JP7333000B2 - 電池の製造方法 - Google Patents

電池の製造方法 Download PDF

Info

Publication number
JP7333000B2
JP7333000B2 JP2019207869A JP2019207869A JP7333000B2 JP 7333000 B2 JP7333000 B2 JP 7333000B2 JP 2019207869 A JP2019207869 A JP 2019207869A JP 2019207869 A JP2019207869 A JP 2019207869A JP 7333000 B2 JP7333000 B2 JP 7333000B2
Authority
JP
Japan
Prior art keywords
heat
region
laminated
electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019207869A
Other languages
English (en)
Other versions
JP2021082448A (ja
Inventor
正剛 藤嶋
智史 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019207869A priority Critical patent/JP7333000B2/ja
Publication of JP2021082448A publication Critical patent/JP2021082448A/ja
Application granted granted Critical
Publication of JP7333000B2 publication Critical patent/JP7333000B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電池の製造方法に関する。詳しくは、ラミネート外装体を備える電池の製造方法に関する。
近年では、電池の用途はますます拡大しており、特に、リチウムイオン二次電池、ナトリウムイオン二次電池等の二次電池は、パソコンや携帯端末等のいわゆるポータブル電源用途のみならず、近年は車両駆動用電源として好ましく用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、プラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)等の車両の駆動用高出力電源として好ましく、今後も需要が拡大するものと期待されている。
上述したような用途の電池の一般的な構成としては、例えば正極、負極、およびセパレータを含む電極体が、外装体の内部に収容されて密閉された構成が挙げられる。近年では、電池の小型化への要求が高まっており、ラミネートフィルムからなる外装体を備える電池の開発が精力的に行われている。このようなラミネートフィルムは、例えば特許文献1に記載されているような多層構造を有している。例えば、金属層の両面に、樹脂層が積層された三層構造のラミネートフィルムが、電池の外装体として典型的に使用されている。
特開2005-116228号公報
ラミネートフィルム製の外装体を有する電池の作製時には、例えば電極体を外装体の内部に収容し、周縁部(開口部)を一対の溶着ヘッドで挟み込んで加熱溶着して外装体を封止する。加熱溶着する周縁部のうち、電極体に接続された集電端子の導出部を含む部分では、加熱溶着時に溶着ヘッドから加えられる熱量が、集電端子を伝わって、例えば電極体に逃げてしまい(いわゆる熱引き)、当該部分に加えられる熱量が結果的に低下し(即ち、熱引き量が大である)、熱溶着が不十分となることがある。当該部分において熱溶着に十分な熱量を確保するため、例えば溶着温度を上げると、同一部分における集電端子導出部以外の領域に加えられる熱量が過剰となり、ラミネートフィルムの樹脂層が必要以上に溶融する虞がある。樹脂層の過剰な溶融は、金属層を露出させる原因となる。樹脂層の過剰な溶融による金属層の露出は集電端子および電極体等と接触して短絡を起こす要因となり得るため、好ましくない。
上掲の特許文献1では、熱溶着時における集電端子を介した過剰な熱逃げ(熱引き)を抑制するために、集電端子導出部以外の部分を断熱材で挟み込んだ状態で加熱溶着を行うことが開示されている。特許文献1には、断熱材が配置された部分では、温度が低下するため、当該部分には過剰な熱量が加わらず、樹脂層が溶融しにくくなる旨が記載されている。
しかしながら、断熱材には溶着ヘッドから加えられる熱量が蓄積されることにより、ラミネートフィルムの熱溶着を連続して行うと、断熱材による、樹脂層の熱溶融を防止する効果が低下し得る。また、断熱材には一定の厚みがあるため、例えば断熱材の縁部には、その他の部分と比べて大きな圧力がかかり、ラミネートフィルムに破損を生じさせ、上記のような短絡が発生し得る。
そこで、本発明はかかる課題を鑑みてなされたものであり、その目的とするところは、ラミネート外装体を封止する際の熱溶着不良の発生が高度に抑制され、密閉性が顕著に向上された電池を作製する技術を提供することである。
本発明者は、ラミネート外装体の周縁部を封止する際の正負極集電端子の導出部分(即ち、ラミネート外装体の周縁部における正負極集電端子と対向する領域)における熱引きに着目した。
そして、ラミネート外装体の周縁部において、かかる正負極集電端子と対向する領域における該集電端子から電極体方向に熱引きされた後の熱量と、正負極集電端子とは対向していない非対向領域に加えられる熱量とがほぼ同じになるように、熱溶着を行うことによって、ラミネート外装体の熱溶着において生じ得る不具合の発生を高度に抑制できることを見出し、本発明を完成するに至った。
即ち、ここで開示される電池の製造方法は、正極、負極、およびセパレータとして機能する層を有する電極体と、上記電極体を内部に密閉した状態で収容するラミネート外装体と、上記正極および上記負極にそれぞれ接続されている外部接続用の正極集電端子および負極集電端子であって一部が上記ラミネート外装体から外部に導出されている正負極集電端子と、を備える電池の製造方法である。
上記電極体を上記ラミネート外装体の内部に収容した状態となるように配置し、且つ、少なくとも一部が該ラミネート外装体の外部に導出された状態となるように上記正負極集電端子を配置した状態で、該ラミネート外装体の周縁部を熱溶着して封止する工程を包含する。
上記熱溶着は、上記周縁部を両側から挟み込んで該周縁部に所定の熱量を加える加熱封止装置によって行われる。
ここで、上記挟み込んだ周縁部のうちの上記正負極集電端子と対向する領域に加えられた熱量における該集電端子から電極体方向に熱引きされた後の熱量と、上記正負極集電端子と対向しない非対向領域に加えられた熱量とがほぼ同じになるように、上記対向領域と上記非対向領域との間で、上記加熱封止装置から加えられる熱量を異ならせて上記熱溶着を行うことを特徴とする。
かかる構成の製造方法は、ラミネート外装体の熱溶着時において加熱封止装置から上記対向領域に加えられた熱量が、電極体側に逃げることによって生じ得る不具合の発生を顕著に抑制し、良好な密閉性を有する電池を提供することができる。
一実施形態にかかる電池の製造方法によって製造される電池の構造を模式的に示す平面図である。 図1における電池の構造を示すII-II断面図である。 一実施形態にかかる電池の製造方法を模式的に示す工程図である。 一実施形態にかかる電池の製造方法における、ラミネート外装体の溶着工程を示す模式図である。(A)は、溶着工程を説明する斜視図である。(B)は、溶着工程における溶着部位を示す正面図である。(C)は、図4(B)のC-C断面図である。(D)は、図4(B)のD-D断面図である。(E)は、変形例1における図4(B)のC-C断面図である。 変形例2における図4(B)のC-C断面図である。
以下、本開示における典型的な実施形態について、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
なお、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。なお、本明細書において数値範囲A~Bは、A以上B以下を示している。
以下、本発明の適用対象として、積層型電極体がラミネートフィルム製の外装体に収容された構造のリチウムイオン二次電池(以下、単に「電池」ともいう。)の製造方法を例示しつつ詳細に説明する。ただし、本開示にかかる電池の製造方法を以下の実施形態に記載されたものに限定することを意図したものではない。
<電池の全体構成>
まず初めに、ここで開示される電池の製造方法によって製造される電池の構成を、図1を参照しつつ説明する。図1は、一実施形態にかかる電池の製造方法によって製造される電池の構造を模式的に示す平面図である。
図1に示されるように、電池1は、おおまかにいって、例えば電極体20と、外部接続用の正極集電端子42および負極集電端子44と、ラミネート外装体30とを備える。電極体20は周縁部が熱溶着(ヒートシール)された状態のラミネート外装体30の内部に収容されている。正極集電端子42および負極集電端子44は、一部がラミネート外装体30の内部から外部に導出されており、ラミネート外装体30には正極集電端子導出部32および負極集電端子導出部34が形成されている。図1においては、正極集電端子導出部32および負極集電端子導出部34は、それぞれX方向における対向する両端部に形成されている。
<電極体>
電極体20は、詳細な図示は省略するが、例えば正極と負極とセパレータとして機能する層とを有する。例えば、電極体20が積層型電極体である場合、正極は、例えば、矩形シート状の正極集電体と、該正極集電体の表面(片面もしくは両面)に塗工された正極合材層とを有する正極シートであり得る。また、負極は、例えば矩形シート状の負極集電体と、該負極集電体の表面(片面もしくは両面)に塗工された負極合材層とを有する負極シートであり得る。正極シートおよび負極シートは、いずれもシート長辺方向(X方向)における一の端部に、合材層が形成されない集電体露出部を有する。電極体20は、正極および負極がセパレータとして機能する層を介在させつつ交互に積層されて形成される。このとき、例えば正極集電体露出部がX方向の一の端部からはみ出し、かつ、負極集電体露出部がX方向の他の端部からはみ出すように電極シートが積層される。電極体20においては、例えばX方向の中央部が、電極合材層が積層されたコア部となり、X方向の両端部が、集電体露出部(集電体)が積層された領域となる。この集電体が積層された領域では、集電体が積層方向に集められ、外部接続用の集電端子接合部が形成される。正極集電端子接合部には正極集電端子42が接合され、負極集電端子接合部には負極集電端子44が接合される。
上記セパレータとして機能する層は、例えば電池1が電解質として非水電解液を備える、いわゆる非水電解液リチウムイオン二次電池である場合には、多孔質体からなるセパレータであり得る。また、例えば電池1が電解質として粉末状の固体電解質を備える、いわゆる全固体リチウムイオン二次電池である場合には、固体電解質層であり得る。
なお、電極体20の詳細な構造は、上記のように集電端子接合部が形成され、ここに同極の集電端子が接合されているものであれば、特に限定されない。電極体20を構成する部材および材料(例えば集電箔、合材層、および、セパレータもしくは固体電解質層等)としては、この種のリチウムイオン二次電池に典型的に使用されるものを特に制限なく使用することができ、本発明を特徴づけるものではないため、詳細な説明は省略する。
<ラミネート外装体>
ラミネート外装体30は、ラミネートフィルムからなる。ラミネート外装体30を構成するラミネートフィルムは従来公知と同様でよく、特に限定されない。典型的には、ラミネート外装体30は、例えば多層構造を有するラミネートフィルムであってよい。ラミネート外装体30の具体的な構成について、図2を参照しつつ説明する。図2は、図1における電池の構造を示すII-II断面図である。
図2に示されるように、ラミネート外装体30は例えば3層構造であり、電極体20に近い側から、シーラント層36a、ガスバリア層36b、および保護層36cを有し、この順に積層されて構成されている。
-シーラント層-
シーラント層36aは、外装体30の最内層であり、電極体20に最も近い側に位置している。シーラント層36aは、外装体30の熱溶着を可能とするための層であり、例えば熱可塑性樹脂で構成されている。熱可塑性樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン;ポリエチレンテレフタレート(PET)等のポリエステル;等の結晶性樹脂、ポリスチレン、ポリ塩化ビニル等;の非結晶性樹脂が挙げられる。
-ガスバリア層-
ガスバリア層36bは、電池1内外における気体の移動を遮断する層である。例えば、ガスバリア層36bは、電池1の内部で発生したガスが外部へ流出すること、および、電池1の外部からの空気や湿気等が内部に流入することを抑制することができる。
ガスバリア層36bは、例えば金属材料で構成されている。金属材料としては、例えば、アルミニウム、鉄、ステンレス等が挙げられる。なかでもガスバリア層36bの構成材料としては、例えば、アルミニウム箔およびアルミニウム蒸着層が好ましい。
-保護層-
保護層36cは、ガスバリア層36bよりも外表面側に位置されており、例えばラミネート外装体30の最外層となってもよい。保護36cは、例えばラミネート外装体30の耐久性を向上させるための層である。その構成材料としては、例えばPET等のポリエステル、ポリアミド等が挙げられる。
なお、ラミネート外装体30の層構造は特に限定されず、例えば4層以上(4~10層)の構成であってもよい。例えば、上記各層の積層方向(Z方向)において、上記のような層と層との間に、これらを接着させるための接着層を形成してもよい。また、最外層として印刷層等を設けてもよい。
<集電端子>
集電端子は、板状の導電部材である。例えば、正極集電端子42は正極集電体22と接合されており、少なくとも一部がラミネート外装体30の内部から外部に引き出されている(正極集電端子導出部32)。図2において図示は省略しているが、負極集電端子は負極集電体と接合されており、少なくとも一部がラミネート外装体30の内部から外部に引き出されている(負極集電端子導出部)。
<電池の製造>
ついで、ここで開示される電池の製造方法について、図3を参照しつつ説明する。図3は、一実施形態にかかる電池の製造方法を模式的に示す工程図である。
ここで開示される電池の製造方法は、図示されるように、電極体準備工程S10、集電端子取付工程S20、外装体収容工程S30、および封止工程S40を含む。
<電極体準備工程>
電極体準備工程S10は、電池の発電要素としての電極体を構築する工程である。電極体の構築方法は従来と同様でよく、本発明を特徴づけるものではないため、詳細な説明は省略する。
<集電端子取付工程>
集電端子取付工程S20では、工程S10で準備された電極体の集電端子接合部に、同極の集電端子を接合する工程である。集電端子接合部への集電端子の接合手段としては、例えば超音波溶接、レーザー溶接、抵抗溶接等の従来公知の接合手段を特に制限なく使用することができる。
<外装体収容工程>
外装体収容工程S30は、工程S20において集電端子が接合された電極体をラミネート外装体に収容する工程である。工程S30では、電極体とラミネート外装体とを重ね合わせて、電極体をラミネート外装体の内部に収容した状態となるように配置する。このとき、電極体を、集電端子が、その少なくとも一部がラミネート外装体の外部に導出された状態となるように配置する。
電極体とラミネート外装体とは、例えば、ラミネート外装体、電極体、ラミネート外装体、の順に重ね合わされていればよい。例えば、電極体を2枚のラミネートフィルム(外装体)で挟み込んでよく、袋状に成型したラミネート外装体に電極体を挿入してもよい。
<封止工程>
封止工程S40は、工程S30において電極体が収容されたラミネート外装体の周縁部を熱溶着して封止する工程である。例えば、上記電極体の挟み込み方向においてラミネート外装体の周縁部を両側から加熱封止装置(「ヒートシーラー」ともいう。)の加熱部で挟み込み、該周縁部に所定の熱量を加えることによって、ラミネート外装体の周縁部を封止する。
以下、本発明における工程S40について、図4を参照しつつ説明する。以下の説明は正極集電端子導出部近傍の溶着を説明するものであるが、負極集電端子導出部近傍の溶着についても同様である。なお、図4は、実施形態にかかる電池の製造方法における、ラミネート外装体の溶着工程を示す模式図である。(A)は、溶着工程を説明する斜視図である。(B)は、溶着工程における溶着部位を示す正面図である。(C)は、図4(B)のC-C断面図である。(D)は、図4(B)のD-D断面図である。(E)は、変形例1における図4(B)のC-C断面図である。
<加熱封止装置>
ここで開示される電池の製造方法に用いられる加熱封止装置としては、一般的な加熱封止装置を使用することができ、その全体的な構成の説明は省略する。以下では、加熱封止装置において、ラミネート外装体を挟み込んで熱溶着を行う主体となる加熱部のみについて説明する。
例えば、加熱封止装置から加えられる熱量は、ラミネート外装体の周縁部における、集電端子と対向する領域と、対向しない非対向領域との間で異なるよう設定されることが好ましい。上記対向領域において加えられた熱量における集電端子から電極体方向に熱引きされた後の熱量と、上記非対向領域に加えられた熱量とがほぼ同じとなるように構成されることが好ましい。
具体的には、図4(A)および図4(B)に示されるように、例えば加熱部10は、対向領域30aを挟み込む領域R1と、非対向領域30bを挟み込む領域R2とを有する。例えば領域R1から対向領域30aに加えられる熱量と、領域R2から非対向領域30bに加えられる熱量とが相互に異なるように構成されてよい。例えば、非対向領域30bに加えられる熱量は、相対的に小さいことが好ましい。なお、ここでは、対向領域30aは、ラミネート外装体30において、正極集電端子42と対向する領域である。非対向領域30bは、ラミネート外装体30において、正極集電端子42と対向しない領域である。
<加熱部の構造>
例えば、領域R2において、溶着時に熱が伝導する断面積を、領域R1における断面積よりも小さくすることが挙げられる。そうすると、領域R2における熱抵抗値が相対的に大きくなるため、領域R2からラミネート外装体30(非対向領域30b)に加えられる熱量は、相対的に小さくなる。これにより、領域R2に挟み込まれるラミネート外装体30(非対向領域30b)の過剰な熱溶融は顕著に抑制され得る。
領域R2における断面積を相対的に小さくする方法としては、例えば図示されるように、領域R2において複数個の孔12を設けることが挙げられる。
孔12の形状は特に限定されないが、例えば、平面形状は正円、楕円等の弧を含む形状、略多角形等であってよい。孔12は、例えば貫通孔であることが好ましく、電池1の幅広面に対して、該幅広面に対する角度が10度未満である、略平行なものであってよい(図4(C))。孔12は、例えば窪みであってもよく、その場合、図4(C)のX方向(即ち、ラミネート外装体30の水平面方向)における深さは特に限定されない。
孔12の個数は特に限定されないが、例えば1,2,3,4,および5個以上であってよく、30,25,20,および10個以下であってよい。
孔12の直径は特に限定されない。
領域R1の平面形状および断面形状は、当該領域における断面積が相対的に大きい限りは、特に限定されない。例えば、図4(D)に示されるように、領域R1には上記のような孔12を形成しないことが好ましい。領域R1に孔を形成する場合は、例えば領域R2よりも孔の個数および孔のサイズ等を小さくすることが好ましい。
<作用効果>
従来のラミネート外装体を備える電池について、ラミネート外装体において上記のような対向領域を熱溶着する際、加熱封止装置からラミネート外装体に加えられる熱量が、集電端子を介して例えば電極体側に逃げることによって、対向領域の熱溶着が不十分となる虞があった。これは、ラミネート外装体の外部から内部への空気の流入、およびラミネート外装体の内部から外部への電解液および電池反応の過程で発生したガスの流出等の要因となり、電池を適切に使用するため早急に解決が要求される課題であった。一方、熱逃げによる溶着不全を抑制するために、加熱部から加えられる熱量を大きくすると、上記非対向領域では、ラミネート外装体の樹脂層がその熱量によって過剰に溶融し、上記のような不具合の発生に加えて、例えばラミネート外装体における金属層(ガスバリア層)が露出し、当該金属層と電極体とが短絡する虞があった。
本発明では、ラミネート外装体の熱溶着に用いられる加熱封止装置において、上記非対向領域における、熱が伝導する断面積を、対向領域における断面積よりも小さくしている。これによって、集電端子から電極体への熱逃げを考慮して熱溶着時の加熱量を大きくしても、非対向領域のラミネート外装体に、加熱封止装置から過剰の熱量が加えられることが抑制され、上記のような不具合の発生を防止することができる。ここで開示される電池の製造方法によって、対向領域においてラミネート外装体の溶着による密閉性が向上され、非対向領域では樹脂層の熱溶融が抑制されることにより、ラミネート外装体の密閉性が顕著に向上された電池を提供することができる。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
<変形例1>
例えば図4(E)に示されるように、孔12は、電池の幅広面に対して、該幅広面に対する角度が10度以上であるように形成されてもよい。この場合、溶着時に温められた空気が孔12を通ってZ方向(即ち、加熱部10に対するラミネート外装体30の挟み込み方向)におけるU側に流れることによって、領域R2からのラミネート外装体への加熱量を効率よく低下させることができる。
<変形例2>
例えば、領域R2の断面形状を、図5に示されるような形状とすることができる。例えば、X方向(即ち、ラミネート外装体30の水平面方向)において、加熱部10の一部の幅L2を、ラミネート外装体30との当接部の幅L1よりも小さくしてもよい。なお、ラミネート外装体30との当接部の幅L1は、領域R1および領域R2のいずれにおいても同一であることが好ましい。
<変形例3>
上記実施形態は、本発明を積層型電極体に適用する場合について説明したが、長尺な正極シートと長尺な負極シートとがセパレータを介在させつつ交互に積層されて捲回軸方向に捲回された構成の、捲回電極体に適用してもよい。
<変形例4>
上記実施形態では、正極集電端子導出部32および負極集電端子導出部34は、それぞれX方向における対向する両端部に形成されている(図1参照。)が、正極集電端子導出部32および負極集電端子導出部34は、例えば同一辺に形成されてもよい。この場合、例えば電極体20の短辺方向(Y方向)に、2つの集電端子導出部が重ならないように形成される。
1 電池
10 加熱部
12 孔
20 電極体
22 正極集電体
30 ラミネート外装体
30a 対向領域
30b 非対向領域
32 正極集電端子導出部
34 負極集電端子導出部
36a シーラント層
36b ガスバリア層
36c 保護層
42 正極集電端子
44 負極集電端子
S10 電極体準備工程
S20 集電端子取付工程
S30 外装体収容工程
S40 封止工程
R1 領域
R2 領域
L1,L2 幅
X,Y,Z,U 方向

Claims (1)

  1. 正極、負極、およびセパレータとして機能する層を有する電極体と、
    前記電極体を内部に密閉した状態で収容するラミネート外装体と、
    前記正極および前記負極にそれぞれ接続されている外部接続用の正極集電端子および負極集電端子であって一部が前記ラミネート外装体から外部に導出されている正負極集電端子と、
    を備える電池の製造方法であって、
    前記電極体を前記ラミネート外装体の内部に収容した状態となるように配置し、且つ、少なくとも一部が該ラミネート外装体の外部に導出された状態となるように前記正負極集電端子を配置した状態で、該ラミネート外装体の周縁部を熱溶着して封止する工程を包含し、
    前記熱溶着は、前記周縁部を両側から挟み込んで該周縁部に所定の熱量を加える加熱封止装置によって行われ、
    ここで、該製造方法は、前記挟み込んだ周縁部のうちの前記正負極集電端子と対向する対向領域に加えられた熱量における該集電端子から電極体方向に熱引きされた後の熱量と、前記正負極集電端子と対向しない非対向領域に加えられた熱量とがほぼ同じになるように、前記対向領域と前記非対向領域との間で、前記加熱封止装置から加えられる熱量を異ならせて前記熱溶着を行うことを特徴としており、
    前記熱溶着において、前記加熱封止装置として、
    前記ラミネート外装体を挟み込んで熱溶着する加熱部を有し、
    前記加熱部において、前記対向領域を挟み込み、溶着時に単位面積あたりの熱が伝導する断面積が相対的に大きい領域R1と、前記非対向領域を挟み込み、5個以上10個以下の貫通孔または窪みを設けることにより、溶着時に単位面積あたりの熱が伝導する断面積を相対的に小さくした領域R2とを設けた、加熱封止装置を用いる、製造方法。
JP2019207869A 2019-11-18 2019-11-18 電池の製造方法 Active JP7333000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019207869A JP7333000B2 (ja) 2019-11-18 2019-11-18 電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019207869A JP7333000B2 (ja) 2019-11-18 2019-11-18 電池の製造方法

Publications (2)

Publication Number Publication Date
JP2021082448A JP2021082448A (ja) 2021-05-27
JP7333000B2 true JP7333000B2 (ja) 2023-08-24

Family

ID=75965858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019207869A Active JP7333000B2 (ja) 2019-11-18 2019-11-18 電池の製造方法

Country Status (1)

Country Link
JP (1) JP7333000B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116228A (ja) 2003-10-03 2005-04-28 Nec Lamilion Energy Ltd ラミネートフィルムの熱融着方法、フィルム外装電池の製造方法およびラミネートフィルム用熱融着装置
WO2014178238A1 (ja) 2013-05-01 2014-11-06 日産自動車株式会社 ラミネート型二次電池の製造装置および製造方法
WO2014188774A1 (ja) 2013-05-23 2014-11-27 日産自動車株式会社 ラミネート型二次電池の製造方法および製造装置
WO2018105096A1 (ja) 2016-12-09 2018-06-14 日産自動車株式会社 フィルム外装電池の製造方法およびフィルム外装電池
JP2018156725A (ja) 2017-03-15 2018-10-04 三洋電機株式会社 非水電解質二次電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116228A (ja) 2003-10-03 2005-04-28 Nec Lamilion Energy Ltd ラミネートフィルムの熱融着方法、フィルム外装電池の製造方法およびラミネートフィルム用熱融着装置
WO2014178238A1 (ja) 2013-05-01 2014-11-06 日産自動車株式会社 ラミネート型二次電池の製造装置および製造方法
WO2014188774A1 (ja) 2013-05-23 2014-11-27 日産自動車株式会社 ラミネート型二次電池の製造方法および製造装置
WO2018105096A1 (ja) 2016-12-09 2018-06-14 日産自動車株式会社 フィルム外装電池の製造方法およびフィルム外装電池
JP2018156725A (ja) 2017-03-15 2018-10-04 三洋電機株式会社 非水電解質二次電池の製造方法

Also Published As

Publication number Publication date
JP2021082448A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
KR101216422B1 (ko) 실링부의 절연성이 향상된 이차전지
JP6111476B2 (ja) 耐久性向上のためのシールマージンを有するパウチ型二次電池
JP4828458B2 (ja) シーリング部の安全性が向上した二次電池
JP2006221938A (ja) フィルム外装型蓄電装置
JP5879550B2 (ja) 薄型二次電池
JP7088410B2 (ja) 蓄電モジュール
KR20120069319A (ko) 수분 차단성이 향상된 이차전지
JP2000223090A (ja) 電 池
WO2018016654A1 (ja) 電気化学デバイス
KR101792605B1 (ko) 전극 탭-리드 결합부에 형성된 밀봉부재를 포함하는 이차전지
JP2005019213A (ja) 電気リード部の構造、該リード部構造を有する電気デバイス、電池および組電池
JP5371563B2 (ja) 蓄電デバイス
JP7333000B2 (ja) 電池の製造方法
JP6997949B2 (ja) ラミネート型電池モジュールの製造方法
JP4887650B2 (ja) 単電池および組電池
US20220209377A1 (en) Battery module and method for producing the battery module
JP2018195393A (ja) フィルム外装電池の製造方法およびフィルム外装電池
JP2012175084A (ja) 蓄電デバイス、蓄電セルの製造方法および蓄電デバイスの製造方法
JP7208213B2 (ja) ラミネート型電池
KR102479486B1 (ko) 파우치형 이차 전지
US9786886B2 (en) Nonaqueous battery
JP2017228381A (ja) 電池及び電池の製造方法
US9202633B2 (en) Laminate type energy device and method of manufacturing the same
JP2007018766A (ja) フィルム外装型蓄電装置及びその製造方法
JP5891947B2 (ja) 組電池および組電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230726

R151 Written notification of patent or utility model registration

Ref document number: 7333000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151