JP7298250B2 - 可塑性材料の解析方法及び可塑性材料の製造方法 - Google Patents

可塑性材料の解析方法及び可塑性材料の製造方法 Download PDF

Info

Publication number
JP7298250B2
JP7298250B2 JP2019073703A JP2019073703A JP7298250B2 JP 7298250 B2 JP7298250 B2 JP 7298250B2 JP 2019073703 A JP2019073703 A JP 2019073703A JP 2019073703 A JP2019073703 A JP 2019073703A JP 7298250 B2 JP7298250 B2 JP 7298250B2
Authority
JP
Japan
Prior art keywords
model
plastic material
eru
coupling agent
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019073703A
Other languages
English (en)
Other versions
JP2020172036A (ja
Inventor
真一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2019073703A priority Critical patent/JP7298250B2/ja
Publication of JP2020172036A publication Critical patent/JP2020172036A/ja
Application granted granted Critical
Publication of JP7298250B2 publication Critical patent/JP7298250B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

本発明は、可塑性材料の状態を解析するための方法、及び、可塑性材料の製造方法に関する。
下記特許文献1は、混練機の内部で混練される粘性流体(例えば、未加硫ゴム)の状態を、コンピュータを用いて解析するための方法を提案している。この方法では、先ず、コンピュータに、混練空間を区画する筒状のケーシングモデルと、混練空間内で回転するロータモデルとを含む混練機モデルが入力される。次に、混練空間に、粘性流体をモデル化した粘性流体モデルが充填される。そして、ロータモデルを回転させたときの粘性流体の流動状態が計算される。
特開2018-69498号公報
近年、粘性流体には、ゴムや樹脂などのポリマーとともに、補強材として用いられるシリカや、シリカとポリマーとの間を結合するためのカップリング剤が配合されることがある。このような粘性流体は、シリカとカップリング剤とが十分に反応するように混練することが重要であるが、上記の方法では、そのような反応の程度までは、評価することができなかった。
本発明は、以上のような実状に鑑み案出されたもので、シリカとカップリング剤との反応量を擬似的に計算することができる可塑性材料の解析方法、及び、可塑性材料の製造方法を提供することを主たる目的としている。
本発明は、混練空間内に配された未加硫のゴム又は樹脂を含む可塑性材料をロータを用いて混練するときの前記可塑性材料の状態を、コンピュータを用いて解析するための方法であって、前記可塑性材料は、ポリマー、シリカ及びカップリング剤が配合されたものであり、前記方法は、前記コンピュータに、前記混練空間及び前記ロータを、それぞれ有限個の要素で離散化した空間モデル及びロータモデルを入力する工程と、前記コンピュータに、前記ポリマーを有限個の要素で離散化した材料モデルを入力する工程と、前記コンピュータが、前記空間モデル内に前記材料モデルを配置し、かつ、前記ロータモデルを用いて前記材料モデルを混練するときの前記材料モデルの流動状態を計算するシミュレーション工程とを含み、前記シミュレーション工程では、前記材料モデルの温度と、下記式(1)とを用いて、前記シリカと前記カップリング剤との反応量に相当する等価反応量ERUを計算する工程を含むことを特徴とする。
Figure 0007298250000001
ここで、符号は以下のとおりである。
E:活性化エネルギー(kJ)
R:気体定数
T:材料モデルの温度(K)
0:基準温度(K)
t:反応時間(秒)
本発明に係る前記可塑性材料の解析方法において、前記等価反応量ERUを時系列で計算する工程と、前記計算された等価反応量ERUが予め定められた値に到達するまでの混練時間を計算する工程とを含んでもよい。
本発明に係る前記可塑性材料の解析方法において、前記材料モデルは、前記シリカ及び前記カップリング剤を有限個の要素でモデル化したシリカモデル及びカップリング剤モデルを含まなくてもよい。
本発明に係る前記可塑性材料の解析方法において、前記等価反応量ERUを計算する工程に先立ち、分子軌道法に基づいて、前記活性化エネルギーEを計算する工程をさらに含んでもよい。
本発明に係る前記可塑性材料の解析方法において、前記等価反応量ERUを計算する工程は、前記材料モデルの温度Tとして、前記材料モデルを構成する全ての前記要素の温度の平均値を計算する工程を含んでもよい。
本発明に係る前記可塑性材料の解析方法において、前記等価反応量ERUを計算する工程は、前記基準温度T0として、前記シリカと前記カップリング剤との反応が開始する温度に設定する工程を含んでもよい。
本発明は、可塑性材料の製造方法であって、請求項1ないし6のいずれかに記載の前記解析方法で計算された前記等価反応量ERUに基づいて、前記シリカと前記カップリング剤との反応が良好であると評価された前記可塑性材料を製造する工程を含むことを特徴とする。
本発明の可塑性材料の解析方法は、ポリマーを有限個の要素で離散化した材料モデルの流動状態を計算するシミュレーション工程において、前記材料モデルの温度と、下記式(1)とを用いて、シリカとカップリング剤との反応量に相当する等価反応量ERUを計算する工程を含んでいる。
Figure 0007298250000002
ここで、符号は以下のとおりである。
E:活性化エネルギー(kJ)
R:気体定数
T:材料モデルの温度(K)
0:基準温度(K)
t:反応時間(秒)
発明者らは、前記シリカと前記カップリング剤との反応が、化学反応の一種であるとみなして、それらの反応に、温度と化学反応の速度との関係を示すアレニウスの式の適用を試みた。具体的には、混練されて時々刻々と変化する前記材料モデルの温度Tを、アレニウスの式に適用することにより、前記シリカと前記カップリング剤との反応量に相当する等価反応量を計算できることを知見した。したがって、本発明の可塑性材料の解析方法では、前記等価反応量ERUに基づいて、前記シリカと前記カップリング剤との反応状態を評価することが可能となる。
混練機の一例を示す部分断面図である。 可塑性材料の解析方法を実行するためのコンピュータの一例を示す斜視図である。 可塑性材料の解析方法(製造方法)の処理手順の一例を示すフローチャートである。 空間モデル及びロータモデルの一例を示す斜視図である。 (a)は、空間モデルの断面図、(b)は、図5(a)のX部拡大図である。 空間モデルを分解して示す断面図である。 ロータモデルの一例を示す断面図である。 空間モデル内に材料モデルと気体モデルとを混在して配置した状態を示す断面図である。 シミュレーション工程の処理手順の一例を示すフローチャートである。 等価反応量と時間との関係の一例を示すグラフである。 本発明の他の実施形態のシミュレーション工程の処理手順の一例を示すフローチャートである。 本発明の他の実施形態の解析方法の処理手順の一例を示すフローチャートである。 比較例の材料モデルの温度と時間との関係を示すグラフである。 実施例の材料モデルの等価反応量ERUと時間との関係を示すグラフである。
以下、本発明の実施の一形態が図面に基づき説明される。
本実施形態の可塑性材料の解析方法(以下、単に「解析方法」ということがある。)は、混練空間内に配された可塑性材料が、ロータを用いて混練されるときの可塑性材料の状態を、コンピュータを用いて解析するための方法である。
ここで、「混練」とは、例えば、未加硫のゴム又は樹脂が含まれる可塑性材料の成形時の前処理として、原材料の薬品、粉体などと液状バインダを分散させながら互いに濡らし、それらを均質にする作用ないし操作として定義される。代表的な混練工程は、混練機(バンバリーミキサー)を用いて行われる。
本実施形態の可塑性材料は、ポリマー、シリカ及びカップリング剤が配合されたものである。
ポリマーは、未加硫のゴム又は樹脂である。本実施形態のポリマーは、未加硫のゴムである。ゴムとしては、天然ゴム(NR)、ブタジエンゴム(BR)、又は、スチレンブタジエンゴム(SBR)等が例示される。
カップリング剤は、適宜採用することができる。本実施形態のカップリング剤は、シランカップリング剤(TESPD)が採用されている。なお、カップリング剤には、シランカップリング剤(TESPT)、シランカップリング剤(TESPD)のアルキル基の鎖長を変更したもの、及び、シランカップリング剤NXT又はNXT-Z等が採用されてもよい。シランカップリング剤(TESPT)は、シランカップリング剤(TESPD)のジスルフィド基(-S-)を、テトラスルフィド基(-S-)に変更したものである。
図1は、混練機1の一例を示す部分断面図である。混練機1は、ケーシング2と、ロータ3とを含んで構成されている。ケーシング2は、筒状に形成されている。本実施形態では、一対のロータ3、3が含まれている。各ロータ3、3には、円筒状の基部3aと、基部3aからケーシング2の内周面2iに向かってのびる少なくとも一つの翼部3bとが設けられている。
ケーシング2とロータ3、3との間には、可塑性材料(図示省略)を混練するための混練空間4が区画される。本実施形態の混練空間4は、断面横向きの略8の字状に形成されている。なお、混練空間4は、このような形状に限定されるものではない。
混練機1は、混練空間4内に可塑性材料(図示省略)を配置させた後に、ロータ3、3を回転させることで、可塑性材料を混練することができる。この可塑性材料の混練により、混練機1は、ポリマー、シリカ及びカップリング剤を分散(撹拌)させることができる。さらに、混練機1は、混練によって可塑性材料(図示省略)の温度を上昇させることができ、シリカとカップリング剤との反応を促進させることができる。
図2は、可塑性材料の解析方法を実行するためのコンピュータ10の一例を示す斜視図である。コンピュータ10は、本体10a、キーボード10b、マウス10c、及び、ディスプレイ装置10dを含んでいる。本体10aには、例えば、演算処理装置(CPU)、ROM、作業用メモリ、磁気ディスクなどの記憶装置、及び、ディスクドライブ装置10a1、10a2が設けられている。また、記憶装置には、本実施形態の解析方法を実行するためのソフトウェア等が予め記憶されている。図3は、可塑性材料の解析方法(製造方法)の処理手順の一例を示すフローチャートである。
本実施形態の解析方法では、先ず、コンピュータ10に、図1に示した混練空間4及びロータ3、3を、それぞれ有限個の要素で離散化した空間モデル及びロータモデルが入力される(工程S1)。図4は、空間モデル14及びロータモデル13の一例を示す斜視図である。
工程S1では、先ず、混練空間4(図1に示す)を有限個の要素で離散化した空間モデル14が入力される。図5(a)は、空間モデル14の断面図である。図5(b)は、図5(a)のX部拡大図である。図6は、空間モデル14を分解して示す断面図である。
空間モデル14は、ケーシング2(図1に示す)の内周面をなす外周面14oと、一対のロータ3、3の外周面をなす内周面14iと、ロータ3(図1に示す)の軸方向の両端側で前記外周面を閉じる両端面14sとで閉じられた三次元空間を有している。
空間モデル14の外周面14o及び両端面14sは変形しない。空間モデル14の内周面14iは、ロータモデル13、13の回転に対応して回転する。このため、空間モデル14の容積形状は変化する。本実施形態の空間モデル14は、図6に分解して示されるように、一対の回転部14A、14Bと、これらの間を継ぐ継ぎ部14Cと、これらが収容される外枠部14Dとの4つの部分に分けて構成される。これらの一対の回転部14A、14B、継ぎ部14C、及び、外枠部14Dは、例えば、文献(特許第5564074号公報)に記載のチャンバーモデルの一対の回転部、継ぎ部、及び、外枠部と同様に定義される。
図5(b)に示されるように、空間モデル14は、要素(オイラー要素)eで分割(離散化)されている。要素分割は、四面体、六面体などの他、多面体セル(ポリヘドラルグリッド)といった三次元要素で行われる。そして、各要素eについて、可塑性材料(材料モデル)の圧力、温度、及び、速度等の物理量が計算される。空間モデル14は、コンピュータ10に記憶される。
次に、本実施形態の工程S1では、ロータ3、3を有限個の要素で離散化したロータモデル13、13が入力される。図7は、ロータモデル13、13の一例を示す断面図である。なお、図7において、空間モデル14を2点鎖線で示している。
ロータモデル13、13は、各ロータ3、3(図1に示す)の設計データ(例えば、CADデータ等)に基づいて、基部3a及び翼部3bの輪郭が、有限個の要素F(i)(i=1、2、…)でモデル化(離散化)されることによって定義される。一対のロータモデル13、13は、基部モデル13a及び翼部モデル13bをそれぞれ含んでいる。ロータモデル13、13は、その中心13e、13fの周りで回転可能に定義される。
要素F(i)としては、例えば、三次元のソリッド要素が採用されている。ソリッド要素は、精度がよく、接触面の設定が容易な6面体が好ましいが、複雑な形状を表現するのに適した4面体要素でもよい。なお、これらの要素以外にも、ソフトウェアで使用可能な三次元ソリッド要素でもよい。各要素F(i)には、要素番号、節点(図示省略)の番号、及び、節点の座標値等の数値データが定義される。また、本実施形態の各要素F(i)は、外力が作用しても変形不能な剛性に定義される。ロータモデル13は、コンピュータ10に入力される。
次に、本実施形態の解析方法では、コンピュータ10に、ポリマーを有限個の要素で離散化した材料モデル17が入力される工程(工程S2)。図8は、空間モデル14内に材料モデル17と気体モデル18とを混在して配置した状態を示す断面図である。
材料モデル17は、図5(b)に示した空間モデル14の要素(オイラー要素)eで定義される。材料モデル17には、解析対象となるポリマーに応じて、せん断粘度、比熱、熱伝導率、比重及び粘度等の物性値が定義される。これらの物性値は、文献(特許第5564074号公報)に記載の材料モデルに基づいて定義することができる。
材料モデル17には、シリカ及びカップリング剤を有限個の要素でモデル化したシリカモデル(図示省略)及びカップリング剤モデル(図示省略)が含まれなくてもよい。これにより、材料モデル17のモデリングに要する時間を短縮することができる。さらに、後述のシミュレーション工程S5において、シリカ及びカップリング剤の物性等を考慮する必要がないため、計算時間を短縮することができる。材料モデル17は、コンピュータ10に記憶される。
次に、本実施形態の解析方法では、コンピュータ10に、混練空間4に存在する気体(図示省略)(図1に示す)を表現するための気体モデル18が入力される(工程S3)。気体モデル18は、図5(b)に示した空間モデル14の要素(オイラー要素)eで定義される。気体モデル18には、比重及び粘度等の物理量が定義される。これらの物理量は、たとえば、文献(特許第5564074号公報)記載の気相モデルに基づいて定義することができる。気体モデル18は、コンピュータ10に記憶される。
次に、本実施形態の解析方法は、コンピュータ10に、材料モデル17の流動状態を計算するのに必要な境界条件等が設定される(工程S4)。境界条件としては、空間モデル14の壁面での流速境界条件、及び、温度境界条件が挙げられる。これらの境界条件は、文献(特許第5564074号公報)の記載に基づいて定義することができる。
さらに、他の条件としては、例えば、流動計算(シミュレーション)の初期状態、タイムステップ、内部処理でのイタレーションの反復回数、及び、計算終了時刻が含まれる。
初期状態は、例えば、図8に示されるように、空間モデル14を横切る水平な境界面Sを基準として、それよりも上部を気体モデル18の領域Aとし、それよりも下部を材料モデル17の領域Mとして定義される。境界面Sのレベルを変えることにより、材料モデル17(可塑性材料)の充填率が調節される。これらの条件(即ち、初期状態、タイムステップ、反復回数、及び、計算終了時刻)は、シミュレーションの目的等に応じて任意に定められる。境界条件等は、コンピュータ10に記憶される。
次に、本実施形態の解析方法では、コンピュータ10が、材料モデル17の流動状態を計算する(シミュレーション工程S5)。図9は、シミュレーション工程S5の処理手順の一例を示すフローチャートである。
本実施形態のシミュレーション工程S5では、先ず、図8に示されるように、空間モデル14内に材料モデル17が配置される(工程S51)。本実施形態の工程S51では、空間モデル14内に、材料モデル17(領域M)と気体モデル18(領域A)とが混在して配置される。
次に、本実施形態のシミュレーション工程S5では、ロータモデル13、13を回転させて、材料モデル17を混練するときの材料モデル17の流動状態が計算される(工程S52)。工程S52では、可塑性材料(図示省略)と気体(図示省略)との2つの流体が一度に扱われるため、自由界面の流れの計算で用いられるVOF(Volume of Fluid)法が用いられる。このような流動状態の計算は、例えば、文献(特許第5564074号公報)記載の手順に基づいて計算することができる。これにより、工程S52では、シミュレーションの単位時間Tx毎に、図5(b)に示した材料モデル17の各要素eにおいて、温度等の物理量が計算される。これらの材料モデル17の物理量は、コンピュータ10に記憶される。
次に、本実施形態のシミュレーション工程S5では、シリカとカップリング剤との反応量に相当する等価反応量ERU(Equivalent Reaction Unit)が計算される(工程S53)。工程S53では、材料モデル17の温度と、下記式(1)とを用いて、等価反応量ERUが計算される。
Figure 0007298250000003
ここで、符号は以下のとおりである。
E:活性化エネルギー(kJ)
R:気体定数
T:材料モデルの温度(K)
0:基準温度(K)
t:反応時間(秒)
上記式(1)は、温度と化学反応の速度との関係を示すアレニウスの式に、シリカとカップリング剤との反応を適用することによって導出されたものである。
上記式(1)のうち、活性化エネルギーEは、シリカとカップリング剤との活性化エネルギーである。活性化エネルギーEとしては、シリカとカップリング剤の種類に応じて適宜設定することができる。活性化エネルギーEは、シリカとカップリング剤との実験等で求められてもよいし、既存の文献等に記載されている値が用いられてもよい。なお、カップリング剤がTESPTの場合、活性化エネルギーEは、例えば、論文1(Udo Goerl, Andrea Hunsche, Arndt Mueller, and H. G. Koban著、「Investigations into the Silica/Silane Reaction System」、Rubber Chem. Technol. vol70、1997年9月、pp.608-623)のFig6の記載に基づいて、47kJ/molを設定することができる。
上記式(1)の材料モデルの温度Tには、工程S52において、単位時間Txごとに計算された材料モデルの温度Tが代入される。なお、温度Tは、単位時間Txにおいて、材料モデル17を構成する全ての要素eの温度の平均値を計算して代入されてもよいし、材料モデル17の特定部分の要素eの温度が代入されてもよい。
上記式(1)の基準温度T0については、適宜設定することができる。なお、基準温度T0が大きいと、上記式(1)で求められる等価反応量ERUの桁数が必要以上に小さくなる場合がある。このため、基準温度T0には、シリカとカップリング剤との反応が開始する温度が設定されるのが望ましい。反応が開始する温度は、例えば、シリカとカップリング剤とを反応させる実験を実施し、これらがよく反応する温度から10~20K低い温度(例えば、383K)として特定することができる。
反応時間tについては、材料モデル17の流動状態の計算が開始されてから経過した時間(即ち、計算開始から単位時間Txを累積した時間)が設定される。
上記式(1)では、単位時間Txあたりの等価反応量について、反応開始(即ち0秒)から反応時間t秒が経過するまでの範囲で定積分することにより、反応時間t後の等価反応量ERUを計算することができる。
図10は、等価反応量と時間との関係の一例を示すグラフである。例えば、単位時間Txが0.1秒に設定されており、0.1秒後の材料モデル17の温度がT(K)とすると、0.1秒後(反応時間)の等価反応量ERUは、温度がT1になった瞬間の等価反応量exp(-E/R(1/T-1/T0))に、0.1秒を乗じることで計算できる。なお、0.1秒を乗じているのは、温度がT1になった瞬間の等価反応量から、単位時間(0.1秒)分の等価反応量を求めているからである。この0.1秒後の等価反応量ERUは、図10に示した第1領域21の面積に相当する。この値は、単位時間Txあたりの等価反応量について、反応開始(即ち0秒)から反応時間0.1秒が経過するまでの範囲を定積分した反応時間0.1秒後の等価反応量ERUに近似する。
また、0.2秒後(反応時間)の等価反応量ERUは、上述の0.1秒後の(反応時間)の等価反応量ERUに、0.1~0.2秒の単位時間あたりの等価反応量ERUを加算することで計算される。なお、0.1~0.2秒の等価反応量ERUは、0.2秒後の材料モデル17の温度がT(K)とすると、温度がT2になった瞬間の等価反応量exp(-E/R(1/T-1/T0))に、0.1秒を乗じることで計算できる。この0.1~0.2秒の等価反応量ERUは、図10に示した第2領域22の面積に相当する。したがって、0.2秒後の等価反応量ERUは、図10に示した第1領域21及び第2領域22の合計面積に相当する。
このように、上記式(1)は、単位時間あたりの等価反応量について、反応開始(即ち0秒)から反応時間t秒までの範囲で定積分することにより、反応時間tが経過した後の等価反応量ERUを計算することができる。等価反応量ERUは、コンピュータ10に記憶される。
次に、本実施形態のシミュレーション工程S5では、流動状態の計算終了条件を満たしたか否かが判断される(工程S54)。本実施形態の工程S54では、現在の計算時刻が、工程S4で設定された計算終了時刻を経過したか否かが判断される。
工程S54において、計算終了条件を満たすと判断された場合(工程S54で、「Y」)、シミュレーション工程S5の一連の処理が終了し、次の工程S6が実施される。一方、工程S54において、計算終了条件を満たしていないと判断された場合(工程S54で、「N」)、単位時間Txを一つ進めて(工程S55)、工程S52~工程S54が再度実施される。
本実施形態の解析方法では、ロータモデル13、13の回転を開始してから、計算終了条件を満たすまでの間、材料モデル17の流動状態を計算しながら、シリカとカップリング剤との等価反応量ERUを計算することができる。これにより、本実施形態の解析方法では、単位時間Txごとに時々刻々と変化する材料モデル17の温度Tに基づいて、反応開始(即ち0秒)から反応時間tが経過するまでの等価反応量ERUを時系列で計算することができる。したがって、本実施形態の解析方法では、等価反応量ERUに基づいて、シリカとカップリング剤との反応状態を評価することが可能となる。
また、本実施形態の材料モデル17には、シリカ及びカップリング剤を有限個の要素でモデル化したシリカモデル及びカップリング剤モデルが含まれていない。このため、本実施形態の解析方法では、材料モデル17の流動状態の計算を簡略化することができるため、計算時間が増大するのを防ぐことができる。
次に、図3に示されるように、本実施形態の解析方法では、計算された等価反応量ERUに基づいて、シリカとカップリング剤との反応が、良好か否かが評価される(工程S6)。シリカとカップリング剤との反応が良好か否かについては、適宜評価することができる。本実施形態の工程S6では、等価反応量ERUが、予め定められた閾値以上である場合に、シリカとカップリング剤との反応が良好であると評価している。なお、閾値については、可塑性材料(図示省略)に求められるシリカとカップリング剤との反応量に応じて、適宜設定することができる。
工程S6において、シリカとカップリング剤との反応が良好であると評価された場合(工程S6で、「Y」)、良好であると評価された可塑性材料(図示省略)が製造される(工程S7)。一方、シリカとカップリング剤との反応が良好ではないと評価された場合(工程S6で、「N」)、可塑性材料の配合や物性値を変更して(工程S8)、工程S1~工程S6が再度実施される。これにより、本実施形態の解析方法(製造方法)は、シリカとカップリング剤との反応が良好な可塑性材料を製造することができ、例えば、転がり抵抗を低下させたタイヤ等のゴム製品の開発に役立つ。
これまでのシミュレーション工程S5では、単位時間Tx毎に、材料モデル17の流動状態と、等価反応量ERUとが計算されたが、このような態様に限定されない。例えば、材料モデル17の流動状態を計算した後に、その計算結果に基づいて、等価反応量ERUが計算されてもよい。
図11は、本発明の他の実施形態のシミュレーション工程S5の処理手順の一例を示すフローチャートである。この実施形態において、これまでの実施形態と同一の構成については、同一の符号を付し、説明を省略することがある。
この実施形態のシミュレーション工程S5では、計算された等価反応量ERUが、予め定められた値に到達するまでの混練時間を計算する工程S56が含まれる。等価反応量ERUを到達させる値については、適宜設定することができ、例えば、解析対象の可塑性材料(図示省略)に求められるシリカとカップリング剤との反応量を定義することができる。
工程S56では、工程S53で計算された等価反応量ERUと、上記値とが比較される。そして、工程S56では、等価反応量ERUが上記値に到達した場合、材料モデル17の流動状態の計算が開始されてから経過した時間(即ち、計算開始から単位時間Txを累積した時間)が、上記値に到達した混練時間として特定される。特定された混練時間は、コンピュータ10に記憶される。
この実施形態の解析方法では、例えば、互いに異なる複数の可塑性材料(図示省略)について、上記の混練時間が計算されることにより、可塑性材料(図示省略)に求められる反応量に到達するまでの混練時間を、可塑性材料ごとに比較することができる。また、この実施形態の解析方法では、例えば、ロータモデル13、13の回転速度が異なる条件について、上記の混練時間が計算されることにより、可塑性材料(図示省略)に求められる反応量に到達するまでの混練時間を、条件ごとに比較することができる。
これまでの実施形態の工程S53において、等価反応量ERUの計算に用いられる活性化エネルギーEには、シリカとカップリング剤との実験等で求められる値や、既存の文献等に記載されている値が用いられたが、このような態様に限定されない。図12は、本発明の他の実施形態の解析方法の処理手順の一例を示すフローチャートである。この実施形態において、これまでの実施形態と同一の構成については、同一の符号を付し、説明を省略することがある。
本実施形態の解析方法では、図9及び図11に示した等価反応量ERUを計算する工程S53(本例では、シミュレーション工程S5)に先立ち、分子軌道法に基づいて、活性化エネルギーEを計算する工程S9がさらに含まれる。
活性化エネルギーEは、適宜計算することができる。活性化エネルギーEの計算方法には、例えば、論文2(土森正昭著、「分子軌道法の有機材料開発への応用」、豊田中央研究所 R&D レビュー、Vol. 29 No. 1、1994年3月、[平成31年4月1日検索],インターネット<URL:https://www.tytlabs.com/japanese/review/rev291pdf/291_009_tsuchimori.pdf>)に記載される方法を採用することができる。
このように、この実施形態の解析方法では、分子軌道法に基づいて、活性化エネルギーEを計算できるため、例えば、未知のカップリング剤とシリカとが配合された可塑性材料(図示省略)について、等価反応量ERUを評価することが可能となる。したがって、この実施形態では、例えば、可塑性材料(図示省略)に求められる反応量に到達するまでの混練時間を短縮できるように、カップリング剤の構造が変更されることにより、等価反応量ERUに優れる未知のカップリング剤の合成に役立つ。
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
図3及び図9に示した処理手順に従って、混練空間内に配された可塑性材料を、ロータを用いて混練するときの可塑性材料の状態が、コンピュータを用いて解析された(実施例及び比較例)。実施例及び比較例のシミュレーション工程では、空間モデルに材料モデル及び気体モデルを配置して、材料モデルの流動状態が計算された。
実施例及び比較例では、材料モデルの流動計算において、ロータモデルの回転部に、30rpm、40rpm、及び、50rpmの回転数を設定して、それらの回転数毎に材料モデルの温度が計算された。さらに、実施例では、材料モデルの温度と、上記式(1)とを用いて、シリカとカップリング剤との反応量に相当する等価反応量ERUが計算された。共通仕様は、次のとおりである。
可塑性材料:未加硫のゴム(天然ゴム)
カップリング剤:TESPT
材料モデルの空間モデルへの充填率:70%
単位時間:1.973×10-3
計算する実時間:20秒
活性化エネルギーE:47kJ/mol
基準温度T0:383K
図13は、比較例の材料モデルの温度と時間との関係を示すグラフである。比較例では、材料モデルの温度を、回転数毎に計算することができたが、シリカとカップリング剤との反応状態を評価することができなかった。
図14は、実施例の材料モデルの等価反応量ERUと時間との関係を示すグラフである。実施例では、等価反応量ERUにより、シリカとカップリング剤との反応状態を、回転数毎に評価することができた。さらに、実施例では、計算された等価反応量ERUが、予め定められた値E'に到達するまでの混練時間を、回転数毎に計算して比較することができた。この例では、回転数50rpmでt1秒、回転数40rpmでt2秒、及び、回転数30rpmでt3秒となっており、回転数が大きくなるほど、混練時間を短縮できた。これらの実施例の計算結果は、可塑性材料を実際に混練したときのシリカとカップリング剤との反応量と同一の傾向を示している。したがって、実施例では、シリカとカップリング剤との反応量を擬似的に計算できた。
S2 材料モデルを入力する工程
S5 シミュレーション工程

Claims (7)

  1. 混練空間内に配された未加硫のゴム又は樹脂を含む可塑性材料をロータを用いて混練するときの前記可塑性材料の状態を、コンピュータを用いて解析するための方法であって、
    前記可塑性材料は、ポリマー、シリカ及びカップリング剤が配合されたものであり、
    前記方法は、
    前記コンピュータに、前記混練空間及び前記ロータを、それぞれ有限個の要素で離散化した空間モデル及びロータモデルを入力する工程と、
    前記コンピュータに、前記ポリマーを有限個の要素で離散化した材料モデルを入力する工程と、
    前記コンピュータが、前記空間モデル内に前記材料モデルを配置し、かつ、前記ロータモデルを用いて前記材料モデルを混練するときの前記材料モデルの流動状態を計算するシミュレーション工程とを含み、
    前記シミュレーション工程では、前記材料モデルの温度と、下記式(1)とを用いて、前記シリカと前記カップリング剤との反応量に相当する等価反応量ERUを計算する工程を含む、
    可塑性材料の解析方法。
    Figure 0007298250000004
    ここで、符号は以下のとおりである。
    E:活性化エネルギー(kJ)
    R:気体定数
    T:材料モデルの温度(K)
    0:基準温度(K)
    t:反応時間(秒)
  2. 前記等価反応量ERUを時系列で計算する工程と、前記計算された等価反応量ERUが予め定められた値に到達するまでの前記反応時間tを、前記等価反応量ERUが前記値に到達した混練時間として計算する工程とを含む、請求項1記載の可塑性材料の解析方法。
  3. 前記材料モデルは、前記シリカ及び前記カップリング剤を有限個の要素でモデル化したシリカモデル及びカップリング剤モデルを含まない、請求項1又は2記載の可塑性材料の解析方法。
  4. 前記等価反応量ERUを計算する工程に先立ち、分子軌道法に基づいて、前記活性化エネルギーEを計算する工程をさらに含む、請求項1ないし3のいずれかに記載の可塑性材料の解析方法。
  5. 前記等価反応量ERUを計算する工程は、前記材料モデルの温度Tとして、前記材料モデルを構成する全ての前記要素の温度の平均値を計算する工程を含む、請求項1ないし4のいずれかに記載の可塑性材料の解析方法。
  6. 前記等価反応量ERUを計算する工程は、前記基準温度T0として、前記シリカと前記カップリング剤との反応が開始する温度に設定する工程を含む、請求項1ないし5のいずれかに記載の可塑性材料の解析方法。
  7. 請求項1ないし6のいずれかに記載の前記解析方法で計算された前記等価反応量ERUに基づいて、前記シリカと前記カップリング剤との反応が良好であると評価された前記可塑性材料を製造する工程を含む、
    可塑性材料の製造方法。
JP2019073703A 2019-04-08 2019-04-08 可塑性材料の解析方法及び可塑性材料の製造方法 Active JP7298250B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019073703A JP7298250B2 (ja) 2019-04-08 2019-04-08 可塑性材料の解析方法及び可塑性材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019073703A JP7298250B2 (ja) 2019-04-08 2019-04-08 可塑性材料の解析方法及び可塑性材料の製造方法

Publications (2)

Publication Number Publication Date
JP2020172036A JP2020172036A (ja) 2020-10-22
JP7298250B2 true JP7298250B2 (ja) 2023-06-27

Family

ID=72830671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019073703A Active JP7298250B2 (ja) 2019-04-08 2019-04-08 可塑性材料の解析方法及び可塑性材料の製造方法

Country Status (1)

Country Link
JP (1) JP7298250B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018890A (ja) 2011-07-12 2013-01-31 Toyo Tire & Rubber Co Ltd ゴム配合組成物の製造装置及び製造方法
JP2018069498A (ja) 2016-10-26 2018-05-10 住友ゴム工業株式会社 粘性流体の混練状態の解析方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824848A (ja) * 1981-11-06 1983-02-14 Sumitomo Rubber Ind Ltd 反応量測定制御方法及び装置
JPH1125063A (ja) * 1997-07-08 1999-01-29 Hitachi Ltd 化学反応解析用計算システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018890A (ja) 2011-07-12 2013-01-31 Toyo Tire & Rubber Co Ltd ゴム配合組成物の製造装置及び製造方法
JP2018069498A (ja) 2016-10-26 2018-05-10 住友ゴム工業株式会社 粘性流体の混練状態の解析方法

Also Published As

Publication number Publication date
JP2020172036A (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
JP5514244B2 (ja) 流体の混練状態のシミュレーション方法
JP5514236B2 (ja) 可塑性材料のシミュレーション方法
CN103488862B (zh) 用于模拟高粘度流体的方法
Erfanian et al. A three dimensional simulation of a rubber curing process considering variable order of reaction
EP2535828A1 (en) Method for simulating the loss tangent of rubber compound
JP6405160B2 (ja) 粘性流体の混練状態の解析方法
JP7298250B2 (ja) 可塑性材料の解析方法及び可塑性材料の製造方法
JP6733183B2 (ja) 粘性流体の混練状態の解析方法
JP6527434B2 (ja) 粘性流体の混練状態の解析方法
JP6885137B2 (ja) 粘性流体の混練状態の解析方法
JP6790721B2 (ja) 粘性流体の混練状態の解析方法
JP2022032555A (ja) 可塑性材料の混練シミュレーション方法
JP6848754B2 (ja) 可塑性材料の混練シミュレーション方法
JP6593009B2 (ja) 粘性流体の混練状態の解析方法
JP2022141407A (ja) 可塑性材料の解析方法
JP7119471B2 (ja) 流体のシミュレーション方法
Sarghini Analysis and Simulation of Pasta Dough Extrusion Process by CFD
JP2023054638A (ja) 流体シミュレーション方法
JP6950477B2 (ja) 粘弾性材料のシミュレーション方法
JP2020138448A (ja) フィラー分散状態解析方法及び混練物生成方法
JP7152289B2 (ja) シミュレーション装置、シミュレーション方法、およびプログラム
JP2022181577A (ja) 粘弾性流体の断面形状の予測方法
Kokini Computational Fluid Dynamics of Viscoelastic Flows
JP2022042169A (ja) 物理量推定装置、物理量推定方法、物理量推定プログラムおよび記録媒体
JP2023069285A (ja) タイヤのシミュレーション方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7298250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150