JP7295647B2 - ブリッジ出力回路、電源装置及び半導体装置 - Google Patents

ブリッジ出力回路、電源装置及び半導体装置 Download PDF

Info

Publication number
JP7295647B2
JP7295647B2 JP2019018917A JP2019018917A JP7295647B2 JP 7295647 B2 JP7295647 B2 JP 7295647B2 JP 2019018917 A JP2019018917 A JP 2019018917A JP 2019018917 A JP2019018917 A JP 2019018917A JP 7295647 B2 JP7295647 B2 JP 7295647B2
Authority
JP
Japan
Prior art keywords
transistor
signal
circuit
output
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019018917A
Other languages
English (en)
Other versions
JP2020127145A (ja
Inventor
陽夫 山越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2019018917A priority Critical patent/JP7295647B2/ja
Priority to US16/778,317 priority patent/US10958269B2/en
Priority to CN202010080609.XA priority patent/CN111525823B/zh
Publication of JP2020127145A publication Critical patent/JP2020127145A/ja
Application granted granted Critical
Publication of JP7295647B2 publication Critical patent/JP7295647B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/042Modifications for accelerating switching by feedback from the output circuit to the control circuit
    • H03K17/04206Modifications for accelerating switching by feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Description

本発明は、ブリッジ出力回路、電源装置及び半導体装置に関する。
図15に、ハーフブリッジ回路901を備えるブリッジ出力回路の構成を示す。ハーフブリッジ回路901は、直列接続された一対のスイッチング素子としてのトランジスタ901H及び901Lを備える。図15のブリッジ出力回路では、トランジスタ901H及び901Lを交互にオン、オフさせるが、トランジスタ901H及び901Lが同時にオン状態となるのを確実に避けるべく、それらが同時にオフとなる期間が存在し、これはデッドタイム(デッドタイム期間)と称される。
一般的には、一方のトランジスタのゲート電圧をフィードバック信号として使用し、一方のトランジスタのオフ状態が確認された後に、他方のトランジスタをターンオンさせるという方式が採用される。
特開2011-55470号公報
デッドタイムは、直列接続された一対のトランジスタの同時オンによる貫通電流の抑止のために必要ではあるが、デッドタイムの増大はブリッジ出力回路の損失又はブリッジ出力回路を含む装置の損失を増大させる。このため、貫通電流の発生を抑止しつつも、可能な限りデッドタイムを短縮した方が好ましい。
本発明は、デッドタイムの短縮に寄与するブリッジ出力回路、電源装置及び半導体装置を提供することを目的とする。
本発明に係るブリッジ出力回路は、入力信号の供給を受けて前記入力信号に応じた出力信号を出力端子から出力するブリッジ出力回路において、第1電源端子と前記出力端子との間に設けられた第1トランジスタと、前記出力端子と第2電源端子との間に設けられた第2トランジスタと、前記第1トランジスタのゲート信号である第1ゲート信号に基づき前記第1トランジスタのオン/オフ状態を検出して検出結果を示す第1検出信号を出力する第1検出回路と、前記第2トランジスタのゲート信号である第2ゲート信号に基づき前記第2トランジスタのオン/オフ状態を検出して検出結果を示す第2検出信号を出力する第2検出回路と、前記入力信号、前記第1検出信号及び前記第2検出信号に基づき、前記第1トランジスタ及び前記第2トランジスタが同時にオン状態とならないように、第1ゲート制御信号及び第2ゲート制御信号を生成するゲート制御信号生成回路と、前記第1ゲート制御信号に基づき前記第1ゲート信号を前記第1トランジスタに供給する第1ドライバ回路と、前記第2ゲート制御信号に基づき前記第2ゲート信号を前記第2トランジスタに供給する第2ドライバ回路と、を備え、前記入力信号は、前記第1トランジスタをオン状態とし且つ前記第2トランジスタをオフ状態とすべきことを指示する出力オン指令レベルと、前記第1トランジスタをオフ状態とし且つ前記第2トランジスタをオン状態とすべきことを指示する出力オフ指令レベルと、を交互にとり、前記第1トランジスタがオフ状態であって且つ前記第2トランジスタがオン状態であるときに前記入力信号にて前記出力オフ指令レベルから前記出力オン指令レベルへの切り替わりがあると、前記ゲート制御信号生成回路は、前記第2トランジスタをオフ状態とするための前記第2ゲート制御信号を生成するとともに、前記第2トランジスタをオフ状態とするための前記第2ゲート制御信号を遅延させた信号より前記第1トランジスタをオン状態とするための前記第1ゲート制御信号を生成し、前記遅延の時間である遅延量を、前記入力信号である第1遅延制御信号と、前記第2トランジスタのオン/オフ状態を示す第2遅延制御信号と、前記出力信号のレベル又は前記第1トランジスタのオン/オフ状態を示す第3遅延制御信号と、に基づいて制御することを特徴とする。
具体的には例えば、前記ゲート制御信号生成回路は、所定条件が満たされるときに前記遅延量を減少させるように構成され、前記所定条件は、前記第1遅延制御信号としての前記入力信号が前記出力オン指令レベルであり、且つ、前記第2遅延制御信号により前記第2トランジスタがオフ状態であることが示され、且つ、前記第3遅延制御信号により前記出力信号のレベルが所定レベル以下であること又は前記第1トランジスタがオフ状態であることが示されているときに、満たされると良い。
より具体的には例えば、前記ゲート制御信号生成回路は、調整用コンデンサと、前記所定条件が満たされるたびに、前記所定条件が満たされる期間において調整用電流を前記調整用コンデンサを介して流すことで前記調整用コンデンサの端子電圧を更新してゆく調整用電流出力回路と、前記第2トランジスタをオフ状態とするための前記第2ゲート制御信号を、前記調整用コンデンサの端子電圧に応じた時間だけ遅延させた信号を、前記第1トランジスタをオン状態とするための前記第1ゲート制御信号として生成する遅延回路と、を備えていると良い。
更に具体的には例えば、前記遅延回路は、遅延用コンデンサと、前記第2ゲート制御信号のレベルが前記第2トランジスタをオン状態とするためのレベルから前記第2トランジスタをオフ状態とするためのレベルに切り替わったタイミングより、所定電流と前記調整用コンデンサの端子電圧に応じた電流とを前記遅延用コンデンサに供給する回路と、を備え、前記遅延用コンデンサの端子電圧に基づき前記第1ゲート制御信号を生成すると良い。
また具体的には例えば、前記遅延回路は、前記調整用コンデンサを介して流れる前記調整用電流の累積量が増大して前記調整用コンデンサの端子電圧が所定の初期電圧から離れるにつれて前記遅延量を所定の初期遅延量から減少させると良い。
この際例えば、前記遅延量の減少を通じて前記所定条件が満たされる期間が生じなくなると前記調整用コンデンサの端子電圧が固定されて前記遅延量も固定されると良い。
また具体的には例えば、前記第1ドライバ回路は、前記第1トランジスタをオフ状態、オン状態とするための前記第1ゲート制御信号を受けて、前記第1トランジスタをオフ状態、オン状態とするための前記第1ゲート信号を前記第1トランジスタに供給し、前記第2ドライバ回路は、前記第2トランジスタをオフ状態、オン状態とするための前記第2ゲート制御信号を受けて、前記第2トランジスタをオフ状態、オン状態とするための前記第2ゲート信号を前記第2トランジスタに供給すると良い。
本発明に係る半導体装置は、前記ブリッジ出力回路を形成する半導体装置であって、前記ブリッジ出力回路は集積回路を用いて形成されることを特徴とする。
本発明に係る電源装置は、前記ブリッジ出力回路と、前記ブリッジ出力回路の出力信号であるスイッチング電圧から生成される直流出力電圧に応じた帰還電圧に基づき前記入力信号を生成する入力信号生成回路と、を備えたことを特徴とする。
本発明に係る他の半導体装置は、前記電源装置を形成する半導体装置であって、前記電源装置は集積回路を用いて形成されることを特徴とする。
本発明によれば、デッドタイムの短縮に寄与するブリッジ出力回路、電源装置及び半導体装置を提供することが可能となる。
本発明の実施形態に係るブリッジ出力回路の構成図である。 図1のブリッジ出力回路における入力信号及び出力信号の概略波形図である。 図1のゲート制御信号生成回路に設けられるデッドタイム調整回路の回路図である。 図3のデッドタイム調整回路にて利用される信号の生成ブロック及び波形を示す図である。 説明に供される2つの期間を示す図である。 ブリッジ出力回路の起動直後における、入力信号のアップエッジ周辺の信号波形図である。 ブリッジ出力回路の起動直後における各部の状態を説明するための図である。 ブリッジ出力回路が起動してから十分に時間が経過した後における、入力信号のアップエッジ周辺の信号波形図である。 ブリッジ出力回路における、入力信号のダウンエッジ周辺の信号波形図である。 本発明の第3実施例に係り、デッドタイム調整回路の変形回路図である。 本発明の第4実施例に係るスイッチング電源装置の構成図である。 本発明の第4実施例に係るスイッチング電源ICの外観図である。 本発明の第4実施例に係る複写機の外観図である。 本発明の第4実施例に係るモータドライバ装置の構成図である。 一般的なブリッジ出力回路の構成図である。
以下、本発明の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量又は部材等を参照する記号又は符号を記すことによって、該記号又は符号に対応する情報、信号、物理量又は部材等の名称を省略又は略記することがある。例えば、後述の“HG”によって参照されるハイサイドゲート信号は、ハイサイドゲート信号HGと表記されることもあるし、ゲート信号HG又は信号HGと略記されることもあるが、それらは全て同じものを指す。
図1は、本発明の実施形態に係るブリッジ出力回路BBの構成図である。ブリッジ出力回路BBは、電圧制御型のトランジスタであるハイサイドトランジスタ1H及びローサイドトランジスタ1Lと、ハイサイドドライバ回路2H及びローサイドドライバ回路2Lと、ハイサイド状態検出回路3H及びローサイド状態検出回路3Lと、ゲート制御信号生成回路4と、出力検出回路5と、入力端子6と、出力端子7と、を備える。入力端子6にはブリッジ出力回路BBの外部から矩形波状の入力信号SINが供給され、入力信号SINに応じた矩形波状のスイッチング信号(換言すればスイッチング電圧)が出力信号SOUTとして出力端子7に加わる。
図1の構成の説明に先立ち、幾つかの用語について説明を設ける。
本実施形態において、レベルとは電位のレベルを指し、任意の信号又は電圧についてハイレベルはローレベルよりも高い電位を有する。グランドは0V(ゼロボルト)の基準電位を有する導電部を指す又は基準電位そのものを指す。本実施形態において、特に基準を設けずに示される電圧は、グランドから見た電位を表す。
任意の信号又は電圧において、ローレベルからハイレベルへの切り替わりをアップエッジと称し、ローレベルからハイレベルへの切り替わりのタイミングをアップエッジタイミングと称する。同様に、任意の信号又は電圧において、ハイレベルからローレベルへの切り替わりをダウンエッジと称し、ハイレベルからローレベルへの切り替わりのタイミングをダウンエッジタイミングと称する。
トランジスタ1H及び1Lを含むFETとして構成されたトランジスタについて、オン状態とは、当該トランジスタのドレイン及びソース間が導通状態となっていることを指し、オフ状態とは、当該トランジスタのドレイン及びソース間が非導通状態(遮断状態)となっていることを指す。
トランジスタ1H及び1Lの夫々はNチャネル型のMOSFET(Metal Oxide Semiconductor Field effect transistor)として構成されており、トランジスタ1H及び1Lが直列接続されることでハーフブリッジ回路1が形成される。具体的には、トランジスタ1Hのドレインは、電源電圧Vinが印加される第1電源端子に接続されて電源電圧Vinの供給を受け、トランジスタ1Hのソースとトランジスタ1Lのドレインは出力端子7にて共通接続されている。電源電圧Vinは所定の正の直流電圧(例えば12V)である。トランジスタ1Lのソースは第2電源端子として機能するグランドに接続されている。
図1に示されるダイオード1HD及び1LDは、夫々、トランジスタ1H及び1Lの寄生ダイオードである。トランジスタ1Hのソース、ドレインに対し、夫々、ダイオード1HDのアノード、カソードが接続され、トランジスタ1Lのソース、ドレインに対し、夫々、ダイオード1LDのアノード、カソードが接続されることになる。但し、トランジスタ1H及び1Lの寄生ダイオードとは別にダイオード1HD及び1LDが設けられていても構わない。
ドライバ回路2Hは、ゲート制御信号生成回路4から供給されるハイサイドゲート制御信号HGCTLを受け、その制御信号HGCTLに応じたハイサイドゲート信号HGをトランジスタ1Hのゲートに供給することで、トランジスタ1Hをオン状態及びオフ状態の何れかとする。
ドライバ回路2Lは、ゲート制御信号生成回路4から供給されるローサイドゲート制御信号LGCTLを受け、その制御信号LGCTLに応じたローサイドゲート信号LGをトランジスタ1Lのゲートに供給することで、トランジスタ1Lをオン状態及びオフ状態の何れかとする。
ハイサイド状態検出回路3Hは、ハイサイドゲート信号HGを受け、ハイサイドゲート信号HGに基づいてトランジスタ1Hがオン状態及びオフ状態の何れの状態にあるのかを検出し、その検出果を示すハイサイドフィードバック信号HGFBを生成してゲート制御信号生成回路4に出力する。
ローサイド状態検出回路3Lは、ローサイドゲート信号LGを受け、ローサイドゲート信号LGに基づいてトランジスタ1Lがオン状態及びオフ状態の何れの状態にあるのかを検出し、その検出結果を示すローサイドフィードバック信号LGFBを生成してゲート制御信号生成回路4に出力する。
ハイサイドドライバ回路2Hは、ハイレベルのゲート制御信号HGCTLの入力を受けるとハイレベルのゲート信号HGを出力し、ローレベルのゲート制御信号HGCTLの入力を受けるとローレベルのゲート信号HGを出力する。
ゲート信号HGの電圧はトランジスタ1Hのゲート電圧である。ゲート信号HGのレベルがハイレベルであるとき、トランジスタ1Hのゲート-ソース間電圧がトランジスタ1Hの特性に応じた所定のゲート閾値電圧VTHH(ゲート遮断電圧)以上となってトランジスタ1Hがオン状態となり、ゲート信号HGのレベルがローレベルであるとき、トランジスタ1Hのゲート-ソース間電圧がゲート閾値電圧VTHH未満となってトランジスタ1Hがオフ状態となる。
ドライバ回路2Hは、電源電圧Vinよりも高い電圧値を有する上側電源電圧(例えば17V)と出力端子7の電圧値を有する下側電源電圧とに基づいて動作し、ゲート信号HGのハイレベルは上側電源電圧のレベルと一致し、ゲート信号HGのローレベルは下側電源電圧のレベル(即ち出力信号SOUTのレベル)と一致する。
ハイサイド状態検出回路3Hは、トランジスタ1Hのゲート-ソース間電圧(即ちトランジスタ1Hのソースの電位から見たゲートの電位)がゲート閾値電圧VTHH未満である場合にローレベルの信号HGFBを出力し、そうでない場合にハイレベルの信号HGFBを出力する。ローレベルの信号HGFBはトランジスタ1Hがオフ状態であることを示す信号として機能し、ハイレベルの信号HGFBはトランジスタ1Hがオフ状態ではないことを示す信号或いはトランジスタ1Hがオン状態であることを示す信号として機能する。故に、検出回路3Hは、ハイサイドゲート信号HGに基づいてトランジスタ1Hがオフ状態であるか否かを検出する回路であるとも言えるし、ハイサイドゲート信号HGに基づいてトランジスタ1Hがオン状態であるか否かを検出する回路であるとも言える。尚、検出回路3Hは、トランジスタ1Hのゲート-ソース間電圧がゲート閾値電圧VTHHよりも低い所定電圧VTHH’未満である場合にローレベルの信号HGFBを出力し、そうでない場合にハイレベルの信号HGFBを出力する回路であっても良い。
ローサイドドライバ回路2Lは、ハイレベルのゲート制御信号LGCTLの入力を受けるとハイレベルのゲート信号LGを出力し、ローレベルのゲート制御信号LGCTLの入力を受けるとローレベルのゲート信号LGを出力する。
ゲート信号LGの電圧はトランジスタ1Lのゲート電圧である。ゲート信号LGのレベルがハイレベルであるとき、トランジスタ1Lのゲート-ソース間電圧がトランジスタ1Lの特性に応じた所定のゲート閾値電圧VTHL(ゲート遮断電圧)以上となってトランジスタ1Lがオン状態となり、ゲート信号LGのレベルがローレベルであるとき、トランジスタ1Lのゲート-ソース間電圧がゲート閾値電圧VTHL未満となってトランジスタ1Lがオフ状態となる。
ドライバ回路2Lは、所定の正の内部電源電圧(例えば5V)とグランドの電圧とに基づいて動作し、ゲート信号LGのハイレベルは制御電源電圧のレベルと一致し、ゲート信号LGのローレベルはグランドの電位と一致する。
ローサイド状態検出回路3Lは、トランジスタ1Lのゲート-ソース間電圧(即ちトランジスタ1Lのソースの電位から見たゲートの電位)がゲート閾値電圧VTHL未満である場合にローレベルの信号LGFBを出力し、そうでない場合にハイレベルの信号LGFBを出力する。ローレベルの信号LGFBはトランジスタ1Lがオフ状態であることを示す信号として機能し、ハイレベルの信号LGFBはトランジスタ1Lがオフ状態ではないことを示す信号或いはトランジスタ1Lがオン状態であることを示す信号として機能する。故に、検出回路3Lは、ローサイドゲート信号LGに基づいてトランジスタ1Lがオフ状態であるか否かを検出する回路であるとも言えるし、ローサイドゲート信号LGに基づいてトランジスタ1Lがオン状態であるか否かを検出する回路であるとも言える。尚、検出回路3Lは、トランジスタ1Lのゲート-ソース間電圧がゲート閾値電圧VTHLよりも低い所定電圧VTHL’未満である場合にローレベルの信号LGFBを出力し、そうでない場合にハイレベルの信号LGFBを出力する回路であっても良い。
ゲート制御信号生成回路4に対しては、入力端子6に供給される入力信号SINと、回路3H及び3Lからの信号HGFB及びLGFBと、出力検出回路5からの信号SOUT_Lと、が入力される。
ゲート制御信号生成回路4は、入力端子6に供給される、トランジスタ1H及び1Lの何れをオン状態とすべきかを指示する入力信号SINに基づき、ゲート制御信号HGCTL及びLGCTLを生成及び出力する。ハイレベルの入力信号SINは、トランジスタ1Hをオン状態とし且つトランジスタ1Lをオフ状態とすべきことを指示する信号として機能し、ローレベルの入力信号SINは、トランジスタ1Hをオフ状態とし且つトランジスタ1Lをオン状態とすべきことを指示する信号として機能する。故に、ゲート制御信号生成回路4は、基本的に、入力信号SINがハイレベルであるときにはハイレベルのゲート制御信号HGCTLをドライバ回路2Hに出力すると共にローレベルのゲート制御信号LGCTLをドライバ回路2Lに出力することでトランジスタ1Hをオン状態且つトランジスタ1Lをオフ状態とし、逆に、入力信号SINがローレベルであるときにはローレベルのゲート制御信号HGCTLをドライバ回路2Hに出力すると共にハイレベルのゲート制御信号LGCTLをドライバ回路2Lに出力することでトランジスタ1Hをオフ状態且つトランジスタ1Lをオン状態とする。
但し、ゲート制御信号生成回路4は、フィードバック信号HGFB及びLGFBを参照することで、トランジスタ1H及び1Lが同時にオンとなることを確実に防止するべく、デッドタイム期間を設定する。デッドタイム期間ではトランジスタ1H及び1Lが同時にオフ状態となる。更に、回路4においては、出力検出回路5からの信号SOUT_Lをも利用することでデッドタイム期間をなるだけ短くする措置がとられるが、その詳細については後述される。
トランジスタ1H及び1Lから成るハーフブリッジ回路1において、トランジスタ1Hがオン状態であって且つトランジスタ1Lがオフ状態である状態を出力オン状態と称すると共に出力オン状態となっている期間を出力オン期間と称し、これに類似して、トランジスタ1Hがオフ状態であって且つトランジスタ1Lがオン状態である状態を出力オフ状態と称すると共に出力オフ状態となっている期間を出力オフ期間と称する。出力オフ期間と出力オン期間との間にデッドタイム期間が挿入される。
出力オン状態において出力端子7における出力信号SOUTは電源電圧Vinと実質的に同じ又は概ね同じ電位を有するハイレベルとなり、出力オフ状態において出力端子7における出力信号SOUTはグランドと実質的に同じ又は概ね同じ電位を有するローレベルとなる。
図2に示す如く、入力信号SINはローレベルとハイレベルを交互にとる矩形波状の信号であるため、出力信号SOUTも、入力信号SINのレベルに応じてローレベルとハイレベルを交互にとる矩形波状の信号となる。
出力検出回路5は、出力信号SOUTのレベルを検出して、その検出結果を示す出力検出信号SOUT_Lを生成及び出力する。具体的には例えば、出力検出回路5は、出力信号SOUTのレベルを所定の出力判定レベルと比較し、出力信号SOUTのレベルが出力判定レベル以下であるときにハイレベルの出力検出信号SOUT_Lを出力し、そうでないとき、ローレベルの出力検出信号SOUT_Lを出力する。出力オン状態において出力検出信号SOUT_Lがローレベルとなるように且つ出力オフ状態において出力検出信号SOUT_Lがハイレベルとなるように、出力判定レベルは、電源電圧Vinよりも低い所定の正の電圧値(例えば1V)を有する。
ローレベルの出力検出信号SOUT_Lはハーフブリッジ回路1が出力オン状態にあることを示す信号として機能し、ハイレベルの出力検出信号SOUT_Lはハーフブリッジ回路1が出力オフ状態にあることを示す信号として機能する。故に、出力検出回路5は、ハーフブリッジ回路1が出力オン状態にあるか否かを検出する回路であるとも言えるし、ハーフブリッジ回路1が出力オフ状態にあるか否かを検出する回路であるとも言える。
上述の内容を基本とするブリッジ出力回路BBに関する詳細な構成例、動作例、応用例及び変形例を、以下の第1~第5実施例の中で説明する。特に記述無き限り且つ矛盾無き限り、本実施形態において上述した事項が後述の第1~第5実施例に適用され、第1~第5実施例において上述の内容と矛盾する事項については、第1~第5実施例での記載が優先される。また矛盾無き限り、以下に述べる第1~第5実施例の内、任意の実施例に記載した事項を、他の任意の実施例に適用することもできる(即ち第1~第5実施例の内の任意の2以上の実施例を組み合わせることも可能である)。
[第1実施例]
第1実施例を説明する。図3は、ゲート制御信号生成回路4に含められるデッドタイム調整回路100の回路図である。デッドタイム調整回路100は、調整用電流出力回路110と、遅延回路120と、コンデンサC1と、トランジスタ150と、を備える。調整用電流出力回路110は符号111~114によって参照される各構成要素から成る。遅延回路120は、符号131~138によって参照される各構成要素から成る充電電流供給回路130と、インバータ回路141及び142から成る出力回路140と、コンデンサC2を備える。後述の充放電制御信号生成回路160(図4(a)参照)も充電電流供給回路130の構成要素に含まれる。
トランジスタ131、135及び150はNチャネル型のMOSFETとして構成されており、トランジスタ111、132、133及び134はPチャネル型のMOSFETとして構成されている。
デッドタイム調整回路100の各構成要素の接続関係を説明する。インバータ回路114に信号LGFBが入力されることで信号LGFBの反転信号(論理反転信号)が生成される。NAND回路113は、第1~第3入力端子を備えた3入力の否定論理積回路であり、NAND回路113の第1入力端子には信号SINが入力され、NAND回路113の第2入力端子にはインバータ回路114を通じて信号LGFBの反転信号が入力され、NAND回路113の第3入力端子には信号SOUT_Lが入力される。NAND回路113の出力端子はトランジスタ111のゲートに接続される。
トランジスタ111のソースは抵抗112を介して内部電源電圧Vregが印加される端子に接続され、トランジスタ111のドレインは、コンデンサC1の一端とトランジスタ131のゲートとが共通接続されたノードND1に接続されている。コンデンサC1の他端はグランドに接続されている。内部電源電圧Vregは所定の正の直流電圧(例えば5V)である。内部電源電圧Vregは、例えば、ブリッジ出力回路BBに設けられた又はブリッジ出力回路BBを内包する装置に設けられた内部電源電圧生成回路(不図示)において入力電圧Vinに基づき生成される。また、トランジスタ150のドレインはノードND1に接続され、トランジスタ150のソースはグランドに接続され、トランジスタ150のゲートにはリセット信号RSTが入力される。
トランジスタ132及び133の各ソースには内部電源電圧Vregが印加され、トランジスタ132のゲート及びドレインとトランジスタ133のゲートは共通接続される。トランジスタ131及び132のドレイン同士は共通接続され、トランジスタ131のソースは抵抗136を介してグランドに接続される。トランジスタ133のドレインはノードND2においてコンデンサC2の一端と接続され、コンデンサC2の他端はグランドに接続されている。
トランジスタ134のソースには内部電源電圧Vregが印加され、トランジスタ134のドレインは抵抗138を介してノードND2に接続されている。ノードND2はトランジスタ135のドレインにも接続されており、トランジスタ135のソースはグランドに接続されている。インバータ回路137の入力端子には充放電制御信号CHCが入力され、インバータ回路137の出力端子はトランジスタ134及び135の各ゲートに接続される。また、ノードND2はインバータ回路141の入力端子に接続され、インバータ回路141の出力端子はインバータ回路142の入力端子に接続される。インバータ回路142の出力信号が信号HGCTLとなる。
デッドタイム調整回路100の動作及び機能について説明する。尚、ゲート制御信号生成回路4は、ブリッジ出力回路Bの起動時など、必要なタイミングにおいてリセット処理を行うことができる。リセット処理では、ハイレベルのリセット信号RSTがトランジスタ150のゲートに供給され、これによってコンデンサC1の両端子間がトランジスタ150を介して短絡されることでコンデンサC1の端子電圧(即ちコンデンサC1の両端子間電圧)が0Vとなる。リセット処理が一定時間だけ行われた後には、ローレベルのリセット信号RSTがトランジスタ150のゲートに供給され続ける。以下では、特に記述無き限り、ローレベルのリセット信号RSTがトランジスタ150のゲートに供給され続けているものとする。
調整用電流出力回路110において、NAND回路113は、自身の第1~第3入力端子への入力信号が全てハイレベルであるときに限ってローレベルの信号をトランジスタ111のゲートに供給してトランジスタ111をオン状態とするよう動作する。NAND回路113の第1~第3入力端子への入力信号の中に1つでもローレベルの信号が含まれていると、NAND回路113からハイレベルの信号がトランジスタ111のゲートに供給されてトランジスタ111はオフ状態とされる。故に、調整用電流出力回路110は、所定条件JJが満たされる期間において調整用電流をコンデンサC1に供給する回路であると言え、所定条件JJは、信号SINがハイレベルであって且つ信号LGFBがローレベルであって且つ信号SOUT_Lがハイレベルであるときに満たされる。調整用電流は所定条件JJが満たされるたびにコンデンサC1に供給される。図3の回路では、所定条件JJが満たされるときに限り、トランジスタ111がオン状態となって、内部電源電圧Vregが加わる端子から抵抗112及びトランジスタ111を介して調整用電流がコンデンサC1に供給され、コンデンサC1の端子電圧(即ち両端子間電圧)が上昇する。但し、当然であるが、コンデンサC1の端子電圧の上昇は内部電源電圧Vregまでに制限され、コンデンサC1の端子電圧が内部電源電圧Vregを超えることは無い。
トランジスタ131のゲートにはコンデンサC1の端子電圧が供給される。コンデンサC1の端子電圧がトランジスタ131のゲート閾値電圧(ゲート遮断電圧)を超えると、コンデンサC1の端子電圧とトランジスタ131のゲート閾値電圧と抵抗136の抵抗値とで定まるドレイン電流がトランジスタ131に流れる。トランジスタ131のドレイン電流は、コンデンサC1の端子電圧の増大に伴って増大する。トランジスタ132及び133にてカレントミラー回路が形成されているため、トランジスタ131のドレイン電流に比例する電流IPLUSがトランジスタ133のドレイン電流として流れる。故に、コンデンサC1の端子電圧が増大すればするほど、トランジスタ131のドレイン電流の増大を通じて電流IPLUSも増大することになる。但し、図3の回路構成から当然に理解されるように、ノードND2の電圧が内部電源電圧Vregに達している状況において電流IPLUSは流れない。
インバータ回路137に入力される充放電制御信号CHCは、図4(a)の充放電制御信号生成回路160により、信号LGCTL及びSINに基づいて生成される。図4(b)に信号LGCTL及びSINと信号CHCとの関係を示す。信号SINはローレベルとハイレベルを交互にとり、これに連動して信号LGCTLはハイレベルとローレベルを交互にとる。信号LGCTLがハイレベル且つ信号SINがローレベルである状態を起点にして考えると、まず、信号SINにアップエッジが生じ、信号SINのアップエッジを受けて回路4は信号LGCTLをハイレベルからローレベルに切り替える。その後、信号SINのダウンエッジが生じ、信号SINのダウンエッジを受けて回路4は信号LGCTLをローレベルからハイレベルに切り替える。回路160は、信号LGCTLのダウンエッジを受けて信号CHCをローレベルからハイレベルに切り替え、その後、信号SINのダウンエッジを受けて信号CHCをハイレベルからローレベルに切り替える論理回路である。これが満たされる限り、回路160の具体的構成は任意であって良い。
信号CHCがローレベルであるとき、インバータ回路137から実質的に内部電源電圧Vregの電位を一致するハイレベルの信号がトランジスタ134及び135の各ゲートに供給されてトランジスタ134がオフ状態且つトランジスタ135がオン状態となる。故に、信号CHCがローレベルであるときには、コンデンサC2の両端子間がトランジスタ135を通じて短絡されてノードND2の電圧が0Vとなる。
その後、信号CHCがハイレベルとなると、インバータ回路137から実質的に0Vのローレベルの信号がトランジスタ134及び135の各ゲートに供給されてトランジスタ134がオン状態且つトランジスタ135がオフ状態となる。そうすると、内部電源電圧Vregが加わる端子からトランジスタ134及び抵抗138を介しノードND2に向けて電流Iが流れる。電流Iの値は、内部電源電圧Vreg及びノードND2の電圧間の差と、抵抗138の抵抗値と、で定まる。
信号CHCがハイレベルとなっている期間を“C2充電期間”と称する(図4(b)参照)。C2充電期間では、電流IとコンデンサC1の端子電圧に応じた電流IPLUSとがコンデンサC2に供給されてコンデンサC2が充電されてゆく。但し、図3の回路構成から当然に理解されるように、ノードND2の電圧が内部電源電圧Vregに達している状況において電流I及びIPLUSは流れないし、コンデンサC1の端子電圧によっては電流IPLUSはゼロである。信号CHCがハイレベルとなった後、信号CHCがローレベルとなると、上述の如くトランジスタ135がオン状態となるので、コンデンサC2の蓄積電荷がトランジスタ135を介して放電されて、ノードND2の電圧が速やかに0Vとなる。
出力回路140は、コンデンサC2の端子電圧(即ちコンデンサC2の両端子間電圧)と一致するノードND2での電圧が所定の判定電圧以上であるときにハイレベルの信号HGCTLを出力し、そうでないときにローレベルの信号HGCTLを出力する回路である。ここにおける判定電圧は、内部電源電圧Vregよりも低い正の電圧であり、内部電源電圧Vregが5Vであるならば、例えば2Vである。図3では、出力回路140が2つのインバータ回路141及び142にて構成されているが、単一のバッファ回路にて出力回路140が構成されていても良い。
図5を参照し、ブリッジ出力回路BBの起動直後の期間Pと、ブリッジ出力回路BBが起動してから十分に時間が経過した後の期間Pと、に注目する。期間Pの直前においてリセット信号RSTはハイレベルとなっていてコンデンサC1の端子電圧は0Vとなっており、期間Pの開始と同時にリセット信号RSTにダウンエッジが生じて、以後、リセット信号RSTはローレベルに維持されるものとする。期間Pの開始時点から交互にローレベル及びハイレベルをとる入力信号SINが継続的にブリッジ出力回路BBの入力端子6に供給される。
図6は、期間Pにおける信号SINのアップエッジに応答した各信号波形を表している。タイミングtA1~tA6は期間Pに属するタイミングであって、時間が経過するにつれて、タイミングtA1、tA2、tA3、tA4、tA5、tA6が、この順番で訪れるものとする。タイミングtA1の直前において、信号SINはローレベルであり、ローレベルの信号SINに応じ、信号HGCTL、HG及びHGFBがローレベルであり、信号LGCTL、LG及びLGFBがハイレベルであり、出力信号SOUTがローレベル(0V)であり且つ、信号SOUT_Lがハイレベルとなっている。
タイミングtA1において、入力信号SINがローレベルからハイレベルに切り替わる。ゲート制御信号生成回路4は、入力信号SINのローレベルからハイレベルへの切り替わりを受けると、トランジスタ1Lをターンオフすべく、遅滞なくタイミングtA2にて制御信号LGCTLをハイレベルからローレベルに切り替える。ドライバ回路2Lは、制御信号LGCTLのハイレベルからローレベルへの切り替わりを受けると、遅滞なくタイミングtA3にてゲート信号LGをハイレベルからローレベルに切り替える。状態検出回路3Lは、ゲート信号LGのハイレベルからローレベルへの切り替わりを受けると、遅滞なくタイミングtA4にてフィードバック信号LGFBをハイレベルからローレベルに切り替える。
一方、タイミングtA2を起点としたデッドタイム調整回路100の動作によりタイミングtA5において、制御信号HGCTLがローレベルからハイレベルに切り替わる(タイミングtA2を起点とした回路100の動作については後述)。ドライバ回路2Hは、制御信号HGCTLのローレベルからハイレベルへの切り替わりを受けると、遅滞なくタイミングtA6にてゲート信号HGをローレベルからハイレベルに切り替える。状態検出回路3Hは、ゲート信号HGのローレベルからハイレベルへの切り替わりを受けると、遅滞なくフィードバック信号HGFBをローレベルからハイレベルに切り替える。
タイミングtA6において、トランジスタ1Hのターンオンにより出力信号SOUTがローレベルからハイレベル(電源電圧Vinのレベル)へと切り替わる。これを受けて、出力検出信号SOUT_Lがハイレベルからローレベルに切り替わる。
タイミングtA3及びtA6間の期間は、トランジスタ1L及び1Hが同時にオンとなるデッドタイム期間に相当する。図6では、出力端子7から流れ出す電流の供給を受ける誘導性負荷が出力端子7に接続されていることが想定されている。故に、タイミングtA3及びtA6間のデッドタイム期間において、寄生ダイオード1LDを介して電流が誘導性負荷に流れるため、信号SOUTの電圧が寄生ダイオード1LDの順方向電圧分だけ0Vよりも低くなっている。
図7を参照し、期間Pにおける信号SINのアップエッジに応答したデッドタイム調整回路100の動作を説明する。期間Pにおいて、信号SINのアップエッジタイミング周辺のタイミングtA4及びtA6間では(図6参照)、信号SINがハイレベル、信号LGFBがローレベル且つ信号SOUT_Lがハイレベルであるため所定条件JJが成立し、所定条件JJが成立している期間だけトランジスタ111がオンとなって、内部電源電圧Vregが加わる端子から抵抗112及びトランジスタ111を介して調整用電流がコンデンサC1に供給される。但し、リセット処理が解除された直後の期間Pでは、コンデンサC1の端子電圧は実質的に0Vであり又は0Vに近く、結果、トランジスタ131に電流が流れないので電流IPLUSもゼロである。
一方、タイミングtA2と一致する信号LGCTLのダウンエッジタイミングから、電流IがコンデンサC2に向けて供給されて(図3及び図4(b)参照)、ノードND2の電圧が上昇してゆく。そして、タイミングtA5においてノードND2の電圧が出力回路140における判定電圧(例えば2V)に達して、信号HGCTLにアップエッジが生じる(図6参照)。
このように、期間Pでは、タイミングtA2から、抵抗138の抵抗値とコンデンサC2の静電容量値とで定まる一定の初期時間が経過した時点で、信号HGCTLにアップエッジが生じる。期間Pにおいてトランジスタ1H及び1Lの同時オンが確実に回避されるように、上記の初期時間が設計される。ここでは、制御信号HGCTLのアップエッジタイミングtA5が信号LGFBのダウンエッジタイミングtA4よりも後となっているが、タイミングtA5はタイミングtA4と同時又はタイミングtA4前で有り得て良い。但し、タイミングtA5はタイミングtA3より後であることが好ましい。
期間P内及び期間P後、信号SINのアップエッジが生じるたびに所定条件JJが成立している期間にて調整用電流がコンデンサC1に供給され、コンデンサC1の端子電圧が徐々に上昇してゆく。コンデンサC1の端子電圧の増大につれて電流IPLUSが増大し、C2充電期間(図4(b))におけるコンデンサC2の端子電圧の上昇速度が増大してゆく。そうすると、信号LGCTLのダウンエッジタイミング(C2充電期間の開始タイミング)から信号HGCTLのアップエッジタイミングまでの時間が短縮され、この短縮は、所定条件JJが成立することがなくなるまで継続する。期間Pは、所定条件JJが成立することがなくなるまで当該短縮が行われた後の期間である。
図8は、期間Pにおける信号SINのアップエッジに応答した各信号波形を表している。タイミングtB1~tB4は期間Pに属するタイミングであって、時間が経過するにつれて、タイミングtB1、tB2、tB3、tB4が、この順番で訪れるものとする。タイミングtB1の直前において、信号SINはローレベルであり、ローレベルの信号SINに応じ、信号HGCTL、HG及びHGFBがローレベルであり、信号LGCTL、LG及びLGFBがハイレベルであり、出力信号SOUTがローレベル(0V)であり且つ、信号SOUT_Lがハイレベルとなっている。
タイミングtB1において、入力信号SINがローレベルからハイレベルに切り替わる。ゲート制御信号生成回路4は、入力信号SINのローレベルからハイレベルへの切り替わりを受けると、トランジスタ1Lをターンオフすべく、遅滞なくタイミングtB2にて制御信号LGCTLをハイレベルからローレベルに切り替える。ドライバ回路2Lは、制御信号LGCTLのハイレベルからローレベルへの切り替わりを受けると、遅滞なくタイミングtB3にてゲート信号LGをハイレベルからローレベルに切り替える。状態検出回路3Lは、ゲート信号LGのハイレベルからローレベルへの切り替わりを受けると、遅滞なくタイミングtB4にてフィードバック信号LGFBをハイレベルからローレベルに切り替える。
一方、タイミングtB2を起点としたデッドタイム調整回路100の動作によりタイミングtB2よりも後において、制御信号HGCTLがローレベルからハイレベルに切り替わる。ドライバ回路2Hは、制御信号HGCTLのローレベルからハイレベルへの切り替わりを受けると、遅滞なくゲート信号HGをローレベルからハイレベルに切り替え、状態検出回路3Hは、ゲート信号HGのローレベルからハイレベルへの切り替わりを受けると、遅滞なくフィードバック信号HGFBをローレベルからハイレベルに切り替える。
ゲート信号HGのアップエッジに伴うトランジスタ1Hのターンオンにより出力信号SOUTがローレベルからハイレベル(電源電圧Vinのレベル)へと切り替わる。これを受けて、出力検出信号SOUT_Lがハイレベルからローレベルに切り替わる。
期間Pでは、所定条件JJが成立することが無くなる程度に、コンデンサC1の端子電圧が或る電圧値にて安定しており、電流IPLUSも或る電流値にて安定している。タイミングtB2と一致する信号LGCTLのダウンエッジタイミングから、電流Iと電流IPLUSの合成電流がコンデンサC2に向けて供給されて(図3及び図4(b)参照)、ノードND2の電圧が期間Pよりも相対的に大きな速度で上昇してゆく。そして、ノードND2の電圧が出力回路140における判定電圧(例えば2V)に達すると信号HGCTLにアップエッジが生じる。
所定条JJが成立する期間、即ち、信号SINがハイレベルであって且つ信号LGFBがローレベルであって且つ信号SOUT_Lがハイレベルである期間は、信号SINによりトランジスタ1Hをオン状態にすべきことが指示されていて且つ信号LGFBによりトランジスタ1Lがオフ状態であることが示されているのに、出力信号SOUTがローレベルとなっている(即ちトランジスタ1Hがオン状態となっていない)期間に相当する。当該期間はデッドタイムに属するため削減されるべきである。但し、所定条件JJが成立する期間の長さは、回路素子の定数ばらつきや周辺温度に依存して変化し、一様ではない。図3のデッドタイム調整回路100は、所定条件JJが成立する期間が時間の経過と共に短縮されて最終的には消滅するように動作するため、回路素子の定数ばらつきや周辺温度に関係なく、デッドタイムを適正な形で短縮することが可能となる。デッドタイム(デッドタイム期間)の短縮により、デッドタイムに関わる損失の低減が図られる。
図9は、信号SINのダウンエッジに応答した各信号波形を表している。信号SINのダウンエッジに応答した動作は、期間Pと期間Pとで共通である。信号SINのダウンエッジタイミングの直前において、信号SINはハイレベルであって、ハイレベルの信号SINに応じ、信号HGCTL、HG及びHGFBはハイレベルであり且つ信号LGCTL、LG及びLGFBはローレベルであり且つ出力信号SOUTはハイレベルである。
ゲート制御信号生成回路4は、入力信号SINのハイレベルからローレベルへの切り替わりを受けると、トランジスタ1Hをターンオフすべく、遅滞なく制御信号HGCTLをハイレベルからローレベルに切り替える。ドライバ回路2Hは、制御信号HGCTLのハイレベルからローレベルへの切り替わりを受けると、遅滞なくゲート信号HGをハイレベルからローレベルに切り替える。状態検出回路3Hは、ゲート信号HGのハイレベルからローレベルへの切り替わりを受けると、遅滞なくフィードバック信号HGFBをハイレベルからローレベルに切り替える。
ゲート制御信号生成回路4は、フィードバック信号HGFBのハイレベルからローレベルへの切り替わりを受けると、トランジスタ1Lをターンオンすべく、遅滞なく制御信号LGCTLをローレベルからハイレベルに切り替える。ドライバ回路2Lは、制御信号LGCTLのローレベルからハイレベルへの切り替わりを受けると、遅滞なくゲート信号LGをローレベルからハイレベルに切り替える。状態検出回路3Lは、ゲート信号LGのローレベルからハイレベルへの切り替わりを受けると、遅滞なくフィードバック信号LGFBをローレベルからハイレベルに切り替える。
[第2実施例]
第2実施例を説明する。第2実施例では、上述の構成及び動作に関する幾つかの変形技術の説明を交えつつ、第1実施例のブリッジ出力回路BBについて考察する。
入力信号SINにおいて、ハイレベルは、トランジスタ1Hをオン状態とし且つトランジスタ1Lをオフ状態とすべきことを指示するレベル(出力オン指令レベル)に相当し、ローレベルは、トランジスタ1Hをオフ状態とし且つトランジスタ1Lをオン状態とすべきことを指示するレベル(出力オフ指令レベル)に相当する。
図3のデッドタイム調整回路100は、ゲート制御信号LGCTLのダウンエッジのタイミング(tA2、tB2)から、様々な要素にて定まる遅延量分の時間だけ遅れたタイミングにおいてゲート制御信号HGCTLのアップエッジを生じさせる。つまり、第1実施例では、トランジスタ1Hがオフ状態であって且つトランジスタ1Lがオン状態であるときに、入力信号SINがローレベルからハイレベルに切り替わると、ゲート制御信号生成回路4は、トランジスタ1Lをオフ状態とするためのローレベルのゲート制御信号LGCTLを生成及び出力すると共に、ローレベルのゲート制御信号LGCTLを遅延させた信号より、トランジスタ1Hをオン状態とするためのハイレベルのゲート制御信号HGCTLを生成及び出力する。
ゲート制御信号LGCTLのダウンエッジタイミングとゲート制御信号HGCTLのアップエッジタイミング間の差に相当する遅延量を、デッドタイム調整回路100は、第1~第3遅延制御信号に基づいて制御している。図3の構成において、第1~第3遅延制御信号は、夫々、調整用電流出力回路110に入力される信号SIN、LGFB及びSOUT_Lである。
図3のデッドタイム調整回路100は、所定条件JJが満たされるときに遅延量を減少させるよう構成されている。より具体的には、調整用電流出力回路110は、所定条件JJが満たされるたびに、所定条件JJが満たされる期間において調整用電流をトランジスタ111を通じてコンデンサC1に供給することでコンデンサC1の端子電圧を更新していく。上記遅延量は電流IPLUSを決定するコンデンサC1の端子電圧に依存する。従って、遅延回路120は、トランジスタ1Lをオフ状態とするためのローレベルのゲート制御信号LGCTLを、コンデンサC1の端子電圧に応じた時間だけ遅延させた信号を、トランジスタ1Hをオン状態とするためのハイレベルのゲート制御信号HGCTLとして生成及び出力すると言える。換言すれば、遅延回路120は、ゲート制御信号LGCTLのダウンエッジのタイミングから、コンデンサC1の端子電圧に応じた遅延量分の時間だけ遅れたタイミングにおいてゲート制御信号HGCTLのアップエッジを生じさせる。
遅延回路120において、充電電流供給回路130は、ゲート制御信号LGCTLのレベルがトランジスタ1Lをオン状態とするためのレベル(ハイレベル)からトランジスタ1Lをオフ状態とするためのレベル(ローレベル)に切り替わったタイミングより、所定電流IとコンデンサC1の端子電圧に応じた電流IPLUSとをコンデンサC2に供給する。出力回路140はコンデンサC2の端子電圧に基づきゲート制御信号HGCTLを生成及び出力する。
期間Pにおいて、コンデンサC1の端子電圧(即ち両端子間電圧)は所定の初期電圧と一致すると共に、ゲート制御信号LGCTLのダウンエッジタイミングとゲート制御信号HGCTLのアップエッジタイミング間の差に相当する遅延量は、図6のタイミングtA2及びtA5間の間隔に相当する所定の初期遅延量と一致する。但し、入力信号SINのローレベル及びハイレベル間の遷移の繰り返しの中で、コンデンサC1を介して流れる調整用電流の累積量が増大するとコンデンサC1の端子電圧が初期電圧から離れてゆき、該累積量の増大に伴ってコンデンサC1の端子電圧と初期電圧との差が増大すると遅延量が初期遅延量から減少してゆく。そして、期間Pの如く、遅延量の減少を通じて所定条件JJが満たされる期間が生じなくなると、コンデンサC1の端子電圧が固定されて遅延量も固定されることになる。
図3の構成では、初期電圧は0Vであり、調整用電流はコンデンサC1を充電させるようにコンデンサC1に流れる。但し、初期電圧は0V以外の電圧であっても良い。初期電圧が正の電圧であるとき、調整用電流がコンデンサC1の蓄積電荷を放電させる向きに流れるよう、デッドタイム調整回路100が変形されても良い。同様に考えて、ゲート制御信号LGCTLのダウンエッジタイミングにてコンデンサC2の端子電圧(即ち両端子間電圧)を正の所定電圧としておき、そのダウンエッジタイミングからコンデンサC2の蓄積電荷を放電させる向きに電流I及びIPLUSが流れるよう、デッドタイム調整回路100が変形されても良い。この場合には、コンデンサC2の端子電圧(即ち両端子間電圧)が放電に伴い低下してきて所定の判定電圧を下回ったときに、ゲート制御信号HGCTLのアップエッジを生じさせれば良い。何れにせよ、コンデンサC1を介して流れる調整用電流の累積量が増大するとコンデンサC1の端子電圧が初期電圧から離れてゆき、該累積量の増大に伴ってコンデンサC1の端子電圧と初期電圧との差が増大すると遅延量が初期遅延量から減少してゆくことに変わりは無く、遅延量の減少を通じて所定条件JJが満たされる期間が生じなくなると、コンデンサC1の端子電圧が固定されて遅延量も固定されることになる。
第2遅延制御信号は、トランジスタ1Lのオン/オフ状態を示す信号であるならば、ゲート制御信号LGFB以外であっても良い。例えば、ゲート信号LGを第2遅延制御信号として用いても構わない。この場合、図3の構成において、信号LGFBの代わりに信号LGをインバータ回路114に入力すれば良い。
第3遅延制御信号は、出力信号SOUTのレベルを示す信号であるならば、出力検出信号SOUT_L以外であっても良い。例えば、出力信号SOUTそのものを第3遅延制御信号として用いるようにしても良い。この場合、図3の構成において、出力検出信号SOUT_Lの代わりに出力信号SOUTを調整用電流出力回路110に入力し、出力信号SOUTが所定の出力判定レベル以下であるときにハイレベルをとり且つ出力信号SOUTが所定の出力判定レベルを超えるときにローレベルをとるデジタル信号を生成する回路を回路110に設けておいて、当該デジタル信号をNAND回路113の第3入力端子に入力すれば良い。NAND回路113の第3入力端子への入力信号が 出力オン状態においてローレベルとなるように且つ出力オフ状態においてハイレベルとなるように、出力判定レベルは、電源電圧Vinよりも低い所定の正の電圧値(例えば1V)を有する。信号SOUTをインバータ回路に通して得られる信号をNAND回路113の第3入力端子に入力しても良い(但し、ここにおけるインバータ回路に電圧Vin以上の耐圧を持たせておく必要がある)。
或いは、第3遅延制御信号は、トランジスタ1Hのオン/オフ状態を示す信号であっても良く、従って例えば、信号HG、HGCTL及びHGFBの何れかを第3遅延制御信号として用いるようにしても良い。この場合、図3の構成において、出力検出信号SOUT_Lの代わりに信号HG、HGCTL及びHGFBの何れかの反転信号(論理反転信号)をNAND回路113の第3入力端子に入力すれば良い。
何れせよ、第1遅延制御信号としての入力信号SINが出力オン状態とすべきことを示していて(即ち例えば入力信号SINがハイレベルであり)、且つ、第2遅延制御信号によりトランジスタ1Lがオフ状態であることが示され(即ち例えば信号LGFB又はLGがローレベルであり)、且つ、第3遅延制御信号により出力信号SOUTのレベルが所定の出力判定レベル以下であることが示されているとき(即ち例えば信号SOUT_Lがハイレベル又は信号SOUTがローレベルであるとき)又は第3遅延制御信号によりトランジスタ1Hがオフ状態であることが示されているとき(即ち例えば信号HG、HGCTL又はHGFBがローレベルであるとき)、所定条件JJが成立しているとして、上記遅延量を減少させる方向に調整用電流をコンデンサC1に流す構成が採用されれば良い。所定条JJが成立する期間は、トランジスタ1Hをオン状態にすべきことが指示されていて且つトランジスタ1Lがオフ状態であるのに、トランジスタ1Hがオン状態となっていない期間に相当し、当該期間はデッドタイムに属すると考えられるからである。
[第3実施例]
第3実施例を説明する。図3に示されるデッドタイム調整回路100は、上述の機能が満たされる限り様々に変更可能である。例として、図10に、変形されたデッドタイム調整回路100であるデッドタイム調整回路100’を示す。図3のデッドタイム調整回路100から見た図10のデッドタイム調整回路100’の相違点は以下の第1相違点及び第2相違点のみであり、その他の点に関し回路100’は回路100と同様である。第1相違点は、デッドタイム調整回路100’には演算増幅器139が追加されている点である。第2相違点は、デッドタイム調整回路100’では、調整用電流出力回路110として調整用電流出力回路110’が設けられている点である。ここでは、これらの相違点に関わる部分の説明だけを設け、同様の部分の説明を原則として省略する。尚、第1相違点及び第2相違点の内の何れか一方のみによる変形をデッドタイム調整回路100に施すようにしても良い。
第1相違点に関して説明する。デッドタイム調整回路100’において、トランジスタ111のドレインとトランジスタ150のドレインとコンデンサC1の一端とが互いに接続されるノードND1は、トランジスタ131のゲートではなく、演算増幅器139の非反転入力端子に接続される。そして、演算増幅器139の出力端子がトランジスタ131のゲートに接続され、トランジスタ131のソースと抵抗136の一端との接続ノードが演算増幅器139の反転入力端子に接続される。抵抗136の他端はグランドに接続される。
図10のデッドタイム調整回路100’においても、図3のデッドタイム調整回路100と同様に、コンデンサC1の端子電圧に応じて電流IPLUSを調整できる。つまり、デッドタイム調整回路100’では、演算増幅器139の作用によりコンデンサC1の端子電圧と抵抗136の抵抗値とで定まるドレイン電流がトランジスタ131に流れ、トランジスタ131のドレイン電流に比例する電流IPLUSがトランジスタ133のドレイン電流として流れる。
尚、図10では演算増幅器139が遅延回路120外に示されているが、デッドタイム調整回路100’において、演算増幅器139は遅延回路120内の構成要素であると考えても良いし、充電電流供給回路130内の構成要素であると考えても良い。
第2相違点に関して説明する。調整用電流出力回路110’では、図3の抵抗112の代わりに定電流源が設けられる。具体的には、図10の調整用電流出力回路110’は、符号111、113及び114~118によって参照される各構成要素から成る。トランジスタ115及び116は、トランジスタ111と同様、Pチャネル型のMOSFETとして構成されている。トランジスタ118はNチャネル型のMOSFETとして構成されている。図10の調整用電流出力回路110’におけるトランジスタ111、NAND回路113及びインバータ回路114の動作及び接続関係は、図3の調整用電流出力回路110におけるそれらと同じである。
トランジスタ111のドレインはノードND1に接続される一方で、トランジスタ111のソースはトランジスタ115のドレインに接続される。トランジスタ115及び116の各ソースは内部電源電圧Vregが印加される端子に接続される。トランジスタ115のゲートとトランジスタ116のゲート及びドレインは抵抗117の一端に共通接続され、抵抗117の他端はトランジスタ118のドレインに接続される。トランジスタ118のソースはグランドに接続される。トランジスタ118のゲートにはリセット信号RSTの反転信号が入力される。従って、上述のリセット処理が行われていないとき(即ちリセット信号RSTがローレベルであるとき)、トランジスタ118のゲートに対してハイレベルの信号が入力されることでトランジスタ118がオン状態となり、トランジスタ111もオン状態であることを条件に、抵抗117の抵抗値等に依存する定電流がトランジスタ111を通じてコンデンサC1に流れることになる。当然、トランジスタ111がオフ状態であるときには上記定電流は流れない。即ち、調整用電流出力回路110’では定電流源に対するスイッチ回路が構成されている。
[第4実施例]
第4実施例を説明する。第4実施例では、上述のブリッジ出力回路BBのスイッチング電源装置などへの適用を説明する。
図11は、第4実施例に係るスイッチング電源装置の構成図である。スイッチング電源装置は、スイッチング電源IC200と、スイッチング電源IC200に対して外付け接続される複数のディスクリート部品と、を備え、当該複数のディスクリート部品には、インダクタ231、抵抗232及び233並びにコンデンサ234が含まれる。図11のスイッチング電源装置は、所望の入力電圧Vinから所望の出力電圧Voutを生成する降圧型のスイッチング電源装置として構成されている。入力電圧Vin及び出力電圧Voutは正の直流電圧であり、出力電圧Voutは入力電圧Vinよりも低い。スイッチング電源装置の出力端子235に出力電圧Voutが現れる。ここでは、入力電圧Vinが12Vであるとする。抵抗232及び233の抵抗値を調整することで12V未満の所望の正の電圧値(例えば1Vや5V)を出力電圧Voutに持たせることができる。
スイッチング電源IC200は、図12に示すような、半導体集積回路を、樹脂にて構成された筐体(パッケージ)内に封入することで形成された電子部品である。IC200の筐体に複数の外部端子が露出して設けられており、その複数の外部端子には、図11に示される端子221~224が含まれる。これら以外の端子も、上記複数の外部端子に含まれうる。尚、図12に示されるIC200の外部端子の数は例示に過ぎない。
スイッチング電源IC200には、ブリッジ出力回路BBと出力制御回路210が設けられる。入力電圧Vinは端子221に供給される。端子222は図1の端子7に相当し、従って端子222よりブリッジ出力回路BBの出力信号SOUTが出力される。端子223はグランドに接続される。端子222はインダクタ231の一端に接続され、インダクタ231の他端は出力端子235に接続される。出力端子235は、コンデンサ234を介してグランドに接続され、一方で、抵抗232の一端に接続される。抵抗232の他端は抵抗233を介してグランドに接続される。抵抗232及び233間の接続ノードには出力電圧Voutの分圧が生じ、その分圧が帰還電圧Vfbとして端子224に加えられる。出力制御回路210は、入力電圧Vinに基づきIC200内部で生成された所定の基準電圧Vrefと帰還電圧Vfbとに基づいて、出力電圧Voutが目標出力電圧にて安定化されるようにブリッジ出力回路BBに対する入力信号SINを生成及び出力する(故に、出力制御回路210を入力信号生成回路と称することができる)。目標出力電圧は、基準電圧Vrefと抵抗232及び233による分圧比(出力電圧Voutの分圧比)とで定まる電圧であって、出力電圧Voutが安定化されるべき電圧である。トランジスタ1Hがオン状態となる出力オン期間とトランジスタ1Lがオン状態となる出力オフ期間が交互に訪れることで、出力信号SOUTとして矩形波状のスイッチング電圧が端子222に生じ、当該スイッチング電圧がインダクタ231及びコンデンサ234により整流及び平滑化されて出力電圧Voutが得られる。
出力電圧Voutを目標出力電圧にて安定化させるための制御方式として、任意の制御方式が採用されても良い。例えば、出力制御回路210においてコンスタントオンタイム制御方式が採用されても良い。コンスタントオンタイム制御方式自体は周知であるため、詳細な説明を省略するが、この場合、出力制御回路210は、信号SINにおける2つの隣接するアップエッジタイミング間において、信号SINが固定時間だけハイレベルとなるような信号SINを生成することになる。結果、固定長の出力オン期間と可変長の出力オフ期間とが交互に切り替わるようインダクタ231に電流を流れて、入力電圧Vinから出力電圧Voutが生成される。
また、出力制御回路210において電圧モード制御方式や電流モード制御法方式が採用されても良い。即ち例えば、基準電圧Vref及び帰還電圧Vfb間の差に応じた電圧を三角波と比較することでパルス幅変調信号を生成し、該パルス幅変調信号を信号SINとしても良い。
ブリッジ出力回路BBを備えたスイッチング電源装置は任意の種類の電気機器に搭載可能であり、当該電気機器内の任意の機能回路の駆動電圧として出力電圧Voutを利用できる。図13に、ブリッジ出力回路BBを備えたスイッチング電源装置が搭載される電気機器の例として、複写機の外観図を示す。この他、例えば、ブリッジ出力回路BBを備えたスイッチング電源装置が搭載される電気機器は、携帯電話機(スマートホンに分類される携帯電話機を含む)、携帯情報端末、タブレット型パーソナルコンピュータ、テレビ受像機、プロジェクタ、デジタルカメラ、MP3プレイヤー、歩数計、又は、Bluetooth(登録商標)ヘッドセットであって良い。
また、ブリッジ出力回路BBの出力信号SOUTを、直接、任意の負荷に供給するようにしても良い。即ち例えば、図14に示す如く、出力信号SOUTが加わる端子7を負荷としてのモータMTに接続し、出力信号SOUTとしてのスイッチング電圧をモータMTに供給することも可能である。この場合、出力制御回路310とブリッジ出力回路BBとでモータドライバ装置を構成することができる。出力制御回路310は、例えば、モータMTにて発生されるべきトルクを指定するトルク指令値Tに基づき、指定されたトルクがモータMTにて生じるようブリッジ出力回路BBに対する入力信号SINを生成すれば良い(故に、出力制御回路310を入力信号生成回路と称することができる)。トルク指令値Tは、モータドライバ装置内で生成されても良いし、図示されない外部機器からモータドライバ装置に供給されても良い。
[第5実施例]
第5実施例を説明する。
図11のスイッチング電源IC200の各構成要素は半導体集積回路の形態で形成され、当該半導体集積回路を、樹脂にて構成された筐体(パッケージ)内に封入することで半導体装置が構成される。但し、複数のディスクリート部品を用いてスイッチング電源IC200内の回路と同等の回路を構成するようにしても良い。
また、ブリッジ出力回路BB単体を半導体集積回路の形態で形成し、当該半導体集積回路を、樹脂にて構成された筐体(パッケージ)内に封入することで半導体装置を構成するようにいても良い。
トランジスタ1H及び1Lから成るハーフブリッジ回路1において、トランジスタ1Hのドレインは第1電源端子に接続され、トランジススタ1Lのソースは第2電源端子に接続されることになるが、第1電源端子及び第2電源端子は固定された電位を有する端子であれば任意である。但し、第1電源端子における電位は第2電源端子における電位よりも高い。
論理値を示す任意の信号又は電圧に関して、上述の主旨を損なわない形で、それらのハイレベルとローレベルの関係を逆にしても良い(即ち論理値“1”にハイレベルを割り当てるのかローレベルを割り当てるのかは任意であって良い)。
トランジスタ1HをPチャネル型のMOSFETにて構成するようにしても良く、この場合には、上述のスイッチング制御が実現されるように、トランジスタ1Hのゲートに供給される電圧レベルが上述のものから変形される。トランジスタ1LをPチャネル型のMOSFETにすることも可能ではある。
トランジスタ1H及び1Lは電圧制御型のトランジスタであれば任意の種類のトランジスタであって良い。図3のトランジスタ131についても同様である。
それら以外の上述の各トランジスタは、任意の種類のトランジスタであって良い。例えば、MOSFETとして上述されたトランジスタを、接合型FET、IGBT(Insulated Gate Bipolar Transistor)又はバイポーラトランジスタに置き換えることも可能である。任意のトランジスタは第1電極、第2電極及び制御電極を有する。FETにおいては、第1及び第2電極の内の一方がドレインで他方がソースであり且つ制御電極がゲートである。IGBTにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がゲートである。IGBTに属さないバイポーラトランジスタにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がベースである。
<<本発明の考察>>
上述の実施形態にて具体化された本発明について考察する。
本発明の一側面に係るブリッジ出力回路Wは、入力信号(SIN)の供給を受けて前記入力信号に応じた出力信号(SOUT)を出力端子から出力するブリッジ出力回路であって、第1電源端子と前記出力端子との間に設けられた第1トランジスタ(1H)と、前記出力端子と第2電源端子との間に設けられた第2トランジスタ(1L)と、前記第1トランジスタのゲート信号である第1ゲート信号(HG)に基づき前記第1トランジスタのオン/オフ状態を検出して検出結果を示す第1検出信号(HGFB)を出力する第1検出回路(3H)と、前記第2トランジスタのゲート信号である第2ゲート信号(LG)に基づき前記第2トランジスタのオン/オフ状態を検出して検出結果を示す第2検出信号(LGFB)を出力する第2検出回路(3L)と、前記入力信号、前記第1検出信号及び前記第2検出信号に基づき、前記第1トランジスタ及び前記第2トランジスタが同時にオン状態とならないように、第1ゲート制御信号(HGCTL)及び第2ゲート制御信号(LGCTL)を生成するゲート制御信号生成回路(4)と、前記第1ゲート制御信号に基づき前記第1ゲート信号を前記第1トランジスタに供給する第1ドライバ回路(2H)と、前記第2ゲート制御信号に基づき前記第2ゲート信号を前記第2トランジスタに供給する第2ドライバ回路(2L)と、を備え、前記入力信号は、前記第1トランジスタをオン状態とし且つ前記第2トランジスタをオフ状態とすべきことを指示する出力オン指令レベルと、前記第1トランジスタをオフ状態とし且つ前記第2トランジスタをオン状態とすべきことを指示する出力オフ指令レベルと、を交互にとり、前記第1トランジスタがオフ状態であって且つ前記第2トランジスタがオン状態であるときに前記入力信号にて前記出力オフ指令レベルから前記出力オン指令レベルへの切り替わりがあると、前記ゲート制御信号生成回路は、前記第2トランジスタをオフ状態とするための前記第2ゲート制御信号(図6及び図8においてローレベルのLGCTL)を生成するとともに、前記第2トランジスタをオフ状態とするための前記第2ゲート制御信号を遅延させた信号より前記第1トランジスタをオン状態とするための前記第1ゲート制御信号(図6及び図8においてハイレベルのHGCTL)を生成し、前記遅延の時間である遅延量を、前記入力信号である第1遅延制御信号(図3においてSIN)と、前記第2トランジスタのオン/オフ状態を示す第2遅延制御信号(図3においてLGFB)と、前記出力信号のレベル又は前記第1トランジスタのオン/オフ状態を示す第3遅延制御信号(図3においてSOUT_L)と、に基づいて制御することを特徴とする。
前記第2トランジスタをオフ状態とするための前記第2ゲート制御信号を遅延させた信号より前記第1トランジスタをオン状態とするための前記第1ゲート制御信号を生成するようにし、この際、第1~第3遅延制御信号に基づいて遅延量を制御することで、デッドタイムを適正に短縮することが可能となる。
具体的には例えば、ブリッジ出力回路Wにおいて、前記ゲート制御信号生成回路は、所定条件(JJ)が満たされるときに前記遅延量を減少させるように構成され、前記所定条件は、前記第1遅延制御信号としての前記入力信号が前記出力オン指令レベルであり、且つ、前記第2遅延制御信号により前記第2トランジスタがオフ状態であることが示され、且つ、前記第3遅延制御信号により前記出力信号のレベルが所定レベル以下であること又は前記第1トランジスタがオフ状態であることが示されているときに、満たされると良い。
所定条が満たされる期間は、第1トランジスタをオン状態にすべきことが指示されていて且つ第2トランジスタがオフ状態であるのに、第1トランジスタがオン状態となっていない期間に相当し、当該期間はデッドタイムに属すると考えられる。所定条件の充足により当該期間の存在が示されるときに遅延量を減少させることでデッドタイムの短縮が図られる。
より具体的には例えば、ブリッジ出力回路Wにおいて、前記ゲート制御信号生成回路(4)は、調整用コンデンサ(C1)と、前記所定条件が満たされるたびに、前記所定条件が満たされる期間において調整用電流を前記調整用コンデンサを介して流すことで前記調整用コンデンサの端子電圧を更新してゆく調整用電流出力回路(110)と、前記第2トランジスタをオフ状態とするための前記第2ゲート制御信号を、前記調整用コンデンサの端子電圧に応じた時間だけ遅延させた信号を、前記第1トランジスタをオン状態とするための前記第1ゲート制御信号として生成する遅延回路(120)と、を備えていると良い。
更に具体的には例えば、ブリッジ出力回路Wにおいて、前記遅延回路(120)は、遅延用コンデンサ(C2)と、前記第2ゲート制御信号のレベルが前記第2トランジスタをオン状態とするためのレベルから前記第2トランジスタをオフ状態とするためのレベルに切り替わったタイミングより、所定電流(I)と前記調整用コンデンサの端子電圧に応じた電流(IPLUS)とを前記遅延用コンデンサに供給する回路(130)と、を備え、前記遅延用コンデンサの端子電圧に基づき前記第1ゲート制御信号(HGCTL)を生成すると良い。
本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。
BB ブリッジ出力回路
IN、SOUT 入力信号、出力信号
1H、1L ハイサイドトランジスタ、ローサイドトランジスタ
2H、2L ハイサイドドライバ回路、ローサイドドライバ回路
3H、3L ハイサイド状態検出回路、ローサイド状態検出回路
4 ゲート制御信号生成回路
5 出力検出回路
6 入力端子
7 出力端子
100 デッドタイム調整回路
110 調整用電流出力回路
120 遅延回路
130 充電電流供給回路
140 出力回路
C1 コンデンサ(調整用コンデンサ)
C2 コンデンサ(遅延用コンデンサ)

Claims (9)

  1. 入力信号の供給を受けて前記入力信号に応じた出力信号を出力端子から出力するブリッジ出力回路において、
    第1電源端子と前記出力端子との間に設けられた第1トランジスタと、
    前記出力端子と第2電源端子との間に設けられた第2トランジスタと、
    前記第1トランジスタのゲート信号である第1ゲート信号に基づき前記第1トランジスタのオン/オフ状態を検出して検出結果を示す第1検出信号を出力する第1検出回路と、
    前記第2トランジスタのゲート信号である第2ゲート信号に基づき前記第2トランジスタのオン/オフ状態を検出して検出結果を示す第2検出信号を出力する第2検出回路と、
    前記入力信号、前記第1検出信号及び前記第2検出信号に基づき、前記第1トランジスタ及び前記第2トランジスタが同時にオン状態とならないように、第1ゲート制御信号及び第2ゲート制御信号を生成するゲート制御信号生成回路と、
    前記第1ゲート制御信号に基づき前記第1ゲート信号を前記第1トランジスタに供給する第1ドライバ回路と、
    前記第2ゲート制御信号に基づき前記第2ゲート信号を前記第2トランジスタに供給する第2ドライバ回路と、を備え、
    前記入力信号は、前記第1トランジスタをオン状態とし且つ前記第2トランジスタをオフ状態とすべきことを指示する出力オン指令レベルと、前記第1トランジスタをオフ状態とし且つ前記第2トランジスタをオン状態とすべきことを指示する出力オフ指令レベルと、を交互にとり、
    前記第1トランジスタがオフ状態であって且つ前記第2トランジスタがオン状態であるときに前記入力信号にて前記出力オフ指令レベルから前記出力オン指令レベルへの切り替わりがあると、
    前記ゲート制御信号生成回路は、前記第2トランジスタをオフ状態とするための前記第2ゲート制御信号を生成するとともに、前記第2トランジスタをオフ状態とするための前記第2ゲート制御信号を遅延させた信号より前記第1トランジスタをオン状態とするための前記第1ゲート制御信号を生成し、
    前記遅延の時間である遅延量を、
    前記入力信号である第1遅延制御信号と、
    前記第2トランジスタのオン/オフ状態を示す第2遅延制御信号と、
    前記出力信号のレベル又は前記第1トランジスタのオン/オフ状態を示す第3遅延制御信号と、に基づいて制御し、
    前記ゲート制御信号生成回路は、所定条件が満たされるときに前記遅延量を減少させるように構成され、
    前記所定条件は、前記第1遅延制御信号としての前記入力信号が前記出力オン指令レベルであり、且つ、前記第2遅延制御信号により前記第2トランジスタがオフ状態であることが示され、且つ、前記第3遅延制御信号により前記出力信号のレベルが所定レベル以下であること又は前記第1トランジスタがオフ状態であることが示されているときに、満たされる
    ブリッジ出力回路。
  2. 前記ゲート制御信号生成回路は、
    調整用コンデンサと、
    前記所定条件が満たされるたびに、前記所定条件が満たされる期間において調整用電流を前記調整用コンデンサを介して流すことで前記調整用コンデンサの端子電圧を更新してゆく調整用電流出力回路と、
    前記第2トランジスタをオフ状態とするための前記第2ゲート制御信号を、前記調整用コンデンサの端子電圧に応じた時間だけ遅延させた信号を、前記第1トランジスタをオン状態とするための前記第1ゲート制御信号として生成する遅延回路と、を備える
    、請求項1に記載のブリッジ出力回路。
  3. 前記遅延回路は、
    遅延用コンデンサと、
    前記第2ゲート制御信号のレベルが前記第2トランジスタをオン状態とするためのレベルから前記第2トランジスタをオフ状態とするためのレベルに切り替わったタイミングより、所定電流と前記調整用コンデンサの端子電圧に応じた電流とを前記遅延用コンデンサに供給する回路と、を備え、
    前記遅延用コンデンサの端子電圧に基づき前記第1ゲート制御信号を生成する
    、請求項2に記載のブリッジ出力回路。
  4. 前記遅延回路は、前記調整用コンデンサを介して流れる前記調整用電流の累積量が増大して前記調整用コンデンサの端子電圧が所定の初期電圧から離れるにつれて前記遅延量を所定の初期遅延量から減少させる
    、請求項2又は3に記載のブリッジ出力回路。
  5. 前記遅延量の減少を通じて前記所定条件が満たされる期間が生じなくなると前記調整用コンデンサの端子電圧が固定されて前記遅延量も固定される
    、請求項4に記載のブリッジ出力回路。
  6. 前記第1ドライバ回路は、前記第1トランジスタをオフ状態、オン状態とするための前記第1ゲート制御信号を受けて、前記第1トランジスタをオフ状態、オン状態とするための前記第1ゲート信号を前記第1トランジスタに供給し、
    前記第2ドライバ回路は、前記第2トランジスタをオフ状態、オン状態とするための前記第2ゲート制御信号を受けて、前記第2トランジスタをオフ状態、オン状態とするための前記第2ゲート信号を前記第2トランジスタに供給する
    、請求項1~5の何れかに記載のブリッジ出力回路。
  7. 請求項1~6の何れかに記載のブリッジ出力回路を形成する半導体装置であって、
    前記ブリッジ出力回路は集積回路を用いて形成される
    、半導体装置。
  8. 請求項1~6の何れかに記載のブリッジ出力回路と、
    前記ブリッジ出力回路の出力信号であるスイッチング電圧から生成される直流出力電圧に応じた帰還電圧に基づき前記入力信号を生成する入力信号生成回路と、を備えた
    、電源装置。
  9. 請求項8に記載の電源装置を形成する半導体装置であって、
    前記電源装置は集積回路を用いて形成される
    、半導体装置。
JP2019018917A 2019-02-05 2019-02-05 ブリッジ出力回路、電源装置及び半導体装置 Active JP7295647B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019018917A JP7295647B2 (ja) 2019-02-05 2019-02-05 ブリッジ出力回路、電源装置及び半導体装置
US16/778,317 US10958269B2 (en) 2019-02-05 2020-01-31 Bridge output circuit, power device and semiconductor device
CN202010080609.XA CN111525823B (zh) 2019-02-05 2020-02-05 桥式输出电路、电源装置及半导体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019018917A JP7295647B2 (ja) 2019-02-05 2019-02-05 ブリッジ出力回路、電源装置及び半導体装置

Publications (2)

Publication Number Publication Date
JP2020127145A JP2020127145A (ja) 2020-08-20
JP7295647B2 true JP7295647B2 (ja) 2023-06-21

Family

ID=71837952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019018917A Active JP7295647B2 (ja) 2019-02-05 2019-02-05 ブリッジ出力回路、電源装置及び半導体装置

Country Status (3)

Country Link
US (1) US10958269B2 (ja)
JP (1) JP7295647B2 (ja)
CN (1) CN111525823B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042393A1 (ja) * 2021-09-17 2023-03-23 Tdk株式会社 スイッチング制御装置、スイッチング電源装置および電力供給システム
JP2023067001A (ja) * 2021-10-29 2023-05-16 株式会社デンソー スイッチの駆動装置
WO2023181633A1 (ja) * 2022-03-23 2023-09-28 ローム株式会社 スイッチング装置及びdc/dcコンバータ
CN117439398B (zh) * 2023-12-20 2024-03-01 成都市易冲半导体有限公司 死区时间优化电路和方法及其控制电路、推挽输出电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060017466A1 (en) 2004-07-21 2006-01-26 Bryson Stephen W High voltage integrated circuit driver with a high voltage PMOS bootstrap diode emulator
JP2007221922A (ja) 2006-02-16 2007-08-30 Toshiba Corp 半導体装置
JP2009254148A (ja) 2008-04-07 2009-10-29 Toshiba Corp 半導体集積装置
JP2018007307A (ja) 2016-06-27 2018-01-11 株式会社デンソー 同期整流方式のスイッチングレギュレータ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408150A (en) * 1992-06-04 1995-04-18 Linear Technology Corporation Circuit for driving two power mosfets in a half-bridge configuration
US5365118A (en) * 1992-06-04 1994-11-15 Linear Technology Corp. Circuit for driving two power mosfets in a half-bridge configuration
JP4497991B2 (ja) * 2004-04-14 2010-07-07 株式会社ルネサステクノロジ 電源ドライバ回路及びスイッチング電源装置
JP5031499B2 (ja) * 2007-09-13 2012-09-19 株式会社リコー 出力回路
JP5537270B2 (ja) 2009-07-13 2014-07-02 ローム株式会社 出力回路
JP2011244191A (ja) * 2010-05-18 2011-12-01 Panasonic Corp 駆動装置
JP5961042B2 (ja) * 2012-05-28 2016-08-02 ローム株式会社 ブリッジ出力回路およびそれを用いたモータ駆動装置、電子機器
JP5786890B2 (ja) * 2013-04-26 2015-09-30 トヨタ自動車株式会社 駆動装置及びスイッチング回路の制御方法
US9590616B2 (en) * 2013-07-10 2017-03-07 Denso Corporation Drive control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060017466A1 (en) 2004-07-21 2006-01-26 Bryson Stephen W High voltage integrated circuit driver with a high voltage PMOS bootstrap diode emulator
JP2007221922A (ja) 2006-02-16 2007-08-30 Toshiba Corp 半導体装置
JP2009254148A (ja) 2008-04-07 2009-10-29 Toshiba Corp 半導体集積装置
JP2018007307A (ja) 2016-06-27 2018-01-11 株式会社デンソー 同期整流方式のスイッチングレギュレータ

Also Published As

Publication number Publication date
CN111525823A (zh) 2020-08-11
CN111525823B (zh) 2023-11-17
JP2020127145A (ja) 2020-08-20
US10958269B2 (en) 2021-03-23
US20200252062A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP7295647B2 (ja) ブリッジ出力回路、電源装置及び半導体装置
US8120338B2 (en) Dropper-type regulator
US8040162B2 (en) Switch matrix drive circuit for a power element
US8508196B2 (en) Switching regulator
JP4497991B2 (ja) 電源ドライバ回路及びスイッチング電源装置
JP3840241B2 (ja) 電力用mosfetのゲート駆動回路及びゲート駆動方法
US20120154014A1 (en) Level shift circuit and switching power supply device
KR20090039638A (ko) Dc/dc 변환기
US20220302842A1 (en) Buck dc/dc converter, controller thereof and controlling method thereof, and electronic device
CN111740600B (zh) 基于电压的开关时间自动校正
US20110057633A1 (en) Load driving circuit
CN109314464B (zh) 基于电压的开关时间自动校正
US20220407406A1 (en) High speed driver for high frequency dcdc converter
US11601122B2 (en) Circuit for switching power supply and switching power supply device
US7633276B2 (en) Switching control in DC-DC-converters
US11223272B2 (en) Uninterrupted current sense
JP2023166269A (ja) 電源用半導体装置及びスイッチトキャパシタコンバータ
JP7177714B2 (ja) 電源装置
WO2021033527A1 (ja) 出力装置
JP2018207276A (ja) ゲート駆動回路
CN114204926A (zh) 半导体装置
JP2018196201A (ja) Dc/dcコンバータ
JP7157657B2 (ja) スイッチング電源装置及び半導体装置
WO2023032413A1 (ja) 半導体装置
WO2023181633A1 (ja) スイッチング装置及びdc/dcコンバータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230609

R150 Certificate of patent or registration of utility model

Ref document number: 7295647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150