Xによる給湯運転を実行できる。
給湯システム2Bにおいても、閉栓時に循環ポンプ80を作動することで、給湯装置100Xの内部には、給湯システム1Bと同様の流体経路(内部経路)を形成することができる。更に、給湯装置100Xの外部には、出湯ポート12から、高温水配管120、循環配管130、及び、低温水配管110を経由して、入水ポート11に至る、給湯栓330をバイパスする流体経路(外部経路)を形成することができる。この結果、給湯システム2においても、即湯循環経路を形成することができる。上記内部経路及び外部経路によって、即湯循環経路を形成することにより、給湯システム1Aで説明したのと同様の即湯運転モードを実行することが可能である。
給湯システム2Bにおいても、図4及び図6の制御処理に従って、即湯運転モード中の流量センサ81での流量検出値の学習によって、即湯運転モード中の給湯割り込みを検出することができる。これより、循環経路28の流量センサ82を用いることなく、即湯循環経路での経年変化を反映して、即湯運転中における給湯栓の使用の検出精度を向上することができる。又、即湯運転モードでの流量学習値を用いた即湯循環経路の異常診断についても実行可能である。
尚、給湯システム1A、1B、2A、及び、2Bにおいて、循環ポンプ80は、上記と同様の即湯循環経路を形成可能であれば、図1、及び、図11~図13での例示に限定されず、給湯装置100の外部又は内部の任意の個所に配置することができる。即ち、循環ポンプ80が給湯装置100に内蔵されない構成においても、循環ポンプ80の停止及び作動を制御するコントローラ10を備えることによって、本実施の形態で説明した即湯運転モードを実現することが可能である。
又、本実施の形態では、給湯装置100及び100Xがバイパス構成(バイパス経路29及び流量調整弁90)を有する例を説明したが、給湯装置100及び100Xからバイパス構成を除いた構成としても、本実施の形態で説明した、即湯運転モード中の流量センサ81の検出流量学習値を用いた給湯割り込み検出及び即湯循環経路の異常診断を適用することが可能である。この場合には、流量センサ81による流量検出値は、常時、即湯循環経路の流量と一致する。
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1A,1B,2A,2B 給湯システム、10 コントローラ、11 入水ポート、12 出湯ポート、13 循環ポート、16 メモリ、17 入出力回路、18 電子回路、19 バス、20 入水経路、21,112 逆止弁、22 接続点、25 出湯経路、28 循環経路、29 バイパス経路、30 燃焼機構、40 熱交換器、71~73 温度センサ、80 循環ポンプ、81,82 流量センサ、90 流量調整弁、92 リモートコントローラ、95 報知装置、100,100X 給湯装置、110 低温水配管、120 高温水配管、130 循環配管、200 クロスオーババルブ、201~204 ポート、210 ワックスサーモ、330 給湯栓、331 バルブ、Q 流量検出値、Qln 流量学習値、Qth 判定値(給湯割り込み判定)、Qx 実績流量値。

Claims (9)

  1. 給湯栓に対して出湯する給湯装置であって、
    低温水が導入される入水ポートと、
    加熱機構と、
    前記入水ポート及び前記加熱機構の間に形成される入水経路と、
    前記加熱機構による加熱後の高温水を出力するための出湯ポートと、
    前記加熱機構及び前記出湯ポートの間に形成される出湯経路とを備え、
    前記給湯装置は、前記給湯栓の閉止時に前記給湯装置の内部又は外部に配置される循環ポンプが作動する即湯運転モードにおいて、前記入水経路の少なくとも一部と、前記加熱機構と、前記出湯経路とを含む内部経路と、前記給湯装置の外部で前記給湯栓をバイパスする外部経路とを併せて、流体が前記加熱機構を通過する即湯循環経路を形成するように構成され、
    前記給湯装置は、
    前記即湯循環経路の流量を検出するための流量検出器と、
    前記加熱機構及び前記循環ポンプの作動及び停止を指示する制御器とを更に備え、
    前記制御器は、
    前記即湯運転モード毎に当該即湯運転モード中の予め定められたタイミングでの前記流量検出器による流量検出値を実績流量値として記憶し、記憶された複数個の前記実績流量値を用いて流量学習値を算出するとともに、
    前記即湯運転モード中において、前記流量学習値に従って設定される判定値よりも前記流量検出値が高くなると、前記給湯栓の使用を検出して前記循環ポンプを停止し、
    前記制御器は、各前記即湯運転モードにおいて、前記実績流量値が記憶されたタイミングから所定時間が経過するまでの間において、前記流量検出値の変化が予め定められた値よりも大きくなった場合、又は、前記給湯栓の使用が検出された場合には、当該実績流量値を前記流量学習値の算出に反映しない、給湯装置。
  2. 前記制御器は、順次記憶される前記実績流量値の指数移動平均値に従って、前記流量学習値を算出する、請求項1記載の給湯装置。
  3. 前記制御器は、各前記即湯運転モードにおいて、記憶した前記実績流量値が予め定められた上下限範囲内の値でない場合には、当該実績流量値を前記流量学習値の算出に反映しない、請求項1又は2に記載の給湯装置。
  4. 前記給湯装置は、
    前記加熱機構をバイパスして前記入水経路及び前記出湯経路を接続するバイパス経路と、
    前記加熱機構及び前記バイパス経路のトータル流量に対する前記バイパス経路の流量比を制御する流量調整弁とを更に備え、
    前記制御器は、各前記即湯運転モードにおいて、前記流量比を予め定められた同一値に固定する、請求項1~3のいずれか1項に記載の給湯装置。
  5. 前記判定値は、前記流量学習値よりも高く設定される、請求項記載の給湯装置。
  6. 前記制御器は、前記流量学習値が予め定められた上下限範囲内から外れたときに、前記即湯循環経路の異常を検知する、請求項1~5のいずれか1項に記載の給湯装置。
  7. 前記即湯循環経路は、前記入水ポートと接続された低温水配管及び前記出湯ポートと接続された高温水配管と前記給湯栓との間に接続された感熱止水バイパス弁を含んで形成され、
    前記感熱止水バイパス弁は、低温時に前記低温水配管及び前記高温水配管の間に形成される感熱バイパス経路を有し、
    前記感熱バイパス経路は、高温時には閉塞される、請求項1~6のいずれか1項に記載の給湯装置。
  8. 入水ポート及び出湯ポートを有する給湯装置と、
    前記給湯装置の前記入水ポートに低温水を導入する低温水配管と、
    前記給湯装置の前記出湯ポートと給湯栓との間を接続する高温水配管と、
    前記給湯装置の内部又は外部に配置される循環ポンプとを備え、
    前記給湯装置は、
    加熱機構と、
    前記入水ポート及び前記加熱機構の間に形成される入水経路と、
    前記加熱機構及び前記出湯ポートの間に形成される出湯経路とを備え、
    前記給湯装置は、前記給湯栓の閉止時に前記循環ポンプが作動する即湯運転モードにおいて、前記入水経路の少なくとも一部と、前記加熱機構と、前記出湯経路とを含む内部経路と、前記給湯装置の外部で前記給湯栓をバイパスする外部経路とを併せて、流体が前記加熱機構を通過する即湯循環経路を形成するように構成され、
    前記給湯装置は、
    前記即湯循環経路の流量を検出するための流量検出器と、
    前記加熱機構及び前記循環ポンプの作動及び停止を指示する制御器とを含み、
    前記制御器は、
    前記即湯運転モード毎に当該即湯運転モード中の予め定められたタイミングでの前記流量検出器による流量検出値を実績流量値として記憶し、記憶された複数個の前記実績流量値を用いて流量学習値を算出するとともに、
    前記即湯運転モード中において、前記流量学習値に従って設定される判定値よりも前記流量検出値が高くなると、前記給湯栓の使用を検出して前記循環ポンプを停止し、
    前記制御器は、各前記即湯運転モードにおいて、前記実績流量値が記憶されたタイミングから所定時間が経過するまでの間において、前記流量検出値の変化が予め定められた値よりも大きくなった場合、又は、前記給湯栓の使用が検出された場合には、当該実績流量値を前記流量学習値の算出に反映しない、給湯システム。
  9. 前記低温水配管及び前記高温水配管と、前記給湯栓との間に接続された感熱止水バイパス弁を更に備え、
    前記感熱止水バイパス弁は、低温時に前記低温水配管及び前記高温水配管の間に形成される感熱バイパス経路を有し、
    前記感熱バイパス経路は、高温時には閉塞される、請求項記載の給湯システム。
JP2019116282A 2019-06-24 2019-06-24 給湯装置及び給湯システム Active JP7343756B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019116282A JP7343756B2 (ja) 2019-06-24 2019-06-24 給湯装置及び給湯システム
US15/930,622 US11639813B2 (en) 2019-06-24 2020-05-13 Water heating apparatus and water heating system
CN202010435670.1A CN112128839B (zh) 2019-06-24 2020-05-21 供热水装置以及供热水系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019116282A JP7343756B2 (ja) 2019-06-24 2019-06-24 給湯装置及び給湯システム

Publications (2)

Publication Number Publication Date
JP2021001712A JP2021001712A (ja) 2021-01-07
JP7343756B2 true JP7343756B2 (ja) 2023-09-13

Family

ID=73851162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019116282A Active JP7343756B2 (ja) 2019-06-24 2019-06-24 給湯装置及び給湯システム

Country Status (3)

Country Link
US (1) US11639813B2 (ja)
JP (1) JP7343756B2 (ja)
CN (1) CN112128839B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113260820B (zh) * 2018-12-31 2023-03-07 庆东纳碧安株式会社 用于供应热水的装置和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241214A (ja) 2004-02-27 2005-09-08 Gastar Corp 学習機能付き給湯装置
JP2016125692A (ja) 2014-12-26 2016-07-11 リンナイ株式会社 給湯システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311413B2 (ja) * 1993-02-26 2002-08-05 東陶機器株式会社 循環式給湯装置
JP3171979B2 (ja) 1993-02-26 2001-06-04 東陶機器株式会社 循環保温式給湯装置
JP3605816B2 (ja) 1997-11-28 2004-12-22 株式会社ノーリツ 即湯機能付き給湯器
US6536464B1 (en) 2000-10-25 2003-03-25 Grundfos Pumps Manufacturing Corporation Thermostatically controlled bypass valve and water circulating system for same
JP3957650B2 (ja) 2003-03-25 2007-08-15 リンナイ株式会社 即湯機能付給湯装置
US9063551B2 (en) * 2013-02-14 2015-06-23 Intellihot Green Technologies, Inc. Adaptive heating control system for a water heater
DE102014015943B3 (de) * 2014-07-10 2015-07-09 Krohne Ag Verfahren zum Betreiben eines kernmagnetischen Durchflussmessgeräts
DE102015203342A1 (de) * 2015-02-25 2016-08-25 Robert Bosch Gmbh Steuergerät, Durchlauferhitzer und Verfahren zur Steuerung eines Durchlauferhitzers
JP6674789B2 (ja) * 2016-02-12 2020-04-01 リンナイ株式会社 燃焼式水加熱装置
KR101809621B1 (ko) * 2016-04-18 2018-01-19 대성쎌틱에너시스 주식회사 온수기 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241214A (ja) 2004-02-27 2005-09-08 Gastar Corp 学習機能付き給湯装置
JP2016125692A (ja) 2014-12-26 2016-07-11 リンナイ株式会社 給湯システム

Also Published As

Publication number Publication date
JP2021001712A (ja) 2021-01-07
CN112128839A (zh) 2020-12-25
US11639813B2 (en) 2023-05-02
CN112128839B (zh) 2023-10-03
US20200400346A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP7311760B2 (ja) 給湯装置及び給湯システム
US8733297B2 (en) Water heater
JP6972704B2 (ja) 給湯システム
JP7343756B2 (ja) 給湯装置及び給湯システム
JP7372515B2 (ja) 給湯装置
CN111735199B (zh) 热水供应装置
KR100409157B1 (ko) 온수기 및 그의 제어방법
JP6757967B2 (ja) 給湯システム
US20230332774A1 (en) Hot water supply device and hot water supply system
JP7253983B2 (ja) 熱源装置
JP7151205B2 (ja) 暖房熱源機
JP3384855B2 (ja) 給湯器およびその出湯湯温制御方法
JP2017116172A (ja) 給湯装置
JP3065918B2 (ja) 浴槽の水位検出装置
JPH10153343A (ja) 追焚、湯張り機能付き給湯装置
JP2023170420A (ja) マルチ給湯システム
JP2022072067A (ja) 給湯装置
JPH1137551A (ja) 一缶二水路式燃焼装置
JP2000009344A (ja) 給湯装置
JP2004347225A (ja) 給湯風呂装置
JP2002349951A (ja) 1缶2回路式給湯器の制御方法及び制御装置
JPH10160244A (ja) 一缶二水路風呂給湯器
JPH07103574A (ja) 給湯器付風呂釜
JPH11281147A (ja) 給湯機の制御装置
JP2000161669A (ja) 給湯器用リモコン装置の消費電力低減化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R150 Certificate of patent or registration of utility model

Ref document number: 7343756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150