WO2020141712A1 - 온수 공급 장치 및 방법 - Google Patents

온수 공급 장치 및 방법 Download PDF

Info

Publication number
WO2020141712A1
WO2020141712A1 PCT/KR2019/015099 KR2019015099W WO2020141712A1 WO 2020141712 A1 WO2020141712 A1 WO 2020141712A1 KR 2019015099 W KR2019015099 W KR 2019015099W WO 2020141712 A1 WO2020141712 A1 WO 2020141712A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
temperature
water supply
direct
burner
Prior art date
Application number
PCT/KR2019/015099
Other languages
English (en)
French (fr)
Inventor
허창회
송용민
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180173564A external-priority patent/KR102606221B1/ko
Priority claimed from KR1020180173563A external-priority patent/KR102253337B1/ko
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to CN201980087185.5A priority Critical patent/CN113260820B/zh
Priority to US17/414,561 priority patent/US20220010976A1/en
Publication of WO2020141712A1 publication Critical patent/WO2020141712A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/128Preventing overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/315Control of valves of mixing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/16Arrangements for water drainage 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user

Definitions

  • the present invention relates to a hot water supply device and method, and more particularly, to a hot water supply device and method for efficiently controlling the mixing valve.
  • the hot water supply device is a device that supplies hot water at a temperature set by a user by heating direct water, and it is important to supply hot water within a short period of time, and to supply hot water at a constant temperature without temperature deviation when using hot water. For this reason, a hot water supply device using a mixing valve for supplying a constant hot water temperature is gradually increasing.
  • mixing valves There are two types of mixing valves: mechanically controlled and electronically controlled.
  • mechanically controlled mixing valve a temperature variation may occur in a manner in which the mixing rate is mechanically adjusted to match the temperature, and there is inconvenience in changing the set temperature of the hot water because it is not interlocked with the hot water supply device.
  • the mixing rate can be automatically controlled according to the conditions of use and installation by adjusting the mixing rate by controlling to adjust the temperature, and it is common to include the inside of the hot water supply device. For this reason, a hot water supply device including an electronically controlled mixing valve is widely used.
  • the temperature before mixing by the mixing valve must be maintained above the hot water set temperature in order to cope with the temperature variation of the hot water supply device. This is because it is possible to maintain the temperature of the hot water in response to a phenomenon in which the temperature of the hot water is lowered when re-used after using the hot water or when the flow increases during the use of the hot water.
  • a method of controlling the amount of heat of the burner after fixing the temperature before mixing and controlling the mixing rate of the mixing valve are controlled correspondingly.
  • the mixing ratio must be kept large.
  • the mixing valve is mixed for the part where the flow rate decreases during the use of hot water or the temperature increases when the flow rate is reused after using the hot water. Proportional control should be performed by increasing the ratio, but it may happen that the mixing ratio cannot be controlled more largely due to the mechanical characteristics of the mixing valve.
  • the mixing valve in the electronically controlled hot water supply device is malfunctioning, the mixing valve cannot be normally controlled. Therefore, when controlling the amount of heat of the burner based on the temperature before mixing, the user sets the temperature of the hot water set. Can't.
  • the present invention has been devised to solve the above-mentioned problems, and an object of the present invention is to provide a hot water supply device and method for minimizing variations in hot water temperature by efficiently controlling an electronically controlled mixing valve.
  • an object of the present invention is to provide a hot water supply device and method for smoothly supplying hot water by preventing unnecessary combustion stop and overheating errors in the event of a failure of the electronically controlled mixing valve.
  • the hot water supply device is connected to at least one processor and the at least one processor, receiving direct water through a direct water inflow pipe, and heating the supplied direct water by heat exchange And a burner that directly or indirectly provides heat required for the generation of the hot water to a heat exchanger that generates and discharges the generated hot water through a hot water supply pipe, and is connected to the at least one processor, wherein the direct water inflow pipe and the Installed in a mixing pipe connecting the hot water supply pipe, a mixing valve mixing the direct water with the hot water discharged from the heat exchanger and flowing through the hot water supply pipe, and connected to the at least one processor to store instructions
  • the hot water flowing through the hot water supply pipe includes a memory and the hot water flowing upstream of the connection point with the mixing pipe is referred to as a first hot water, and the hot water flowing downstream of the connection point is called a second hot water
  • the instruction Upon execution, the processor acquires a reference temperature that is the temperature of the first hot water that causes the mixing
  • the method for supplying hot water according to the present invention is a heat exchanger that receives direct water through a direct water inflow pipe, heats the supplied direct water by heat exchange, generates hot water, and discharges the generated hot water through a hot water supply pipe.
  • a burner that directly or indirectly provides heat required for the generation of hot water, and a mixing pipe that connects the direct water inlet pipe and the hot water supply pipe, discharges the heat from the heat exchanger, and directs the hot water through the hot water supply pipe.
  • the hot water flowing through the hot water supply pipe hot water flowing upstream of the connection point with the mixing pipe is referred to as a first hot water, and the connection point
  • the reference temperature that is the temperature of the first hot water that causes the mixing valve to maintain a preset opening degree
  • controlling the burner such that the temperature of the first hot water discharged from the heat exchanger reaches the obtained reference temperature.
  • the hot water supply device is connected to at least one processor and the at least one processor, receives direct water through a direct water inflow pipe, and heats the supplied direct water by heat exchange to generate hot water,
  • a mixing valve installed in the mixing pipe to mix the direct water with the hot water discharged from the heat exchanger and flowing through the hot water supply pipe, and a memory connected to the at least one processor and storing instructions.
  • the instructions are executed.
  • the processor determines whether the mixing valve is defective, and controls the burner so that the temperature of the second hot water supplied to the outside through the hot water supply pipe reaches a target temperature when the mixing valve is defective.
  • the method for supplying hot water according to the present invention is supplied to direct water through a direct water inflow pipe, heats the supplied direct water by heat exchange to generate hot water, and heat exchanger to discharge the generated hot water through the hot water supply pipe, the hot water It is installed in a mixing pipe connecting the direct water inlet pipe and the hot water supply pipe, and a burner that directly or indirectly provides heat required for the generation of the direct water to the hot water discharged from the heat exchanger and flowing through the hot water supply pipe.
  • the hot water supply method applied to the hot water supply device including a mixing valve for mixing, among the hot water flowing through the hot water supply pipe, hot water flowing upstream of the connection point with the mixing pipe is called first hot water, and When the hot water flowing downstream is referred to as the second hot water, determining whether the mixing valve is broken, and when the mixing valve is broken, the temperature of the second hot water supplied to the outside through the hot water supply pipe is a target temperature. And controlling the burner to reach.
  • the hot water supply apparatus and method according to the present invention can minimize the variation in hot water temperature by efficiently controlling the electronically controlled mixing valve.
  • the hot water supply apparatus and method according to the present invention can smoothly supply hot water by preventing unnecessary combustion stop and overheating errors in the event of a failure of the electronically controlled mixing valve.
  • FIG. 1 is a view showing an embodiment to which a hot water supply device according to the present invention is applied.
  • FIG. 2 is a view showing another embodiment to which the hot water supply device according to the present invention is applied.
  • the embodiments described below are examples suitable for understanding the technical features of the present invention, a hot water supply device and a method.
  • the technical features of the present invention are not limited by the embodiments in which the present invention is applied or described only in the embodiments described below, and various modifications can be implemented within the technical scope of the present invention.
  • the hot water supply apparatus 100 includes at least one processor 105, a burner (not shown), a mixing valve 160, and a memory (not shown). .
  • the processor 105 may include one or more of a central processing unit (CPU), an application processor (AP), or a communication processor (CP).
  • the processor 105 may execute, for example, calculation or data processing related to control and/or communication of at least one other component of the hot water supply device 100.
  • the processor 105 may, for example, detect temperature and flow rate through various sensors provided in the hot water supply device 100, and perform control of the burner and mixing valve 160 through it.
  • the memory is connected to at least one processor 105 and stores instructions.
  • the memory may include volatile and/or nonvolatile memory.
  • the memory may store instructions or data related to at least one component of the hot water supply device 100.
  • the memory may store instructions for controlling the processor 105.
  • an operation performed by the processor 105 may be performed through execution of an instruction stored in the memory.
  • the burner is connected to the at least one processor 105, receives direct water through the direct water inflow pipe 130, heats the supplied direct water by heat exchange to generate hot water, and generates the hot water through the hot water supply pipe 140.
  • the heat exchanger 110 discharged through the heat required for the generation of the hot water is provided directly or indirectly.
  • the heat exchanger 110 may receive direct water through the direct water inflow pipe 130, heat the supplied direct water by heat exchange to generate hot water, and discharge the generated hot water through the hot water supply pipe 140. . That is, the heat exchanger 110 may heat direct water by heat exchange, and the amount of heat required for heat exchange may be provided from a burner.
  • the burner may directly or indirectly provide heat required for the generation of hot water in the heat exchanger 110. That is, the burner may directly provide heat to the heat exchanger 110 (see FIG. 1 ), or may indirectly provide heat by introducing heating water or the like heated by the heat of the burner into the heat exchanger 110 (FIG. 2).
  • Mixing valve 160 is connected to the at least one processor 105, is installed in the mixing pipe 150 connecting the direct water inlet pipe 130 and the hot water supply pipe 140, the heat exchanger 110 ) Is mixed with the direct water to the hot water discharged from the hot water supply pipe 140 flowing.
  • the mixing pipe 150 is connected between the direct water inlet pipe 130 and the hot water supply pipe 140, and a mixing valve 160 is installed on the mixing pipe 150 to mix the mixing pipe according to the opening rate ( The amount of direct water supplied to the hot water supply pipe 140 may be adjusted through 150).
  • the direct water inflow pipe 130 may be provided with a direct water temperature sensor 131 for specifying the temperature of the incoming water, and a flow sensor 133 for measuring the flow rate of the incoming water.
  • hot water flowing upstream of the connection point with the mixing pipe 150 may be referred to as first hot water
  • hot water flowing downstream of the connection point may be referred to as second hot water.
  • the first hot water is hot water immediately after heat exchange in the heat exchanger 110, and is hot water before mixing with the direct water flowing through the mixing pipe 150.
  • the second hot water is hot water generated in the heat exchanger 110 and is hot water mixed with direct water flowing through the mixing pipe 150.
  • the second hot water may be supplied to the outside of the boiler body 101 through the hot water supply pipe 140 and supplied to the user. Therefore, the second hot water may be set to a required temperature, which is a temperature set by the user.
  • the hot water supply pipe 140 may be provided with a first hot water temperature sensor 141 and a second hot water temperature sensor 142.
  • the first hot water temperature sensor 141 is provided at the upstream side of the hot water supply pipe 140 and the connection point with the mixing pipe 150 to measure the temperature of the first hot water, which is hot water immediately after heat exchange in the heat exchanger 110. can do.
  • the second hot water temperature sensor 142 is provided on the hot water supply pipe 140 on the downstream side than the connection point with the mixing pipe 150 to measure the temperature of the second hot water, which is hot water that is discharged.
  • the processor 105 When the instructions stored in the memory are executed, the processor 105, based on the temperature of the direct water and the requested temperature of the second hot water, is the temperature of the first hot water that causes the mixing valve 160 to maintain a preset opening degree. Let the temperature be acquired.
  • And instructions when executed, causes the processor 105 to control the burner so that the temperature of the first hot water discharged from the heat exchanger 110 reaches the obtained reference temperature.
  • the opening degree changes according to the required temperature of the second hot water and the temperature of the direct water.
  • Table 1 is a table showing the opening rate of the mixing valve 160 according to the temperature of the direct water and the required temperature when the first hot water is fixed to control the amount of heat.
  • the maximum opening degree of the mixing valve 160 is limited, when the temperature of the first hot water rises when the flow rate decreases and the hot water is reused, the maximum opening degree of the mixing valve 160 is According to the limitation, the temperature of the hot water cannot be adjusted, so that the second hot water having a temperature higher than the required temperature may be supplied.
  • the minimum opening ratio of the mixing valve 160 is According to the limitation, the temperature of the hot water cannot be adjusted, so that the second hot water having a temperature lower than the required temperature may be supplied.
  • the present invention can obtain the reference temperature by variably applying the temperature of the first hot water, which is hot water immediately after heat exchange in the heat exchanger 110, and perform heat control to match the reference temperature. .
  • the instructions stored in the memory are the temperature of the first hot water that causes the mixing valve 160 to maintain a preset opening degree based on the temperature of the direct water and the required temperature of the second hot water. Let the reference temperature be obtained. In addition, the burner is controlled such that the temperature of the first hot water discharged from the heat exchanger 110 reaches the obtained reference temperature.
  • the opening rate of the mixing valve 160 for obtaining the reference temperature may be a value between the maximum opening rate and the minimum opening rate of the mixing valve 160.
  • the reference temperature can be obtained by calculating by substituting the opening rate of the mixing valve, the required temperature, and the direct water temperature in the following equation.
  • the instructions are the standard opening rate of the mixing valve that, when executed, causes the processor 105 to reach the required temperature based on the temperature of the direct water and the temperature of the first hot water measured by the first hot water temperature sensor.
  • the reference opening degree it is possible to control the mixing valve according to the reference opening degree. That is, when the first hot water fluctuates, the reference opening rate of the mixing valve may fluctuate accordingly, and the reference opening rate may be maintained at a predetermined value while the temperature of the first hot water is stabilized to the reference temperature level.
  • the standard opening rate can be changed by the above-described opening rate formula.
  • [Table 2], [Table 3], and [Table 4] below are the temperature and the required temperature of the direct water when the reference temperature is varied to maintain the opening ratio of the mixing valve 160 as an intermediate value in consideration of the hot water temperature variation.
  • [Table 2] is a table showing the reference temperature according to the direct water temperature at the condition of the required temperature of 40°C and the opening rate of 25%
  • [Table 3] is the direct temperature at the required temperature of 50°C and the opening rate of 25%
  • [Table 4] is a table showing the reference temperature according to the direct water temperature under the condition that the required temperature is 60°C and the opening rate is 25%.
  • Test example Required temperature (°C) Reference temperature (°C) Direct water temperature (°C) Opening rate (%) 2-1 40 50 10 25 2-2 40 48.5 15 25 2-3 40 46.5 20 25 2-4 40 45 25 25 2-5 40 43.4 30 25 2-6 40 45 30 33
  • Test example Required temperature (°C) Reference temperature (°C) Direct water temperature (°C) Opening rate (%) 3-1 50 63 10 25 3-2 50 61.5 15 25 3-3 50 60 20 25 3-4 50 58.5 25 25 3-5 50 56.5 30 25
  • Test example Required temperature (°C) Reference temperature (°C) Direct water temperature (°C) Opening rate (%) 4-1 60 77 10 25 4-2 60 75 15 25 4-3 60 73 20 25 4-4 60 71.5 25 25 4-5 60 70 30 25 4-6 60 75 10 23
  • the second hot water can be supplied in accordance with the required temperature while minimizing the variation in the hot water temperature even in fluctuating conditions such as fluctuating or reusing hot water.
  • the variable reference temperature is too high or low, the second hot water may not meet the required temperature, or combustion stop and overheating errors may occur.
  • the reference temperature can be adjusted.
  • the instructions may cause the processor 105 to adjust the reference temperature to the first adjustment temperature such that the temperature of the obtained reference temperature is within the first reference range when the acquired reference temperature is outside the preset first reference range.
  • the instructions may cause the processor 105 to control the burner so that the temperature of the first hot water discharged from the heat exchanger 110 reaches the adjusted first adjustment temperature at the time of execution.
  • the instructions of the mixing valve 160 that causes the processor 105 to reach a required temperature when the processor 105, based on the temperature of the direct water and the adjusted first adjustment temperature, the execution temperature It is possible to obtain the reference opening rate, which is the opening rate.
  • the processor 105 can control the mixing valve 160 according to the reference opening degree.
  • the reference opening rate can be calculated by the following equation in which the reference temperature is adjusted to the first adjustment temperature in the above-described opening rate equation.
  • the following equation is an equation stored in the system, and the instruction may cause the processor 105 to automatically calculate the reference opening rate when executed.
  • the processor 105 obtains the first adjustment temperature as a minimum value of the first reference range when the acquired reference temperature is lower than the first reference range.
  • the first adjustment temperature may be set to the maximum value of the first reference range.
  • the reference temperature should be about 43.4°C to maintain the opening rate of 25% under the conditions of the required temperature of 40°C and the direct water temperature of 30°C.
  • the difference between the required temperature and the reference temperature is about 3.4° C.
  • second hot water having a temperature lower than the required temperature may be supplied under conditions such as an increase in flow rate. Therefore, in order to compensate for this, the first adjustment temperature in which the reference temperature is adjusted may be set to 45°C, which is the minimum value of the first reference range, and the adjusted reference opening rate may be 33% (Test Example 2-6. Reference).
  • the reference temperature should be about 77°C in order to maintain the opening rate of 25% under the conditions of the required temperature of 60°C and the direct water temperature of 10°C.
  • the first adjustment temperature in which the reference temperature is adjusted may be set to 75°C, which is the maximum value of the first reference range, and the adjusted reference opening rate may be 23% (Test Example 4- 6).
  • the temperature of the direct water and the second hot water may be adjusted to the second adjustment temperature based on the required temperature and a predetermined opening rate lower than the preset opening degree.
  • the processor 105 if the operation rate of the burner required to reach the obtained reference temperature is equal to or less than a preset second reference range, the temperature of the direct water and the second hot water The reference temperature may be adjusted to a second adjustment temperature based on a desired temperature and a predetermined opening rate higher than the preset opening degree.
  • the operating rate of the burner means the ratio (%) of the heat quantity currently being provided to the maximum heat quantity that the burner can provide.
  • the instructions may cause the processor 105 to control the burner such that the temperature of the first hot water discharged from the heat exchanger 110 reaches the adjusted second adjusted temperature when the processor 105 is executed.
  • the processor 105 when the instructions are executed, the processor 105, if the operation rate of the burner required to reach the obtained reference temperature is greater than or equal to a preset second reference range, the temperature of the direct water and the requested temperature and the If the second adjustment temperature is obtained based on the minimum opening rate of the mixing valve, and the operation rate of the burner required to reach the obtained reference temperature is equal to or less than a preset second reference range, the temperature of the direct water and the request The second adjustment temperature may be obtained based on the temperature and the maximum opening degree of the mixing valve.
  • the opening ratio of the mixing valve is not limited to the minimum opening ratio and the maximum opening ratio, and may be adjusted to be lower or higher than a preset opening ratio (eg, an intermediate value between the minimum opening ratio and the maximum opening ratio).
  • the opening rate of the mixing valve is lowered to a predetermined opening rate, and the second adjustment temperature is adjusted based on the lowered predetermined opening rate and the direct water temperature and the required temperature. Can be obtained. Conversely, if the operation rate of the burner is low, the opening rate of the mixing valve may be increased to a predetermined opening rate, and a second adjustment temperature may be obtained based on the increased opening rate and the direct water temperature and the required temperature.
  • the burner's operating rate When the burner's operating rate is high, it is efficient to consider the conditions in which the operating rate decreases (for example, a condition in which the flow rate decreases). It is efficient to keep it low. On the contrary, when the burner's operation rate is low, it is efficient to consider the condition that the operation rate increases (for example, an increase in the flow rate). It is efficient to keep the opening rate high.
  • the maximum utilization rate is 100% and the current burner utilization rate is 100%, it is efficient to lower the opening rate because the control must be focused on the condition that the temperature rises.
  • the minimum operating rate is 10% and the current burner operating rate is 10%, it is efficient to increase the opening rate because the control must be focused on the condition in which the temperature decreases.
  • control range of the mixing valve can be sufficiently secured under the condition that the operation rate of the burner is variable, that is, the flow rate increases or decreases, so that the temperature deviation of the hot water can be minimized.
  • [Table 5], [Table 6], and [Table 7] below are tables showing a predetermined opening degree and a second adjustment temperature of the mixing valve 160 according to the operation rate of the burner.
  • [Table 5] is a table showing the second adjustment temperature and the predetermined opening rate according to the burner's operation rate at the required temperature of 40°C and the direct water temperature of 20°C
  • [Table 6] is the required temperature of 50°C and the direct water temperature of 20°C.
  • [Table 7] is the table showing the second adjustment temperature and the predetermined opening rate according to the operating rate of the burner at the required temperature of 60°C and the direct temperature of 20°C to be.
  • Test example Operation rate (%) Required temperature (°C) Second adjustment temperature (°C) Direct water temperature (°C) Predetermined opening rate (%) 5-1 80 40 42.3 20 10 5-2 65 40 44 20 17 5-3 50 40 46.5 20 25 5-4 35 40 49.5 20 32 5-5 20 40 53 20 39
  • Test example Operation rate (%) Required temperature (°C) Second adjustment temperature (°C) Direct water temperature (°C) Predetermined opening rate (%) 6-1 80 50 53.5 20 10 6-2 65 50 56 20 17 6-3 50 50 60 20 25 6-4 35 50 64 20 32 6-5 20 50 69 20 39 6-6 20 50 65 20 33
  • Test example Operation rate (%) Required temperature (°C) Second adjustment temperature (°C) Direct water temperature (°C) Predetermined opening rate (%) 7-1 80 60 64.5 20 10 7-2 65 60 65.5 20 17 7-3 50 60 73 20 25 7-4 35 60 79 20 32 7-5 20 60 83.5 20 39 7-6 35 60 75 20 27 7-7 20 60 75 20 27
  • the opening rate of the mixing valve can be adjusted by increasing the opening rate to a predetermined opening rate, and based on this, the second adjustment temperature obtained by the above-described opening rate formula can also be increased. Accordingly, when the flow rate increases, a controllable range of the mixing valve 160 may be sufficiently secured. Conversely, when the operation rate of the burner for setting the required temperature is high, the opening rate of the mixing valve can be adjusted by lowering it to a predetermined opening rate, and based on this, the second adjustment temperature obtained by the above-described opening rate formula can also be lowered. Accordingly, when the flow rate decreases, a controllable range of the mixing valve 160 can be sufficiently secured. However, if the adjusted second adjustment temperature is too high or too low, combustion burner stop and overheating error may occur. The second adjustment temperature can be adjusted to the third adjustment temperature.
  • the processor 105 when the instructions are executed, the processor 105, when the adjusted second adjustment temperature is outside the preset third reference range, the second adjustment temperature, the temperature within the third reference range 3 Can be adjusted to the adjusted temperature.
  • the instructions may cause the processor 105 to control the burner such that, when executed, the temperature of the first hot water discharged from the heat exchanger 110 reaches the adjusted third adjusted temperature. .
  • the second adjustment temperature is about 83.5°C.
  • the third adjustment temperature in which the second adjustment temperature is adjusted, may be set to 75° C., which is the maximum value of the third reference range, and the reference opening degree adjusted based on this may be 27% ( See Test Example 7-7).
  • Test Examples 6-5 and 7-4 can be adjusted to Test Examples 6-6 and 7-6, respectively.
  • the hot water supply device 100 may be applied to a boiler as an example.
  • the present invention may further include a heating heat exchange unit 120 that receives heat from the burner and heats the heating water by heat exchange.
  • the heat exchanger 110 may be supplied with heating water heated in the heating heat exchange unit 120, and heat the direct water by heat exchange with the heating water to generate the hot water.
  • it may further include a heating water return pipe 121 for returning the heating water to the heating heat exchange unit 120, and a heating water supply pipe 123 for supplying the heating water heated in the heating heat exchange unit 120 to the heating target.
  • a circulation pump 122 may be connected to the heating water return pipe 121, and a supply temperature sensor 124 may be provided to the heating water supply pipe.
  • a connection pipe 125 may be connected to the heating water return pipe 121 and the heating water supply pipe 123, and a three-way valve that switches to a heating mode or hot water mode at a connection point between the heating water supply pipe 123 and the connection pipe 125 126 may be connected.
  • the heat exchanger 110 is connected on the connection pipe 125 so that heat exchange between heating water and direct water may be performed in the hot water mode. As such, the heat exchanger 110 may indirectly receive heat provided by the burner to the heating heat exchange unit 120.
  • the hot water supply method described below uses the hot water supply device 100 described above, and duplicate description of the same description is omitted.
  • the hot water supply method is connected to the at least one processor 105, receives direct water through the direct water inlet pipe 130, and heats the supplied direct water by heat exchange to generate hot water And, to the heat exchanger 110 for discharging the generated hot water through the hot water supply pipe 140, a burner that directly or indirectly provides heat required for the generation of the hot water, and is connected to the at least one processor 105 However, it is installed in the mixing pipe 150 connecting the direct water inlet pipe 130 and the hot water supply pipe 140, the direct water to the hot water discharged from the heat exchanger 110 and flowing through the hot water supply pipe 140 It relates to a hot water supply method applied to a hot water supply device including a mixing valve 160 for mixing.
  • hot water flowing through the hot water supply pipe 140 hot water flowing upstream of the connection point with the mixing pipe 150 is referred to as first hot water, and hot water flowing downstream of the connection point is referred to as second hot water.
  • the hot water supply method according to the present invention is based on the temperature of the direct water and the required temperature of the second hot water, the reference temperature that is the temperature of the first hot water to keep the mixing valve 160 to a preset opening rate And obtaining the temperature of the first hot water discharged from the heat exchanger 110 and controlling the burner to reach the obtained reference temperature.
  • the hot water supply device 100 and the method according to the first embodiment of the present invention described above can also be applied to the second embodiment of the present invention described later.
  • the mixing valve 160 of the hot water supply device 100 according to the second embodiment of the present invention is based on the control in case of failure.
  • the hot water supply device 100 includes at least one processor 105, a burner (not shown), a mixing valve 160, and a memory (not shown). .
  • the processor 105 may include one or more of a central processing unit (CPU), an application processor (AP), or a communication processor (CP).
  • the processor 105 may execute, for example, calculation or data processing related to control and/or communication of at least one other component of the hot water supply device 100.
  • the processor 105 may, for example, detect temperature and flow rate through various sensors provided in the hot water supply device 100, and perform control of the burner and mixing valve 160 through it.
  • the memory is connected to at least one processor 105 and stores instructions.
  • the memory may include volatile and/or nonvolatile memory.
  • the memory may store instructions or data related to at least one component of the hot water supply device 100.
  • the memory may store instructions for controlling the processor 105.
  • an operation performed by the processor 105 may be performed through execution of an instruction stored in the memory.
  • the burner is connected to the at least one processor 105, receives direct water through the direct water inflow pipe 130, heats the supplied direct water by heat exchange to generate hot water, and generates the hot water through the hot water supply pipe 140.
  • the heat exchanger 110 discharged through the heat required for the generation of the hot water is provided directly or indirectly.
  • the heat exchanger 110 may receive direct water through the direct water inflow pipe 130, heat the supplied direct water by heat exchange to generate hot water, and discharge the generated hot water through the hot water supply pipe 140. . That is, the heat exchanger 110 may heat direct water by heat exchange, and the amount of heat required for heat exchange may be provided from a burner.
  • the burner may directly or indirectly provide heat required for the generation of hot water in the heat exchanger 110. That is, the burner may directly provide heat to the heat exchanger 110 (see FIG. 1 ), or may indirectly provide heat by introducing heating water or the like heated by the heat of the burner into the heat exchanger 110 (FIG. 2).
  • Mixing valve 160 is connected to the at least one processor 105, is installed in the mixing pipe 150 connecting the direct water inlet pipe 130 and the hot water supply pipe 140, the heat exchanger 110 ) Is mixed with the direct water to the hot water discharged from the hot water supply pipe 140 flowing.
  • the mixing pipe 150 is connected between the direct water inlet pipe 130 and the hot water supply pipe 140, and a mixing valve 160 is installed on the mixing pipe 150 to mix the mixing pipe according to the opening rate ( The amount of direct water supplied to the hot water supply pipe 140 may be adjusted through 150).
  • the direct water inflow pipe 130 may be provided with a direct water temperature sensor 131 for specifying the temperature of the incoming water, and a flow sensor 133 for measuring the flow rate of the incoming water.
  • hot water flowing upstream of the connection point with the mixing pipe 150 may be referred to as first hot water
  • hot water flowing downstream of the connection point may be referred to as second hot water.
  • the first hot water is hot water immediately after heat exchange in the heat exchanger 110, and is hot water before mixing with the direct water flowing through the mixing pipe 150.
  • the second hot water is hot water generated in the heat exchanger 110 and is hot water mixed with direct water flowing through the mixing pipe 150.
  • the second hot water may be supplied to the outside of the boiler body 101 through the hot water supply pipe 140 and supplied to the user.
  • the temperature of the second hot water set by the user is referred to as a required temperature
  • a temperature for the burner to heat up the second hot water is defined as a target temperature so as to match the second hot water with the required temperature.
  • the target temperature may be adjusted depending on the situation, for example, may be similar to the required temperature, or may be adjusted to a temperature lower than the required temperature according to the reference temperature of the first hot water and the residual heat of the burner.
  • the hot water supply pipe 140 may be provided with a first hot water temperature sensor 141 and a second hot water temperature sensor 142.
  • the first hot water temperature sensor 141 is provided at the upstream side of the hot water supply pipe 140 and the connection point with the mixing pipe 150 to measure the temperature of the first hot water, which is hot water immediately after heat exchange in the heat exchanger 110. can do.
  • the second hot water temperature sensor 142 is provided on the hot water supply pipe 140 on the downstream side than the connection point with the mixing pipe 150 to measure the temperature of the second hot water, which is hot water that is discharged.
  • the processor 105 may determine whether the mixing valve 160 is broken, and when the mixing valve 160 is broken, the processor 105 is external to the hot water supply pipe. It is possible to control the burner so that the temperature of the supplied second hot water reaches a target temperature.
  • the mixing valve 160 when the mixing valve 160 is normal, after controlling the amount of heat of the burner based on the hot water before mixing, by adjusting the opening rate of the mixing valve 160, it is possible to supply hot water by minimizing the temperature deviation of the hot water. have.
  • the mixing valve 160 when the mixing valve 160 is malfunctioning, when controlling the amount of heat of the burner based on the temperature before mixing, it is difficult to control the temperature of the hot water by the mixing valve 160. It may happen that it cannot meet the required temperature set by.
  • the heat amount control of the burner may be based on the temperature of the second hot water, not the first hot water. That is, the instructions may cause the processor 105 to control the burner so that the temperature of the second hot water reaches the target temperature when executed.
  • the instructions may cause the processor 105 to acquire the opening rate of the mixing valve 160 in a failed state when the mixing valve 160 is broken at the time of execution.
  • the instructions may cause the processor 105 to obtain a reference temperature, which is the temperature of the first hot water, based on the opening degree of the obtained mixing valve 160 and the temperature and the required temperature of the obtained mixing valve 160.
  • the instructions may cause the processor 105 to adjust the reference temperature to the fourth adjustment temperature so that the reference temperature becomes the temperature within the fourth reference range when the acquired reference temperature is outside the preset fourth reference range. have.
  • the instructions may cause the processor 105 to acquire a target temperature based on the temperature of the direct water, the opening degree of the mixing valve 160, and the fourth adjustment temperature at the time of execution.
  • the instructions may cause the processor 105 to control the burner so that the temperature of the second hot water reaches the obtained target temperature during execution.
  • the instructions are based on the temperature of the direct water and the temperature of the first hot water and the second hot water when the processor 105 at the time of execution acquires the opening rate of the mixing valve 160 in the failed state. Can be obtained.
  • the first hot water and the second hot water may be measured by the first hot water temperature sensor 141 and the second hot water temperature sensor 142.
  • the present invention in order to determine the burner overheating error and stop combustion, it is determined based on the temperature of the first hot water, which is hot water immediately after heat exchange in the heat exchanger 110. That is, if the first hot water exceeds a predetermined range, an overheating error of the burner may occur.
  • the fourth reference range may be a range of the first hot water set in order to prevent the burner from being burned or an overheating error occurs.
  • the present invention can control to prevent the reference temperature of the first hot water from rising above the fourth reference range by adjusting the target temperature of the burner.
  • the instructions may cause the processor 105 to set the fourth adjustment temperature to the maximum value of the fourth reference range when the acquired reference temperature is higher than the fourth reference range at execution time.
  • the following [Table 8] and [Table 9] is a table showing the reference temperature according to the temperature of the direct water at the required temperature of 50°C and 60°C when the mixing valve 160 is broken at the opening rate of 50%.
  • the reference temperature is the temperature of the first hot water obtained on the basis of the required temperature, the direct water temperature, and the opening degree in a failure state.
  • Test example Required temperature (°C) Reference temperature (°C) Direct water temperature (°C) Opening rate (%) 8-1 50 90 10 50 8-2 50 85.5 15 50 8-3 50 80 20 50 8-4 50 75 25 50 8-5 50 70 30 50
  • Test example Required temperature (°C) Reference temperature (°C) Direct water temperature (°C) Opening rate (%) 9-1 60 110 10 50 9-2 60 105 15 50 9-3 60 100 20 50 9-4 60 95 25 50 9-5 60 90 30 50
  • the mixing valve 160 fails at 50%, the higher the required temperature and the lower the direct water temperature, the higher the reference temperature.
  • the reference temperature increases, so that combustion may stop or an overheating error may occur.
  • the opening ratio of the mixing valve 160 in a fault condition is large, when the reference temperature is used as a reference, the value of the reference temperature becomes too high, such that combustion may stop or an overheating error may occur. If the reference temperature in the fault condition is too high or too low, the target temperature can be adjusted so that the reference temperature is within an appropriate range.
  • the required temperature is 60°C
  • the direct water temperature is 15°C
  • the opening ratio in the failure state of the mixing valve 160 is 50%
  • the following hot water is used to meet the required temperature in the following equation.
  • the reference temperature should be 105°C.
  • the burner may stop burning or an overheating error may occur. Therefore, it is necessary to make the target temperature of the burner lower than the required temperature.
  • the target temperature is calculated/acquired based on the direct temperature and the opening degree in the fault condition and the fourth adjustment temperature. can do.
  • the mixing valve 160 controls the amount of heat of the burner based on the temperature of the second hot water in the state of failure, when the hot water is reused according to the characteristics of the hot water supply device 100, the temperature of the hot water rises due to residual heat.
  • residual heat may affect the temperature of the hot water discharged as it is. Residual heat may differ in the degree of temperature rise due to residual heat, depending on the characteristics of the system, such as the type of burner and the type of heat exchanger 110. In general, when combustion is stopped in a state where the amount of heat of the burner is high, the temperature inside the heat exchanger 110 may increase more due to the residual heat of the burner and the heat exchanger 110.
  • control may be performed to prevent the supply of second hot water having a temperature that is too high in consideration of the effect of residual heat in a state in which the mixing valve 160 is broken.
  • the processor 105 may predict the degree of temperature increase of the second hot water due to residual heat according to the operation rate of the burner when the mixing valve 160 is broken.
  • the operating rate of the burner means the ratio (%) of the heat quantity currently being provided to the maximum heat quantity that the burner can provide.
  • the instructions may, when executed, cause the processor 105 to set a target temperature in consideration of the predicted degree of temperature increase of the second hot water, and to control the burner so that the temperature of the second hot water reaches the set target temperature.
  • the temperature of the hot water due to residual heat when reusing hot water may rise to 75°C depending on the situation.
  • the second hot water is supplied at a high temperature, and there is a risk of a user being burned.
  • the required temperature may be lowered to adjust the second set temperature, and the burner control for adjusting the second hot water to the second set temperature may be performed.
  • the amount of heat of the burner can be lowered, and the temperature increase due to residual heat in the condition of stopping combustion and reusing hot water at high heat can be minimized.
  • the hot water supply device 100 may be applied to a boiler as an example.
  • the present invention may further include a heating heat exchange unit 120 that receives heat from the burner and heats the heating water by heat exchange.
  • the heat exchanger 110 may be supplied with heating water heated in the heating heat exchange unit 120, and heat the direct water by heat exchange with the heating water to generate the hot water.
  • it may further include a heating water return pipe 121 for returning the heating water to the heating heat exchange unit 120, and a heating water supply pipe 123 for supplying the heating water heated in the heating heat exchange unit 120 to the heating target.
  • a circulation pump 122 may be connected to the heating water return pipe 121, and a supply temperature sensor 124 may be provided to the heating water supply pipe.
  • a connection pipe 125 may be connected to the heating water return pipe 121 and the heating water supply pipe 123, and a three-way valve that switches to a heating mode or hot water mode at a connection point between the heating water supply pipe 123 and the connection pipe 125 126 may be connected.
  • the heat exchanger 110 is connected on the connection pipe 125 so that heat exchange between heating water and direct water may be performed in the hot water mode. As such, the heat exchanger 110 may indirectly receive heat provided by the burner to the heating heat exchange unit 120.
  • the hot water supply method described below uses the hot water supply device 100 described above, and duplicate description of the same description is omitted.
  • the hot water supply method is connected to the at least one processor 105, receives direct water through the direct water inflow pipe 130, and heats the supplied direct water by heat exchange to generate hot water And, to the heat exchanger 110 for discharging the generated hot water through the hot water supply pipe 140, a burner that directly or indirectly provides heat required for the generation of the hot water, and is connected to the at least one processor 105 However, it is installed in the mixing pipe 150 connecting the direct water inlet pipe 130 and the hot water supply pipe 140, the direct water to the hot water discharged from the heat exchanger 110 and flowing through the hot water supply pipe 140 It relates to a hot water supply method applied to the hot water supply device including a mixing valve 160 for mixing.
  • hot water flowing through the hot water supply pipe 140 hot water flowing upstream of the connection point with the mixing pipe 150 is referred to as first hot water, and hot water flowing downstream of the connection point is referred to as second hot water.
  • the method of supplying hot water according to the present invention includes determining whether the mixing valve 160 is broken, and when the mixing valve 160 is broken, the temperature of the second hot water supplied to the outside through the hot water supply pipe 140 is determined. And controlling the burner to reach the target temperature.
  • the hot water supply apparatus 100 and the method according to the second embodiment of the present invention described above can also be applied to the first embodiment of the present invention.
  • the hot water supply apparatus and method according to the present invention can minimize the variation in hot water temperature by efficiently controlling the electronically controlled mixing valve.
  • the hot water supply apparatus and method according to the present invention can smoothly supply hot water by preventing unnecessary combustion stop and overheating errors in the event of a failure of the electronically controlled mixing valve.

Abstract

본 발명은 온수 공급 장치 및 방법을 제공한다. 상기 온수 공급 장치에 있어서, 적어도 하나의 프로세서와, 상기 적어도 하나의 프로세서에 연결되되, 직수유입관을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관을 통해 배출하는 열교환기에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공하는 버너와, 상기 적어도 하나의 프로세서에 연결되되, 상기 직수유입관과 상기 온수공급관을 연결하는 믹싱관에 설치되어, 상기 열교환기에서 배출되어 상기 온수공급관을 흐르는 상기 온수에 상기 직수를 혼합하는 믹싱밸브와, 상기 적어도 하나의 프로세서에 연결되고 인스트럭션들(instructions)을 저장하는 메모리를 포함하고, 상기 온수공급관을 흐르는 온수 중, 상기 믹싱관과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 할 때, 상기 인스트럭션들은, 실행 시에, 상기 프로세서가 상기 직수의 온도와 상기 제2 온수의 요구온도에 기초하여, 상기 믹싱밸브가 기 설정된 개도율을 유지하게 하는 상기 제1 온수의 온도인 기준온도를 획득하고, 상기 열교환기에서 배출된 상기 제1 온수의 온도가, 획득한 상기 기준온도에 도달하도록 상기 버너를 제어하게 한다.

Description

온수 공급 장치 및 방법
본 발명은 온수 공급 장치 및 방법에 관한 것이며, 더욱 상세하게는 믹싱밸브를 효율적으로 제어하는 온수 공급 장치 및 방법에 관한 것이다.
본 출원은 2018년 12월 31일에 출원된 한국특허출원 제 10-2018-0173563호 및 2018년 12월 31일에 출원된 한국특허출원 제 10-2018-0173564호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
온수 공급 장치는 직수를 가열하여 사용자가 설정한 온도의 온수를 공급하는 장치로서, 짧은 시간 안에 온수를 공급하고, 온수 사용 시 온도 편차 없이 항상 일정한 온도의 온수를 공급하는 것이 중요하다. 이러한 이유로 일정한 온수 온도의 공급을 위해 믹싱밸브를 사용하는 온수 공급 장치가 점차 증가하고 있다.
믹싱밸브는 기계식으로 조절되는 타입과 전자식으로 조절되는 타입이 있다. 기계식으로 조절되는 믹싱밸브의 경우 기구적으로 믹싱률이 조절되어 온도를 맞추는 방식으로 온도 편차가 발생할 수 있고 온수 공급 장치와 연동되지 않기 때문에 온수 설정 온도를 변경하는 경우 불편함이 있다.
반면 전자식으로 조절되는 믹싱밸브의 경우 제어식으로 믹싱률을 조절하여 온도를 맞추는 방식으로 사용 및 설치 조건에 따라 자동으로 믹싱률을 제어할 수 있으며 온수 공급 장치의 내부에 포함되는 것이 보편적이다. 이러한 이유로 전자식으로 조절되는 믹싱밸브를 포함하는 온수 공급 장치가 널리 사용되고 있다.
전자식으로 조절되는 믹싱밸브의 경우 온수 공급 장치의 온도 편차에 대응하기 위해 믹싱밸브에 의해 믹싱되기 이전의 온도를 온수 설정 온도보다 높게 유지해야 한다. 이는 온수 사용 후 재 사용하거나, 온수 사용 중 유랑이 증가할 경우 온수 온도가 낮아지는 현상에 대해 대응하여 온수 온도를 유지할 수 있기 때문이다. 그리고 일반적으로 온수 설정 온도를 고려하여 믹싱되기 이전의 온도를 고정한 후 버너의 열량을 제어하고, 이에 대응하여 믹싱밸브의 믹싱률을 가변하는 방식이 제어된다.
그런데 믹싱되기 이전의 온도를 온수 설정 온도보다 너무 높게 하면 믹싱비율을 크게 유지해야 하는데, 이 경우 온수 사용중 유량이 감소하거나, 온수 사용후 유량을 재사용할 경우 온도가 증가하는 부분에 대해서 믹싱밸브의 믹싱비율을 더 증가시켜서 비례제어를 수행해야 하나, 믹싱밸브의 기구적인 특성 때문에 믹싱비율을 더 크게 제어할 수 없는 경우가 발생할 수 있다.
또한, 사용조건에 따라 믹싱밸브의 최대 믹싱률을 유지하여도, 믹싱되지 이전의 온도를 계산에 의해 목표로 하는 온도로 맞출 수 없는 경우가 발생할 수 있다. 이와 같은 경우에도 온수 사용중 유량이 감소하거나, 온수 사용후 유량을 재사용할 경우 온도가 증가하는 부분에 대해서 믹싱밸브의 믹싱비율을 더 증가시켜서 비례제어를 수행해야 하지만, 믹싱밸브의 기구적인 특성 때문에 믹싱밸브를 제어할 수 없는 경우가 발생할 수 있다.
한편 전자식으로 조절되는 온수 공급 장치에서 믹싱밸브가 고장인 경우에는 정상적으로 믹싱밸브의 제어를 할 수 없기 때문에 믹싱되기 이전의 온도를 기준으로 버너의 열량을 제어하는 경우 사용자가 설정한 온수의 온도를 맞출 수 없다.
따라서, 전자식으로 제어되는 믹싱밸브를 구비한 온수 공급 장치에서 믹싱밸브의 효율적인 제어 방식이 필요한 실정이다.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 전자식으로 제어되는 믹싱밸브를 효율적으로 제어함으로써 온수 온도의 편차를 최소화하는 온수 공급 장치 및 방법을 제공하는 것을 목적으로 한다.
또한, 전자식으로 제어되는 믹싱밸브가 고장인 경우에 불필요한 연소 정지 및 과열 에러를 미연에 방지하여 온수 공급을 원활하게 하는 온수 공급 장치 및 방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명에 따른 온수 공급 장치는 적어도 하나의 프로세서와, 상기 적어도 하나의 프로세서에 연결되되, 직수유입관을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관을 통해 배출하는 열교환기에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공하는 버너와, 상기 적어도 하나의 프로세서에 연결되되, 상기 직수유입관과 상기 온수공급관을 연결하는 믹싱관에 설치되어, 상기 열교환기에서 배출되어 상기 온수공급관을 흐르는 상기 온수에 상기 직수를 혼합하는 믹싱밸브와, 상기 적어도 하나의 프로세서에 연결되고 인스트럭션들(instructions)을 저장하는 메모리를 포함하고, 상기 온수공급관을 흐르는 온수 중, 상기 믹싱관과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 할 때, 상기 인스트럭션들은, 실행 시에, 상기 프로세서가 상기 직수의 온도와 상기 제2 온수의 요구온도에 기초하여, 상기 믹싱밸브가 기 설정된 개도율을 유지하게 하는 상기 제1 온수의 온도인 기준온도를 획득하고, 상기 열교환기에서 배출된 상기 제1 온수의 온도가, 획득한 상기 기준온도에 도달하도록 상기 버너를 제어하게 한다.
다른 예에서 본 발명에 따른 온수 공급 방법은, 직수유입관을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관을 통해 배출하는 열교환기에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공하는 버너와, 상기 직수유입관과 상기 온수공급관을 연결하는 믹싱관에 설치되어, 상기 열교환기에서 배출되어 상기 온수공급관을 흐르는 상기 온수에 상기 직수를 혼합하는 믹싱밸브를 포함하는 온수 공급 장치에 적용되는 온수 공급 방법에 있어서, 상기 온수공급관을 흐르는 온수 중, 상기 믹싱관과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 할 때, 상기 직수의 온도와 상기 제2 온수의 요구온도에 기초하여, 상기 믹싱밸브가 기 설정된 개도율을 유지하게 하는 상기 제1 온수의 온도인 기준온도를 획득하는 단계 및 상기 열교환기에서 배출된 상기 제1 온수의 온도가, 획득한 상기 기준온도에 도달하도록 상기 버너를 제어하는 단계를 포함한다.
다른 예에서 본 발명에 따른 온수 공급 장치는 적어도 하나의 프로세서와, 상기 적어도 하나의 프로세서에 연결되되, 직수유입관을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관을 통해 배출하는 열교환기에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공하는 버너와, 상기 적어도 하나의 프로세서에 연결되되, 상기 직수유입관과 상기 온수공급관을 연결하는 믹싱관에 설치되어, 상기 열교환기에서 배출되어 상기 온수공급관을 흐르는 상기 온수에 상기 직수를 혼합하는 믹싱밸브와, 상기 적어도 하나의 프로세서에 연결되고 인스트럭션들(instructions)을 저장하는 메모리를 포함하고, 상기 온수공급관을 흐르는 온수 중, 상기 믹싱관과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 할 때, 상기 인스트럭션들은, 실행 시에, 상기 프로세서가 상기 믹싱밸브가 고장인지 여부를 판단하고, 상기 믹싱밸브가 고장인 경우 상기 온수공급관을 통해 외부로 공급되는 상기 제2 온수의 온도가 목표온도에 도달하도록 상기 버너를 제어하게 한다.
다른 예에서 본 발명에 따른 온수 공급 방법은 직수유입관을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관을 통해 배출하는 열교환기에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공하는 버너와, 상기 직수유입관과 상기 온수공급관을 연결하는 믹싱관에 설치되어, 상기 열교환기에서 배출되어 상기 온수공급관을 흐르는 상기 온수에 상기 직수를 혼합하는 믹싱밸브를 포함하는 온수 공급 장치에 적용되는 온수 공급 방법에 있어서, 상기 온수공급관을 흐르는 온수 중, 상기 믹싱관과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 할 때, 상기 믹싱밸브가 고장인지 여부를 판단하는 단계와, 상기 믹싱밸브가 고장인 경우 상기 온수공급관을 통해 외부로 공급되는 상기 제2 온수의 온도가 목표온도에 도달하도록 상기 버너를 제어하는 단계를 포함한다.
이와 같은 본 발명에 따른 온수 공급 장치 및 방법은, 전자식으로 제어되는 믹싱밸브를 효율적으로 제어함으로써 온수 온도의 편차를 최소화할 수 있다.
또한 본 발명에 따른 온수 공급 장치 및 방법은, 전자식으로 제어되는 믹싱밸브가 고장인 경우에 불필요한 연소 정지 및 과열 에러를 미연에 방지하여 온수 공급을 원활하게 할 수 있다.
도 1은 본 발명에 따른 온수 공급 장치가 적용된 일실시예를 도시한 도면.
도 2는 본 발명의 따른 온수 공급 장치가 적용된 다른 실시예를 도시한 도면.
이하, 첨부된 도면에 따라 본 발명의 바람직한 실시예를 상세하게 설명한다.
먼저, 이하에서 설명되는 실시예들은 본 발명인 온수 공급 장치 및 방법의 기술적인 특징을 이해시키기에 적합한 실시예들이다. 다만, 본 발명이 이하에서 설명되는 실시예에 한정하여 적용되거나 설명되는 실시예들에 의하여 본 발명의 기술적 특징이 제한되는 것이 아니며, 본 발명의 기술 범위 내에서 다양한 변형 실시가 가능하다.
제1 실시예
도 1을 참조하면, 본 발명의 제1 실시예에 따른 온수 공급 장치(100)는 적어도 하나의 프로세서(105), 버너(미도시), 믹싱밸브(160), 메모리(미도시)를 포함한다.
프로세서(105)는 중앙처리장치(central processing unit (CPU)), 어플리케이션 프로세서(application processor (AP)), 또는 커뮤니케이션 프로세서(communication processor (CP)) 중 하나 또는 그 이상을 포함할 수 있다. 프로세서(105)는, 예를 들면, 온수 공급 장치(100)의 적어도 하나의 다른 구성요소들의 제어 및/또는 통신에 관한 연산이나 데이터 처리를 실행할 수 있다. 프로세서(105)는 예를 들어 온수 공급 장치(100)에 구비된 각종 센서를 통한 온도와 유량의 감지와 이를 통한 버너 및 믹싱밸브(160)의 제어를 수행할 수 있다.
메모리는, 적어도 하나의 프로세서(105)에 연결되고 인스트럭션들(instructions)을 저장한다. 여기서 메모리는 휘발성 및/또는 비휘발성 메모리를 포함할 수 있다. 그리고 메모리는 온수 공급 장치(100)의 적어도 하나의 구성요소에 관계된 명령 또는 데이터를 저장할 수 있다.
그리고 메모리는 프로세서(105)를 제어하기 위한 인스트럭션들을 저장할 수 있다. 이하에서 프로세서(105)가 수행하는 동작은 메모리에 저장된 인스트럭션의 실행을 통해 수행될 수 있다.
버너는 상기 적어도 하나의 프로세서(105)에 연결되되, 직수유입관(130)을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관(140)을 통해 배출하는 열교환기(110)에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공한다.
구체적으로 열교환기(110)는 직수유입관(130)을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관(140)을 통해 배출할 수 있다. 즉 열교환기(110)는 직수를 열교환에 의해 가열할 수 있고, 열교환에 필요한 열량은 버너로부터 제공받을 수 있다.
버너는 열교환기(110)에서 온수의 생성에 필요한 열을 직접 또는 간접적으로 제공할 수 있다. 즉 버너는 열교환기(110)에 직접 열을 제공할 수도 있고(도 1 참조), 버너의 열에 의해 가열된 난방수 등을 열교환기(110)에 유입시켜서 간접적으로 열을 제공할 수도 있다(도 2 참조).
믹싱밸브(160)는, 상기 적어도 하나의 프로세서(105)에 연결되되, 상기 직수유입관(130)과 상기 온수공급관(140)을 연결하는 믹싱관(150)에 설치되어, 상기 열교환기(110)에서 배출되어 상기 온수공급관(140)을 흐르는 상기 온수에 상기 직수를 혼합한다.
구체적으로 믹싱관(150)은 상기 직수유입관(130)과 상기 온수공급관(140)의 사이에 연결되고, 믹싱밸브(160)는 믹싱관(150) 상에 설치되어 개도율에 따라 믹싱관(150)을 통해 온수공급관(140)으로 공급되는 직수의 양을 조절할 수 있다. 여기서 직수유입관(130)에는 유입되는 직수의 온도를 특정하는 직수온도센서(131)와, 유입되는 직수의 유량을 측정하는 유량센서(133)가 구비될 수 있다.
그리고 상기 온수공급관(140)을 흐르는 온수 중, 상기 믹싱관(150)과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 할 수 있다.
구체적으로 제1 온수는 열교환기(110)에서 열교환된 직후의 온수이고, 믹싱관(150)을 통해 유입되는 직수와 혼합되기 이전의 온수이다. 제2 온수는 열교환기(110)에서 생성된 온수로서 믹싱관(150)을 통해 유입되는 직수와 혼합된 온수이다. 제2 온수는 온수공급관(140)을 통해 보일러본체(101)의 외부로 공급되어 사용자에게 공급될 수 있다. 따라서, 제2 온수는 사용자가 설정한 온도인 요구온도로 설정될 수 있다.
여기서 온수공급관(140)에는 제1 온수온도센서(141)와 제2 온수온도센서(142)가 구비될 수 있다. 제1 온수온도센서(141)는 온수공급관(140)의, 믹싱관(150)과의 연결지점보다 상류 측에 구비되어 열교환기(110)에서 열교환된 직후의 온수인 제1 온수의 온도를 측정할 수 있다. 제2 온수온도센서(142)는 믹싱관(150)과의 연결지점보다 하류 측의 온수공급관(140) 상에 구비되어 출수되는 온수인 제2 온수의 온도를 측정할 수 있다.
메모리에 저장된 인스트럭션들은 실행 시에, 프로세서(105)가, 직수의 온도와 제2 온수의 요구온도에 기초하여, 믹싱밸브(160)가 기 설정된 개도율을 유지하게 하는 제1 온수의 온도인 기준온도를 획득하게 한다.
그리고 인스트럭션들은 실행 시에, 프로세서(105)가, 열교환기(110)에서 배출된 제1 온수의 온도가, 획득한 기준온도에 도달하도록 버너를 제어하게 한다.
구체적으로 종래와 같이 제1 온수 온도를 고정하여 버너의 열량을 제어하면 개도율은 제2 온수의 요구온도와 직수의 온도에 따라 변화하게 된다.
아래의 [표 1]은 제1 온수를 고정하여 열량을 제어한 경우 직수의 온도와 요구온도에 따른 믹싱밸브(160)의 개도율을 나타낸 표이다.
요구온도(℃) 제1 온수 온도(℃) 직수온도(℃) 개도율(%)
40 65 15 50
40 65 20 56
40 65 25 63
50 65 15 30
50 65 20 33
50 65 25 38
60 65 15 10
60 65 20 11
60 65 25 13
[표 1]에서 보는 바와 같이, 제1 온수의 온도를 고정하면 믹싱밸브(160)의 개도율은 요구온도와 직수의 온도에 따라 변화하게 된다. 예를 들어 요구온도가 40℃, 제1 온수 온도가 65℃, 직수 온도가 15℃인 조건에서, 아래의 식에 의할 경우 믹싱밸브(160)의 개도율은 50%이다. (개도율 = (1 - (요구온도 - 직수온도)/(기준온도 - 직수온도))*100)
그런데 믹싱밸브(160)의 최대 개도율이 제한되어 있는 상태에서 개도율이 너무 높은 경우에는, 유량의 감소 및 온수의 재사용 시에 제1 온수의 온도가 올라가면 믹싱밸브(160)의 최대 개도율의 제한에 따라 온수의 온도를 맞출 수 없어서 요구온도보다 높은 온도의 제2 온수가 공급될 수 있다.
반대로, 믹싱밸브(160)의 개도율이 최소 개도율이 제한되어 있는 상태에서 개도율이 너무 낮은 경우에는, 유량의 증가 및 온수 재사용 시에 온도가 낮아질 경우 믹싱밸브(160)의 최소 개도율의 제한에 따라 온수의 온도를 맞출 수 없어서 요구온도보다 낮은 온도의 제2 온수가 공급될 수 있다.
이러한 문제를 해결하기 위해, 본 발명은 열교환기(110)에서 열교환된 직후의 온수인 제1 온수의 온도를 가변적으로 적용하여 기준온도를 획득하고, 기준온도를 맞추기 위해 열량제어를 수행할 수 있다.
구체적으로 메모리에 저장된 인스트럭션들은 프로세서(105)가 상기 직수의 온도와 상기 제2 온수의 요구온도에 기초하여, 상기 믹싱밸브(160)가 기 설정된 개도율을 유지하게 하는 상기 제1 온수의 온도인 기준온도를 획득하게 한다. 그리고 상기 열교환기(110)에서 배출된 상기 제1 온수의 온도가, 획득한 상기 기준온도에 도달하도록 상기 버너를 제어하게 한다.
여기서 기준온도를 획득하기 위한 믹싱밸브(160)의 개도율은, 믹싱밸브(160)의 최대 개도율과 최소 개도율의 중간 값으로 할 수 있다. 그리고 기준온도는 아래의 식에, 상기한 믹싱밸브의 개도율과 요구온도와 직수온도를 대입하여 계산함으로써 획득할 수 있다.
(개도율 = (1 - (요구온도 - 직수온도)/(기준온도 - 직수온도))*100)
한편 인스트럭션들은 실행 시에 프로세서(105)가, 직수의 온도와 제1 온수온도센서에서 측정한 제1 온수의 온도에 기초하여 제2 온수의 온도가 요구온도에 도달하게 하는 믹싱밸브의 기준개도율을 획득하고, 상기 기준개도율에 따라 믹싱밸브를 제어하게 할 수 있다. 즉 제1 온수의 변동 시에 이에 따라 믹싱밸브의 기준개도율이 변동할 수 있고, 제1 온수의 온도가 기준온도 수준으로 안정화된 상태에서 기준개도율은 소정의 값으로 유지될 수 있다. 여기서 기준개도율은 상기한 개도율 식에 의해서 변동할 수 있다.
아래의 [표 2], [표 3] 및 [표 4]은 온수 온도 편차를 고려하여 믹싱밸브(160)의 개도율을 중간값으로 유지하도록 기준온도를 가변한 경우의 직수의 온도와 요구온도에 따른 믹싱밸브(160)의 개도율을 나타낸 표이다. 구체적으로 [표 2]은 요구온도 40℃, 개도율 25%인 조건에서 직수온도에 따른 기준온도를 나타낸 표이고, [표 3]는 요구온도 50℃, 개도율 25%인 조건에서 직수온도에 따른 기준온도를 나타낸 표이고, [표 4]은 요구온도 60℃, 개도율 25%인 조건에서 직수온도에 따른 기준온도를 나타낸 표이다.
시험예 요구 온도(℃) 기준온도(℃) 직수온도(℃) 개도율(%)
2-1 40 50 10 25
2-2 40 48.5 15 25
2-3 40 46.5 20 25
2-4 40 45 25 25
2-5 40 43.4 30 25
2-6 40 45 30 33
시험예 요구 온도(℃) 기준온도(℃) 직수온도(℃) 개도율(%)
3-1 50 63 10 25
3-2 50 61.5 15 25
3-3 50 60 20 25
3-4 50 58.5 25 25
3-5 50 56.5 30 25
시험예 요구 온도(℃) 기준온도(℃) 직수온도(℃) 개도율(%)
4-1 60 77 10 25
4-2 60 75 15 25
4-3 60 73 20 25
4-4 60 71.5 25 25
4-5 60 70 30 25
4-6 60 75 10 23
이와 같이 기준온도를 가변적으로 적용하여 버너의 열량을 제어하면 유량이 변동하거나 온수 재사용 등의 변동 상황에서도 온수 온도의 편차를 최소화하면서, 요구온도에 맞게 제2 온수를 공급할 수 있다. 그런데 이와 같이 가변된 기준온도가 너무 높거나 낮으면, 제2 온수가 요구온도를 맞출 수 없거나 연소 정지 및 과열 에러 등이 발생할 수 있다. 이러한 점을 해결하기 위해 기준온도를 조절할 수 있다.
즉 인스트럭션들은 실행 시에 프로세서(105)가, 획득한 기준온도가 기 설정된 제1 기준범위를 벗어나면 제1 기준범위 내의 온도가 되게 기준온도를 제1 조정온도로 조정하도록 할 수 있다.
또한 인스트럭션들은 실행 시에 프로세서(105)가, 열교환기(110)에서 배출된 제1 온수의 온도가, 조정된 제1 조정온도에 도달하도록 버너를 제어하게 할 수 있다.
그리고 상기 인스트럭션들은 실행 시에 상기 프로세서(105)가, 상기 직수의 온도와 조정된 상기 제1 조정온도에 기초하여, 상기 제2 온수의 온도가 요구온도에 도달하게 하는 상기 믹싱밸브(160)의 개도율인 기준개도율을 획득하게 할 수 있다. 또한 상기 인스트럭션들은 실행 시에, 상기 프로세서(105)가, 상기 기준개도율에 따라 상기 믹싱밸브(160)를 제어하게 할 수 있다.
구체적으로 상기한 개도율 식에 의해 획득한 기준온도가 제1 기준범위를 벗어난 경우, 상기한 개도율 식에서 기준온도를 제1 조정온도로 조정한 아래의 식에 의해 기준개도율을 계산할 수 있다. 아래의 식은 시스템 내에 저장된 수식으로 인스트럭션은 실행 시에 프로세서(105)가 자동으로 기준개도율을 계산하게 할 수 있다.
(기준개도율 = (1 - (요구온도 - 직수온도)/(제1 조정온도 - 직수온도))*100)
더욱 구체적으로, 상기 인스트럭션들은, 실행 시에, 상기 프로세서(105)가, 획득한 상기 기준온도가 상기 제1 기준범위보다 낮으면 상기 제1 조정온도를 상기 제1 기준범위의 최소값으로 하고, 획득한 상기 기준온도가 상기 제1 기준범위보다 높으면 상기 제1 조정온도를 상기 제1 기준범위의 최대값으로 하게 할 수 있다.
예를 들어, 상기한 [표 2]의 시험예 2-5와 같이 요구온도 40℃, 직수온도 30℃의 조건에서 개도율 25%를 유지하기 위해서 기준온도는 약 43.4℃가 되어야 한다. 그런데 이 경우 요구온도와 기준온도의 차이가 약 3.4℃이기 때문에, 유량 증가 등의 온도가 떨어지는 조건에서 요구온도보다 낮은 온도의 제2 온수가 공급될 수 있다. 따라서 이러한 점을 보완하기 위해, 기준온도를 조정한 제1 조정온도는, 제1 기준범위의 최소값인 45℃로 설정할 수 있고, 조정된 기준개도율은 33%일 수 있다(시험예 2-6 참조).
이와 반대로 상기한 [표 4]의 시험예 4-1과 같이 요구온도 60℃, 직수온도 10℃의 조건에서 개도율 25%를 유지하기 위해서 기준온도는 약 77℃가 되어야 한다. 그런데 이 경우 기준온도가 너무 높아 유량 감소 시에 온수가 높게 상승하여 연소 버너의 연소 정지 및 과열 에러 등이 발생할 수 있다. 따라서 이러한 점을 보완하기 위해, 기준온도를 조정한 제1 조정온도는, 제1 기준범위의 최대값인 75℃로 설정할 수 있고, 조정된 기준개도율은 23%일 수 있다(시험예 4-6 참조).
한편, 여기서 추가적으로 버너의 가동 열량 조건을 고려하여 믹싱밸브(160)의 개도율을 추가적으로 조정하는 경우 온수 온도의 편차를 더욱 최소화할 수 있다.
구체적으로 상기 인스트럭션들은 실행 시에, 상기 프로세서(105)가, 획득한 상기 기준온도에 도달하기 위해 요구되는 상기 버너의 가동률이 기 설정된 제2 기준범위 이상이면, 상기 직수의 온도와 상기 제2 온수의 요구온도와 상기 기 설정된 개도율보다 낮은 소정 개도율에 기초하여 상기 기준온도를 제2 조정온도로 조정하게 할 수 있다. 반대로 상기 인스트럭션들은 실행 시에, 상기 프로세서(105)가, 획득한 상기 기준온도에 도달하기 위해 요구되는 상기 버너의 가동률이 기 설정된 제2 기준범위 이하이면, 상기 직수의 온도와 상기 제2 온수의 요구온도와 상기 기 설정된 개도율보다 높은 소정 개도율에 기초하여 상기 기준온도를 제2 조정온도로 조정하게 할 수 있다. 여기서 버너의 가동률은 버너가 제공할 수 있는 최대 열량에 대한 현재 제공하고 있는 열량의 비율(%)을 의미한다.
또한 상기 인스트럭션들은 실행 시에, 상기 프로세서(105)가, 상기 열교환기(110)에서 배출된 상기 제1 온수의 온도가, 조정된 상기 제2 조정온도에 도달하도록 상기 버너를 제어하게 할 수 있다.
그리고 상기 인스트럭션들은 실행 시에, 상기 프로세서(105)가, 획득한 상기 기준온도에 도달하기 위해 요구되는 상기 버너의 가동률이 기 설정된 제2 기준범위 이상이면, 상기 직수의 온도와 상기 요구온도와 상기 믹싱밸브의 최소 개도율에 기초하여 제2 조정온도를 획득하게 하고, 획득한 상기 기준온도에 도달하기 위해 요구되는 상기 버너의 가동률이 기 설정된 제2 기준범위 이하이면, 상기 직수의 온도와 상기 요구온도와 상기 믹싱밸브의 최대 개도율에 기초하여 제2 조정온도를 획득하게 할 수 있다.
다만 여기서 상기 믹싱밸브의 개도율은 최소 개도율과 최대 개도율에 한정하는 것은 아니며 기 설정된 믹싱밸브의 개도율(일례로 최소개도율과 최대개도율의 중간 값)보다 낮거나 높게 조정할 수도 있다.
다시 말해 획득한 상기 기준온도에 도달하기 위해 요구되는 버너의 가동률이 높으면 상기 믹싱밸브의 개도율을 소정 개도율로 낮추고, 낮춰진 소정 개도율과 직수온도 및 요구온도에 기초하여 제2 조정온도를 획득할 수 있다. 반대로 버너의 가동률이 낮으면 상기 믹싱밸브의 개도율을 소정 개도율로 높이고, 높여진 소정 개도율과 직수온도 및 요구온도에 기초하여 제2 조정온도를 획득할 수 있다.
버너의 가동률이 높은 경우에는 가동률이 감소하는 조건(예를 들어 유량이 감소하는 조건)에 대해 고려를 하는 것이 효율적이기 때문에, 유량 감소 시 발생할 수 있는 온도가 높아지는 현상을 해결하기 위해 믹싱밸브 개도율을 낮게 유지하는 것이 효율적이다. 반대로 버너의 가동률이 낮은 경우에는 가동률이 증가하는 조건(예를 들어 유량이 증가하는 조건)에 대해 고려를 하는 것이 효율적이기 때문에, 유량 증가 시 발생할 수 있는 온도가 낮아지는 현상을 해결하기 위해 믹싱밸브 개도율을 높게 유지하는 것이 효율적이다.
예를 들면 최대 가동률이 100%인데 현재 버너의 가동률이 100%인 경우에는, 온도가 상승하는 조건에 초점을 맞추어 제어를 해야 하므로 개도율을 낮추는 것이 효율적이다. 이와 반대로 최소 가동률이 10%인데 현재 버너의 가동률이 10%인 경우에는, 온도가 하강하는 조건에 초점을 맞추어 제어를 해야 하므로 개도율을 높이는 것이 효율적이다.
이에 따라 버너의 가동률이 가변하는 조건, 즉 유량이 증감하는 조건에서 믹싱밸브의 제어범위를 충분히 확보할 수 있으므로, 결국 온수 온도 편차를 최소화할 수 있다.
아래의 [표 5], [표 6] 및 [표 7]은 버너의 가동률에 따른 믹싱밸브(160)의 소정 개도율과 제2 조정온도를 나타낸 표이다.
[표 5]은 요구온도 40℃, 직수온도 20℃ 조건에서 버너의 가동률에 따른 제2 조정온도와 소정개도율을 나타낸 표이고, [표 6]는 요구온도 50℃, 직수온도 20℃ 조건에서 버너의 가동률에 따른 제2 조정온도와 소정개도율을 나타낸 표이고, [표 7]은 요구온도 60℃, 직수온도 20℃ 조건에서 버너의 가동률에 따른 제2 조정온도와 소정개도율을 나타낸 표이다.
시험예 가동률(%) 요구온도(℃) 제2조정온도(℃) 직수온도(℃) 소정개도율(%)
5-1 80 40 42.3 20 10
5-2 65 40 44 20 17
5-3 50 40 46.5 20 25
5-4 35 40 49.5 20 32
5-5 20 40 53 20 39
시험예 가동률(%) 요구온도(℃) 제2조정온도(℃) 직수온도(℃) 소정개도율(%)
6-1 80 50 53.5 20 10
6-2 65 50 56 20 17
6-3 50 50 60 20 25
6-4 35 50 64 20 32
6-5 20 50 69 20 39
6-6 20 50 65 20 33
시험예 가동률(%) 요구온도(℃) 제2조정온도(℃) 직수온도(℃) 소정개도율(%)
7-1 80 60 64.5 20 10
7-2 65 60 65.5 20 17
7-3 50 60 73 20 25
7-4 35 60 79 20 32
7-5 20 60 83.5 20 39
7-6 35 60 75 20 27
7-7 20 60 75 20 27
이와 같이 요구온도를 맞추기 위한 버너의 가동률이 낮은 경우에는 믹싱밸브의 개도율을 소정 개도율로 높여서 조정할 수 있고, 이에 기초하여 상기한 개도율 식에 의해 획득한 제2 조정온도도 높아질 수 있다. 이에 따라 유량이 증가하는 경우 믹싱밸브(160)의 제어 가능한 범위가 충분히 확보될 수 있다. 반대로 요구온도를 맞추기 위한 버너의 가동률이 높은 경우에는 믹싱밸브의 개도율을 소정 개도율로 낮춰서 조정할 수 있고, 이에 기초하여 상기한 개도율 식에 의해 획득한 제2 조정온도도 낮아질 수 있다. 이에 따라 유량이 감소하는 경우 믹싱밸브(160)의 제어 가능한 범위가 충분히 확보될 수 있다.그런데 이 경우 조정된 제2 조정온도가 너무 높거나 낮으면 버너의 연소 정지 및 과열 에러가 발생할 수 있으므로, 제2 조정온도를 제3 조정온도로 조정할 수 있다.
구체적으로, 상기 인스트럭션들은 실행 시에, 상기 프로세서(105)가, 조정된 제2 조정온도가 기 설정된 제3 기준범위를 벗어나면, 상기 제2 조정온도를, 상기 제3 기준범위 내의 온도인 제3 조정온도로 조정하게 할 수 있다. 또한 상기 인스트럭션들은 실행 시에, 상기 프로세서(105)가, 상기 열교환기(110)에서 배출된 상기 제1 온수의 온도가, 조정된 상기 제3 조정온도에 도달하도록 상기 버너를 제어하게 할 수 있다.
예를 들어 [표 7]의 시험예 7-5와 같이, 요구온도 60℃, 직수온도 20℃, 버너의 가동률 20%인 조건에서, 제2 조정온도는 약 83.5℃가 된다. 이 경우 제2 조정온도가 너무 높아서 유량 감소 시에 제2 조정온도가 너무 높게 상승하여 연소 정지 및 과열 에러 등이 발생할 수 있다. 따라서 이러한 점을 보완하기 위해 제2 조정온도를 조정한 제3 조정온도는, 제3 기준범위의 최대값인 75℃로 설정할 수 있고, 이에 기초하여 조정된 기준개도율은 27% 일 수 있다(시험예 7-7 참조). 마찬가지로 시험예 6-5, 7-4를 각각 시험예 6-6, 7-6으로 조정할 수 있다.
한편 도 2를 참조하면 본 발명에 따른 온수 공급 장치(100)는 일례로 보일러에 적용될 수도 있다.
즉 본 발명은 상기 버너에서 열을 제공받아, 난방수를 열교환에 의해 가열하는 난방열교환부(120)를 더 포함할 수 있다. 그리고 상기 열교환기(110)는 상기 난방열교환부(120)에서 가열된 난방수가 공급되고, 난방수와의 열교환에 의해 상기 직수를 가열하여 상기 온수를 생성할 수 있다.
또한 난방열교환부(120)로 난방수를 환수시키는 난방수환수관(121)과, 난방열교환부(120)에서 가열된 난방수를 난방대상으로 공급하는 난방수공급관(123)을 더 포함할 수 있다. 또한 난방수환수관(121)에는 순환펌프(122)가 연결될 수 있고, 난방수 공급관에는 공급온도센서(124)가 구비될 수 있다.
난방수환수관(121)과 난방수공급관(123)에는 연결관(125)이 연결될 수 있고, 난방수공급관(123)과 연결관(125)의 연결지점에는 난방모드나 온수모드로 전환하는 삼방밸브(126)가 연결될 수 있다. 연결관(125) 상에 열교환기(110)가 연결되어 온수모드에서 난방수와 직수의 열교환이 이루어질 수 있다. 이와 같이 열교환기(110)는 난방열교환부(120)에 버너가 제공한 열을 간접적으로 제공받을 수 있다.
한편 본 발명의 제1 실시예의 다른 측면에 의한 온수 공급 방법을 설명한다. 이하에서 설명하는 온수 공급 방법은 상기한 온수 공급 장치(100)를 이용한 것으로, 동일한 설명에 대한 중복 설명은 생략한다.
본 발명의 제1 실시예에 따른 온수 공급 방법은 상기 적어도 하나의 프로세서(105)에 연결되되, 직수유입관(130)을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관(140)을 통해 배출하는 열교환기(110)에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공하는 버너와, 상기 적어도 하나의 프로세서(105)에 연결되되, 상기 직수유입관(130)과 상기 온수공급관(140)을 연결하는 믹싱관(150)에 설치되어, 상기 열교환기(110)에서 배출되어 상기 온수공급관(140)을 흐르는 상기 온수에 상기 직수를 혼합하는 믹싱밸브(160)를 포함하는 온수 공급 장치에 적용되는 온수 공급 방법에 관한 것이다.
상기 온수공급관(140)을 흐르는 온수 중, 상기 믹싱관(150)과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 한다.
이때, 본 발명에 의한 온수 공급 방법은 상기 직수의 온도와 상기 제2 온수의 요구온도에 기초하여, 상기 믹싱밸브(160)가 기 설정된 개도율을 유지하게 하는 상기 제1 온수의 온도인 기준온도를 획득하는 단계와, 상기 열교환기(110)에서 배출된 상기 제1 온수의 온도가, 획득한 상기 기준온도에 도달하도록 상기 버너를 제어하는 단계를 포함할 수 있다.
상기한 본 발명의 제1 실시예에 따른 온수 공급 장치(100) 및 방법은, 후술하는 본 발명의 제2 실시예에도 적용할 수 있다.
제2 실시예
이하에서는 본 발명의 제2 실시예에 따른 온수 공급 장치(100) 및 방법을 설명한다. 본 발명의 제2 실시예에 따른 온수 공급 장치(100)의 믹싱밸브(160)가 고장인 경우의 제어를 기초로 한다.
도 1을 참조하면, 본 발명의 제2 실시예에 따른 온수 공급 장치(100)는 적어도 하나의 프로세서(105), 버너(미도시), 믹싱밸브(160), 메모리(미도시)를 포함한다.
프로세서(105)는 중앙처리장치(central processing unit (CPU)), 어플리케이션 프로세서(application processor (AP)), 또는 커뮤니케이션 프로세서(communication processor (CP)) 중 하나 또는 그 이상을 포함할 수 있다. 프로세서(105)는, 예를 들면, 온수 공급 장치(100)의 적어도 하나의 다른 구성요소들의 제어 및/또는 통신에 관한 연산이나 데이터 처리를 실행할 수 있다. 프로세서(105)는 예를 들어 온수 공급 장치(100)에 구비된 각종 센서를 통한 온도와 유량의 감지와 이를 통한 버너 및 믹싱밸브(160)의 제어를 수행할 수 있다.
메모리는, 적어도 하나의 프로세서(105)에 연결되고 인스트럭션들(instructions)을 저장한다. 여기서 메모리는 휘발성 및/또는 비휘발성 메모리를 포함할 수 있다. 그리고 메모리는 온수 공급 장치(100)의 적어도 하나의 구성요소에 관계된 명령 또는 데이터를 저장할 수 있다.
그리고 메모리는 프로세서(105)를 제어하기 위한 인스트럭션들을 저장할 수 있다. 이하에서 프로세서(105)가 수행하는 동작은 메모리에 저장된 인스트럭션의 실행을 통해 수행될 수 있다.
버너는 상기 적어도 하나의 프로세서(105)에 연결되되, 직수유입관(130)을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관(140)을 통해 배출하는 열교환기(110)에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공한다.
구체적으로 열교환기(110)는 직수유입관(130)을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관(140)을 통해 배출할 수 있다. 즉 열교환기(110)는 직수를 열교환에 의해 가열할 수 있고, 열교환에 필요한 열량은 버너로부터 제공받을 수 있다.
버너는 열교환기(110)에서 온수의 생성에 필요한 열을 직접 또는 간접적으로 제공할 수 있다. 즉 버너는 열교환기(110)에 직접 열을 제공할 수도 있고(도 1 참조), 버너의 열에 의해 가열된 난방수 등을 열교환기(110)에 유입시켜서 간접적으로 열을 제공할 수도 있다(도 2 참조).
믹싱밸브(160)는, 상기 적어도 하나의 프로세서(105)에 연결되되, 상기 직수유입관(130)과 상기 온수공급관(140)을 연결하는 믹싱관(150)에 설치되어, 상기 열교환기(110)에서 배출되어 상기 온수공급관(140)을 흐르는 상기 온수에 상기 직수를 혼합한다.
구체적으로 믹싱관(150)은 상기 직수유입관(130)과 상기 온수공급관(140)의 사이에 연결되고, 믹싱밸브(160)는 믹싱관(150) 상에 설치되어 개도율에 따라 믹싱관(150)을 통해 온수공급관(140)으로 공급되는 직수의 양을 조절할 수 있다. 여기서 직수유입관(130)에는 유입되는 직수의 온도를 특정하는 직수온도센서(131)와, 유입되는 직수의 유량을 측정하는 유량센서(133)가 구비될 수 있다.
그리고 상기 온수공급관(140)을 흐르는 온수 중, 상기 믹싱관(150)과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 할 수 있다.
구체적으로 제1 온수는 열교환기(110)에서 열교환된 직후의 온수이고, 믹싱관(150)을 통해 유입되는 직수와 혼합되기 이전의 온수이다. 제2 온수는 열교환기(110)에서 생성된 온수로서 믹싱관(150)을 통해 유입되는 직수와 혼합된 온수이다. 제2 온수는 온수공급관(140)을 통해 보일러본체(101)의 외부로 공급되어 사용자에게 공급될 수 있다.
여기서 사용자가 설정한 제2 온수의 온도를 요구온도라고 하고, 제2 온수를 요구온도에 맞추도록 버너가 제2 온수를 승온시키기 위한 온도를 목표온도라고 정의한다. 목표온도는 상황에 따라 조절될 수 있고, 예를 들어 요구온도와 유사할 수도 있고, 제1 온수의 기준온도와 버너의 잔열에 따라 요구온도보다 낮은 온도로 조절될 수도 있다.
온수공급관(140)에는 제1 온수온도센서(141)와 제2 온수온도센서(142)가 구비될 수 있다. 제1 온수온도센서(141)는 온수공급관(140)의, 믹싱관(150)과의 연결지점보다 상류 측에 구비되어 열교환기(110)에서 열교환된 직후의 온수인 제1 온수의 온도를 측정할 수 있다. 제2 온수온도센서(142)는 믹싱관(150)과의 연결지점보다 하류 측의 온수공급관(140) 상에 구비되어 출수되는 온수인 제2 온수의 온도를 측정할 수 있다.
메모리에 저장된 인스트럭션들은 실행 시에, 상기 프로세서(105)가, 상기 믹싱밸브(160)가 고장인지 여부를 판단하게 할 수 있고, 상기 믹싱밸브(160)가 고장인 경우 상기 온수공급관을 통해 외부로 공급되는 상기 제2 온수의 온도가 목표온도에 도달하도록 상기 버너를 제어하게 할 수 있다.
구체적으로, 믹싱밸브(160)가 정상인 경우, 믹싱되기 이전의 온수를 기준으로 버너의 열량을 제어한 후, 믹싱밸브(160)의 개도율을 조정함으로써 온수의 온도 편차를 최소화하여 온수를 공급할 수 있다. 그러나 믹싱밸브(160)가 고장인 경우, 믹싱되기 이전의 온도를 기준으로 버너의 열량을 제어하면 믹싱밸브(160)에 의한 온수의 온도 조절이 어렵기 때문에, 출수되는 제2 온수의 온도를 사용자가 설정한 요구온도에 맞출 수 없는 경우가 발생할 수 있다.
이에 본 발명은 믹싱밸브(160)가 고장인 것이 판단되면, 버너의 열량 제어를 제1 온수가 아닌, 제2 온수의 온도를 기준으로 할 수 있다. 즉 인스트럭션들은 실행 시에, 상기 프로세서(105)가 제2 온수의 온도가 목표온도에 도달하도록 버너를 제어하게 할 수 있다.
한편 인스트럭션들은 실행 시에 프로세서(105)가, 믹싱밸브(160)가 고장인 경우 고장인 상태의 믹싱밸브(160)의 개도율을 획득하게 할 수 있다.
또한 인스트럭션들은 실행 시에 프로세서(105)가, 획득된 믹싱밸브(160)의 개도율과 직수의 온도와 요구온도에 기초하여 제1 온수의 온도인 기준온도를 획득하게 할 수 있다. 그리고 인스트럭션들은 실행 시에 프로세서(105)가, 획득한 기준온도가 기 설정된 제4 기준범위를 벗어나면, 기준온도가 제4 기준범위 내의 온도가 되도록 기준온도를 제4 조정온도로 조정하게 할 수 있다.
또한 인스트럭션들은 실행 시에 프로세서(105)가, 직수의 온도와 획득된 믹싱밸브(160)의 개도율 및 제4 조정온도에 기초하여, 목표온도를 획득하게 할 수 있다. 그리고 인스트럭션들은 실행 시에 프로세서(105)가, 제2 온수의 온도가, 획득된 목표온도에 도달하도록 버너를 제어하게 할 수 있다.
또한 인스트럭션들은 실행 시에 프로세서(105)가, 고장인 상태에서의 믹싱밸브(160)의 개도율을 획득 시에, 고장인 상태에서의 직수의 온도와 제1 온수 및 제2 온수의 온도에 기초하여 획득하게 할 수 있다. 이때 제1 온수와 제2 온수는 제1 온수온도센서(141)와 제2 온수온도센서(142)에 의해 측정될 수 있다.
구체적으로 본 발명에서는 버너의 과열에러 및 연소정지를 판단하기 위해, 열교환기(110)에서 열교환된 직후의 온수인 제1 온수의 온도를 기준으로 판단한다. 즉 제1 온수가 소정 범위를 초과하는 경우 버너의 과열에러 등이 발생할 수 있다. 상기한 제4 기준범위는 버너의 연소정지 또는 과열에러가 발생하지 않게 하기 위해 설정된 제1 온수의 범위일 수 있다. 본 발명은 버너의 목표온도를 조정하여 제1 온수의 기준온도가 제4 기준범위 이상 상승하지 않도록 하기 위한 제어를 할 수 있다.
예를 들어 인스트럭션들은 실행 시에 상기 프로세서(105)가, 획득한 기준온도가 제4 기준범위보다 높으면 제4 조정온도를 제4 기준범위의 최대값으로 설정하게 할 수 있다.
아래의 [표 8]과 [표 9]는 믹싱밸브(160)가 개도율 50%에서 고장인 경우, 요구온도 50℃ 조건과 60℃ 조건에서 직수의 온도에 따른 기준온도를 나타낸 표이다. 여기서 기준온도는 고장 상태에서 요구온도와 직수온도와 개도율을 기초로 획득된 제1 온수의 온도이다.
시험예 요구 온도(℃) 기준온도(℃) 직수온도(℃) 개도율(%)
8-1 50 90 10 50
8-2 50 85.5 15 50
8-3 50 80 20 50
8-4 50 75 25 50
8-5 50 70 30 50
시험예 요구 온도(℃) 기준온도(℃) 직수온도(℃) 개도율(%)
9-1 60 110 10 50
9-2 60 105 15 50
9-3 60 100 20 50
9-4 60 95 25 50
9-5 60 90 30 50
[표 8] 및 [표 9]를 참조하면 믹싱밸브(160)가 50%에서 고장인 경우, 요구온도가 높을수록 그리고, 직수온도가 낮을수록 기준온도가 높아진다. 고장인 상태에서의 믹싱밸브(160)의 개도율에 따라 요구온도가 상승할 경우 기준온도가 높아져서 연소가 정지되거나 과열 에러가 발생할 수 있다. 특히 고장 상태에서의 믹싱밸브(160)의 개도율이 큰 경우, 요구온도를 기준으로 하면 기준온도의 값이 너무 높아져서 연소가 정지되거나 과열 에러가 발생할 수 있다. 고장인 상태에서의 기준온도가 너무 높거나 낮은 경우에는 기준온도가 적정범위 내에 오도록 목표온도를 조정할 수 있다.
예를 들어 요구온도가 60℃, 직수 온도가 15℃, 믹싱밸브(160)의 고장 상태에서의 개도율이 50%인 조건에서, 아래의 식에 의할 경우 요구온도를 맞추기 위한 제1 온수의 기준온도는 105℃가 되어야 한다.
(개도율 = (1 - (요구온도 - 직수온도)/(기준온도 - 직수온도))*100).
이 경우 기준온도가 너무 높아서 버너의 연소가 정지되거나 과열 에러가 발생할 수 있다. 따라서, 버너의 목표온도를 요구온도보다 낮게 할 필요가 있다. 본 발명은 이 경우 기준온도를 제4 온도범위에 오도록 조정한 후(제4 조정온도로 조정), 직수의 온도와 고장 상태에서의 개도율과 제4 조정온도에 기초하여 목표온도를 계산/획득할 수 있다.
이와 같이 제어함으로써 제2 온수의 높은 기준온도로 인해 버너의 연소가 정지되거나 과열 에러가 발생하는 것을 방지할 수 있다.
한편 믹싱밸브(160)가 고장인 상태에서 제2 온수의 온도를 기준으로 버너의 열량을 제어하더라도, 온수 공급 장치(100)의 특성에 따라 온수를 재사용할 때 잔열에 의해 온수의 온도가 상승할 수 있다. 즉 믹싱밸브(160)가 고장인 상태에서는 믹싱밸브(160)에 의한 온수의 온도 조절을 할 수 없기 때문에, 잔열은 그대로 출수되는 온수의 온도에 영향을 줄 수 있다. 잔열은 버너의 타입과 열교환기(110)의 타입 등 시스템의 특성에 따라 잔열에 의한 온도 상승 정도가 차이가 있을 수 있다. 일반적으로 버너의 열량이 높은 상태에서 연소 정지한 경우, 버너 및 열교환기(110)의 잔열에 의해 열교환기(110)의 내부의 온도가 더 많이 상승할 수 있다.
이러한 점을 해결하기 위해 믹싱밸브(160)가 고장인 상태에서 잔열의 영향을 고려하여 너무 높은 온도의 제2 온수가 공급되는 것을 방지하기 위한 제어를 수행할 수 있다.
구체적으로 상기 인스트럭션들은 실행 시에, 상기 프로세서(105)가, 상기 믹싱밸브(160)가 고장인 경우, 상기 버너의 가동률에 따른 잔열에 의한 상기 제2 온수의 온도 상승 정도를 예측하게 할 수 있다. 여기서 버너의 가동률은 버너가 제공할 수 있는 최대 열량에 대한 현재 제공하고 있는 열량의 비율(%)을 의미한다.
또한 인스트럭션들은 실행 시에, 프로세서(105)가, 예측된 제2 온수의 온도 상승 정도를 고려하여 목표온도를 설정하고, 제2 온수의 온도가 설정된 목표온도에 도달하도록 버너를 제어하게 할 수 있다.
가동률(%) 요구온도(℃) 잔열에 의한 온도 상승(℃)
100 50 25
80 50 20
60 50 15
40 50 10
20 50 5
예를 들어 [표 10]에서 보는 바와 같이 요구온도 50℃, 버너의 가동률 100% 조건에서 연소중에 정지한 후, 온수 재사용 시에 잔열에 의한 온수 온도는 상황에 따라 75℃까지 상승할 수 있다. 이 경우 고온의 온도로 제2 온수가 공급되어 사용자가 화상을 입을 위험이 있다. 이에 본 발명은 잔열에 의한 온수 온도의 상승을 최소화하기 위해, 요구온도를 낮추어 제2 설정온도로 조정하고, 제2 온수를 제2 설정온도로 맞추기 위한 버너의 열량 제어가 수행될 수 있다.
이에 따라 버너의 열량도 낮아지게 할 수 있고, 높은 열량에서 연소 정지 및 온수 재사용 조건에서 잔열에 의한 온도 상승도 최소화할 수 있다.
한편 도 2를 참조하면 본 발명에 따른 온수 공급 장치(100)는 일례로 보일러에 적용될 수도 있다.
즉 본 발명은 상기 버너에서 열을 제공받아, 난방수를 열교환에 의해 가열하는 난방열교환부(120)를 더 포함할 수 있다. 그리고 상기 열교환기(110)는 상기 난방열교환부(120)에서 가열된 난방수가 공급되고, 난방수와의 열교환에 의해 상기 직수를 가열하여 상기 온수를 생성할 수 있다.
또한 난방열교환부(120)로 난방수를 환수시키는 난방수환수관(121)과, 난방열교환부(120)에서 가열된 난방수를 난방대상으로 공급하는 난방수공급관(123)을 더 포함할 수 있다. 또한 난방수환수관(121)에는 순환펌프(122)가 연결될 수 있고, 난방수 공급관에는 공급온도센서(124)가 구비될 수 있다.
난방수환수관(121)과 난방수공급관(123)에는 연결관(125)이 연결될 수 있고, 난방수공급관(123)과 연결관(125)의 연결지점에는 난방모드나 온수모드로 전환하는 삼방밸브(126)가 연결될 수 있다. 연결관(125) 상에 열교환기(110)가 연결되어 온수모드에서 난방수와 직수의 열교환이 이루어질 수 있다. 이와 같이 열교환기(110)는 난방열교환부(120)에 버너가 제공한 열을 간접적으로 제공받을 수 있다.
한편 본 발명의 제2 실시예의 다른 측면에 의한 온수 공급 방법을 설명한다. 이하에서 설명하는 온수 공급 방법은 상기한 온수 공급 장치(100)를 이용한 것으로, 동일한 설명에 대한 중복 설명은 생략한다.
본 발명의 제2 실시예에 따른 온수 공급 방법은 상기 적어도 하나의 프로세서(105)에 연결되되, 직수유입관(130)을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관(140)을 통해 배출하는 열교환기(110)에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공하는 버너와, 상기 적어도 하나의 프로세서(105)에 연결되되, 상기 직수유입관(130)과 상기 온수공급관(140)을 연결하는 믹싱관(150)에 설치되어, 상기 열교환기(110)에서 배출되어 상기 온수공급관(140)을 흐르는 상기 온수에 상기 직수를 혼합하는 믹싱밸브(160)를 포함하는 온수 공급 장치에 적용되는 온수 공급 방법에 관한 것이다.
상기 온수공급관(140)을 흐르는 온수 중, 상기 믹싱관(150)과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 한다.
이때 본 발명에 의한 온수 공급 방법은 믹싱밸브(160)가 고장인지 여부를 판단하는 단계와, 믹싱밸브(160)가 고장인 경우 온수공급관(140)을 통해 외부로 공급되는 제2 온수의 온도가 목표온도에 도달하도록 버너를 제어하는 단계를 포함한다.
상기한 본 발명의 제2 실시예에 따른 온수 공급 장치(100) 및 방법은, 상기한 본 발명의 제1 실시예에도 적용할 수 있다.
이와 같은 본 발명에 따른 온수 공급 장치 및 방법은, 전자식으로 제어되는 믹싱밸브를 효율적으로 제어함으로써 온수 온도의 편차를 최소화할 수 있다.
또한 본 발명에 따른 온수 공급 장치 및 방법은, 전자식으로 제어되는 믹싱밸브가 고장인 경우에 불필요한 연소 정지 및 과열 에러를 미연에 방지하여 온수 공급을 원활하게 할 수 있다.
이상, 본 발명의 특정 실시예에 대하여 상술하였지만, 본 발명의 사상 및 범위는 이러한 특정 실시예에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의하여 특허청구범위에 기재된 본 발명의 요지를 변경하지 않는 범위 내에서 다양하게 수정 및 변형이 가능하다.

Claims (18)

  1. 온수 공급 장치에 있어서,
    적어도 하나의 프로세서;
    상기 적어도 하나의 프로세서에 연결되되, 직수유입관을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관을 통해 배출하는 열교환기에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공하는 버너;
    상기 적어도 하나의 프로세서에 연결되되, 상기 직수유입관과 상기 온수공급관을 연결하는 믹싱관에 설치되어, 상기 열교환기에서 배출되어 상기 온수공급관을 흐르는 상기 온수에 상기 직수를 혼합하는 믹싱밸브; 및
    상기 적어도 하나의 프로세서에 연결되고 인스트럭션들(instructions)을 저장하는 메모리를 포함하고,
    상기 온수공급관을 흐르는 온수 중, 상기 믹싱관과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 할 때,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    상기 직수의 온도와 상기 제2 온수의 요구온도에 기초하여, 상기 믹싱밸브가 기 설정된 개도율을 유지하게 하는 상기 제1 온수의 온도인 기준온도를 획득하고,
    상기 열교환기에서 배출된 상기 제1 온수의 온도가, 획득한 상기 기준온도에 도달하도록 상기 버너를 제어하게 하는, 온수 공급 장치.
  2. 제1항에 있어서,
    상기 온수공급관에 마련되어 상기 제1 온수의 온도를 측정하는 제1 온수온도센서를 더 포함하고,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    상기 직수의 온도와 상기 제1 온수온도센서에서 측정한 상기 제1 온수의 온도에 기초하여, 상기 제2 온수의 온도가 상기 요구온도에 도달하게 하는 상기 믹싱밸브의 기준개도율을 획득하고,
    상기 기준개도율에 따라 상기 믹싱밸브를 제어하게 하는, 온수 공급 장치.
  3. 제1항에 있어서,
    상기 기준온도를 획득하기 위한 상기 믹싱밸브의 개도율은, 상기 믹싱밸브의 최대 개도율과 최소 개도율의 중간 값인, 온수 공급 장치.
  4. 제1항에 있어서,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    획득한 상기 기준온도가 기 설정된 제1 기준범위를 벗어나면 상기 제1 기준범위 내의 온도가 되게 상기 기준온도를 제1 조정온도로 조정하고,
    상기 열교환기에서 배출된 상기 제1 온수의 온도가, 조정된 상기 제1 조정온도에 도달하도록 상기 버너를 제어하는, 온수 공급 장치.
  5. 제4항에 있어서,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    획득한 상기 기준온도가 상기 제1 기준범위보다 낮으면 상기 제1 조정온도를 상기 제1 기준범위의 최소값으로 설정하고, 획득한 상기 기준온도가 상기 제1 기준범위보다 높으면 상기 제1 조정온도를 상기 제1 기준범위의 최대값으로 설정하게 하는, 온수 공급 장치.
  6. 제1항에 있어서,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    획득한 상기 기준온도에 도달하기 위해 요구되는 상기 버너의 가동률이 기설정된 제2 기준범위 이상이면, 상기 직수의 온도와 상기 제2 온수의 요구온도와 상기 기 설정된 개도율보다 낮은 소정 개도율에 기초하여 상기 기준온도를 제2 조정온도로 조정하고,
    획득한 상기 기준온도에 도달하기 위해 요구되는 상기 버너의 가동률이 기 설정된 제2 기준범위 이하이면, 상기 직수의 온도와 상기 제2 온수의 요구온도와 상기 기 설정된 개도율보다 높은 소정 개도율에 기초하여 상기 기준온도를 제2 조정온도로 조정하고,
    상기 제1 온수의 온도가 조정된 상기 제2 조정온도에 도달하도록 상기 버너를 제어하게 하는, 온수 공급 장치.
  7. 제6항에 있어서,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    획득한 상기 기준온도에 도달하기 위해 요구되는 상기 버너의 가동률이 기 설정된 제2 기준범위 이상이면, 상기 직수의 온도와 상기 요구온도와 상기 믹싱밸브의 최소 개도율에 기초하여 상기 기준온도를 제2 조정온도로 조정하고,
    획득한 상기 기준온도에 도달하기 위해 요구되는 상기 버너의 가동률이 기 설정된 제2 기준범위 이하이면, 상기 직수의 온도와 상기 요구온도와 상기 믹싱밸브의 최대 개도율에 기초하여 상기 기준온도를 제2 조정온도로 조정하게 하는, 온수 공급 장치.
  8. 제6항에 있어서,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    조정된 제2 조정온도가 기 설정된 제3 기준범위를 벗어나면, 상기 제2 조정온도를, 상기 제3 기준범위 내의 온도인 제3 조정온도로 조정하고,
    상기 제1 온수의 온도가 조정된 상기 제3 조정온도에 도달하도록 상기 버너를 제어하게 하는, 온수 공급 장치.
  9. 제1항에 있어서,
    상기 버너에서 열을 제공받아, 난방을 위한 난방수를 열교환에 의해 가열하는 난방열교환부를 더 포함하고,
    상기 열교환기는 상기 난방열교환부에서 가열된 난방수를 공급받고, 난방수와의 열교환에 의해 상기 직수를 가열하여 상기 온수를 생성하는, 온수 공급 장치.
  10. 직수유입관을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관을 통해 배출하는 열교환기에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공하는 버너와,
    상기 직수유입관과 상기 온수공급관을 연결하는 믹싱관에 설치되어, 상기 열교환기에서 배출되어 상기 온수공급관을 흐르는 상기 온수에 상기 직수를 혼합하는 믹싱밸브를 포함하는 온수 공급 장치에 적용되는 온수 공급 방법에 있어서,
    상기 온수공급관을 흐르는 온수 중, 상기 믹싱관과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 할 때,
    상기 직수의 온도와 상기 제2 온수의 요구온도에 기초하여, 상기 믹싱밸브가 기 설정된 개도율을 유지하게 하는 상기 제1 온수의 온도인 기준온도를 획득하는 단계; 및
    상기 열교환기에서 배출된 상기 제1 온수의 온도가, 획득한 상기 기준온도에 도달하도록 상기 버너를 제어하는 단계를 포함하는, 온수 공급 방법.
  11. 온수 공급 장치에 있어서,
    적어도 하나의 프로세서;
    상기 적어도 하나의 프로세서에 연결되되, 직수유입관을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관을 통해 배출하는 열교환기에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공하는 버너;
    상기 적어도 하나의 프로세서에 연결되되, 상기 직수유입관과 상기 온수공급관을 연결하는 믹싱관에 설치되어, 상기 열교환기에서 배출되어 상기 온수공급관을 흐르는 상기 온수에 상기 직수를 혼합하는 믹싱밸브; 및
    상기 적어도 하나의 프로세서에 연결되고 인스트럭션들(instructions)을 저장하는 메모리를 포함하고,
    상기 온수공급관을 흐르는 온수 중, 상기 믹싱관과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 할 때,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    상기 믹싱밸브가 고장인지 여부를 판단하고,
    상기 믹싱밸브가 고장인 경우 상기 온수공급관을 통해 외부로 공급되는 상기 제2 온수의 온도가 목표온도에 도달하도록 상기 버너를 제어하게 하는, 온수 공급 장치.
  12. 제11항에 있어서,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    상기 믹싱밸브가 고장인 경우 고장인 상태의 상기 믹싱밸브의 개도율을 획득하고,
    획득된 상기 믹싱밸브의 개도율과 상기 직수의 온도와 상기 제2 온수의 요구온도에 기초하여 제1 온수의 온도인 기준온도를 획득하고,
    획득된 상기 기준온도가 기 설정된 제4 기준범위 내이면, 상기 제2 온수의 요구온도에 기초하여, 상기 목표온도를 획득하고,
    상기 제2 온수의 온도가, 획득된 상기 목표온도에 도달하도록 상기 버너를 제어하게 하는, 온수 공급 장치.
  13. 제11항에 있어서,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    상기 믹싱밸브가 고장인 경우 고장인 상태의 상기 믹싱밸브의 개도율을 획득하고,
    획득된 상기 믹싱밸브의 개도율과 상기 직수의 온도와 상기 제2 온수의 요구온도에 기초하여 제1 온수의 온도인 기준온도를 획득하고,
    획득된 상기 기준온도가 기 설정된 제4 기준범위를 벗어나면, 상기 기준온도가 상기 제4 기준범위 내의 온도가 되도록 상기 기준온도를 제4 조정온도로 조정하고,
    상기 직수의 온도와 획득된 상기 믹싱밸브의 개도율 및 상기 제4 조정온도에 기초하여, 상기 목표온도를 획득하고,
    상기 제2 온수의 온도가, 획득된 상기 목표온도에 도달하도록 상기 버너를 제어하게 하는, 온수 공급 장치.
  14. 제13항에 있어서,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    고장인 상태의 상기 믹싱밸브의 개도율을, 고장인 상태에서의 상기 직수의 온도와 상기 제1 온수 및 상기 제2 온수의 온도에 기초하여 획득하게 하는, 온수 공급 장치.
  15. 제13항에 있어서,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    획득된 상기 기준온도가 상기 제4 기준범위보다 높으면 상기 제4 조정온도를 상기 제4 기준범위의 최대값으로 설정하게 하는, 온수 공급 장치.
  16. 제11항에 있어서,
    상기 인스트럭션들은, 실행 시에, 상기 프로세서가:
    상기 믹싱밸브가 고장인 경우, 상기 버너의 가동률에 따른 잔열에 의한 상기 제2 온수의 온도 상승 정도를 예측하고,
    예측된 상기 제2 온수의 온도 상승 정도를 고려하여 상기 목표온도를 설정하고,
    상기 제2 온수의 온도가 설정된 상기 목표온도에 도달하도록 상기 버너를 제어하는, 온수 공급 장치.
  17. 제11항에 있어서,
    상기 버너에서 열을 제공받아, 난방을 위한 난방수를 열교환에 의해 가열하는 난방열교환부를 더 포함하고,
    상기 열교환기는 상기 난방열교환부에서 가열된 난방수가 공급되고, 난방수와의 열교환에 의해 상기 직수를 가열하여 상기 온수를 생성하는, 온수 공급 장치.
  18. 직수유입관을 통해 직수를 공급받고, 공급받은 직수를 열교환에 의해 가열하여 온수를 생성하고, 생성된 온수를 온수공급관을 통해 배출하는 열교환기에, 상기 온수의 생성에 요구되는 열을 직접 또는 간접적으로 제공하는 버너와,
    상기 직수유입관과 상기 온수공급관을 연결하는 믹싱관에 설치되어, 상기 열교환기에서 배출되어 상기 온수공급관을 흐르는 상기 온수에 상기 직수를 혼합하는 믹싱밸브를 포함하는 온수 공급 장치에 적용되는 온수 공급 방법에 있어서,
    상기 온수공급관을 흐르는 온수 중, 상기 믹싱관과의 연결지점의 상류를 흐르는 온수를 제1 온수라 하고, 상기 연결지점의 하류를 흐르는 온수를 제2 온수라 할 때,
    상기 믹싱밸브가 고장인지 여부를 판단하는 단계;
    상기 믹싱밸브가 고장인 경우 상기 온수공급관을 통해 외부로 공급되는 상기 제2 온수의 온도가 목표온도에 도달하도록 상기 버너를 제어하는 단계를 포함하는, 온수 공급 방법.
PCT/KR2019/015099 2018-12-31 2019-11-07 온수 공급 장치 및 방법 WO2020141712A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980087185.5A CN113260820B (zh) 2018-12-31 2019-11-07 用于供应热水的装置和方法
US17/414,561 US20220010976A1 (en) 2018-12-31 2019-11-07 Apparatus and method for supplying hot water

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180173564A KR102606221B1 (ko) 2018-12-31 2018-12-31 온수 공급 장치 및 방법
KR10-2018-0173563 2018-12-31
KR1020180173563A KR102253337B1 (ko) 2018-12-31 2018-12-31 온수 공급 장치 및 방법
KR10-2018-0173564 2018-12-31

Publications (1)

Publication Number Publication Date
WO2020141712A1 true WO2020141712A1 (ko) 2020-07-09

Family

ID=71406548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015099 WO2020141712A1 (ko) 2018-12-31 2019-11-07 온수 공급 장치 및 방법

Country Status (3)

Country Link
US (1) US20220010976A1 (ko)
CN (1) CN113260820B (ko)
WO (1) WO2020141712A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019213860A1 (de) * 2019-09-11 2021-03-11 Mahle International Gmbh Klimatisierungssystem für ein Kraftfahrzeug
CN111156698B (zh) * 2020-01-08 2021-07-27 北京建筑大学 一种储冷式即热热泵热水器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288640A (ja) * 1992-05-07 1994-10-18 Noritz Corp 給湯装置
JPH0814660A (ja) * 1994-06-29 1996-01-19 Harman Co Ltd 給湯装置
JPH08240342A (ja) * 1995-03-06 1996-09-17 Matsushita Electric Ind Co Ltd 給湯制御装置
KR20010087158A (ko) * 2000-03-06 2001-09-15 강성모 급탕온도의 제어방법 및 급탕장치
JP2007078231A (ja) * 2005-09-13 2007-03-29 Rinnai Corp 給湯装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288640A (ja) * 1985-10-14 1987-04-23 Kemikooto:Kk 快適安全シ−トベルト
JPH1089770A (ja) * 1996-09-19 1998-04-10 Osaka Gas Co Ltd ガス給湯器
KR100812937B1 (ko) * 2007-05-10 2008-03-11 주식회사 경동나비엔 온수 공급 시스템
JP5806143B2 (ja) * 2012-02-22 2015-11-10 株式会社パロマ 給湯器
JP6064613B2 (ja) * 2013-01-18 2017-01-25 株式会社ノーリツ 給湯装置
US9228759B2 (en) * 2013-10-07 2016-01-05 Rinnai Corporation Circulating-type hot-water supply device
US9921012B2 (en) * 2013-11-26 2018-03-20 Noritz Corporation Water heating apparatus
WO2017175220A1 (en) * 2016-04-05 2017-10-12 Smart Global B. Energy Ltd Water heating system with smart boiler and method thereof
US10914475B2 (en) * 2016-09-14 2021-02-09 Lochinvar, Llc Methods and system for controlling a combination boiler
CN107144019B (zh) * 2017-05-17 2024-04-05 广东万家乐燃气具有限公司 一种带混水阀的太阳能联动燃气快速热水器
JP7343756B2 (ja) * 2019-06-24 2023-09-13 株式会社ノーリツ 給湯装置及び給湯システム
JP2022147205A (ja) * 2021-03-23 2022-10-06 株式会社ノーリツ 給湯装置、給湯装置を制御するためにコンピュータによって実行される方法、および、当該方法をコンピュータに実行させるプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288640A (ja) * 1992-05-07 1994-10-18 Noritz Corp 給湯装置
JPH0814660A (ja) * 1994-06-29 1996-01-19 Harman Co Ltd 給湯装置
JPH08240342A (ja) * 1995-03-06 1996-09-17 Matsushita Electric Ind Co Ltd 給湯制御装置
KR20010087158A (ko) * 2000-03-06 2001-09-15 강성모 급탕온도의 제어방법 및 급탕장치
JP2007078231A (ja) * 2005-09-13 2007-03-29 Rinnai Corp 給湯装置

Also Published As

Publication number Publication date
US20220010976A1 (en) 2022-01-13
CN113260820A (zh) 2021-08-13
CN113260820B (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2020141712A1 (ko) 온수 공급 장치 및 방법
EP3160613A1 (en) Home appliance
WO2020073450A1 (zh) 一拖多空调器及其控制方法、装置和计算机可读存储介质
WO2016148359A1 (en) Water dispensing apparatus and method for controlling the same
WO2020077753A1 (zh) 控制终端、一拖多空调器的控制方法及装置和存储介质
WO2017111364A1 (ko) 난방 온수 겸용 보일러 및 그 제어방법
WO2018199498A2 (en) Hot water generation module for water treatment apparatus
WO2020124847A1 (zh) 空调器的控制方法、空调器及存储介质
WO2014182021A1 (ko) 사출성형기의 냉각수제어시스템
WO2020077749A1 (zh) 一拖多空调器及其控制方法、装置和计算机可读存储介质
WO2012070813A2 (ko) 보일러의 난방 제어 방법 및 그 장치
WO2013100486A1 (en) Hot water supply apparatus and hot water supply method
WO2020055103A1 (ko) 가스 난방기의 제어 방법
WO2019216635A1 (ko) 난방 온수 겸용 보일러 및 그 제어방법
WO2020013444A1 (ko) 온수 공급 장치 및 그 제어 방법
WO2020032396A1 (ko) 소오크 시간 자동보정 및 가열이상 자가진단 기능을 구비한 산업용 온도제어장치 및 그 방법
WO2019147023A1 (en) Water dispensing apparatus and method for controlling the same
WO2023163360A1 (ko) 온수 예열이 가능한 온수 공급 시스템 및 이를 이용한 오동작 판별 방법
WO2020181632A1 (zh) 饮水机的控制方法及饮水机
KR102606221B1 (ko) 온수 공급 장치 및 방법
WO2019022366A1 (ko) 난방 및 온수 겸용 보일러 시스템
WO2020013425A1 (ko) 연료가스 공급장치
WO2019004625A1 (ko) 예열 기능이 구비된 온수공급장치 및 그 제어방법
KR20200082712A (ko) 온수 공급 장치 및 방법
WO2015199382A1 (en) Home appliance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907923

Country of ref document: EP

Kind code of ref document: A1