WO2023181633A1 - スイッチング装置及びdc/dcコンバータ - Google Patents

スイッチング装置及びdc/dcコンバータ Download PDF

Info

Publication number
WO2023181633A1
WO2023181633A1 PCT/JP2023/002642 JP2023002642W WO2023181633A1 WO 2023181633 A1 WO2023181633 A1 WO 2023181633A1 JP 2023002642 W JP2023002642 W JP 2023002642W WO 2023181633 A1 WO2023181633 A1 WO 2023181633A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
signal
circuit
level
gate
Prior art date
Application number
PCT/JP2023/002642
Other languages
English (en)
French (fr)
Inventor
修 柳田
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023181633A1 publication Critical patent/WO2023181633A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Definitions

  • the present disclosure relates to a switching device and a DC/DC converter.
  • An object of the present disclosure is to provide a switching device and a DC/DC converter that contribute to optimization of dead time.
  • the switching device includes a first transistor, a second transistor disposed on a lower potential side than the first transistor and connected in series with the first transistor, and a second transistor that is connected to the first transistor based on a drive control signal.
  • the first transistor is controlled to turn on or off by supplying a first gate signal to the transistor, and the second transistor is turned on or off by supplying a second gate signal to the second transistor.
  • a switching control circuit configured to control off, the switching control circuit configured to turn off the drive control signal after a first delay time in response to a change in level of the drive control signal from a first level to a second level.
  • the switching control circuit detects a first timing at which the first transistor is turned on based on the first gate signal, and the switching control circuit detects a first timing at which the first transistor is turned on based on the first gate signal.
  • a second detection circuit that detects a second timing at which the second transistor is turned off based on the second gate signal; and a reference state in which the first delay time is longer than the second delay time.
  • FIG. 1 is a schematic configuration diagram of a switching IC according to an embodiment of the present disclosure.
  • FIG. 2 is an external perspective view of a switching IC according to an embodiment of the present disclosure.
  • FIG. 3 is a relationship diagram between a drive control signal, the state of each transistor, and a plurality of signals according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic configuration diagram of a DC/DC converter according to an embodiment of the present disclosure.
  • FIG. 5 is a configuration diagram of a switching control circuit according to Example EX1_A of the present disclosure.
  • FIG. 6 is an explanatory diagram of an operation related to an up edge (rising edge) of a drive control signal according to the embodiment EX1_A of the present disclosure.
  • FIG. 1 is a schematic configuration diagram of a switching IC according to an embodiment of the present disclosure.
  • FIG. 2 is an external perspective view of a switching IC according to an embodiment of the present disclosure.
  • FIG. 3 is a relationship diagram between a drive control
  • FIG. 7 is a timing chart relating to an up edge (rising edge) of a drive control signal according to the embodiment EX1_A of the present disclosure.
  • FIG. 8 is an explanatory diagram of the operation related to the down edge (falling edge) of the drive control signal according to the embodiment EX1_A of the present disclosure.
  • FIG. 9 is a timing chart related to the down edge (falling edge) of the drive control signal according to the embodiment EX1_A of the present disclosure.
  • FIG. 10 is an internal configuration diagram of each delay setting circuit according to Example EX1_A of the present disclosure.
  • FIG. 11 is a configuration diagram of a switching control circuit according to Example EX1_B of the present disclosure.
  • FIG. 12 is a diagram illustrating several signals and voltage waveforms at the time of heavy load, according to Example EX1_B of the present disclosure.
  • FIG. 13 is a diagram illustrating some signals and voltage waveforms at a light load according to the embodiment EX1_B of the present disclosure.
  • FIG. 14 is a diagram showing several signals and voltage waveforms when a virtual operation is performed at a light load according to the embodiment EX1_B of the present disclosure.
  • FIG. 15 is an explanatory diagram of a method for adjusting the added delay time according to the embodiment EX1_B of the present disclosure.
  • FIG. 16 is a configuration diagram of a switching control circuit according to Example EX2_A of the present disclosure.
  • FIG. 17 is an explanatory diagram of an operation related to an up edge (rising edge) of a drive control signal according to the embodiment EX2_A of the present disclosure.
  • FIG. 18 is a timing chart relating to an up edge (rising edge) of a drive control signal according to the embodiment EX2_A of the present disclosure.
  • FIG. 19 is an explanatory diagram of the operation related to the down edge (falling edge) of the drive control signal according to the embodiment EX2_A of the present disclosure.
  • FIG. 20 is a timing chart related to the down edge (falling edge) of the drive control signal according to the embodiment EX2_A of the present disclosure.
  • FIG. 21 is a configuration diagram of a switching control circuit according to Example EX2_B of the present disclosure.
  • FIG. 22 is an explanatory diagram of a method for adjusting the added delay time according to Example EX2_B of the present disclosure.
  • IC is an abbreviation for integrated circuit.
  • the ground refers to a reference conductive portion having a reference potential of 0V (zero volts), or refers to the 0V potential itself.
  • the reference conductive part may be formed using a conductor such as metal.
  • the potential of 0V is sometimes referred to as a ground potential.
  • voltages shown without particular reference represent potentials as seen from ground.
  • Level refers to the level of potential, and for any signal or voltage of interest, a high level has a higher potential than a low level.
  • a signal or voltage being at a high level strictly means that the level of the signal or voltage is at a high level, and a signal or voltage being at a low level does not strictly mean that the level of the signal or voltage is at a high level. It means that the signal or voltage level is at low level.
  • the level of a signal may be expressed as a signal level, and the level of a voltage may be expressed as a voltage level.
  • any signal of interest when the signal is at a high level, the inverted signal of the signal takes a low level, and when the signal is at a low level, the inverted signal of the signal takes a high level.
  • the period during which the level of the signal is high level is referred to as a high level period
  • the period during which the level of the signal is at low level is referred to as a low level period. The same applies to any voltage that takes a high or low voltage level.
  • any signal or voltage of interest switching from a low level to a high level is called an up edge, and the timing of switching from a low level to a high level is called an up edge timing. You can read up edge as rising edge.
  • switching from a high level to a low level is called a down edge, and the timing of switching from a high level to a low level is called a down edge timing. You can read down edge as falling edge.
  • an on state refers to a state in which the drain and source of the transistor are electrically connected
  • an off state refers to a state in which the drain and source of the transistor are electrically connected. Refers to the state where there is no conduction between the two (blocked state).
  • the MOSFET is understood to be an enhancement type MOSFET unless otherwise specified.
  • MOSFET is an abbreviation for "metal-oxide-semiconductor field-effect transistor.”
  • the back gate of any MOSFET may be considered to be short-circuited to the source.
  • MOSFET The electrical characteristics of MOSFET include gate threshold voltage.
  • the gate potential of the transistor is higher than the source potential of the transistor, and the magnitude of the gate-source voltage of the transistor is equal to the gate threshold voltage of the transistor. When this is the case, the transistor is turned on, and when it is not, the transistor is turned off.
  • the gate-source voltage represents the gate potential viewed from the source potential.
  • the gate potential of the transistor is lower than the source potential of the transistor, and the magnitude of the gate-source voltage of the transistor is equal to the gate threshold voltage of the transistor. When this is the case, the transistor is turned on, and when it is not, the transistor is turned off.
  • the gate threshold voltage is the gate threshold voltage required to flow a predetermined amount of drain current when a predetermined voltage is applied between the drain and source of the MOSFET under a predetermined ambient temperature environment. – defined as the source-to-source voltage.
  • IGBT insulated gate bipolar transistors
  • the on state and off state of any transistor may be simply expressed as on and off.
  • switching from an off state to an on state is expressed as turn-on, and switching from an on state to an off state is expressed as turn-off.
  • Connections between multiple parts forming a circuit such as arbitrary circuit elements, wiring, nodes, etc., may be understood to refer to electrical connections, unless otherwise specified.
  • FIG. 1 is a schematic overall configuration diagram of a switching IC 1 according to an embodiment of the present disclosure.
  • FIG. 2 is an external perspective view of the switching IC 1.
  • the switching IC 1 includes a semiconductor chip having a semiconductor integrated circuit formed on a semiconductor substrate, a housing (package) that houses the semiconductor chip, and a plurality of external terminals exposed to the outside of the switching IC 1 from the housing. It is an electronic component equipped with The switching IC 1 is formed by enclosing a semiconductor chip in a housing (package) made of resin. Note that the number of external terminals of the switching IC 1 and the type of housing of the switching IC 1 shown in FIG. 2 are merely examples, and they can be designed arbitrarily.
  • Terminals T VIN , T LX , and T GND are shown in FIG. 1 as some of the plurality of external terminals provided in the switching IC 1 .
  • Terminal T VIN is a power input terminal that receives input voltage V VIN .
  • the input voltage V VIN is input from a voltage source (not shown) provided outside the switching IC 1 to the power input terminal T VIN .
  • the input voltage V VIN has a predetermined positive DC voltage value.
  • Each circuit in the switching IC 1 (including the switching control circuit 10) is driven based on the input voltage V VIN or a power supply voltage different from the input voltage V VIN .
  • the terminal T GND is a ground terminal and is connected to the ground having a potential of 0V.
  • a sense resistor (not shown) may be inserted between the terminal T GND and ground.
  • Terminal T LX is a switch terminal. The switch terminal T LX will be described later.
  • the switching IC 1 includes transistors MH and ML, which are switching elements, and a switching control circuit 10.
  • Transistors MH and ML are connected in series with each other.
  • a series circuit of transistors MH and ML is provided between terminals T VIN and T GND .
  • the transistor MH is a high-side transistor (high-side switching element) arranged at a higher potential than the transistor ML
  • the transistor ML is a low-side transistor (low-side switching element) arranged at a lower potential than the transistor MH.
  • Transistors MH and ML each have a first electrode, a second electrode, and a control electrode.
  • the control electrode is the gate.
  • the transistor MH or ML is a FET (field effect transistor)
  • one of the first electrode and the second electrode is the drain and the other is the source.
  • the FET is turned on or off depending on the gate-source voltage (gate potential seen from the source potential).
  • the transistor MH or ML is an IGBT
  • one of the first electrode and the second electrode is the collector and the other is the emitter.
  • the IGBT is turned on or off depending on the gate-emitter voltage (gate potential seen from the emitter potential).
  • one electrode is connected to the power input terminal T VIN to receive the input voltage V IN , and the other electrode is connected to the switch terminal T LX .
  • One of the first and second electrodes of the transistor ML is connected to the switch terminal T LX , and the other electrode is connected to the ground terminal T GND .
  • the voltage at the switch terminal T LX is represented by the symbol "V LX ".
  • a drive control signal CNT is input to the switching control circuit 10.
  • the drive control signal CNT is a binary signal that takes either a high level or a low level. The level of the drive control signal CNT repeatedly changes between high level and low level.
  • the drive control signal CNT may be generated within the switching IC1.
  • the drive control signal CNT may be generated by an external circuit (not shown) provided outside the switching IC 1. In this case, an external terminal for receiving the drive control signal CNT is provided in the switching IC1, and the drive control signal CNT is supplied from the external circuit to the switching IC1.
  • the switching control circuit 10 generates gate signals GH and GL based on the drive control signal CNT, and supplies the gate signal GH to the gate of the transistor MH while supplying the gate signal GL to the gate of the transistor ML.
  • Transistor MH is turned on or off according to gate signal GH
  • transistor ML is turned on or off according to gate signal GL. That is, the switching control circuit 10 controls turning on or off of the transistor MH by supplying a gate signal GH to the gate of the transistor MH, and controls turning on or off of the transistor ML by supplying a gate signal GL to the gate of the transistor ML. control.
  • a half-bridge circuit is configured by transistors MH and ML.
  • a state in which the transistor MH is on and the transistor ML is off is referred to as an output high state, and a period in which the output high state is achieved is referred to as an output high period.
  • a state in which the transistor MH is in an off state and the transistor ML is in an on state is referred to as an output low state, and a period in which the output low state is realized is referred to as an output low period.
  • a state in which both transistors MH and ML are off is referred to as a double-off state, and a period in which both transistors are off is referred to as a double-off period.
  • the transistors MH and ML are never turned on at the same time.
  • the states of the half bridge circuits (MH, ML) alternately switch between an output high state and an output low state.
  • the output normally transitions from the output high period to the output low period after passing through both off periods, and when switching from the output low state to the output high state, normally the output low period transitions to the output low period. After a period of time, a transition occurs to an output high period. Both off periods themselves or the time length of both off periods is called dead time.
  • FIG. 3 schematically shows the relationship between the level of the drive control signal CNT and the states of the transistors MH and ML. Assume that the level of the drive control signal CNT changes from the first level to the second level at time t1, and then the level of the drive control signal CNT changes from the second level to the first level at time t2.
  • the switching control circuit 10 turns on the transistor MH after a delay time Td_Hon in response to a change in the level of the drive control signal CNT from the first level to the second level, and changes the level of the drive control signal CNT from the first level to the second level.
  • the transistor ML is turned off after a delay time Td_Loff. That is, the switching control circuit 10 generates the gate signal GH so that the transistor MH is switched from the off state to the on state at a time after the delay time Td_Hon from the time t1, and the gate signal GH is generated so that the transistor MH is switched from the off state to the on state at a time after the delay time Td_Hon from the time t1.
  • a gate signal GL is generated so that ML switches from an on state to an off state.
  • the switching control circuit 10 turns off the transistor MH after a delay time Td_Hoff in response to the change in the level of the drive control signal CNT from the second level to the first level, and changes the level of the drive control signal CNT from the second level to the first level.
  • the transistor ML is turned on after a delay time Td_Lon. That is, the switching control circuit 10 generates the gate signal GH so that the transistor MH is switched from the on state to the off state at a time after the delay time Td_Hoff from the time t2, and the gate signal GH is generated so that the transistor MH is switched from the on state to the off state at a time after the delay time Td_Lon from the time t2.
  • a gate signal GL is generated so that ML switches from an off state to an on state.
  • either the first level or the second level may be a high level, but in the following, it is assumed that the first level is a low level and the second level is a high level. do.
  • the switching control circuit 10 is provided with circuits 11H, 11L, 12H, 12L, 21 and 22 (see FIG. 1).
  • the circuits 11H and 12H are connected to the gate of the transistor MH (in other words, connected to the wiring to which the gate signal GH is applied) to receive the gate signal GH.
  • the circuits 11L and 12L are connected to the gate of the transistor ML (in other words, connected to the wiring to which the gate signal GL is applied) to receive the gate signal GL.
  • Circuits 11H, 11L, 12H, and 12L output signals Hon, Loff, Hoff, and Lon, respectively.
  • the signals Hon, Loff, Hoff, and Lon each have a value of "0" or "1" (logical value).
  • it is assumed that in each of the signals Hon, Loff, Hoff, and Lon a logic value of "1" is associated with a high level, and a logic value of "0" is associated with a low level.
  • the circuit 11H is a high-side turn-on detection circuit, which detects the timing at which the transistor MH turns on based on the gate signal GH, and outputs a signal Hon as a binary signal indicating the detection result.
  • the circuit 11H detects that the transistor MH is switched from the off state to the on state, the circuit 11H generates an up edge in the signal Hon at the detection timing (see FIG. 3). Therefore, the up edge timing of the signal Hon represents the turn-on timing of the transistor MH (specifically, the turn-on detection timing of the transistor MH), and an up edge occurs in the signal Hon at a time after the delay time Td_Hon from time t1. Note that when the transistor MH turns off, a down edge occurs in the signal Hon.
  • the up edge timing of the signal Hon will be represented by the symbol "tHon” and may be referred to as edge timing tHon or timing tHon.
  • the circuit 11L is a low-side turn-off detection circuit, which detects the timing at which the transistor ML turns off based on the gate signal GL, and outputs a signal Loff as a binary signal indicating the detection result.
  • the circuit 11L detects that the transistor ML has switched from the on state to the off state, the circuit 11L generates an up edge in the signal Loff at the detection timing (see FIG. 3). Therefore, the up edge timing of the signal Loff represents the turn-off timing of the transistor ML (specifically, the turn-off detection timing of the transistor ML), and an up edge occurs in the signal Loff at a time after the delay time Td_Loff from time t1. Note that when the transistor ML is turned on, a down edge occurs in the signal Loff.
  • the up edge timing of the signal Loff will be represented by the symbol "tLoff" and may be referred to as edge timing tLoff or timing tLoff.
  • the circuit 12H is a high-side turn-off detection circuit, which detects the timing at which the transistor MH turns off based on the gate signal GH, and outputs a signal Hoff as a binary signal indicating the detection result.
  • the circuit 12H detects that the transistor MH has switched from the on state to the off state, the circuit 12H generates an up edge in the signal Hoff at the detection timing (see FIG. 3). Therefore, the up edge timing of the signal Hoff represents the turn-off timing of the transistor MH (specifically, the turn-off detection timing of the transistor MH), and an up edge occurs in the signal Hoff at a time after the delay time Td_Hoff from time t2. Note that when the transistor MH turns on, a down edge occurs in the signal Hoff.
  • the up edge timing of the signal Hoff will be represented by the symbol "tHoff" and may be referred to as edge timing tHoff or timing tHoff.
  • the circuit 12L is a low-side turn-on detection circuit that detects the timing at which the transistor ML turns on based on the gate signal GL, and outputs a signal Lon as a binary signal indicating the detection result.
  • the circuit 12L detects that the transistor ML has switched from the off state to the on state, the circuit 12L generates an up edge in the signal Lon at the detection timing (see FIG. 3). Therefore, the up edge timing of the signal Lon represents the turn-on timing of the transistor ML (specifically, the turn-on detection timing of the transistor ML), and an up edge occurs in the signal Lon at a time after the delay time Td_Lon from time t2. Note that when the transistor ML is turned off, a down edge occurs in the signal Lon.
  • the up edge timing of the signal Lon will be represented by the symbol "tLon” and may be referred to as edge timing tLon or timing tLon.
  • the adjustment circuit 21 can adjust at least one of the delay times Td_Hon and Td_Loff based on the signals Hon and Loff (that is, can increase or decrease at least one of the delay times Td_Hon and Td_Loff).
  • the first delay applying circuit can be inserted in a circuit that generates the gate signal GH for turning on the transistor MH in response to the up edge of the drive control signal CNT, and the first delay applying circuit can be inserted at a stage subsequent to the up edge of the drive control signal CNT.
  • the propagation to the circuit may be delayed by the first variable delay time in the first delay applying circuit.
  • the delay time Td_Hon can be increased or decreased.
  • a second delay applying circuit can be inserted in a circuit that generates a gate signal GL for turning off the transistor ML in response to an up edge of the drive control signal CNT.
  • the propagation to the subsequent circuit may be delayed by the second variable delay time in the second delay applying circuit.
  • the delay time Td_Loff can be increased or decreased.
  • the adjustment circuit 22 can adjust at least one of the delay times Td_Hoff and Td_Lon based on the signals Hoff and Lon (that is, can increase or decrease at least one of the delay times Td_Hoff and Td_Lon).
  • a third delay applying circuit can be inserted in the circuit that generates the gate signal GH for turning off the transistor MH in response to the down edge of the drive control signal CNT, and the third delay applying circuit can be inserted at a stage subsequent to the down edge of the drive control signal CNT.
  • the propagation to the circuit may be delayed by a third variable delay time in a third delay applying circuit.
  • the delay time Td_Hoff can be increased or decreased.
  • a fourth delay applying circuit can be inserted in a circuit that generates a gate signal GL for turning on the transistor ML in response to a down edge of the drive control signal CNT.
  • the propagation to the subsequent circuit may be delayed by the fourth variable delay time in the fourth delay applying circuit.
  • the delay time Td_Lon can be increased or decreased.
  • the switching IC 1 is activated by transitioning from a state in which the input voltage V IN is not supplied to the switching IC 1 to a state in which the input voltage V IN is supplied to the switching IC 1.
  • the state of the delay times Td_Hon, Td_Loff, Td_Hoff, and Td_Lon immediately after the switching IC 1 is activated is referred to as an initial delay state.
  • the switching IC 1 is configured such that the delay time Td_Hon is always longer than the delay time Td_Loff, and the delay time Td_Lon is always longer than the delay time Td_Hoff.
  • the first dead time T DEAD1 corresponds to the time from the up edge timing tLoff of the signal Loff to the up edge timing tHon of the signal Hon.
  • the time from when the transistor MH is turned off until when the transistor ML is turned on is called a second dead time, and has the symbol "T DEAD2 ".
  • the second dead time T DEAD2 corresponds to the time from the up edge timing tHoff of the signal Hoff to the up edge timing tLon of the signal Lon.
  • the adjustment circuit 21 is configured to reduce the first dead time T DEAD1 based on the difference between the up edge timing tHon of the signal Hon and the up edge timing tLoff of the signal Loff, that is, based on the difference between the edge timings tHon and tLoff. 1 dead time reduction operation can be performed. Therefore, the adjustment circuit 21 can also be referred to as a first dead time adjustment circuit.
  • the adjustment circuit 21 related to the first dead time reduction operation changes at least one of the delay times Td_Hon and Td_Loff based on the difference between the edge timings tHon and tLoff, starting from the initial delay state, thereby reducing the first dead time. Decrease time T DEAD1 .
  • the adjustment circuit 22 is configured to reduce the second dead time T DEAD2 based on the difference between the up edge timing tHoff of the signal Hoff and the up edge timing tLon of the signal Lon, that is, based on the difference between the edge timings tHoff and tLon. 2 dead time reduction operations can be performed. Therefore, the adjustment circuit 22 can also be referred to as a second dead time adjustment circuit.
  • the adjustment circuit 22 related to the second dead time reduction operation changes at least one of the delay times Td_Hoff and Td_Lon based on the difference between the edge timings tHoff and tLon, starting from the initial delay state, thereby reducing the second dead time. Time T Decrease DEAD2 .
  • FIG. 4 shows a configuration diagram of a DC/DC converter 2 as an example of a device incorporating the switching IC 1.
  • the DC/DC converter 2 is configured as a step-down DC/DC converter that generates an output voltage V OUT lower than the input voltage V IN by converting the input voltage V IN to power.
  • the input voltage V IN and the output voltage V OUT are positive DC voltages.
  • the DC/DC converter 2 includes a switching IC1, a coil LOUT , a capacitor COUT , and resistors R1 and R2.
  • the switching IC 1 incorporated in the DC/DC converter 2 is provided with a feedback control circuit 30 in addition to the above-described transistors MH and ML and the switching control circuit 10.
  • Transistors MH and ML are alternately turned on in response to drive control signal CNT, so that a rectangular wave voltage that fluctuates approximately between input voltage V IN and ground potential is generated at switch terminal T LX as voltage V LX .
  • the output voltage V OUT is generated by rectifying and smoothing the rectangular wave voltage (V LX ) at the switch terminal T LX in a rectifying and smoothing circuit consisting of a coil L OUT and a capacitor C OUT .
  • a rectifying and smoothing circuit consisting of a coil L OUT and a capacitor C OUT .
  • one end of the coil L OUT is connected to the switch terminal T LX
  • the other end of the coil L OUT is connected to the output terminal OUT.
  • the output terminal OUT is connected to ground via a capacitor C OUT .
  • Output voltage V OUT is applied to output terminal OUT.
  • the output terminal OUT is connected to one end of a resistor R1, and the other end of the resistor R1 is connected to ground via a resistor R2. Therefore, a feedback voltage V FB proportional to the output voltage V OUT is generated at the connection node between the resistors R1 and R2.
  • the switching IC 1 is provided with a feedback terminal FB that receives a feedback voltage VFB as one of the external terminals.
  • the feedback control circuit 30 generates a drive control signal CNT based on the feedback voltage V FB so that the output voltage V OUT is stabilized at a predetermined target voltage.
  • the feedback control circuit 30 may generate the drive control signal CNT by also referring to the detection result of the current flowing through the coil L OUT .
  • the feedback control circuit 30 can generate the drive control signal CNT using, for example, pulse width modulation, and in this case, the drive control signal CNT becomes a rectangular wave signal having a predetermined switching frequency.
  • a load LD is connected to an output terminal OUT of the DC/DC converter 2.
  • the load LD is any load that is driven based on the output voltage V OUT .
  • the load LD draws its own current consumption from the switch terminal T LX through the coil L OUT .
  • the current consumption of the load LD is hereinafter referred to as load current I LD .
  • load current I LD In such a DC/DC converter 2, it is important to improve efficiency (power conversion efficiency).
  • first and second reference methods are being considered as methods for avoiding simultaneous turning on of high-side and low-side transistors.
  • the low-side transistor is turned on after a predetermined delay is added to the turn-off detection signal of the high-side transistor, and the high-side transistor is turned on after a predetermined delay is added to the turn-off detection signal of the low-side transistor.
  • a gate signal for a high-side transistor is generated based on a signal obtained by adding a delay of a first fixed delay amount to the drive control signal CNT, and a delay of a second fixed delay amount is added to the drive control signal CNT.
  • a gate signal for the low-side transistor is generated based on the added signal. Simultaneous turning on can also be avoided by the second reference method. However, with the second reference method, it is difficult to optimize efficiency under various conditions. I will add an explanation to this.
  • the DC/DC converter 2 and a DC/DC converter similar to the DC/DC converter 2 can operate in a CCM (Continuous Conduction Mode) region or a DCM (Discontinuous Conduction Mode) region.
  • the optimum delay amount in the CCM region is adjusted to the fixed delay amount, so that efficiency deteriorates in the DCM region.
  • the switching IC 1 By using the switching IC 1 according to the present embodiment, it is possible to optimize the efficiency of the DC/DC converter 2 under various conditions through execution of each dead time reduction operation. Further, not only the DC/DC converter but also any device incorporating the switching IC 1 can optimize efficiency (in other words, reduce loss) by reducing dead time.
  • FIG. 5 shows a part of the internal circuit of the switching IC 1 according to the embodiment EX1_A.
  • the switching control circuit 10 (see FIG. 1) is the switching control circuit 100, and the transistors MH and ML are transistors MH1 and ML1, respectively.
  • the transistor MH1 is composed of a P-channel type MOSFET, and the transistor ML1 is composed of an N-channel type MOSFET.
  • the source of transistor MH1 is connected to power input terminal T VIN and receives input voltage V IN .
  • the drain of transistor MH1 is connected to switch terminal T LX .
  • the drain of transistor ML1 is connected to switch terminal T LX . That is, the drains of the transistors MH1 and ML1 are commonly connected at the switch terminal T LX .
  • the source of the transistor ML1 is connected to a ground terminal T GND , and is connected to the ground through the ground terminal T GND .
  • Gate signals GH and GL described in Example EX1_A refer to gate signals applied to the gates of transistors MH1 and ML1, respectively (the same applies to Examples EX1_B and EX1_C described later).
  • the switching control circuit 100 includes circuits or elements referenced by 110 to 117, 120 to 127, and 131 to 134.
  • the circuits 110 to 115, 120 to 125, and 131 to 134 are digital or analog circuits driven by an input voltage V IN or an internal power supply voltage different from the input voltage V IN with reference to the ground potential.
  • the internal power supply voltage has a predetermined positive DC voltage.
  • the internal power supply voltage may be generated by an internal power supply circuit (not shown) within the switching IC 1 based on the input voltage V IN .
  • the output signals of the circuits 111 to 115, 121 to 125, and 131 to 134 are binary signals that take either a high level or a low level.
  • Transistors 116 and 126 are P-channel MOSFETs, and transistors 117 and 127 are N-channel MOSFETs.
  • Circuits 111, 112, 121 and 122 are delay applying circuits.
  • a drive control signal CNT is input to each of the delay applying circuits 111, 112, 121, and 122.
  • the delay applying circuits 111, 112, 121, and 122 apply delays by delay times Tdly_H1, Tdly_fix, Tdly_fix, and Tdly_L1 to the drive control signal CNT, respectively, and output the delayed signals. Since the delay times Tdly_H1, Tdly_fix, and Tdly_L1 are delay times that are actively added, they can also be referred to as added delay times or insertion delay times.
  • the delay applying circuit 111 outputs a signal obtained by delaying the drive control signal CNT by a delay time Tdly_H1 as a signal S111. Therefore, an up edge occurs in the signal S111 at a timing after the delay time Tdly_H1 from the up edge timing of the drive control signal CNT. Similarly, a down edge occurs in the signal S111 at a timing that is a delay time Tdly_H1 after the down edge timing of the drive control signal CNT.
  • the delay applying circuit 112 outputs a signal obtained by delaying the drive control signal CNT by the delay time Tdly_fix as the signal S112. Therefore, an up edge occurs in the signal S112 at a timing after the delay time Tdly_fix from the up edge timing of the drive control signal CNT. Similarly, a down edge occurs in the signal S112 at a timing after the down edge timing of the drive control signal CNT by the delay time Tdly_fix.
  • the delay applying circuit 121 outputs a signal obtained by delaying the drive control signal CNT by the delay time Tdly_fix as the signal S121. Therefore, an up edge occurs in the signal S121 at a timing after the delay time Tdly_fix from the up edge timing of the drive control signal CNT. Similarly, a down edge occurs in the signal S121 at a timing after the down edge timing of the drive control signal CNT by the delay time Tdly_fix.
  • the delay applying circuit 122 outputs a signal obtained by delaying the drive control signal CNT by a delay time Tdly_L1 as a signal S122. Therefore, an up edge occurs in the signal S122 at a timing after the delay time Tdly_L1 from the up edge timing of the drive control signal CNT. Similarly, a down edge occurs in the signal S122 at a timing that is a delay time Tdly_L1 after the down edge timing of the drive control signal CNT.
  • the delay time Tdly_fix has a fixed time that is predetermined at the design stage of the switching IC 1. Note that the delay time Tdly_fix given by the delay adding circuit 112 and the delay time Tdly_fix given by the delay adding circuit 121 may be the same or slightly different. In the initial delay state immediately after the switching IC 1 is activated, the delay times Tdly_H1 and Tdly_L1 are sufficiently longer than the delay time Tdly_fix. Further, a lower limit may be set for the delay times Tdly_H1 and Tdly_L1. At this time, each of the delay times Tdly_H1 and Tdly_L1 may be configured to never become less than or equal to the delay time Tdly_fix.
  • the circuit 113 is a two-input NAND circuit.
  • the circuit 113 outputs a NAND signal of the signals S111 and S112 as a signal S113. Therefore, only when the signals S111 and S112 are both high level, the signal S113 is low level. If at least one of the signals S111 and S112 is at a low level, the signal S113 is at a high level.
  • the circuit 123 is a 2-input NOR circuit.
  • the circuit 123 outputs a NOR signal of the signals S121 and S122 as a signal S123. Therefore, the signal S123 becomes high level only when the signals S121 and S122 are both low level. If at least one of the signals S121 and S122 is at a high level, the signal S123 becomes a low level.
  • Circuits 114 and 115 and transistors 116 and 117 constitute a high-side predriver for driving the gate of transistor MH1.
  • the high-side pre-driver turns on the transistor MH1 by applying a low-level gate signal GH to the gate of the transistor MH1 during a low-level period of the signal S113, and applies a high-level gate signal GH during a high-level period of the signal S113.
  • the transistor MH1 is turned off by applying it to the gate of the transistor MH1.
  • the high-level gate signal GH has the potential of the input voltage V IN
  • the low-level gate signal GH has the ground potential.
  • the input voltage V IN is greater than the gate threshold voltage of transistor MH1.
  • Circuits 124 and 125 and transistors 126 and 127 constitute a low-side predriver for driving the gate of transistor ML1.
  • the low-side predriver turns on the transistor ML1 by applying a high-level gate signal GL to the gate of the transistor ML1 during the high-level period of the signal S123, and applies the low-level gate signal GL to the transistor during the low-level period of the signal S123. By applying it to the gate of ML1, transistor ML1 is turned off.
  • the high-level gate signal GL has the potential of the input voltage V IN
  • the low-level gate signal GL has the ground potential.
  • the input voltage V IN is greater than the gate threshold voltage of transistor ML1.
  • circuits 114, 115, 124 and 125 are inverter circuits. Circuits 114 and 115 each receive signal S113 and output an inverted signal of signal S113. The output signal of circuit 114 is provided to the gate of transistor 116 and the output signal of circuit 115 is provided to the gate of transistor 117. Circuits 124 and 125 each receive signal S123 and output an inverted signal of signal S123. The output signal of circuit 124 is provided to the gate of transistor 126 and the output signal of circuit 125 is provided to the gate of transistor 127. The sources of transistors 116 and 126 are connected to a power input terminal T VIN to receive an input voltage V IN . Each source of transistors 117 and 127 is connected to a ground terminal T GND .
  • the drains of transistors 116 and 117 are connected to each other and to the gate of transistor MH1 through gate wiring 118.
  • the signal generated on the gate wiring 118 is the gate signal GH.
  • the drains of transistors 126 and 127 are connected to each other and to the gate of transistor ML1 through gate wiring 128.
  • the signal generated on the gate wiring 128 is the gate signal GL.
  • the circuits 131 and 132 are Schmitt trigger type inverter circuits (in other words, inverter circuits with hysteresis).
  • circuits 131 and 132 correspond to the circuits 11H and 11L shown in FIG. 1, respectively, and the output signals of the circuits 131 and 132 correspond to the signals Hon and Loff, respectively. Therefore, in the switching control circuit 100, the up edge timings of the output signals of the circuits 131 and 132 correspond to the edge timings tHon and tLoff, respectively (see FIG. 3).
  • An input terminal of the circuit 131 is connected to the gate wiring 118 and receives the gate signal GH.
  • the circuit 131 outputs a signal Hon according to the gate signal GH.
  • the voltage (potential) of the gate signal GH is referred to as a gate voltage, and is represented by the symbol "V GH ".
  • ⁇ V HYS is a positive hysteresis voltage.
  • the threshold voltage V TH131 may be determined so that the voltage (V IN ⁇ V TH131 ) matches or is approximately the same as the gate threshold voltage of the transistor MH1 .
  • An input terminal of the circuit 132 is connected to the gate wiring 128 and receives the gate signal GL.
  • the circuit 132 outputs a signal Loff according to the gate signal GL.
  • the voltage (potential) of the gate signal GL is referred to as a gate voltage, and is expressed by the symbol "V GL ".
  • the threshold voltage V TH132 may be determined so that the voltage V TH132 matches or is approximately the same as the gate threshold voltage of the transistor ML1.
  • the circuits 133 and 134 are Schmitt trigger type buffer circuits (in other words, buffer circuits with hysteresis).
  • circuits 133 and 134 correspond to the circuits 12H and 12L in FIG. 1, respectively, and output signals of the circuits 133 and 134 correspond to the signals Hoff and Lon, respectively. Therefore, in the switching control circuit 100, the up edge timings of the output signals of the circuits 133 and 134 correspond to the edge timings tHoff and tLon, respectively (see FIG. 3).
  • An input terminal of the circuit 133 is connected to the gate wiring 118 and receives the gate signal GH.
  • the circuit 133 outputs a signal Hoff according to the gate signal GH.
  • a signal Hoff is generated by the gate voltage V GH.
  • V TH133 exceeds a predetermined positive threshold voltage V TH133
  • an up edge occurs in the signal Hoff
  • the gate voltage V GH becomes the voltage (V TH133 - ⁇ V HYS )
  • a down edge occurs in the signal Hoff.
  • the inequality “0 ⁇ V TH133 - ⁇ V HYS ⁇ V TH133 ⁇ V IN” holds true.
  • the threshold voltage V TH133 may be determined so that the voltage (V IN ⁇ V TH133 ) matches or is approximately the same as the gate threshold voltage of the transistor MH1.
  • An input terminal of the circuit 134 is connected to the gate wiring 128 and receives the gate signal GL.
  • the circuit 134 outputs a signal Lon according to the gate signal GL.
  • a signal Lon is generated by the gate voltage V GL.
  • V TH134 may be determined so that the threshold voltage V TH134 matches or is approximately the same as the gate threshold voltage of the transistor ML1.
  • the delay setting circuit 110 generates a signal S110 that specifies and controls the delay time Tdly_H1 in the delay applying circuit 111 based on the signals Hon and Loff from the circuits 131 and 132, and outputs the generated signal S110 to the delay applying circuit 111. .
  • a delay time Tdly_H1 corresponding to the signal S110 is applied to the drive control signal CNT.
  • the adjustment circuit 21 of FIG. 1 is configured by the circuits 110 to 112 or the circuits 110 to 113.
  • the delay setting circuit 120 generates a signal S120 that specifies and controls the delay time Tdly_L1 in the delay applying circuit 122 based on the signals Hoff and Lon from the circuits 133 and 134, and outputs the generated signal S120 to the delay applying circuit 122. .
  • a delay time Tdly_L1 according to the signal S120 is applied to the drive control signal CNT.
  • the adjustment circuit 22 of FIG. 1 is configured by the circuits 120 to 122 or the circuits 120 to 123.
  • the delay setting circuit 110 detects the relationship between the up edge timing tHon of the signal Hon based on the up edge of the drive control signal CNT and the up edge timing tLoff of the signal Loff (see FIG. 3), and sets the signal S110 according to the detection result. Generate and output.
  • the content detected by the delay setting circuit 110 includes not only the difference between the edge timings tHon and tLoff, but also the context of the edge timings tHon and tLoff.
  • the delay time Tdly_H1 in the delay applying circuit 111 follows the signal S110.
  • the circuits 110 and 111 can change the delay time Tdly_H1 so that the first dead time reduction operation described above is realized.
  • the difference between the edge timings tHon and tLoff can also be interpreted as the difference between the phase of the up edge in the signal Hon and the phase of the up edge in the signal Loff.
  • the delay setting circuit 120 detects the relationship between the up edge timing tHoff of the signal Hoff based on the down edge of the drive control signal CNT and the up edge timing tLon of the signal Lon (see FIG. 3), and sets the signal S120 according to the detection result. Generate and output.
  • the content detected by the delay setting circuit 120 includes not only the difference between the edge timings tHoff and tLon, but also the context of the edge timings tHoff and tLon.
  • the delay time Tdly_L1 in the delay applying circuit 122 follows the signal S120.
  • the circuits 120 and 122 can change the delay time Tdly_L1 so that the second dead time reduction operation described above is achieved.
  • the difference between the edge timings tHoff and tLon can also be interpreted as the difference between the phase of the up edge in the signal Hoff and the phase of the up edge in the signal Lon.
  • a solid line 610 with an arrow indicates a propagation path of a signal that causes the potential of the gate signal GH to decrease in response to an up edge of the drive control signal CNT.
  • a dashed line 612 with an arrow indicates how a signal corresponding to turning on the transistor MH1 is propagated to the delay setting circuit 110.
  • a solid line 620 with an arrow indicates a propagation path of a signal that causes the potential of the gate signal GL to decrease in response to an up edge of the drive control signal CNT.
  • a dashed line 622 with an arrow indicates how a signal corresponding to turning off the transistor ML1 is propagated to the delay setting circuit 110.
  • FIG. 7 is a timing chart of the switching control circuit 100 in response to the rising edge of the drive control signal CNT.
  • a sufficiently long predetermined delay time is set so that the delay time Td_Hon is always longer than the delay time Td_Loff (that is, "T DEAD1 >0": see FIG. 3).
  • the initial time is set to the delay time Tdly_H1.
  • FIG. 7 is a timing chart in an initial delay state or a timing chart when the first dead time T DEAD1 is sufficiently long.
  • an up edge occurs in the drive control signal CNT at time t1 (see also FIG. 3). Then, an up edge occurs in the signal S111 when the delay time Tdly_H1 has elapsed from the time t1, and an up edge occurs in the signal S112 when the delay time Tdly_fix has elapsed from the time t1. Since “Tdly_H1>Tdly_fix”, a down edge occurs in the signal S113 in synchronization with an up edge of the signal S111.
  • the high side predriver (114 to 117) lowers the potential of the gate signal GH from a high level (the level of the input voltage V IN ) to a low level (the level of the ground).
  • a high level the level of the input voltage V IN
  • a low level the level of the ground
  • an up edge occurs in the signal S121 when the delay time Tdly_fix has elapsed from the time t1
  • an up edge occurs in the signal S122 when the delay time Tdly_L1 has elapsed from the time t1. Since "Tdly_L1>Tdly_fix”, a down edge occurs in the signal S123 in synchronization with the up edge of the signal S121.
  • the low side predriver (124 to 127) lowers the potential of the gate signal GL from a high level (input voltage V IN level) to a low level (ground level).
  • an up edge occurs in the signal Loff at timing tLoff.
  • the delay applying circuit 111 reduces the delay time Tdly_H1.
  • the amount of decrease at this time may be greater as the difference between the edge timings tLoff and tHon is greater (that is, the greater the first dead time T DEAD1 is), or may be constant.
  • the delay time Tdly_H1 decreases according to the difference between the edge timings tLoff and tHon, and the edge timings tLoff and tHon decrease. It is stabilized in a state where the difference between them is zero or minute.
  • the delay applying circuit 111 is an example of a variable delay circuit that outputs an active signal after a variable delay time Tdly_H1 from the rising edge of the drive control signal CNT.
  • the active signal here corresponds to the high level signal S111.
  • the switching control circuit 100 turns off the transistor MH1 by supplying the transistor MH1 with a gate signal GH that lowers the gate potential of the transistor MH1 based on the active signal (triggered by the output of the active signal). Then, the adjustment circuit (21) including the delay setting circuit 110 and the delay applying circuit 111 starts from the state where "Td_Hon>Td_Loff" (see FIGS.
  • the delay time Tdly_H1 can be reduced, and thereby the first dead time T DEAD1 can be reduced.
  • the delay time Tdly_H1 corresponding to the given delay time is a part of the total delay time (i.e., delay time Td_Hon) when the transistor MH1 is turned on. Therefore, as the delay time Tdly_H1 increases or decreases, the delay time Td_Hon also increases or decreases. Furthermore, the delay time Tdly_fix provided by the delay providing circuit 121 is a part of the delay time Td_Loff. If the delay time Tdly_H1 becomes short enough that the edge timing tHon is earlier than the edge timing tLoff, the delay time Tdly_H1 is corrected to increase by the delay setting circuit 110 and the delay adding circuit 111 based on the signals Hon and Loff. Ru.
  • a solid line 630 with an arrow indicates a propagation path of a signal that causes the potential of the gate signal GL to rise in response to the down edge of the drive control signal CNT.
  • a dashed line 632 with an arrow indicates how a signal corresponding to turning on the transistor ML1 is propagated to the delay setting circuit 120.
  • a solid line 640 with an arrow indicates a propagation path of a signal that causes the potential of the gate signal GH to rise in response to the down edge of the drive control signal CNT.
  • a dashed line 642 with an arrow indicates how a signal corresponding to turning off the transistor MH1 is propagated to the delay setting circuit 120.
  • FIG. 9 is a timing chart of the switching control circuit 100 in response to the down edge of the drive control signal CNT.
  • a sufficiently long predetermined delay time is set so that the delay time Td_Lon is always longer than the delay time Td_Hoff (that is, "T DEAD2 >0": see FIG. 3).
  • the initial time is set to the delay time Tdly_L1.
  • FIG. 9 is a timing chart in the initial delay state or a timing chart when the second dead time T DEAD2 is sufficiently long.
  • a down edge occurs in drive control signal CNT at time t2 (see also FIG. 3). Then, a down edge occurs in the signal S111 when the delay time Tdly_H1 has elapsed from time t2, and a down edge occurs in the signal S112 when the delay time Tdly_fix has elapsed from the time t2. Since “Tdly_H1>Tdly_fix”, an up edge occurs in the signal S113 in synchronization with a down edge of the signal S112. In response to the rising edge of the signal S113, the high side predriver (114 to 117) increases the potential of the gate signal GH from a low level (ground level) to a high level (input voltage V IN level). In the process of increasing the potential of the gate signal GH, an up edge occurs in the signal Hoff at timing tHoff.
  • a down edge occurs in the signal S121 when the delay time Tdly_fix has elapsed from the time t2, and a down edge occurs in the signal S122 when the delay time Tdly_L1 has elapsed from the time t2. Since “Tdly_L1>Tdly_fix”, an up edge occurs in the signal S123 in synchronization with a down edge of the signal S122.
  • the low side predriver (124 to 127) increases the potential of the gate signal GL from a low level (ground level) to a high level (input voltage V IN level). In the process of increasing the potential of the gate signal GL, an up edge occurs in the signal Lon at timing tLon.
  • the delay applying circuit 122 reduces the delay time Tdly_L1.
  • the amount of decrease at this time may be larger as the difference between the edge timings tHoff and tLon is larger (that is, the larger the second dead time T DEAD2 is), or it may be constant.
  • the delay time Tdly_L1 decreases according to the difference between the edge timings tHoff and tLon, and the edge timings tHoff and tLon decrease. It is stabilized in a state where the difference between them is zero or minute.
  • the delay applying circuit 122 is an example of a variable delay circuit that outputs an active signal after a variable delay time Tdly_L1 from the down edge of the drive control signal CNT.
  • the active signal here corresponds to the low level signal S122.
  • the switching control circuit 100 turns on the transistor ML1 by supplying the transistor ML1 with a gate signal GL that increases the gate potential of the transistor ML1 based on the active signal (triggered by the output of the active signal). Then, the adjustment circuit (22) including the delay setting circuit 120 and the delay adding circuit 122 starts from the state where "Td_Lon>Td_Hoff" (see FIGS.
  • the delay time Tdly_L1 can be reduced, and thereby the second dead time T DEAD2 can be reduced.
  • the delay time Tdly_L1 corresponding to the given delay time is a part of the total delay time (i.e., delay time Td_Lon) when the transistor ML1 is turned on. Therefore, as the delay time Tdly_L1 increases or decreases, the delay time Td_Lon also increases or decreases. Further, the delay time Tdly_fix provided by the delay providing circuit 112 is a part of the delay time Td_Hoff. If the delay time Tdly_L1 becomes short enough that the edge timing tLon is earlier than the edge timing tHoff, the delay time Tdly_L1 is corrected to increase by the delay setting circuit 120 and the delay adding circuit 122 based on the signals Lon and Hoff. Ru.
  • FIG. 10 shows a configuration example of the delay setting circuits 110 and 120.
  • the delay setting circuit 110 includes an edge comparison circuit 110a and a conversion circuit 110b
  • the delay setting circuit 120 includes an edge comparison circuit 120a and a conversion circuit 120b.
  • the edge comparison circuit 110a detects the difference between the edge timings tLoff and tHon based on the signals Loff and Hon, and outputs a signal S110a according to the detection result.
  • a pulse is included in the signal S110a every time the edge comparison circuit 110a performs detection.
  • the pulse width corresponding to the time length of the pulse in the signal S110a depends on the context of the edge timings tLoff and tHon and the difference between the edge timings tLoff and tHon.
  • the conversion circuit 110b converts the pulse width of the signal S110a into a voltage, and outputs a signal having the obtained voltage as the signal S110.
  • the edge comparison circuit 120a detects the difference between the edge timings tHoff and tLon based on the signals Hoff and Lon, and outputs a signal S120a according to the detection result.
  • a pulse is included in the signal S120a every time the edge comparison circuit 120a performs detection.
  • the pulse width corresponding to the time length of the pulse in the signal S120a depends on the context of the edge timings tHoff and tLon and the difference between the edge timings tHoff and tLon.
  • the conversion circuit 120b converts the pulse width of the signal S120a into a voltage, and outputs a signal having the obtained voltage as the signal S120.
  • Example EX1_B is an example based on Example EX1_A, and with respect to matters not specifically described in Example EX1_B, the matters described in Example EX1_A also apply to Example EX1_B unless there is a contradiction.
  • FIG. 11 shows a part of the internal circuit of the switching IC 1 according to the embodiment EX1_B.
  • the switching control circuit 10 is a switching control circuit 100a, and the transistors MH and ML are transistors MH1 and ML1, respectively.
  • the switching control circuit 100a has a configuration in which circuits 135 and 136 are added to the switching control circuit 100 (FIG. 5) according to the embodiment EX1_A.
  • the configuration and operation of the switching control circuit 100a are the same as those of the switching control circuit 100, except for the addition and the matters described below in Example EX1_B.
  • the circuit 135 is a Schmitt trigger type inverter circuit (in other words, an inverter circuit with hysteresis).
  • the input terminal of circuit 135 is connected to switch terminal T LX and receives switch voltage V LX .
  • the circuit 135 outputs a signal S135 according to the switch voltage V LX .
  • V TH135 a predetermined positive threshold voltage
  • the switch voltage V LX becomes the voltage (V TH135 + ⁇ V HYS )
  • the value exceeds a down edge occurs in the signal S135.
  • the inequality "0 ⁇ V TH135 ⁇ V TH135 + ⁇ V HYS ⁇ V IN holds true.
  • the circuit 136 is a two-input AND circuit.
  • the circuit 136 outputs an AND signal of the signal S135 from the circuit 135 and the signal Hoff from the circuit 133 as a signal S136. Therefore, the signal S136 is at a high level only when the signals S135 and Hoff are both at a high level. If at least one of the signals S135 and Hoff is at a low level, the signal S136 is at a low level.
  • the signals S136 and Lon are input to the delay setting circuit 120 according to the embodiment EX1_B instead of the combination of the signals Hoff and Lon. That is, the delay setting circuit 120 according to the embodiment EX1_B generates and outputs the signal S120 based on the signals S136 and Lon instead of the signals Hoff and Lon.
  • the delay setting circuit 120 according to the embodiment EX1_B regards the signal S136 as the signal Hoff (that is, regards the up-edge timing of the signal S136 as the up-edge timing of the signal Hoff), and sets the signal in the same manner as in the embodiment EX1_A. By generating and outputting S120, the delay time Tdly_L1 to be added by the delay circuit 122 is specified and controlled.
  • a state in which the load current I LD is relatively large is referred to as a heavy load state, and a state in which the load current I LD is relatively small is referred to as a light load state. Under light load conditions, the load current I LD may be substantially zero.
  • FIG. 12 shows waveforms of some signals or voltages under heavy load conditions.
  • a down edge of the drive control signal CNT occurs, the potential of the gate signal GH rises from low level to high level through the signal transmission described in Example EX1_A, and rises to signal Hoff at edge timing tHoff in the rising process. Edges arise.
  • the switch voltage V LX decreases toward 0 V or It drops sharply towards negative voltage.
  • an up edge occurs in the signal S135 almost simultaneously with an up edge of the signal Hoff.
  • the up edge timing tHoff of the signal Hoff and the up edge timing of the signal S136 are substantially the same. Therefore, under heavy load conditions, the operation of switching control circuit 100a is substantially the same as that of switching control circuit 100.
  • the up edge timing of the signal S136 will be referred to by the symbol "t136" and will be referred to as edge timing t136 or timing t136.
  • FIG. 13 shows waveforms of some signals or voltages under light load conditions.
  • the potential of the gate signal GH rises from low level to high level through the signal transmission described in Example EX1_A, and rises to signal Hoff at edge timing tHoff in the rising process. Edges arise. There is no difference in this point between a heavy load state and a light load state.
  • the resistance value of the channel of the transistor MH1 increases, and although the channel of the transistor MH1 is eventually cut off, the switch voltage decreases because the load current I LD is small.
  • V LX decreases more slowly than in a heavy load state. Then, when the switch voltage V LX is sufficiently reduced, an up edge occurs in the signal S135, and an up edge occurs in the signal S136 triggered by the up edge of the signal S135.
  • the introduction of the circuits 135 and 136 prevents a decrease in efficiency in a light load state, in other words, improves efficiency in a light load state.
  • the efficiency improvement is realized by correcting the delay time Tdly_L1 based on the signals S136 and Lon.
  • the delay setting circuit 120 detects the relationship between the edge timings t136 and tLon, and generates and outputs a signal S120 according to the detection result.
  • the content detected by the delay setting circuit 120 includes not only the difference between the edge timings t136 and tLon, but also the context of the edge timings t136 and tLon.
  • the edge timing tHoff and the edge timing t136 are substantially the same, and the switching control circuit 100a performs the same operation as in the embodiment EX1_A. That is, in the first situation where the edge timing t136 is earlier than the edge timing tLon (the situation where the phase of the up edge of the signal S136 is ahead of the phase of the up edge of the signal Lon), the delay setting circuit 120 sets the delay time Tdly_L1. In response to the signal S120, the delay adding circuit 122 reduces the delay time Tdly_L1. The amount of decrease at this time may be greater as the difference between edge timing t136 and tLon is greater, or may be constant.
  • the drive control signal CNT is repeatedly switched between high and low levels. If the heavy load state is maintained, the delay time Tdly_L1 decreases according to the difference between the edge timings t136 and tLon, and becomes stable in a state where the difference between the edge timings t136 and tLon becomes zero or small. do.
  • the edge timing t136 is later than the edge timing tLon (the phase of the up edge of the signal S136 lags the phase of the up edge of the signal Lon).
  • the delay setting circuit 120 When the edge timing t136 is later than the edge timing tLon, the delay setting circuit 120 generates and outputs a signal S120 for increasing the delay time Tdly_L1, and upon receiving the signal S120, the delay adding circuit 122 increases the delay time. Increase Tdly_L1.
  • the amount of increase at this time may be an amount corresponding to the difference between edge timing t136 and tLon, or may be constant.
  • the second dead time T DEAD2 increases due to an increase in the delay time Tdly_L1, efficiency is increased in a light load state.
  • the delay time Tdly_L1 increases. As a result, the transistor ML1 is turned on after the switch voltage V LX has sufficiently decreased in a light load state, and the above-mentioned decrease in efficiency is suppressed. Note that an upper limit may be set on the increase in the delay time Tdly_L1 (an increase in the delay time Tdly_L1 beyond a predetermined upper limit time may be prohibited). Thereafter, if the light load state returns to the heavy load state, the delay time Tdly_L1 is reduced in accordance with the heavy load state. In other words, the delay time Tdly_L1 is appropriately adjusted according to the load current ILD .
  • the adjustment circuit 22 (see FIG. 1) including the delay setting circuit 120 and the delay applying circuit 122 adjusts the signal Hoff, the signal Lon, and the signal according to the switch voltage V LX .
  • the second dead time T DEAD2 is adjusted based on S135.
  • the delay time Td_Lon (FIG. 3) occurs corresponding to the propagation path 630 of FIG. 8, and therefore, the delay time Td_Lon related to turn-on of the transistor ML1 is increased or decreased by increasing or decreasing the delay time Tdly_L1.
  • the second dead time T DEAD2 also increases or decreases (see FIG. 3).
  • Example EX1_C ⁇ Example EX1_C>> Example EX1_C will be explained. In Example EX1_C, a modification technique to Example EX1_A or EX1_B will be described.
  • the delay setting circuit 110 can be any digital circuit or analog circuit as long as it can generate the signal S110 according to the relationship between the edge timings tLoff and tHon (the difference and the context). It may be configured as follows.
  • the delay setting circuit 120 may be configured with any digital circuit or analog circuit as long as it can generate a signal as the signal S120 according to the relationship between the edge timings tHoff and tLon (the difference and the context). It's good.
  • the delay setting circuit 120 may be configured with any digital circuit or analog circuit as long as it can generate a signal as the signal S120 according to the relationship between the edge timings t136 and tLon (the difference and the context). It's good.
  • Example EX1_A or EX1_B the transistor MH1 may be formed from a P-channel type IGBT, and the transistor ML1 may be formed from an N-channel type IGBT.
  • the source and drain of the transistor MH1 are replaced with the emitter and collector, respectively, and the source and drain of the transistor ML1 are replaced with the emitter and collector, respectively.
  • FIG. 16 shows a part of the internal circuit of the switching IC 1 according to the embodiment EX2_A.
  • the switching control circuit 10 (see FIG. 1) is the switching control circuit 200, and the transistors MH and ML are transistors MH2 and ML2, respectively. Both transistors MH2 and ML2 are constructed from N-channel type MOSFETs.
  • the drain of transistor MH2 is connected to power input terminal T VIN and receives input voltage V IN .
  • the source of transistor MH2 is connected to switch terminal T LX .
  • the drain of transistor ML2 is connected to switch terminal T LX . That is, the source of the transistor MH2 and the drain of the transistor ML2 are commonly connected at the switch terminal T LX .
  • the source of the transistor ML2 is connected to the ground terminal T GND , and is connected to the ground through the ground terminal T GND .
  • Gate signals GH and GL described in Example EX2_A refer to gate signals applied to the gates of transistors MH2 and ML2, respectively (the same applies to Examples EX2_B and EX2_C described later).
  • the switching IC 1 according to the embodiment EX2_A is provided with a boot terminal T BOOT .
  • the boot terminal T BOOT may be an external terminal of the switching IC 1.
  • a boot voltage V BOOT higher than the switch voltage V LX is applied to the boot terminal T BOOT .
  • the boot voltage V BOOT can be generated using a well-known bootstrap circuit (not shown) that utilizes fluctuations in the switch voltage V LX .
  • the boot voltage V BOOT may be generated by boosting the input voltage V IN using an arbitrary boost circuit (not shown).
  • the switching control circuit 200 includes circuits or elements referenced at 210-212, 220-222, 231-234, 241-247, 251-257, and 261.
  • the circuits 210 to 212, 220 to 222, 231 to 234, and 252 to 255 are digital or analog circuits driven by the internal power supply voltage Vreg with reference to the ground potential.
  • circuits 211 to 212, 221 to 222, 231 to 234, and 252 to 255 output binary signals that take either a high level or a low level.
  • the low level has the ground potential
  • the high level has the internal power supply voltage Vreg.
  • the internal power supply voltage Vreg is a positive DC voltage generated based on the input voltage V IN by an internal power supply circuit (not shown) provided in the switching IC 1.
  • the input voltage V IN itself may be used as the internal power supply voltage Vreg.
  • the circuits 242 to 245 are digital circuits driven by a boot voltage V BOOT based on the potential of the switch terminal T LX .
  • Circuits 242 to 245 output binary signals that take either a high level or a low level. In each input signal and each output signal of the circuits 242-245, the low level has the potential at the switch terminal T LX (ie, the potential of the switch voltage V LX ), and the high level has the potential of the boot voltage V BOOT .
  • Transistors 246 and 256 are P-channel MOSFETs, and transistors 247 and 257 are N-channel MOSFETs.
  • Circuits 211 and 221 are delay applying circuits.
  • a drive control signal CNT is input to each of the delay applying circuits 211 and 221.
  • the delay applying circuits 211 and 221 apply delays by delay times Tdly_H2 and Tdly_L2 to the drive control signal CNT, respectively, and output the delayed signals. Since the delay times Tdly_H2 and Tdly_L2 are delay times that are actively added, they can also be referred to as added delay times or insertion delay times.
  • the delay applying circuit 211 outputs a signal obtained by delaying the drive control signal CNT by a delay time Tdly_H2 as a signal S211. Therefore, an up edge occurs in the signal S211 at a timing after the delay time Tdly_H2 from the up edge timing of the drive control signal CNT. Similarly, a down edge occurs in the signal S211 at a timing that is a delay time Tdly_H2 after the down edge timing of the drive control signal CNT.
  • the delay applying circuit 221 outputs a signal obtained by delaying the drive control signal CNT by a delay time Tdly_L2 as a signal S221. Therefore, an up edge occurs in the signal S221 at a timing after the delay time Tdly_L2 from the up edge timing of the drive control signal CNT. Similarly, a down edge occurs in the signal S221 at a timing that is a delay time Tdly_L2 after the down edge timing of the drive control signal CNT.
  • the delay times Tdly_H2 and Tdly_L2 are variable.
  • an upper limit may be set for the delay time Tdly_H2.
  • an upper limit is set for the delay time Tdly_H2 so that the delay time Tdly_H2 does not exceed the propagation delay time Tdly_LVS1 (described later) or exceeds the time (Tdly_LVS1- ⁇ T) (see FIG. 18). It is good that it is defined.
  • the time (Tdly_LVS1- ⁇ T) refers to a time shorter than the propagation delay time Tdly_LVS1 by a predetermined time ⁇ T.
  • a lower limit may be set for the delay time Tdly_L2.
  • an upper limit is set for the delay time Tdly_L2 so that the delay time Tdly_L2 does not become less than the propagation delay time Tdly_LVS2 (described later) or less than the time (Tdly_LVS2+ ⁇ T) (see FIG. 20). It's good to be able to do it.
  • the time (Tdly_LVS2+ ⁇ T) refers to a time longer than the propagation delay time Tdly_LVS2 by a predetermined time ⁇ T.
  • the circuit 212 is a two-input AND circuit.
  • the circuit 212 outputs an AND signal of the signal S211 and CNT as a signal S212. Therefore, the signal S212 is at a high level only when both the signal S211 and CNT are at a high level. If at least one of the signals S211 and CNT is at a low level, the signal S212 is at a low level.
  • the circuit 222 is a two-input OR circuit.
  • the circuit 222 outputs a logical sum signal of the signal S221 and CNT as a signal S222. Therefore, the signal S222 is at a low level only when both the signal S221 and CNT are at a low level. If at least one of the signals S221 and CNT is at a high level, the signal S222 is at a high level.
  • the circuit 252 is a selector.
  • the selector 252 selects one of the signals S12 and S222 according to the drive control signal CNT, and outputs the selected signal as the signal S252.
  • the selector 252 selects and outputs the signal S212 as the signal S252 when the drive control signal CNT is at a high level, and selects and outputs the signal S222 as the signal S252 when the drive control signal CNT is at a low level.
  • Circuits 241, 251 and 261 are level shifters.
  • Each level shifter (241, 251, 261) is supplied with an internal power supply voltage Vreg, a boot voltage V BOOT , and a switch voltage V LX , and is connected to the ground, and inputs an input signal to itself to a high potential side or a low potential side. Shift the level and output the level-shifted signal. Since the structure of this type of level shifter is well known, a description of the internal structure of the level shifter will be omitted.
  • Each level shifter (241, 251, 261) is configured using a high voltage element that can withstand the application of the boot voltage V BOOT . In each level shifter (241, 251, 261), a relatively large signal propagation delay occurs within the level shifter because the level shift is performed using a high breakdown voltage element.
  • the level shifter 241 generates and outputs a low level or high level signal S241 based on the drive control signal CNT by level shifting the drive control signal CNT based on the ground potential to a signal based on the switch voltage V LX . . That is, the signal S241 is the drive control signal CNT (shift drive control signal) after level shifting.
  • the low level has the potential at the switch terminal T LX (ie, the potential of the switch voltage V LX ), and the high level has the potential of the boot voltage V BOOT .
  • an up edge also occurs in the signal S241, causing the signal S241 to go high; in response to the down edge of the drive control signal CNT, a down edge also occurs in the signal S241, resulting in the signal S241 becoming high level. S241 becomes low level.
  • an up edge occurs in the signal S241 at a timing after the propagation delay time Tdly_LVS1 from the up edge timing of the drive control signal CNT (see FIG. 18), and a down edge of the drive control signal CNT occurs.
  • a down edge occurs in the signal S241 at a timing after the propagation delay time Tdly_LVS2 (see FIG. 20).
  • the propagation delay times Tdly_LVS1 and Tdly_LVS2 are predetermined times that depend on the characteristics of the level shifter 241 and the like. Note that the propagation delay times Tdly_LVS1 and Tdly_LVS2 may be understood as the propagation delay times in the entire circuits 241 to 243.
  • Circuits 242 and 243 are inverter circuits.
  • the circuit 242 receives the signal S241 and outputs an inverted signal S242 of the signal S241, and the circuit 243 receives the signal S242 and outputs an inverted signal S243 of the signal S242. Therefore, if the signal S241 is at a high level, the signal S243 is also at a high level, and if the signal S241 is at a low level, the signal S243 is also at a low level.
  • Circuits 244 and 245 and transistors 246 and 247 constitute a high-side predriver for driving the gate of transistor MH2.
  • the high-side predriver turns on the transistor MH2 by applying a high-level gate signal GH to the gate of the transistor MH2 during the high-level period of the signal S243, and applies the low-level gate signal GH during the low-level period of the signal S243.
  • the transistor MH2 is turned off by applying it to the gate of the transistor MH2.
  • the high-level gate signal GH has the potential of the boot voltage V BOOT
  • the low-level gate signal GH has the potential of the switch voltage V LX .
  • the potential difference between voltages V BOOT and V LX is greater than the gate threshold voltage of transistor MH2.
  • circuits 244 and 245 are inverter circuits. Circuits 244 and 245 each receive signal S243 and output an inverted signal of signal S243. The output signal of circuit 244 is provided to the gate of transistor 246 and the output signal of circuit 245 is provided to the gate of transistor 247.
  • the source of transistor 246 is connected to boot terminal T BOOT and receives boot voltage V BOOT .
  • the source of transistor 247 is connected to switch terminal T LX .
  • the drains of transistors 246 and 247 are connected to each other and to the gate of transistor MH2 through gate wiring 248.
  • the signal generated on the gate wiring 248 is the gate signal GH.
  • the level shifter 251 level-shifts the signal S241 based on the switch voltage V LX to a signal based on the ground potential, thereby generating and outputting a low level or high level signal S251 based on the signal S241.
  • the low level has the ground potential
  • the high level has the potential of the internal power supply voltage Vreg.
  • an up edge also occurs in the signal S251, causing the signal S251 to go high
  • a down edge also occurs in the signal S251, causing the signal S251 to go low. becomes.
  • a corresponding signal propagation delay occurs within the level shifter 251 as well.
  • the circuit 253 is a 2-input NOR circuit.
  • the circuit 253 outputs a NOR signal of the signals S251 and S252 as a signal S253. Therefore, the signal S253 becomes high level only when both signals S251 and S252 are low level. If at least one of the signals S251 and S252 is at a high level, the signal S253 becomes a low level.
  • the circuits 254 and 255 and the transistors 256 and 257 constitute a low-side predriver for driving the gate of the transistor ML2.
  • the low-side predriver turns on the transistor ML2 by applying a high-level gate signal GL to the gate of the transistor ML2 during the high-level period of the signal S253, and applies the low-level gate signal GL to the transistor during the low-level period of the signal S253. By applying this to the gate of ML2, transistor ML2 is turned off.
  • the high-level gate signal GL has the potential of the internal power supply voltage Vreg
  • the low-level gate signal GL has the ground potential. Internal power supply voltage Vreg is higher than the gate threshold voltage of transistor MH2.
  • circuits 254 and 255 are inverter circuits. Circuits 254 and 255 each receive signal S253 and output an inverted signal of signal S253. The output signal of circuit 254 is provided to the gate of transistor 256 and the output signal of circuit 255 is provided to the gate of transistor 257.
  • the source of transistor 256 is connected to a wiring to which internal power supply voltage Vreg is applied, and receives supply of internal power supply voltage Vreg.
  • the source of transistor 257 is connected to ground terminal T GND .
  • the drains of transistors 256 and 257 are connected to each other and to the gate of transistor ML2 through gate wiring 258.
  • the signal generated on the gate wiring 258 is the gate signal GL.
  • Level shifter 261 is connected to gate wiring 248 and receives gate signal GH.
  • the level shifter 261 level-shifts the gate signal GH based on the switch voltage V LX to a signal based on the ground potential, and outputs the level-shifted gate signal GH as a signal GH'.
  • Signal GH' may hereinafter be referred to as shift gate signal GH'.
  • the high level has the potential of the internal power supply voltage Vreg
  • the low level has the ground potential.
  • the shift gate signal GH' is also at a high level
  • the shift gate signal GH' is also at a low level.
  • the potential of the shift gate signal GH' varies between the ground potential and the potential of the internal power supply voltage Vreg.
  • the potential of the shift gate signal GH' decreases from the potential of the internal power supply voltage Vreg to the ground potential.
  • the potential of the shift gate signal GH' rises from the ground potential to the potential of the internal power supply voltage Vreg.
  • the potential difference between the switch voltage V LX and the boot voltage V BOOT may be the same as the magnitude of the internal power supply voltage Vreg.
  • the potential of the signal GH' viewed from the ground potential may be the same as the potential of the signal GH viewed from the potential of the switch terminal T LX .
  • a corresponding signal propagation delay occurs within the level shifter 261 as well.
  • the circuit 231 is a Schmitt trigger type buffer circuit
  • the circuit 232 is a Schmitt trigger type inverter circuit.
  • circuits 231 and 232 correspond to the circuits 11H and 11L shown in FIG. 1, respectively, and the output signals of the circuits 231 and 232 correspond to the signals Hon and Loff, respectively. Therefore, in the switching control circuit 200, the up edge timings of the output signals of the circuits 231 and 232 correspond to the edge timings tHon and tLoff, respectively (see FIG. 3).
  • the input terminal of the circuit 231 receives the shift gate signal GH'.
  • the circuit 231 outputs a signal Hon according to the shift gate signal GH'.
  • the voltage (potential) of the shift gate signal GH' is referred to as a shift gate voltage, and is expressed by the symbol "V GH '".
  • ⁇ V HYS is a positive hysteresis voltage.
  • the threshold voltage V TH231 is adjusted so that the shift gate voltage V GH ' in a state where the gate-source voltage of the transistor MH2 matches the gate threshold voltage of the transistor MH2 and the threshold voltage V TH231 match or are approximately the same. It is good that it is determined.
  • the input terminal of the circuit 232 is connected to the gate wiring 258 and receives the gate signal GL.
  • the circuit 232 outputs a signal Loff according to the gate signal GL.
  • the voltage (potential) of the gate signal GL is referred to as a gate voltage, and is represented by the symbol "V GL ".
  • the threshold voltage V TH232 may be determined so that the voltage V TH232 matches or is approximately the same as the gate threshold voltage of the transistor ML2.
  • the circuit 233 is a Schmitt trigger type inverter circuit
  • the circuit 234 is a Schmitt trigger type buffer circuit.
  • circuits 233 and 234 correspond to the circuits 12H and 12L in FIG. 1, respectively, and output signals of the circuits 233 and 234 correspond to the signals Hoff and Lon, respectively. Therefore, in the switching control circuit 200, the up edge timings of the output signals of the circuits 233 and 234 correspond to the edge timings tHoff and tLon, respectively (see FIG. 3).
  • a shift gate signal GH' is received at an input terminal of the circuit 233.
  • the circuit 233 outputs a signal Hoff according to the shift gate signal GH'.
  • a signal Hoff is received at an input terminal of the circuit 233.
  • the circuit 233 outputs a signal Hoff according to the shift gate signal GH'.
  • V TH233 + ⁇ V HYS the shift gate voltage V GH ' becomes the voltage (V TH233 + ⁇ V HYS )
  • Vreg the inequality "0 ⁇ V TH233 ⁇ V TH233 + ⁇ V HYS ⁇ Vreg" holds true.
  • the threshold voltage V TH233 is adjusted so that the shift gate voltage V GH ' in a state where the gate-source voltage of the transistor MH2 matches the gate threshold voltage of the transistor MH2 and the threshold voltage V TH233 match or are approximately the same. It is good that it is determined.
  • An input terminal of the circuit 234 is connected to a gate wiring 258 to receive a gate signal GL.
  • the circuit 234 outputs a signal Lon according to the gate signal GL.
  • a signal Lon is generated by the gate voltage V GL.
  • V TH234 exceeds a predetermined positive threshold voltage V TH234
  • an up edge occurs in the signal Lon
  • the gate voltage V GL becomes the voltage (V TH234 - ⁇ V HYS )
  • a down edge occurs in the signal Lon.
  • the inequality "0 ⁇ V TH234 - ⁇ V HYS ⁇ V TH234 ⁇ Vreg" holds true.
  • the threshold voltage V TH234 may be determined so that the threshold voltage V TH234 matches or is approximately the same as the gate threshold voltage of the transistor ML2.
  • the delay setting circuit 210 generates a signal S210 that specifies and controls the delay time Tdly_H2 in the delay applying circuit 211 based on the signals Hon and Loff from the circuits 231 and 232, and outputs the generated signal S210 to the delay applying circuit 211. .
  • a delay time Tdly_H2 corresponding to the signal S210 is applied to the drive control signal CNT.
  • Adjustment circuit 21 (see FIG. 1) according to Example EX2_A includes circuits 210 to 212, and may also include all or part of circuits 251 to 253.
  • the delay setting circuit 220 generates a signal S220 that specifies and controls the delay time Tdly_L2 in the delay applying circuit 221 based on the signals Hoff and Lon from the circuits 233 and 234, and outputs the generated signal S220 to the delay applying circuit 221. .
  • a delay time Tdly_L2 according to the signal S220 is applied to the drive control signal CNT.
  • Adjustment circuit 22 (see FIG. 1) according to Example EX2_A includes circuits 220 to 222, and may also include all or part of circuits 251 to 253.
  • the delay setting circuit 210 detects the relationship between the up edge timing tHon of the signal Hon based on the up edge of the drive control signal CNT and the up edge timing tLoff of the signal Loff (see FIG. 3), and sets the signal S210 according to the detection result. Generate and output.
  • the content detected by the delay setting circuit 210 includes not only the difference between the edge timings tHon and tLoff, but also the context of the edge timings tHon and tLoff.
  • the delay time Tdly_H2 in the delay applying circuit 211 follows the signal S210.
  • the circuits 210 and 211 can change the delay time Tdly_H2 so that the first dead time reduction operation described above is achieved.
  • the difference between the edge timings tHon and tLoff can also be interpreted as the difference between the phase of the up edge in the signal Hon and the phase of the up edge in the signal Loff.
  • the delay setting circuit 220 detects the relationship between the up edge timing tHoff of the signal Hoff based on the down edge of the drive control signal CNT and the up edge timing tLon of the signal Lon (see FIG. 3), and sets the signal S220 according to the detection result. Generate and output.
  • the content detected by the delay setting circuit 220 includes not only the difference between the edge timings tHoff and tLon, but also the context of the edge timings tHoff and tLon.
  • the delay time Tdly_L2 in the delay applying circuit 221 follows the signal S220.
  • the circuits 220 and 221 can change the delay time Tdly_L2 so that the second dead time reduction operation described above is achieved.
  • the difference between the edge timings tHoff and tLon can also be interpreted as the difference between the phase of the up edge in the signal Hoff and the phase of the up edge in the signal Lon.
  • a solid line 710 with an arrow indicates a propagation path of a signal that causes the potential of the gate signal GH to rise in response to an up edge of the drive control signal CNT.
  • a dashed line 712 with an arrow indicates how a signal corresponding to turning on transistor MH2 is propagated to delay setting circuit 210.
  • a solid line 720 with an arrow indicates a propagation path of a signal that causes the potential of the gate signal GL to decrease in response to an up edge of the drive control signal CNT.
  • a dashed line 722 with an arrow indicates how a signal corresponding to turning off the transistor ML2 is propagated to the delay setting circuit 210.
  • FIG. 18 is a timing chart of the switching control circuit 200 in response to the rising edge of the drive control signal CNT.
  • a sufficiently short predetermined delay time is set so that the delay time Td_Hon is always longer than the delay time Td_Loff (that is, so that "T DEAD1 >0" is always satisfied: see FIG. 3).
  • the initial time is set to the delay time Tdly_H2. That is, in the initial delay state, the delay time Tdly_H2 is set to be sufficiently shorter than the propagation delay time Tdly_LVS1 in the level shifter 241.
  • FIG. 18 is a timing chart in the initial delay state or a timing chart when the first dead time T DEAD1 is sufficiently long.
  • an up edge occurs in the drive control signal CNT at time t1 (see also FIG. 3). Then, an up edge occurs in the signal S241 when the propagation delay time Tdly_LVS1 has elapsed from the time t1. On the other hand, an up edge occurs in the signal S211 when the delay time Tdly_H2 has elapsed from the time t1. An up edge also occurs in the signal S212 in synchronization with the up edge of the signal S211. As described above, when the drive control signal CNT is at a high level, the selector 252 selects the signal S212. Therefore, an up edge of the signal S211 causes an up edge of the signal S252 through the circuit 212 and the selector 252.
  • the up edge of the signal S241 has not yet occurred, and the up edge of the signal S251 occurs after the up edge of the signal S241. Therefore, due to the function of the NOR circuit 253, a down edge occurs in the signal S253 in synchronization with the up edge of the signal S252.
  • the low side predriver (254 to 257) lowers the potential of the gate signal GL from a high level (the level of the internal power supply voltage Vreg) to a low level (the level of the ground). In the process of lowering the potential of the gate signal GL, an up edge occurs in the signal Loff at timing tLoff.
  • the rising edge of the signal S241 causes an rising edge of the signal S243 through circuits 242 and 243.
  • the high side predriver (244 to 247) raises the potential of the gate signal GH from a low level (the level of the switch voltage V LX ) to a high level (the level of the boot voltage V BOOT ).
  • V LX the level of the switch voltage
  • V BOOT the level of the boot voltage
  • the delay applying circuit 211 increases the delay time Tdly_H2.
  • the amount of increase at this time may be larger as the difference between the edge timings tLoff and tHon is larger (that is, the larger the first dead time T DEAD1 is), or may be constant.
  • the delay time Tdly_H2 increases according to the difference between the edge timings tLoff and tHon, and the edge timings tLoff and tHon increase. It is stabilized in a state where the difference between them is zero or minute.
  • the delay applying circuit 211 is an example of a variable delay circuit that outputs an active signal after a variable delay time Tdly_H2 from the rising edge of the drive control signal CNT.
  • the active signal here corresponds to the high level signal S211.
  • the switching control circuit 200 turns off the transistor ML2 by supplying the transistor ML2 with a gate signal GL that lowers the gate potential of the transistor ML2 based on the active signal (triggered by the output of the active signal).
  • the switching control circuit 200 supplies the transistor MH2 with a gate signal GH that increases the gate potential of the transistor MH2 in response to a level change of the signal S241 (shift drive control signal) based on the rising edge of the drive control signal CNT. , which turns on transistor MH2.
  • the adjustment circuit (21) including the delay setting circuit 210 and the delay applying circuit 211 starts from the state where "Td_Hon>Td_Loff" (see FIGS. 3 and 18), and based on the difference between the edge timings tHon and tLoff.
  • Tdly_H2 By increasing the delay time Tdly_H2, the delay time Td_Loff can be increased, thereby decreasing the first dead time T DEAD1 .
  • the delay time Tdly_H2 corresponding to the given delay time is a part of the total delay time (that is, the delay time Td_Loff) when the transistor ML2 is turned off. Therefore, as the delay time Tdly_H2 increases or decreases, the delay time Td_Loff also increases or decreases. Further, the propagation delay time Tdly_LVS1 in the LVS241 is a part of the total delay time (ie, delay time Td_Hon) when the transistor MH2 is turned on.
  • the delay time Tdly_H2 becomes long enough that the edge timing tHon is earlier than the edge timing tLoff, the delay time Tdly_H2 is corrected to decrease by the delay setting circuit 210 and the delay adding circuit 211 based on the signals Hon and Loff. Ru.
  • a solid line 730 with an arrow indicates a propagation path of a signal that causes the potential of the gate signal GL to rise in response to a down edge of the drive control signal CNT.
  • a dashed line 732 with an arrow indicates how a signal corresponding to turning on transistor ML2 is propagated to delay setting circuit 220.
  • a solid line 740 with an arrow indicates a propagation path of a signal that causes the potential of the gate signal GH to decrease in response to a down edge of the drive control signal CNT.
  • a dashed line 742 with an arrow indicates how a signal corresponding to turning off transistor MH2 is propagated to delay setting circuit 220.
  • FIG. 20 is a timing chart of the switching control circuit 200 in response to the down edge of the drive control signal CNT.
  • a sufficiently long predetermined delay time is set so that the delay time Td_Lon is always longer than the delay time Td_Hoff (that is, "T DEAD2 >0": see FIG. 3).
  • the initial time is set to the delay time Tdly_L2. That is, in the initial delay state, the delay time Tdly_L2 is set to be sufficiently longer than the propagation delay time Tdly_LVS2 in the level shifter 241.
  • FIG. 20 is a timing chart in the initial delay state or a timing chart when the second dead time T DEAD2 is sufficiently long.
  • a down edge occurs in drive control signal CNT at time t2 (see also FIG. 3). Then, a down edge occurs in the signal S241 when the propagation delay time Tdly_LVS2 has elapsed from time t2.
  • the down edge of signal S241 causes a down edge of signal S243 through circuits 242 and 243.
  • the high side predriver (244 to 247) lowers the potential of the gate signal GH from a high level (the level of the boot voltage V BOOT ) to a low level (the level of the switch voltage V LX ). let In the process of lowering the potential of the gate signal GH, an up edge occurs in the signal Hoff at timing tHoff through the level shifter 261 and the circuit 233.
  • a down edge occurs in the signal S221 when the delay time Tdly_L2 has elapsed from the time t2.
  • a down edge also occurs in the signal S222 in synchronization with the down edge of the signal S221.
  • the selector 252 selects the signal S222. Therefore, the down edge of the signal S221 causes a down edge of the signal S252 through the circuit 222 and the selector 252.
  • the down edge of the signal S251 occurs after the down edge of the signal S252, at least in the initial delay state, the down edge of the signal S252 occurs after the down edge of the signal S251.
  • an up edge occurs in the signal S253 in synchronization with a down edge of the signal S252.
  • the low side predriver (254 to 257) raises the potential of the gate signal GL from a low level (ground level) to a high level (internal power supply voltage Vreg level).
  • an up edge occurs in the signal Lon at timing tLon.
  • the delay applying circuit 221 reduces the delay time Tdly_L2.
  • the amount of decrease at this time may be larger as the difference between the edge timings tHoff and tLon is larger (that is, the larger the second dead time T DEAD2 is), or it may be constant.
  • the delay time Tdly_L2 decreases according to the difference between the edge timings tHoff and tLon, and the edge timings tHoff and tLon decrease. It is stabilized in a state where the difference between them is zero or minute.
  • the delay applying circuit 221 is an example of a variable delay circuit that outputs an active signal after a variable delay time Tdly_L2 from the down edge of the drive control signal CNT.
  • the active signal here corresponds to the low level signal S221.
  • the switching control circuit 200 turns on the transistor ML2 by supplying the transistor ML2 with a gate signal GL that increases the gate potential of the transistor ML2 based on the active signal (triggered by the output of the active signal).
  • the switching control circuit 200 supplies the transistor MH2 with a gate signal GH that lowers the gate potential of the transistor MH2 in response to a level change of the signal S241 (shift drive control signal) based on the down edge of the drive control signal CNT. , thereby turning off transistor MH2.
  • the adjustment circuit (22) including the delay setting circuit 220 and the delay applying circuit 221 starts from the state where "Td_Lon>Td_Hoff" (see FIGS. 3 and 20), and based on the difference between the edge timings tHoff and tLon.
  • Tdly_L2 By reducing the delay time Tdly_L2, the delay time Td_Lon can be reduced, and thereby the second dead time T DEAD2 can be reduced.
  • the delay time Tdly_L2 corresponding to the given delay time is a part of the total delay time (i.e., delay time Td_Lon) when the transistor ML2 is turned on. Therefore, as the delay time Tdly_L2 increases or decreases, the delay time Td_Lon also increases or decreases. Further, the propagation delay time Tdly_LVS2 in the LVS241 is a part of the total delay time (ie, delay time Td_Hoff) when the transistor MH2 is turned off.
  • the delay time Tdly_L2 becomes short enough that the edge timing tLon is earlier than the edge timing tHoff, the delay time Tdly_L2 is increased and corrected by the delay setting circuit 220 and the delay adding circuit 221 based on the signals Lon and Hoff. Ru.
  • the configurations of the delay setting circuits 210 and 220 may be similar to the configurations of the delay setting circuits 110 and 120 described in Example EX1_A (see FIG. 10). For this reason, illustration of a configuration example of the delay setting circuits 210 and 220 is omitted.
  • Example EX2_B is an example based on Example EX2_A, and with respect to matters not specifically described in Example EX2_B, the matters described in Example EX2_A also apply to Example EX2_B unless there is a contradiction.
  • FIG. 21 shows a part of the internal circuit of the switching IC 1 according to the embodiment EX2_B.
  • the switching control circuit 10 is the switching control circuit 200a, and the transistors MH and ML are transistors MH2 and ML2, respectively.
  • the switching control circuit 200a has a configuration in which circuits 235 and 236 are added to the switching control circuit 200 (FIG. 16) according to the embodiment EX2_A.
  • the configuration and operation of the switching control circuit 200a are the same as those of the switching control circuit 200, except for the addition and the matters described below in Example EX2_B.
  • the circuit 235 is a Schmitt trigger type inverter circuit (in other words, an inverter circuit with hysteresis).
  • the input terminal of circuit 235 is connected to switch terminal T LX and receives switch voltage V LX .
  • the circuit 235 outputs a signal S235 according to the switch voltage V LX .
  • V TH235 + ⁇ V HYS a voltage
  • V TH235 + ⁇ V HYS ⁇ Vreg holds true.
  • the circuit 236 is a two-input AND circuit.
  • the circuit 236 outputs an AND signal of the signal S235 from the circuit 235 and the signal Hoff from the circuit 233 as a signal S236. Therefore, the signal S236 is at a high level only when the signals S235 and Hoff are both at a high level. If at least one of the signals S235 and Hoff is at a low level, the signal S236 is at a low level.
  • the signals S236 and Lon are input to the delay setting circuit 220 according to the embodiment EX2_B instead of the combination of the signals Hoff and Lon. That is, the delay setting circuit 220 according to the embodiment EX2_B generates and outputs the signal S220 based on the signals S236 and Lon instead of the signals Hoff and Lon.
  • the delay setting circuit 220 according to the embodiment EX2_B regards the signal S236 as the signal Hoff (that is, regards the up-edge timing of the signal S236 as the up-edge timing of the signal Hoff), and sets the signal in the same manner as in the embodiment EX2_A. By generating and outputting S220, the delay time Tdly_L2 to be added by the delay circuit 221 is specified and controlled.
  • the switching IC 1 according to the embodiment EX2_B is incorporated into the DC/DC converter 2 (FIG. 4).
  • the circuits 235 and 236 provide the same effect as the circuits 135 and 136 (FIG. 11) according to the embodiment EX1_B. That is, in a heavy load state where the load current I LD is relatively large, the operation of the switching control circuit 200a is substantially the same as the operation of the switching control circuit 200. On the other hand, in a light load state where the load current I LD is relatively small, the switch voltage V LX decreases more slowly as the transistor MH2 turns off than in a heavy load state.
  • the introduction of the circuits 235 and 236 prevents a decrease in efficiency in a light load state, in other words, improves the efficiency in a light load state.
  • the efficiency improvement is realized by correcting the delay time Tdly_L2 based on the signals S236 and Lon.
  • the up edge timing of the signal S236 will be referred to by the symbol "t236” and will be referred to as edge timing t236 or timing t236.
  • the delay setting circuit 220 detects the relationship between the edge timings t236 and tLon, and generates and outputs a signal S220 according to the detection result.
  • the content detected by the delay setting circuit 220 includes not only the difference between the edge timings t236 and tLon, but also the context of the edge timings t236 and tLon.
  • the operations of the delay setting circuit 220 and the delay adding circuit 221 in the switching control circuit 200a will be described with reference to FIG. 22.
  • the edge timing tHoff and the edge timing t236 are substantially the same, and the switching control circuit 200a performs the same operation as in the embodiment EX2_A. That is, in the third situation where the edge timing t236 is earlier than the edge timing tLon (the situation where the phase of the up edge of the signal S236 is ahead of the phase of the up edge of the signal Lon), the delay setting circuit 220 sets the delay time Tdly_L2. In response to the signal S220, the delay adding circuit 221 reduces the delay time Tdly_L2. The amount of decrease at this time may be greater as the difference between edge timing t236 and tLon is greater, or may be constant.
  • the drive control signal CNT is repeatedly switched between high and low levels. If the heavy load state is maintained, the delay time Tdly_L2 decreases according to the difference between the edge timing t236 and tLon, and becomes stable in a state where the difference between the edge timing t236 and tLon becomes zero or small. do.
  • the switch voltage V LX does not drop sufficiently just by turning off the transistor MH2, so the signal S235 is maintained at a low level.
  • the transistor ML2 is turned on by the gate signal GL in the propagation path 730 (FIG.
  • the edge timing t236 is later than the edge timing tLon (the phase of the up edge of the signal S236 lags the phase of the up edge of the signal Lon).
  • the delay setting circuit 220 When the edge timing t236 is later than the edge timing tLon, the delay setting circuit 220 generates and outputs a signal S220 for increasing the delay time Tdly_L2, and upon receiving the signal S220, the delay adding circuit 221 increases the delay time. Increase Tdly_L2.
  • the amount of increase at this time may be an amount corresponding to the difference between edge timing t236 and tLon, or may be constant.
  • the second dead time T DEAD2 increases due to the increase in the delay time Tdly_L2, efficiency is increased in a light load state.
  • the delay time Tdly_L2 increases. As a result, the transistor ML2 is turned on after the switch voltage V LX has sufficiently decreased in a light load state, and the above-described decrease in efficiency is suppressed. Note that an upper limit may be set on the increase in the delay time Tdly_L2 (an increase in the delay time Tdly_L2 beyond a predetermined upper limit time may be prohibited). Thereafter, if the light load state returns to the heavy load state, the delay time Tdly_L2 is reduced in accordance with the heavy load state. In other words, the delay time Tdly_L2 is appropriately adjusted according to the load current ILD .
  • the adjustment circuit 22 (see FIG. 1) including the delay setting circuit 220 and the delay applying circuit 221 adjusts the signal Hoff, the signal Lon, and the signal according to the switch voltage V LX .
  • the second dead time T DEAD2 is adjusted based on S235.
  • the delay time Td_Lon (FIG. 3) occurs corresponding to the propagation path 730 in FIG. 19, and therefore, the delay time Td_Lon related to turn-on of the transistor ML2 is increased or decreased by increasing or decreasing the delay time Tdly_L2.
  • the second dead time T DEAD2 also increases or decreases (see FIG. 3).
  • Example EX2_C ⁇ Example EX2_C>> Example EX2_C will be explained. In Example EX2_C, a modification technique to Example EX2_A or EX2_B will be described.
  • the configurations of the delay setting circuits 210 and 220 may be similar to the configurations of the delay setting circuits 110 and 120.
  • the delay setting circuit 210 may be any digital circuit or It may be configured with an analog circuit.
  • the delay setting circuit 220 may be formed of any digital circuit or analog circuit as long as it can generate a signal as the signal S220 according to the relationship between the edge timings tHoff and tLon (the difference and the context). It's good.
  • the delay setting circuit 220 may be formed of any digital circuit or analog circuit as long as it can generate a signal as the signal S220 according to the relationship between the edge timings t236 and tLon (the difference and the context). It's good.
  • each of the transistors MH2 and ML2 may be formed of an N-channel type IGBT.
  • the source and drain of the transistor MH2 are replaced with the emitter and collector, respectively, and the source and drain of the transistor ML2 are replaced with the emitter and collector, respectively.
  • Example EX3 ⁇ Example EX3>> Example EX3 will be explained.
  • Example EX3 applied techniques, modified techniques, supplementary matters, etc. for each of the above-mentioned matters will be explained.
  • the switching IC 1 is an example of a switching device according to the present disclosure. Although the example in which the switching IC 1 is incorporated into the DC/DC converter 2 has been described above, the application of the switching IC 1 is not limited to the DC/DC converter.
  • the switching IC 1 can also be used as a motor driver.
  • a motor driver IC including a block including a half-bridge circuit consisting of transistors MH and ML and a switching control circuit 10 for three phases may be formed, and the motor driver IC may drive a three-phase motor. good.
  • the motor driver IC is also an example of a switching device.
  • channels of FETs field effect transistors
  • the channel type of any FET may be varied between P-channel and N-channel.
  • Any transistor mentioned above may be any type of transistor as long as no inconvenience occurs.
  • any transistors mentioned above as MOSFETs can be replaced by junction FETs, IGBTs or bipolar transistors, as long as no disadvantage arises.
  • Any transistor has a first electrode, a second electrode, and a control electrode.
  • a FET one of the first and second electrodes is the drain, the other is the source, and the control electrode is the gate.
  • IGBT one of the first and second electrodes is the collector, the other is the emitter, and the control electrode is the gate.
  • a bipolar transistor that does not belong to an IGBT one of the first and second electrodes is the collector, the other is the emitter, and the control electrode is the base.
  • the expression that an arbitrary first physical quantity and an arbitrary second physical quantity are "the same” is understood to be a concept that includes an error.
  • the first physical quantity and the second physical quantity being “the same” means that the design or manufacturing is done with the aim of making the first physical quantity and the second physical quantity “the same”; Even if there is a slight error between the first physical quantity and the second physical quantity, it should be understood that the first physical quantity and the second physical quantity are "the same”. This should be interpreted similarly for expressions similar to "same” (eg, "same” or “match”).
  • a switching device (1; see FIGS. 1 and 3) includes a first transistor (MH), which is arranged on a lower potential side than the first transistor, and is connected in series with the first transistor. controlling the on or off of the first transistor by supplying a first gate signal (GH) to the first transistor based on the second transistor (ML) and the drive control signal (CNT); and a switching control circuit (10) configured to control on or off of the second transistor by supplying a second gate signal (GL) to the second transistor,
  • the circuit turns on the first transistor after a first delay time (Td_Hon) in response to a change in the level of the drive control signal from a first level to a second level, and turns on the first transistor after a second delay time (Td_Loff).
  • the switching control circuit detects a first timing (tHon) at which the first transistor is turned on based on the first gate signal; a first detection circuit (11H); a second detection circuit (11L) that detects a second timing (tLoff) at which the second transistor turns off based on the second gate signal; and a reference state in which the first delay time is longer than the second delay time as a starting point. and turning off the second transistor and turning off the first transistor by changing at least one of the first delay time and the second delay time based on the difference between the first timing and the second timing. and an adjustment circuit (21) configured to reduce the dead time (T DEAD1 ) between turn-on of the device (first configuration).
  • dead time can be reduced under various conditions. By reducing the dead time, it is possible to reduce loss (or conversely, improve efficiency).
  • the first transistor (MH1) is a P-channel field effect transistor or a P-channel insulated gate bipolar transistor
  • the second transistor (ML1) is an N-channel field effect transistor or an N-channel insulated gate bipolar transistor
  • the adjustment circuit (110 to 112) is configured to control the change of the drive control signal to the second level.
  • the switching control circuit includes a variable delay circuit (111) configured to output an active signal (high level S111 in the example of FIG. 6) after a variable time (Tdly_H1), and the switching control circuit is configured to output the first active signal based on the active signal.
  • the first transistor is turned on by supplying the first gate signal that lowers the gate potential of the transistor to the first transistor, and the adjustment circuit adjusts the first timing and the second timing starting from the reference state.
  • a configuration in which the first delay time (Td_Hon) is reduced by reducing the variable time (Tdly_H1) in the variable delay circuit based on the difference between timings, thereby reducing the dead time (T DEAD1 ). 2) may also be used.
  • the first transistor (MH2) and the second transistor (MHL) are each an N-channel field effect transistor. or an N-channel type insulated gate bipolar transistor, and the switching control circuit changes the drive control signal (CNT) from a level with a ground potential as a reference to a potential of a connection node between the first transistor and the second transistor
  • the level shifter (241) is configured to generate a shift drive control signal (S241) by level shifting the drive control signal (S241) to a level based on V LX turning on the first transistor by supplying the first gate signal that increases the gate potential of the first transistor to the first transistor in response to a level change of the shift drive control signal based on the adjustment circuit;
  • (210 to 212) are variable delay circuits ( 211), the switching control circuit turns off the second transistor by supplying the second gate signal that lowers the gate potential of the second transistor to the second transistor based on the active signal;
  • the adjustment circuit increases the second delay
  • the adjustment circuit is a first adjustment circuit (21), and the switching control circuit adjusts the level of the drive control signal to the second level. and turning off the first transistor after a third delay time (Td_Hoff) and turning on the second transistor after a fourth delay time (Td_Lon) in response to the change from to the first level;
  • the switching control circuit includes a third detection circuit (12H) that detects a third timing (tHoff) at which the first transistor turns off based on the first gate signal, and a third detection circuit (12H) that detects a third timing (tHoff) at which the first transistor turns off based on the second gate signal.
  • a fourth detection circuit (12L) that detects a fourth turn-on timing (tLon); By changing at least one of the third delay time and the fourth delay time based on the difference between the timings, a second dead time (T A configuration (fourth configuration) further including a second adjustment circuit (22) configured to reduce DEAD2 ) may also be used.
  • the second dead time can be reduced under various conditions.
  • the first transistor (MH1) is a P-channel field effect transistor or a P-channel insulated gate bipolar transistor.
  • the second transistor (ML1) is an N-channel field effect transistor or an N-channel insulated gate bipolar transistor, and the second adjustment circuit (120 to 122) adjusts the first control signal of the drive control signal.
  • the switching control circuit includes a variable delay circuit (122) configured to output an active signal (low level S122 in the example of FIG. 8) after a variable time (Tdly_L1) after the change to the active signal level.
  • the second adjustment circuit turns on the second transistor by supplying the second gate signal that increases the gate potential of the second transistor based on the second transistor, and the second adjustment circuit starts from the second reference state.
  • the fourth delay time (Td_Lon) is decreased by decreasing the variable time (Tdly_L1) in the variable delay circuit based on the difference between the third timing and the fourth timing;
  • a configuration (fifth configuration) that reduces the time (T DEAD2 ) may also be used.
  • the second dead time can be reduced under various conditions.
  • the first transistor (MH2) and the second transistor (ML2) are each of an N-channel type.
  • the switching control circuit is a field effect transistor or an N-channel type insulated gate bipolar transistor, and the switching control circuit changes the drive control signal from a level based on a ground potential to a potential of a connection node between the first transistor and the second transistor (
  • the level shifter (241) is configured to generate a shift drive control signal (S241) by level shifting the drive control signal (S241) to a level based on V LX ), turning off the first transistor by supplying the first gate signal that lowers the gate potential of the first transistor to the first transistor in response to a level change of the shift drive control signal based on the second transistor;
  • the adjustment circuits (220 to 222) have a variable delay configured to output an active signal (low level S221 in the example of FIG.
  • the switching control circuit has a circuit (221), and the switching control circuit turns on the second transistor by supplying the second gate signal to the second transistor that increases the gate potential of the second transistor based on the active signal. let me, The second adjustment circuit reduces the variable time (Tdly_L2) in the variable delay circuit based on the difference between the third timing and the fourth timing, starting from the second reference state.
  • a configuration (sixth configuration) may be adopted in which the delay time (Td_Lon) is decreased, thereby decreasing the second dead time (T DEAD2 ).
  • the second dead time can be reduced under various conditions.
  • the adjustment circuit is a first adjustment circuit (21), and the switching control circuit is In response to a change in the level of the drive control signal from the second level to the first level, the first transistor is turned off after a third delay time (Td_Hoff), and a fourth delay time (Td_Lon) is turned off.
  • Td_Hoff third delay time
  • Td_Lon fourth delay time
  • the switching control circuit includes a third detection circuit (12H) that detects a third timing (tHoff) at which the first transistor is turned off based on the first gate signal; a fourth detection circuit (12L) that detects a fourth timing (tLon) at which the second transistor turns on based on the second gate signal; a signal indicating the third timing; a signal indicating the fourth timing; A second transistor configured to adjust a second dead time between turn-off of the first transistor and turn-on of the second transistor based on a signal corresponding to a potential of a connection node between the first transistor and the second transistor.
  • the configuration (seventh configuration) may further include an adjustment circuit (22; 120 to 122 in FIG. 11, 220 to 222 in FIG. 21).
  • the second dead time can be adjusted appropriately under various conditions.
  • the first transistor (MH1) is a P-channel field effect transistor or a P-channel insulated gate bipolar transistor
  • the second The transistor (ML1) is an N-channel field effect transistor or an N-channel insulated gate bipolar transistor
  • the second adjustment circuit (120 to 122) adjusts the drive control signal from a change to the first level. It has a variable delay circuit (122) configured to output an active signal (low level S122 in the example of FIG. 8) after a time (Tdly_L1), and the switching control circuit controls the second transistor based on the active signal.
  • the second adjustment circuit turns on the second transistor by supplying the second gate signal that increases the gate potential of the second transistor to the second transistor.
  • Tdly_L1 variable time (Tdly_L1) based on a signal (Lon) indicating the timing and a signal (S135) corresponding to the potential (V LX ) of the connection node between the first transistor and the second transistor.
  • the fourth delay time (Td_Lon) may be adjusted, thereby adjusting the second dead time (V DEAD2 ) (eighth configuration).
  • the second dead time can be adjusted appropriately under various conditions.
  • the first transistor (MH2) and the second transistor (ML2) are each an N-channel field effect transistor or an N-channel field effect transistor.
  • the switching control circuit is a type of insulated gate bipolar transistor, and the switching control circuit changes the drive control signal from a level based on a ground potential to a potential (V LX ) of a connection node between the first transistor and the second transistor.
  • a level shifter 241 configured to generate a shift drive control signal (S241) by level shifting the drive control signal to the first level;
  • the first transistor is turned off by supplying the first gate signal that lowers the gate potential of the first transistor to the first transistor in response to a change in the level of the second adjustment circuit (220 to 222).
  • the switching control circuit turns on the second transistor by supplying the second gate signal that increases the gate potential of the second transistor based on the active signal, and controls the second adjustment.
  • the circuit includes a signal (Hoff) indicating the third timing, a signal (Lon) indicating the fourth timing, and a signal corresponding to a potential (V LX ) of a connection node between the first transistor and the second transistor. (S235), the fourth delay time (Td_Lon) is adjusted through the variable time adjustment (Tdly_L2), and the second dead time (V DEAD2 ) is thereby adjusted (ninth configuration). It may be.
  • the second dead time can be adjusted appropriately under various conditions.
  • a DC/DC converter (2; see FIG. 4) includes a switching device (1) according to any one of the first to ninth configurations, and a switch between the first transistor and the second transistor.
  • the switching device includes a rectifying and smoothing circuit (L OUT , C OUT ) configured to generate an output voltage (V OUT ) by rectifying and smoothing the voltage (V LX ) generated at the connection node.
  • This is a configuration (tenth configuration) including a feedback control circuit (30) configured to generate the drive control signal based on a feedback voltage (V FB ) corresponding to the output voltage.
  • the dead time can be optimized under various conditions, and the efficiency of the DC/DC converter can be increased.
  • Switching IC 2 DC/DC converter 10 Switching control circuit 11H High-side turn-on detection circuit 11L Low-side turn-off detection circuit 12H Low-side turn-off detection circuit 12L High-side turn-on detection circuit 21, 22 Adjustment circuit 30 Feedback control circuit L OUT coil C OUT capacitor R1, R2 Resistor T VIN power input terminal T LX switch terminal T GND ground terminal T FB feedback terminal MH Transistor (high side transistor) ML transistor (low side transistor) GH, GL Gate signal 100 Switching control circuit 110, 120 Delay setting circuit 111, 112, 121, 122 Delay applying circuit MH1 Transistor (high side transistor) ML1 transistor (low side transistor) 200 Switching control circuit 210, 220 Delay setting circuit 211, 221 Delay applying circuit 241, 251, 261 Level shifter MH2 Transistor (high side transistor) ML2 transistor (low side transistor)

Abstract

第1トランジスタと第1トランジスタよりも低電位側に設けられた第2トランジスタとが互いに直列接続される。駆動制御信号のレベル変化に基づき、第1トランジスタを第1遅延時間を経てからターンオンさせる一方、第2トランジスタを第2遅延時間を経てからターンオフさせる。第1及び第2トランジスタへのゲート信号に基づき、第1トランジスタのターンオンタイミング及び第2トランジスタのターンオフタイミングを検出する。それらのタイミング間の差に基づき第1及び第2遅延時間の少なくとも一方を変化させることで、デッドタイムを減少させる。

Description

スイッチング装置及びDC/DCコンバータ
 本開示は、スイッチング装置及びDC/DCコンバータに関する。
 第1及び第2トランジスタを有するハーフブリッジ回路に対して入力電圧を供給し、第1及び第2トランジスタを交互にオンさせるスイッチング方式がある。この種のスイッチング方式では、第1及び第2トランジスタの同時オンを回避するために、第1及び第2トランジスタの双方がオフ状態となるデッドタイムが設けられる(例えば下記特許文献1参照)。
特開2014-103485号公報
 必要以上に大きなデッドタイムは回路の効率等の低下につながる。デッドタイムの適正化は重要である。
 本開示は、デッドタイムの適正化に寄与するスイッチング装置及びDC/DCコンバータを提供することを目的とする。
 本開示に係るスイッチング装置は、第1トランジスタと、前記第1トランジスタよりも低電位側に配置され且つ前記第1トランジスタに対し直列接続された第2トランジスタと、駆動制御信号に基づき、前記第1トランジスタに対して第1ゲート信号を供給することで前記第1トランジスタのオン又はオフを制御し、且つ、前記第2トランジスタに対して第2ゲート信号を供給することで前記第2トランジスタのオン又はオフを制御するよう構成されたスイッチング制御回路と、を備え、前記スイッチング制御回路は、前記駆動制御信号のレベルの第1レベルから第2レベルへの変化に応答して、第1遅延時間を経てから前記第1トランジスタをターンオンさせる一方、第2遅延時間を経てから前記第2トランジスタをターンオフさせ、前記スイッチング制御回路は、前記第1ゲート信号に基づき前記第1トランジスタがターンオンする第1タイミングを検出する第1検出回路と、前記第2ゲート信号に基づき前記第2トランジスタがターンオフする第2タイミングを検出する第2検出回路と、前記第1遅延時間が前記第2遅延時間よりも長い基準状態を起点に、前記第1タイミング及び前記第2タイミング間の差に基づいて前記第1遅延時間及び前記第2遅延時間の内の少なくとも一方を変化させることにより、前記第2トランジスタのターンオフ及び前記第1トランジスタのターンオン間のデッドタイムを減少させるよう構成された調整回路と、を有する。
 本開示によれば、デッドタイムの適正化に寄与するスイッチング装置及びDC/DCコンバータを提供することが可能となる。
図1は、本開示の実施形態に係るスイッチングICの概略構成図である。 図2は、本開示の実施形態に係るスイッチングICの外観斜視図である。 図3は、本開示の実施形態に係り、駆動制御信号と各トランジスタの状態と複数の信号との関係図である。 図4は、本開示の実施形態に係るDC/DCコンバータの概略構成図である。 図5は、本開示の実施例EX1_Aに係るスイッチング制御回路の構成図である。 図6は、本開示の実施例EX1_Aに係り、駆動制御信号のアップエッジ(ライジングエッジ)に関わる動作説明図である。 図7は、本開示の実施例EX1_Aに係り、駆動制御信号のアップエッジ(ライジングエッジ)に関わるタイミングチャートある。 図8は、本開示の実施例EX1_Aに係り、駆動制御信号のダウンエッジ(フォーリングエッジ)に関わる動作説明図である。 図9は、本開示の実施例EX1_Aに係り、駆動制御信号のダウンエッジ(フォーリングエッジ)に関わるタイミングチャートある。 図10は、本開示の実施例EX1_Aに係り、各遅延設定回路の内部構成図である。 図11は、本開示の実施例EX1_Bに係るスイッチング制御回路の構成図である。 図12は、本開示の実施例EX1_Bに係り、重負荷時における幾つかの信号及び電圧波形を示す図である。 図13は、本開示の実施例EX1_Bに係り、軽負荷時における幾つかの信号及び電圧波形を示す図である。 図14は、本開示の実施例EX1_Bに係り、軽負荷時に仮想動作を行った際の幾つかの信号及び電圧波形を示す図である。 図15は、本開示の実施例EX1_Bに係り、付加される遅延時間の調整方法の説明図である。 図16は、本開示の実施例EX2_Aに係るスイッチング制御回路の構成図である。 図17は、本開示の実施例EX2_Aに係り、駆動制御信号のアップエッジ(ライジングエッジ)に関わる動作説明図である。 図18は、本開示の実施例EX2_Aに係り、駆動制御信号のアップエッジ(ライジングエッジ)に関わるタイミングチャートある。 図19は、本開示の実施例EX2_Aに係り、駆動制御信号のダウンエッジ(フォーリングエッジ)に関わる動作説明図である。 図20は、本開示の実施例EX2_Aに係り、駆動制御信号のダウンエッジ(フォーリングエッジ)に関わるタイミングチャートある。 図21は、本開示の実施例EX2_Bに係るスイッチング制御回路の構成図である。 図22は、本開示の実施例EX2_Bに係り、付加される遅延時間の調整方法の説明図である。
 以下、本開示の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、素子又は部位等を参照する記号又は符号を記すことによって、該記号又は符号に対応する情報、信号、物理量、素子又は部位等の名称を省略又は略記することがある。
 まず、本開示の実施形態の記述にて用いられる幾つかの用語について説明を設ける。ICとは集積回路(Integrated Circuit)の略称である。グランドとは、基準となる0V(ゼロボルト)の電位を有する基準導電部を指す又は0Vの電位そのものを指す。基準導電部は金属等の導体を用いて形成されて良い。0Vの電位をグランド電位と称することもある。本開示の実施形態において、特に基準を設けずに示される電圧はグランドから見た電位を表す。
 レベルとは電位のレベルを指し、任意の注目した信号又は電圧についてハイレベルはローレベルよりも高い電位を有する。任意の注目した信号又は電圧について、信号又は電圧がハイレベルにあるとは厳密には信号又は電圧のレベルがハイレベルにあることを意味し、信号又は電圧がローレベルにあるとは厳密には信号又は電圧のレベルがローレベルにあることを意味する。信号についてのレベルは信号レベルと表現されることがあり、電圧についてのレベルは電圧レベルと表現されることがある。任意の注目した信号について、当該信号がハイレベルであるとき、当該信号の反転信号はローレベルをとり、当該信号がローレベルであるとき、当該信号の反転信号はハイレベルをとる。ハイレベル又はローレベルの信号レベルをとる任意の信号について、当該信号のレベルがハイレベルとなる期間をハイレベル期間と称し、当該信号のレベルがローレベルとなる期間をローレベル期間と称する。ハイレベル又はローレベルの電圧レベルをとる任意の電圧についても同様である。
 任意の注目した信号又は電圧において、ローレベルからハイレベルへの切り替わりをアップエッジと称し、ローレベルからハイレベルへの切り替わりのタイミングをアップエッジタイミングと称する。アップエッジをライジングエッジに読み替えて良い。同様に、任意の注目した信号又は電圧において、ハイレベルからローレベルへの切り替わりをダウンエッジと称し、ハイレベルからローレベルへの切り替わりのタイミングをダウンエッジタイミングと称する。ダウンエッジをフォーリングエッジに読み替えて良い。
 MOSFETを含むFET(電界効果トランジスタ)として構成された任意のトランジスタについて、オン状態とは、当該トランジスタのドレイン及びソース間が導通している状態を指し、オフ状態とは、当該トランジスタのドレイン及びソース間が非導通となっている状態(遮断状態)を指す。FETに分類されないトランジスタについても同様である。MOSFETは、特に記述無き限り、エンハンスメント型のMOSFETであると解される。MOSFETは“metal-oxide-semiconductor  field-effect  transistor”の略称である。また、特に記述なき限り、任意のMOSFETにおいて、バックゲートはソースに短絡されていると考えて良い。
 MOSFETの電気的特性にはゲート閾電圧が含まれる。Nチャネル型且つエンハンスメント型のMOSFETである任意のトランジスタについて、当該トランジスタのゲート電位が当該トランジスタのソース電位よりも高く、且つ、当該トランジスタのゲート-ソース間電圧の大きさが当該トランジスタのゲート閾電圧以上であるとき、当該トランジスタはオン状態となり、そうでないとき、当該トランジスタはオフ状態となる。ゲート-ソース間電圧はソース電位から見たゲート電位を表す。Pチャネル型且つエンハンスメント型のMOSFETである任意のトランジスタについて、当該トランジスタのゲート電位が当該トランジスタのソース電位よりも低く、且つ、当該トランジスタのゲート-ソース間電圧の大きさが当該トランジスタのゲート閾電圧以上であるとき、当該トランジスタはオン状態となり、そうでないとき、当該トランジスタはオフ状態となる。
 任意のMOSFETについて、ゲート閾電圧とは、所定の周辺温度環境下において、当該MOSFETのドレイン及びソース間に所定電圧を印加している際に所定の大きさのドレイン電流を流すために必要なゲート-ソース間電圧として定義される。MOSFETに注目してゲート閾電圧を説明したが、絶縁ゲートバイポーラトランジスタ(IGBT)などにおいても同様である。IGBTは“Insulated  Gate  Bipolar Transistor”の略称である。
 以下、任意のトランジスタについて、オン状態、オフ状態を、単に、オン、オフと表現することもある。任意のトランジスタについて、オフ状態からオン状態への切り替わりをターンオンと表現し、オン状態からオフ状態への切り替わりをターンオフと表現する。
 任意の回路素子、配線、ノードなど、回路を形成する複数の部位間についての接続とは、特に記述なき限り、電気的な接続を指すと解して良い。
 本開示の実施形態を説明する。図1は本開示の実施形態に係るスイッチングIC1の概略全体構成図である。図2はスイッチングIC1の外観斜視図である。スイッチングIC1は、半導体基板上に形成された半導体集積回路を有する半導体チップと、半導体チップを収容する筐体(パッケージ)と、筐体からスイッチングIC1の外部に対して露出する複数の外部端子と、を備えた電子部品である。半導体チップを樹脂にて構成された筐体(パッケージ)内に封入することでスイッチングIC1が形成される。尚、図2に示されるスイッチングIC1の外部端子の数及びスイッチングIC1の筐体の種類は例示に過ぎず、それらを任意に設計可能である。
 スイッチングIC1に設けられる複数の外部端子の一部として、図1には、端子TVIN、TLX及びTGNDが示されている。端子TVINは入力電圧VVINを受ける電源入力端子である。入力電圧VVINは、スイッチングIC1の外部に設けられた図示されない電圧源から電源入力端子TVINに入力される。入力電圧VVINは所定の正の直流電圧値を有する。スイッチングIC1内の各回路(スイッチング制御回路10を含む)は、入力電圧VVINに基づいて、又は、入力電圧VVINと異なる電源電圧に基づいて、駆動する。端子TGNDはグランド端子であって0Vの電位を有するグランドに接続される。端子TGNDとグラントとの間にセンス抵抗(不図示)が挿入されることもある。端子TLXはスイッチ端子である。スイッチ端子TLXについては後述される。
 スイッチングIC1は、スイッチング素子であるトランジスタMH及びMLと、スイッチング制御回路10と、を備える。トランジスタMH及びMLは互いに直列接続される。トランジスタMH及びMLの直列回路は端子TVIN及びTGND間に設けられる。トランジスタMHはトランジスタMLよりも高電位側に配置されるハイサイドトランジスタ(ハイサイドスイッチング素子)であり、トランジスタMLはトランジスタMHよりも低電位側に配置されるローサイドトランジスタ(ローサイドスイッチング素子)である。
 トランジスタMH及びMLは、夫々、第1電極及び第2電極及び制御電極を有する。制御電極はゲートである。例えば、トランジスタMH又はMLがFET(電界効果トランジスタ)である場合、第1電極及び第2電極の内、一方はドレインであって且つ他方はソースである。この際、FETはゲート-ソース間電圧(ソース電位から見たゲート電位)に応じて、オン状態又はオフ状態となる。或いは例えば、トランジスタMH又はMLがIGBTである場合、第1電極及び第2電極の内、一方はコレクタであって且つ他方はエミッタである。IGBTは、ゲート-エミッタ間電圧(エミッタ電位から見たゲート電位)に応じて、オン状態又はオフ状態となる。
 トランジスタMHにおける第1及び第2電極の内、一方の電極は電源入力端子TVINに接続されて入力電圧VINの供給を受け、他方の電極はスイッチ端子TLXに接続される。トランジスタMLにおける第1及び第2電極の内、一方の電極はスイッチ端子TLXに接続され、他方の電極はグランド端子TGNDに接続される。スイッチ端子TLXにおける電圧を記号“VLX”にて表す。
 スイッチング制御回路10に対して駆動制御信号CNTが入力される。駆動制御信号CNTはハイレベル及びローレベルの何れかのレベルをとる二値化信号である。駆動制御信号CNTのレベルはハイレベル及びローレベル間で繰り返し変化する。駆動制御信号CNTはスイッチングIC1内で生成されて良い。スイッチングIC1の外部に設けられた外部回路(不図示)にて駆動制御信号CNTが生成されても良い。この場合、駆動制御信号CNTを受ける外部端子がスイッチングIC1に設けられ、当該外部回路からスイッチングIC1に対して駆動制御信号CNTが供給される。
 スイッチング制御回路10は駆動制御信号CNTに基づいてゲート信号GH及びGLを生成し、ゲート信号GHをトランジスタMHのゲートに供給する一方でゲート信号GLをトランジスタMLのゲートに供給する。トランジスタMHはゲート信号GHに応じてオン状態又はオフ状態となり、トランジスタMLはゲート信号GLに応じてオン状態又はオフ状態となる。即ち、スイッチング制御回路10は、ゲート信号GHをトランジスタMHのゲートに供給することでトランジスタMHのオン又はオフを制御し、ゲート信号GLをトランジスタMLのゲートに供給することでトランジスタMLのオン又はオフを制御する。
 トランジスタMH及びMLによりハーフブリッジ回路が構成される。当該ハーフブリッジ回路において、トランジスタMHがオン状態及びトランジスタMLがオフ状態とされる状態を出力ハイ状態と称し、出力ハイ状態が実現される期間を出力ハイ期間と称する。当該ハーフブリッジ回路において、トランジスタMHがオフ状態及びトランジスタMLがオン状態とされる状態を出力ロー状態と称し、出力ロー状態が実現される期間を出力ロー期間と称する。当該ハーフブリッジ回路において、トランジスタMH及びMLが共にオフ状態となる状態を両オフ状態と称し、両オフ状態が実現される期間を両オフ期間と称する。スイッチングIC1においてトランジスタMH及びMLが同時にオンとされることは無い。
 駆動制御信号CNTのレベル変化に応答してハーフブリッジ回路(MH、ML)の状態は出力ハイ状態及び出力ロー状態間で交互に切り替わる。但し、出力ハイ状態から出力ロー状態へ切り替わる際、通常は出力ハイ期間より両オフ期間を経て出力ロー期間に遷移し、出力ロー状態から出力ハイ状態へ切り替わる際、通常は出力ロー期間より両オフ期間を経て出力ハイ期間に遷移する。両オフ期間そのもの、又は、両オフ期間の時間長さは、デッドタイムと称される。
 図3に、駆動制御信号CNTのレベルとトランジスタMH及びMLの状態との関係等を概略的に示す。時刻t1において駆動制御信号CNTのレベルが第1レベルから第2レベルへの変化し、その後、時刻t2において駆動制御信号CNTのレベルが第2レベルから第1レベルへ変化したとする。
 スイッチング制御回路10は、駆動制御信号CNTのレベルにおける第1レベルから第2レベルへの変化に応答して遅延時間Td_Honを経てからトランジスタMHをターンオンさせ、駆動制御信号CNTのレベルにおける第1レベルから第2レベルへの変化に応答して遅延時間Td_Loffを経てからトランジスタMLをターンオフさせる。即ち、スイッチング制御回路10は、時刻t1から遅延時間Td_Honだけ後の時刻においてトランジスタMHがオフ状態からオン状態に切り替わるようにゲート信号GHを生成し、時刻t1から遅延時間Td_Loffだけ後の時刻においてトランジスタMLがオン状態からオフ状態に切り替わるようにゲート信号GLを生成する。
 スイッチング制御回路10は、駆動制御信号CNTのレベルにおける第2レベルから第1レベルへの変化に応答して遅延時間Td_Hoffを経てからトランジスタMHをターンオフさせ、駆動制御信号CNTのレベルにおける第2レベルから第1レベルへの変化に応答して遅延時間Td_Lonを経てからトランジスタMLをターンオンさせる。即ち、スイッチング制御回路10は、時刻t2から遅延時間Td_Hoffだけ後の時刻においてトランジスタMHがオン状態からオフ状態に切り替わるようにゲート信号GHを生成し、時刻t2から遅延時間Td_Lonだけ後の時刻においてトランジスタMLがオフ状態からオン状態に切り替わるようにゲート信号GLを生成する。
 駆動制御信号CNTのレベルについて、第1レベル及び第2レベルの内、どちらがハイレベルであっても良いが、以下では、第1レベルがローレベルであって且つ第2レベルがハイレベルであるとする。
 スイッチング制御回路10には、回路11H、11L、12H、12L、21及び22が設けられる(図1参照)。回路11H及び12HはトランジスタMHのゲートに接続されて(換言すればゲート信号GHが加わる配線に接続されて)ゲート信号GHを受ける。回路11L及び12LはトランジスタMLのゲートに接続されて(換言すればゲート信号GLが加わる配線に接続されて)ゲート信号GLを受ける。回路11H、11L、12H、12Lは、夫々、信号Hon、Loff、Hoff、Lonを出力する。信号Hon、Loff、Hoff及びLonは夫々に“0”又は“1”の値(論理値)を持つ。ここでは、信号Hon、Loff、Hoff及びLonの夫々において“1”の論理値にハイレベルが対応付けられ、“0”の論理値にローレベルが対応付けられているものとする。
 回路11Hは、ハイサイドターンオン検出回路であり、ゲート信号GHに基づいてトランジスタMHがターンオンするタイミングを検出し、その検出結果を示す二値化信号として信号Honを出力する。回路11HにおいてトランジスタMHがオフ状態からオン状態に切り替わったと検出されたとき、当該検出タイミングにおいて回路11Hは信号Honにアップエッジを発生させる(図3参照)。従って、信号HonのアップエッジタイミングはトランジスタMHのターンオンタイミング(詳細にはトランジスタMHのターンオンの検出タイミング)を表し、時刻t1から遅延時間Td_Honだけ後の時刻において信号Honにアップエッジが生じる。尚、トランジスタMHがターンオフするときには信号Honにダウンエッジが生じる。以下、信号Honのアップエッジタイミングを記号“tHon”にて表し、エッジタイミングtHon又はタイミングtHonと称することがある。
 回路11Lは、ローサイドターンオフ検出回路であり、ゲート信号GLに基づいてトランジスタMLがターンオフするタイミングを検出し、その検出結果を示す二値化信号として信号Loffを出力する。回路11LにおいてトランジスタMLがオン状態からオフ状態に切り替わったと検出されたとき、当該検出タイミングにおいて回路11Lは信号Loffにアップエッジを発生させる(図3参照)。従って、信号LoffのアップエッジタイミングはトランジスタMLのターンオフタイミング(詳細にはトランジスタMLのターンオフの検出タイミング)を表し、時刻t1から遅延時間Td_Loffだけ後の時刻において信号Loffにアップエッジが生じる。尚、トランジスタMLがターンオンするときには信号Loffにダウンエッジが生じる。以下、信号Loffのアップエッジタイミングを記号“tLoff”にて表し、エッジタイミングtLoff又はタイミングtLoffと称することがある。
 回路12Hは、ハイサイドターンオフ検出回路であり、ゲート信号GHに基づいてトランジスタMHがターンオフするタイミングを検出し、その検出結果を示す二値化信号として信号Hoffを出力する。回路12HにおいてトランジスタMHがオン状態からオフ状態に切り替わったと検出されたとき、当該検出タイミングにおいて回路12Hは信号Hoffにアップエッジを発生させる(図3参照)。従って、信号HoffのアップエッジタイミングはトランジスタMHのターンオフタイミング(詳細にはトランジスタMHのターンオフの検出タイミング)を表し、時刻t2から遅延時間Td_Hoffだけ後の時刻において信号Hoffにアップエッジが生じる。尚、トランジスタMHがターンオンするときには信号Hoffにダウンエッジが生じる。以下、信号Hoffのアップエッジタイミングを記号“tHoff”にて表し、エッジタイミングtHoff又はタイミングtHoffと称することがある。
 回路12Lは、ローサイドターンオン検出回路であり、ゲート信号GLに基づいてトランジスタMLがターンオンするタイミングを検出し、その検出結果を示す二値化信号として信号Lonを出力する。回路12LにおいてトランジスタMLがオフ状態からオン状態に切り替わったと検出されたとき、当該検出タイミングにおいて回路12Lは信号Lonにアップエッジを発生させる(図3参照)。従って、信号LonのアップエッジタイミングはトランジスタMLのターンオンタイミング(詳細にはトランジスタMLのターンオンの検出タイミング)を表し、時刻t2から遅延時間Td_Lonだけ後の時刻において信号Lonにアップエッジが生じる。尚、トランジスタMLがターンオフするときには信号Lonにダウンエッジが生じる。以下、信号Lonのアップエッジタイミングを記号“tLon”にて表し、エッジタイミングtLon又はタイミングtLonと称することがある。
 調整回路21に対して信号Hon及びLoffが入力される。調整回路21は信号Hon及びLoffに基づいて遅延時間Td_Hon及びTd_Loffの内、少なくとも一方を調整できる(即ち遅延時間Td_Hon及びTd_Loffの内、少なくとも一方を増大又は減少させることができる)。
 例えば、駆動制御信号CNTのアップエッジに応答してトランジスタMHをターンオンさせるためのゲート信号GHを生成する回路内において第1遅延付与回路を挿入することができ、駆動制御信号CNTのアップエッジの後段回路への伝搬を第1遅延付与回路にて第1可変遅延時間分だけ遅らせて良い。この第1可変遅延時間を信号Hon及びLoffに基づいて増大、減少させることで、遅延時間Td_Honを増大、減少させることができる。同様に例えば、駆動制御信号CNTのアップエッジに応答してトランジスタMLをターンオフさせるためのゲート信号GLを生成する回路内において第2遅延付与回路を挿入することができ、駆動制御信号CNTのアップエッジの後段回路への伝搬を第2遅延付与回路にて第2可変遅延時間分だけ遅らせて良い。この第2可変遅延時間を信号Hon及びLoffに基づいて増大、減少させることで、遅延時間Td_Loffを増大、減少させることができる。
 調整回路22に対して信号Hoff及びLonが入力される。調整回路22は信号Hoff及びLonに基づいて遅延時間Td_Hoff及びTd_Lonの内、少なくとも一方を調整できる(即ち遅延時間Td_Hoff及びTd_Lonの内、少なくとも一方を増大又は減少させることができる)。
 例えば、駆動制御信号CNTのダウンエッジに応答してトランジスタMHをターンオフさせるためのゲート信号GHを生成する回路内において第3遅延付与回路を挿入することができ、駆動制御信号CNTのダウンエッジの後段回路への伝搬を第3遅延付与回路にて第3可変遅延時間分だけ遅らせて良い。この第3可変遅延時間を信号Hoff及びLonに基づいて増大、減少させることで、遅延時間Td_Hoffを増大、減少させることができる。同様に例えば、駆動制御信号CNTのダウンエッジに応答してトランジスタMLをターンオンさせるためのゲート信号GLを生成する回路内において第4遅延付与回路を挿入することができ、駆動制御信号CNTのダウンエッジの後段回路への伝搬を第4遅延付与回路にて第4可変遅延時間分だけ遅らせて良い。この第4可変遅延時間を信号Hoff及びLonに基づいて増大、減少させることで、遅延時間Td_Lonを増大、減少させることができる。
 スイッチングIC1に対して入力電圧VINが供給されていない状態からスイッチングIC1に対して入力電圧VINが供給される状態へ遷移することで、スイッチングIC1が起動する。スイッチングIC1の起動直後における遅延時間Td_Hon、Td_Loff、Td_Hoff及びTd_Lonの状態を初期遅延状態と称する。初期遅延状態では、遅延時間Td_Honが遅延時間Td_Loffよりも必ず長くなるように、且つ、遅延時間Td_Lonが遅延時間Td_Hoffよりも必ず長くなるように、スイッチングIC1が構成されている。
 駆動制御信号CNTのレベルにおける第1レベルから第2レベルへの変化に応答して、トランジスタMLがターンオフしてからトランジスタMHがターンオンするまでの時間を第1デッドタイムと称し、記号“TDEAD1”で参照する。第1デッドタイムTDEAD1は、信号LoffのアップエッジタイミングtLoffから信号HonのアップエッジタイミングtHonまでの時間に相当する。
 駆動制御信号CNTのレベルにおける第2レベルから第1レベルへの変化に応答して、トランジスタMHがターンオフしてからトランジスタMLがターンオンするまでの時間を第2デッドタイムと称し、記号“TDEAD2”で参照する。第2デッドタイムTDEAD2は、信号HoffのアップエッジタイミングtHoffから信号LonのアップエッジタイミングtLonまでの時間に相当する。
 調整回路21は、信号HonのアップエッジタイミングtHon及び信号LoffのアップエッジタイミングtLoff間の差に基づいて、即ちエッジタイミングtHon及びtLoff間の差に基づいて、第1デッドタイムTDEAD1を減少させる第1デッドタイム減少動作を実行できる。このため、調整回路21を第1デッドタイム調整回路と称することもできる。第1デッドタイム減少動作に係る調整回路21は、初期遅延状態を起点に、エッジタイミングtHon及びtLoff間の差に基づいて遅延時間Td_Hon及びTd_Loffの内の少なくとも一方を変化させ、これによって第1デッドタイムTDEAD1を減少させる。
 調整回路22は、信号HoffのアップエッジタイミングtHoff及び信号LonのアップエッジタイミングtLon間の差に基づいて、即ちエッジタイミングtHoff及びtLon間の差に基づいて、第2デッドタイムTDEAD2を減少させる第2デッドタイム減少動作を実行できる。このため、調整回路22を第2デッドタイム調整回路と称することもできる。第2デッドタイム減少動作に係る調整回路22は、初期遅延状態を起点に、エッジタイミングtHoff及びtLon間の差に基づいて遅延時間Td_Hoff及びTd_Lonの内の少なくとも一方を変化させ、これによって第2デッドタイムTDEAD2を減少させる。
 図4に、スイッチングIC1を組み込んだ装置の例としてDC/DCコンバータ2の構成図を示す。
 DC/DCコンバータ2は、入力電圧VINを電力変換することにより入力電圧VINよりも低い出力電圧VOUTを生成する降圧型DC/DCコンバータとして構成されている。入力電圧VIN及び出力電圧VOUTは正の直流電圧である。DC/DCコンバータ2は、スイッチングIC1と、コイルLOUTと、コンデンサCOUTと、抵抗R1及びR2を備える。DC/DCコンバータ2に組み込まれるスイッチングIC1には、上述のトランジスタMH及びML並びにスイッチング制御回路10に加えて、帰還制御回路30が設けられる。
 駆動制御信号CNTに応じてトランジスタMH及びMLが交互にオンとされることでスイッチ端子TLXに、概ね入力電圧VIN及びグランド電位間で変動する矩形波状の電圧が電圧VLXとして生じる。スイッチ端子TLXにおける矩形波状の電圧(VLX)を、コイルLOUT及びコンデンサCOUTから成る整流平滑回路にて整流及び平滑化することで出力電圧VOUTが生成される。具体的には、DC/DCコンバータ2において、コイルLOUTの一端がスイッチ端子TLXに接続され、コイルLOUTの他端が出力端子OUTに接続される。出力端子OUTはコンデンサCOUTを介してグランドに接続される。出力端子OUTに出力電圧VOUTが加わる。出力端子OUTは抵抗R1の一端に接続され、抵抗R1の他端は抵抗R2を介してグランドに接続される。故に、抵抗R1及びR2間の接続ノードに出力電圧VOUTに比例する帰還電圧VFBが発生する。DC/DCコンバータ2において、スイッチングIC1には帰還電圧VFBを受ける帰還端子FBが外部端子の1つとして設けられている。
 帰還制御回路30は帰還電圧VFBに基づき出力電圧VOUTが所定の目標電圧に安定化するよう、駆動制御信号CNTを生成する。帰還制御回路30は、コイルLOUTに流れる電流の検出結果も参照して駆動制御信号CNTを生成して良い。帰還制御回路30は、例えばパルス幅変調を利用して駆動制御信号CNTを生成することができ、この際、駆動制御信号CNTは所定のスイッチング周波数を有する矩形波信号となる。
 DC/DCコンバータ2における出力端子OUTに対し負荷LDが接続される。負荷LDは出力電圧VOUTに基づいて駆動する任意の負荷である。負荷LDはスイッチ端子TLXからコイルLOUTを通じ自身の消費電流を引き込む。負荷LDの消費電流を以下では負荷電流ILDと称する。このようなDC/DCコンバータ2において効率(電力変換効率)の向上は重要である。
 他方、ハイサイド及びローサイドトランジスタの同時オンを回避する方法として以下の第1及び第2参考方法が検討される。
 第1参考方法では、ハイサイドトランジスタのターンオフ検出信号に所定遅延を付加してからローサイドトランジスタをターンオンさせ、且つ、ローサイドトランジスタのターンオフ検出信号に所定遅延を付加してからハイサイドトランジスタをターンオンさせる。第1参考方法により同時オンを回避できるが、効率の悪化が懸念される。
 第2参考方法では、駆動制御信号CNTに対し第1固定遅延量による遅延を付加した信号に基づきハイサイドトランジスタ用のゲート信号を生成し、駆動制御信号CNTに対し第2固定遅延量による遅延を付加した信号に基づきローサイドトランジスタ用のゲート信号を生成する。第2参考方法によっても同時オンを回避できる。しかしながら、第2参考方法では、様々な条件下で効率を最適なものにすることが難しい。これについて説明を加える。DC/DCコンバータ2、及び、DC/DCコンバータ2に類するDC/DCコンバータは、CCM(Continuous Conduction Mode)の領域又はDCM(Discontinuous  Conduction  Mode)の領域で動作することができる。負荷LDの消費電力が比較的大きいときにはCCMの領域で動作し、負荷LDがスリープ状態なるなど、負荷LDの消費電力が比較的小さいときにはDCMの領域で動作する。第2参考方法では、CCMの領域での最適な遅延量を上記固定遅延量にあわせこむため、DCMの領域において効率が悪化する。
 本実施形態に係るスイッチングIC1を用いれば、各デッドタイム減少動作の実行を通じ、様々な条件下においてDC/DCコンバータ2の効率を最適化することが可能となる。また、DC/DCコンバータに限らず、スイッチングIC1を組み込んだ任意の装置において、デッドタイムの縮小を通じ効率を最適化(換言すれば損失を低減)することが可能となる。
 以下、複数の実施例の中で、スイッチングIC1に関わる幾つかの具体的な動作例、応用技術、変形技術等を説明する。本実施形態にて上述した事項は、特に記述無き限り且つ矛盾無き限り、以下の各実施例に適用される。各実施例において、上述の事項と矛盾する事項がある場合には、各実施例での記載が優先されて良い。また矛盾無き限り、以下に示す複数の実施例の内、任意の実施例に記載した事項を、他の任意の実施例に適用することもできる(即ち複数の実施例の内の任意の2以上の実施例を組み合わせることも可能である)。
<<実施例EX1_A>>
 実施例EX1_Aを説明する。図5に実施例EX1_Aに係るスイッチングIC1の一部内部回路を示す。実施例EX1_Aに係るスイッチングIC1において、スイッチング制御回路10(図1参照)はスイッチング制御回路100であり、トランジスタMH及びMLは夫々トランジスタMH1及びML1である。トランジスタMH1はPチャネル型のMOSFETにより構成され、トランジスタML1はNチャネル型のMOSFETにより構成される。
 トランジスタMH1におけるソースは電源入力端子TVINに接続されて入力電圧VINの供給を受ける。トランジスタMH1におけるドレインはスイッチ端子TLXに接続される。トランジスタML1におけるドレインはスイッチ端子TLXに接続される。即ち、トランジスタMH1及びML1のドレイン同士はスイッチ端子TLXにて共通接続される。トランジスタML1におけるソースはグランド端子TGNDに接続され、グランド端子TGNDを通じてグランドに接続される。実施例EX1_Aにて述べるゲート信号GH、GLは、夫々、トランジスタMH1、ML1のゲートに加わるゲート信号を指す(後述の実施例EX1_B及びEX1_Cでも同様)。
 スイッチング制御回路100は、符号110~117、120~127及び131~134にて参照される回路又は素子を有する。
 回路110~115、120~125及び131~134は、グランド電位を基準に入力電圧VIN又は入力電圧VINと異なる内部電源電圧にて駆動するデジタル又はアナログ回路である。内部電源電圧は所定の正の直流電圧を有する。内部電源電圧は入力電圧VINに基づきスイッチングIC1内の内部電源回路(不図示)にて生成されて良い。回路111~115、121~125及び131~134の夫々の出力信号は、ハイレベル及びローレベルの何れかをとる二値化信号である。トランジスタ116及び126はPチャネル型のMOSFETであり、トランジスタ117及び127はNチャネル型のMOSFETである。
 回路111、112、121及び122は遅延付与回路である。遅延付与回路111、112、121及び122の夫々に対し駆動制御信号CNTが入力される。遅延付与回路111、112、121、122は、駆動制御信号CNTに対し、夫々、遅延時間Tdly_H1、Tdly_fix、Tdly_fix、Tdly_L1による遅延を付与し、遅延付与後の信号を出力する。遅延時間Tdly_H1、Tdly_fix及びTdly_L1は、積極的に付与される遅延時間であるため、それらを付与遅延時間又は挿入遅延時間と称することもできる。
 遅延付与回路111は、駆動制御信号CNTを遅延時間Tdly_H1だけ遅延させた信号を信号S111として出力する。従って、駆動制御信号CNTのアップエッジタイミングから遅延時間Tdly_H1だけ後のタイミングにおいて信号S111にアップエッジが生じる。同様に、駆動制御信号CNTのダウンエッジタイミングから遅延時間Tdly_H1だけ後のタイミングにおいて信号S111にダウンエッジが生じる。
 遅延付与回路112は、駆動制御信号CNTを遅延時間Tdly_fixだけ遅延させた信号を信号S112として出力する。従って、駆動制御信号CNTのアップエッジタイミングから遅延時間Tdly_fixだけ後のタイミングにおいて信号S112にアップエッジが生じる。同様に、駆動制御信号CNTのダウンエッジタイミングから遅延時間Tdly_fixだけ後のタイミングにおいて信号S112にダウンエッジが生じる。
 遅延付与回路121は、駆動制御信号CNTを遅延時間Tdly_fixだけ遅延させた信号を信号S121として出力する。従って、駆動制御信号CNTのアップエッジタイミングから遅延時間Tdly_fixだけ後のタイミングにおいて信号S121にアップエッジが生じる。同様に、駆動制御信号CNTのダウンエッジタイミングから遅延時間Tdly_fixだけ後のタイミングにおいて信号S121にダウンエッジが生じる。
 遅延付与回路122は、駆動制御信号CNTを遅延時間Tdly_L1だけ遅延させた信号を信号S122として出力する。従って、駆動制御信号CNTのアップエッジタイミングから遅延時間Tdly_L1だけ後のタイミングにおいて信号S122にアップエッジが生じる。同様に、駆動制御信号CNTのダウンエッジタイミングから遅延時間Tdly_L1だけ後のタイミングにおいて信号S122にダウンエッジが生じる。
 ここで、遅延時間Tdly_H1及びTdly_L1は可変である一方、遅延時間Tdly_fixは固定される。遅延時間Tdly_fixはスイッチングIC1の設計段階で予め定められた固定時間を有する。尚、遅延付与回路112で付与される遅延時間Tdly_fixと、遅延付与回路121で付与される遅延時間Tdly_fixとは、互いに同じであっても良いし、若干相違していても良い。スイッチングIC1の起動直後における初期遅延状態において遅延時間Tdly_H1及びTdly_L1は遅延時間Tdly_fixよりも十分に長い。また、遅延時間Tdly_H1及びTdly_L1には下限が定められていて良い。この際、遅延時間Tdly_H1及びTdly_L1が夫々に遅延時間Tdly_fix以下となることが無いようにして良い。
 回路113は2入力の否定論理積回路である。回路113は信号S111及びS112の否定論理積信号を信号S113として出力する。従って、信号S111及びS112が共にハイレベルであるときに限り、信号S113はローレベルとなる。信号S111及びS112の内、少なくとも一方がローレベルであれば信号S113はハイレベルとなる。
 回路123は2入力の否定論理和回路である。回路123は信号S121及びS122の否定論理和信号を信号S123として出力する。従って、信号S121及びS122が共にローレベルであるときに限り、信号S123はハイレベルとなる。信号S121及びS122の内、少なくとも一方がハイレベルであれば信号S123はローレベルとなる。
 回路114及び115並びにトランジスタ116及び117により、トランジスタMH1のゲートを駆動するためのハイサイドプリドライバが構成される。当該ハイサイドプリドライバは、信号S113のローレベル期間においてローレベルのゲート信号GHをトランジスタMH1のゲートに与えることでトランジスタMH1をオン状態とし、信号S113のハイレベル期間においてハイレベルのゲート信号GHをトランジスタMH1のゲートに与えることでトランジスタMH1をオフ状態とする。実施例EX1_Aにおいて、ハイレベルのゲート信号GHは入力電圧VINの電位を有し、ローレベルのゲート信号GHはグランド電位を有する。入力電圧VINはトランジスタMH1のゲート閾電圧よりも大きい。
 回路124及び125並びにトランジスタ126及び127により、トランジスタML1のゲートを駆動するためのローサイドプリドライバが構成される。当該ローサイドプリドライバは、信号S123のハイレベル期間においてハイレベルのゲート信号GLをトランジスタML1のゲートに与えることでトランジスタML1をオン状態とし、信号S123のローレベル期間においてローレベルのゲート信号GLをトランジスタML1のゲートに与えることでトランジスタML1をオフ状態とする。実施例EX1_Aにおいて、ハイレベルのゲート信号GLは入力電圧VINの電位を有し、ローレベルのゲート信号GLはグランド電位を有する。入力電圧VINはトランジスタML1のゲート閾電圧よりも大きい。
 具体的には、回路114、115、124及び125はインバータ回路である。回路114及び115は夫々に信号S113を受けて信号S113の反転信号を出力する。回路114の出力信号がトランジスタ116のゲートに供給され、回路115の出力信号がトランジスタ117のゲートに供給される。回路124及び125は夫々に信号S123を受けて信号S123の反転信号を出力する。回路124の出力信号がトランジスタ126のゲートに供給され、回路125の出力信号がトランジスタ127のゲートに供給される。トランジスタ116及び126の各ソースは電源入力端子TVINに接続されて入力電圧VINの供給を受ける。トランジスタ117及び127の各ソースはグランド端子TGNDに接続される。トランジスタ116及び117の各ドレインは互いに接続され、ゲート配線118を通じてトランジスタMH1のゲートに接続される。ゲート配線118に生じる信号がゲート信号GHである。トランジスタ126及び127の各ドレインは互いに接続され、ゲート配線128を通じてトランジスタML1のゲートに接続される。ゲート配線128に生じる信号がゲート信号GLである。
 回路131及び132はシュミットトリガ型のインバータ回路(換言すればヒステリシス付きのインバータ回路)である。スイッチング制御回路100では、回路131、132が、夫々、図1に示される回路11H、11Lに相当し、回路131、132の出力信号が、夫々、信号Hon、Loffに相当する。故に、スイッチング制御回路100では、回路131、132の出力信号のアップエッジタイミングが、夫々、エッジタイミングtHon、tLoffに相当する(図3参照)。
 回路131の入力端子はゲート配線118に接続されてゲート信号GHを受ける。回路131はゲート信号GHに応じた信号Honを出力する。ここでゲート信号GHの電圧(電位)をゲート電圧と称し、記号“VGH”にて表す。信号Honがローレベルである状態を起点に、ゲート電圧VGHが所定の正の閾電圧VTH131を下回ると信号Honにアップエッジが生じ、その後、ゲート電圧VGHが電圧(VTH131+ΔVHYS)を上回ると信号Honにダウンエッジが生じる。ここで、不等式“0<VTH131<VTH131+ΔVHYS<VIN”が成立する。ΔVHYSは正のヒステリシス電圧である。電圧(VIN-VTH131)がトランジスタMH1のゲート閾電圧と一致又は同程度となるように、閾電圧VTH131が定められて良い。
 回路132の入力端子はゲート配線128に接続されてゲート信号GLを受ける。回路132はゲート信号GLに応じた信号Loffを出力する。ここでゲート信号GLの電圧(電位)をゲート電圧と称し、記号“VGL”にて表す。信号Loffがローレベルである状態を起点に、ゲート電圧VGLが所定の正の閾電圧VTH132を下回ると信号Loffにアップエッジが生じ、その後、ゲート電圧VGLが電圧(VTH132+ΔVHYS)を上回ると信号Loffにダウンエッジが生じる。ここで、不等式“0<VTH132<VTH132+ΔVHYS<VIN”が成立する。電圧VTH132がトランジスタML1のゲート閾電圧と一致又は同程度となるように、閾電圧VTH132が定められて良い。
 回路133及び134はシュミットトリガ型のバッファ回路(換言すればヒステリシス付きのバッファ回路)である。スイッチング制御回路100では、回路133、134が、夫々、図1の回路12H、12Lに相当し、回路133、134の出力信号が、夫々、信号Hoff、Lonに相当する。故に、スイッチング制御回路100では、回路133、134の出力信号のアップエッジタイミングが、夫々、エッジタイミングtHoff、tLonに相当する(図3参照)。
 回路133の入力端子はゲート配線118に接続されてゲート信号GHを受ける。回路133はゲート信号GHに応じた信号Hoffを出力する。信号Hoffがローレベルである状態を起点に、ゲート電圧VGHが所定の正の閾電圧VTH133を上回ると信号Hoffにアップエッジが生じ、その後、ゲート電圧VGHが電圧(VTH133-ΔVHYS)を下回ると信号Hoffにダウンエッジが生じる。ここで、不等式“0<VTH133-ΔVHYS<VTH133<VIN”が成立する。電圧(VIN-VTH133)がトランジスタMH1のゲート閾電圧と一致又は同程度となるように、閾電圧VTH133が定められて良い。
 回路134の入力端子はゲート配線128に接続されてゲート信号GLを受ける。回路134はゲート信号GLに応じた信号Lonを出力する。信号Lonがローレベルである状態を起点に、ゲート電圧VGLが所定の正の閾電圧VTH134を上回ると信号Lonにアップエッジが生じ、その後、ゲート電圧VGLが電圧(VTH134-ΔVHYS)を下回ると信号Lonにダウンエッジが生じる。ここで、不等式“0<VTH134-ΔVHYS<VTH134<VIN”が成立する。閾電圧VTH134がトランジスタML1のゲート閾電圧と一致又は同程度となるように、閾電圧VTH134が定められて良い。
 遅延設定回路110は、回路131及び132からの信号Hon及びLoffに基づき、遅延付与回路111における遅延時間Tdly_H1を指定及び制御する信号S110を生成し、生成した信号S110を遅延付与回路111に出力する。遅延付与回路111において、信号S110に応じた遅延時間Tdly_H1が駆動制御信号CNTに付与される。実施例EX1_Aでは、回路110~112により又は回路110~113により図1の調整回路21が構成される。
 遅延設定回路120は、回路133及び134からの信号Hoff及びLonに基づき、遅延付与回路122における遅延時間Tdly_L1を指定及び制御する信号S120を生成し、生成した信号S120を遅延付与回路122に出力する。遅延付与回路122において、信号S120に応じた遅延時間Tdly_L1が駆動制御信号CNTに付与される。実施例EX1_Aでは、回路120~122により又は回路120~123により図1の調整回路22が構成される。
 駆動制御信号CNTにアップエッジが生じるごとに信号Hon及びLoffに1回ずつアップエッジが発生する。遅延設定回路110は、駆動制御信号CNTのアップエッジに基づく信号HonのアップエッジタイミングtHonと信号LoffのアップエッジタイミングtLoffとの関係を検出し(図3参照)、検出結果に応じた信号S110を生成及び出力する。遅延設定回路110での検出内容は、エッジタイミングtHon及びtLoff間の差を含む他、エッジタイミングtHon及びtLoffの前後関係を含む。遅延付与回路111における遅延時間Tdly_H1は信号S110に従う。この際、上述の第1デッドタイム減少動作が実現されるよう、回路110及び111は遅延時間Tdly_H1を変更することができる。尚、エッジタイミングtHon及びtLoff間の差を、信号Honにおけるアップエッジの位相と信号Loffにおけるアップエッジの位相との差と解することもできる。
 駆動制御信号CNTにダウンエッジが生じるごとに信号Hoff及びLonに1回ずつアップエッジが発生する。遅延設定回路120は、駆動制御信号CNTのダウンエッジに基づく信号HoffのアップエッジタイミングtHoffと信号LonのアップエッジタイミングtLonとの関係を検出し(図3参照)、検出結果に応じた信号S120を生成及び出力する。遅延設定回路120での検出内容は、エッジタイミングtHoff及びtLon間の差を含む他、エッジタイミングtHoff及びtLonの前後関係を含む。遅延付与回路122における遅延時間Tdly_L1は信号S120に従う。この際、上述の第2デッドタイム減少動作が実現されるよう、回路120及び122は遅延時間Tdly_L1を変更することができる。尚、エッジタイミングtHoff及びtLon間の差を、信号Hoffにおけるアップエッジの位相と信号Lonにおけるアップエッジの位相との差と解することもできる。
 図6及び図7を参照して、駆動制御信号CNTのアップエッジに応答したスイッチング制御回路100の動作を説明する。図6において、矢印付き実線610は、駆動制御信号CNTのアップエッジに応答してゲート信号GHの電位低下を生じさせる信号の伝搬経路を示す。図6において、矢印付き破線612は、トランジスタMH1のターンオンに対応する信号が遅延設定回路110に伝搬される様子を示す。図6において、矢印付き実線620は、駆動制御信号CNTのアップエッジに応答してゲート信号GLの電位低下を生じさせる信号の伝搬経路を示す。図6において、矢印付き破線622は、トランジスタML1のターンオフに対応する信号が遅延設定回路110に伝搬される様子を示す。
 図7は、駆動制御信号CNTのアップエッジに応答したスイッチング制御回路100のタイミングチャートである。スイッチングIC1の起動直後における初期遅延状態では、遅延時間Td_Honが遅延時間Td_Loffよりも必ず長くなるように(即ち、必ず“TDEAD1>0”となるように:図3参照)、十分に長い所定の初期時間が遅延時間Tdly_H1に設定されている。図7は、初期遅延状態でのタイミングチャート、又は、第1デッドタイムTDEAD1が十分に長いときのタイミングチャートである。
 図7を参照し、時刻t1にて駆動制御信号CNTにアップエッジが生じる(図3も参照)。すると、時刻t1から遅延時間Tdly_H1が経過した時点で信号S111にアップエッジが生じ、時刻t1から遅延時間Tdly_fixが経過した時点で信号S112にアップエッジが生じる。“Tdly_H1>Tdly_fix”であるので、信号S111のアップエッジに同期して信号S113にダウンエッジが生じる。信号S113のダウンエッジを受けて上記ハイサイドプリドライバ(114~117)はゲート信号GHの電位をハイレベル(入力電圧VINのレベル)からローレベル(グランドのレベル)に向けて低下させる。ゲート信号GHの電位低下過程において、タイミングtHonにて信号Honにアップエッジが生じる。
 一方、時刻t1から遅延時間Tdly_fixが経過した時点で信号S121にアップエッジが生じ、時刻t1から遅延時間Tdly_L1が経過した時点で信号S122にアップエッジが生じる。“Tdly_L1>Tdly_fix”であるので、信号S121のアップエッジに同期して信号S123にダウンエッジが生じる。信号S123のダウンエッジを受けて上記ローサイドプリドライバ(124~127)はゲート信号GLの電位をハイレベル(入力電圧VINのレベル)からローレベル(グランドのレベル)に向けて低下させる。ゲート信号GLの電位低下過程において、タイミングtLoffにて信号Loffにアップエッジが生じる。
 エッジタイミングtLoffがエッジタイミングtHonよりも先である状況において(即ち信号Loffのアップエッジの位相が信号Honのアップエッジの位相よりも進んでいる状況において)、エッジタイミングtLoff及びtHon間の差に応じた信号S110が遅延付与回路111に与えられたとき、遅延付与回路111は遅延時間Tdly_H1を減少させる。この際の減少量は、エッジタイミングtLoff及びtHon間の差が大きいほど(即ち第1デッドタイムTDEAD1が大きいほど)大きくて良い、或いは、一定であっても良い。
 初期遅延状態を起点に駆動制御信号CNTのハイレベル及びローレベル間での切り替わりが繰り返されると、エッジタイミングtLoff及びtHon間の差に応じて遅延時間Tdly_H1が減少してゆき、エッジタイミングtLoff及びtHon間の差がゼロ又は微小となる状態にて安定化する。
 駆動制御信号CNTのアップエッジに注目した場合、遅延付与回路111は、駆動制御信号CNTのアップエッジから可変の遅延時間Tdly_H1後にアクティブ信号を出力する可変遅延回路の例である。ここにおけるアクティブ信号はハイレベルの信号S111に相当する。スイッチング制御回路100は、アクティブ信号に基づき(アクティブ信号の出力を契機に)トランジスタMH1のゲート電位を低下させるゲート信号GHをトランジスタMH1に供給することでトランジスタMH1をターンオフさせる。そして、遅延設定回路110及び遅延付与回路111を含む調整回路(21)は、“Td_Hon>Td_Loff”である状態を起点に(図3及び図7参照)、エッジタイミングtHon及びtLoff間の差に基づいて遅延時間Tdly_H1を減少させることにより遅延時間Td_Honを減少させ、これによって第1デッドタイムTDEAD1を減少させることができる。
 付与遅延時間に相当する遅延時間Tdly_H1は、トランジスタMH1のターンオン時の総遅延時間(即ち遅延時間Td_Hon)の一部である。故に、遅延時間Tdly_H1の増減に伴って遅延時間Td_Honも増減する。また、遅延付与回路121にて付与される遅延時間Tdly_fixは遅延時間Td_Loffの一部である。尚、仮に、エッジタイミングtHonがエッジタイミングtLoffよりも先になる程度に遅延時間Tdly_H1が短くなった場合、信号Hon及びLoffに基づき遅延設定回路110及び遅延付与回路111により遅延時間Tdly_H1が増大補正される。
 図8及び図9を参照して、駆動制御信号CNTのダウンエッジに応答したスイッチング制御回路100の動作を説明する。図8において、矢印付き実線630は、駆動制御信号CNTのダウンエッジに応答してゲート信号GLの電位上昇を生じさせる信号の伝搬経路を示す。図8において、矢印付き破線632は、トランジスタML1のターンオンに対応する信号が遅延設定回路120に伝搬される様子を示す。図8において、矢印付き実線640は、駆動制御信号CNTのダウンエッジに応答してゲート信号GHの電位上昇を生じさせる信号の伝搬経路を示す。図8において、矢印付き破線642は、トランジスタMH1のターンオフに対応する信号が遅延設定回路120に伝搬される様子を示す。
 図9は、駆動制御信号CNTのダウンエッジに応答したスイッチング制御回路100のタイミングチャートである。スイッチングIC1の起動直後における初期遅延状態では、遅延時間Td_Lonが遅延時間Td_Hoffよりも必ず長くなるように(即ち、必ず“TDEAD2>0”となるように:図3参照)、十分に長い所定の初期時間が遅延時間Tdly_L1に設定されている。図9は、初期遅延状態でのタイミングチャート、又は、第2デッドタイムTDEAD2が十分に長いときのタイミングチャートである。
 図9を参照し、時刻t2にて駆動制御信号CNTにダウンエッジが生じる(図3も参照)。すると、時刻t2から遅延時間Tdly_H1が経過した時点で信号S111にダウンエッジが生じ、時刻t2から遅延時間Tdly_fixが経過した時点で信号S112にダウンエッジが生じる。“Tdly_H1>Tdly_fix”であるので、信号S112のダウンエッジに同期して信号S113にアップエッジが生じる。信号S113のアップエッジを受けて上記ハイサイドプリドライバ(114~117)はゲート信号GHの電位をローレベル(グランドのレベル)からハイレベル(入力電圧VINのレベル)に向けて上昇させる。ゲート信号GHの電位上昇過程において、タイミングtHoffにて信号Hoffにアップエッジが生じる。
 一方、時刻t2から遅延時間Tdly_fixが経過した時点で信号S121にダウンエッジが生じ、時刻t2から遅延時間Tdly_L1が経過した時点で信号S122にダウンエッジが生じる。“Tdly_L1>Tdly_fix”であるので、信号S122のダウンエッジに同期して信号S123にアップエッジが生じる。信号S123のアップエッジを受けて上記ローサイドプリドライバ(124~127)はゲート信号GLの電位をローレベル(グランドのレベル)からハイレベル(入力電圧VINのレベル)に向けて上昇させる。ゲート信号GLの電位上昇過程において、タイミングtLonにて信号Lonにアップエッジが生じる。
 エッジタイミングtHoffがエッジタイミングtLonよりも先である状況において(即ち信号Hoffのアップエッジの位相が信号Lonのアップエッジの位相よりも進んでいる状況において)、エッジタイミングtHoff及びLon間の差に応じた信号S120が遅延付与回路122に与えられたとき、遅延付与回路122は遅延時間Tdly_L1を減少させる。この際の減少量は、エッジタイミングtHoff及びtLon間の差が大きいほど(即ち第2デッドタイムTDEAD2が大きいほど)大きくて良い、或いは、一定であっても良い。
 初期遅延状態を起点に駆動制御信号CNTのハイレベル及びローレベル間での切り替わりが繰り返されると、エッジタイミングtHoff及びtLon間の差に応じて遅延時間Tdly_L1が減少してゆき、エッジタイミングtHoff及びtLon間の差がゼロ又は微小となる状態にて安定化する。
 駆動制御信号CNTのダウンエッジに注目した場合、遅延付与回路122は、駆動制御信号CNTのダウンエッジから可変の遅延時間Tdly_L1後にアクティブ信号を出力する可変遅延回路の例である。ここにおけるアクティブ信号はローレベルの信号S122に相当する。スイッチング制御回路100は、アクティブ信号に基づき(アクティブ信号の出力を契機に)トランジスタML1のゲート電位を上昇させるゲート信号GLをトランジスタML1に供給することでトランジスタML1をターンオンさせる。そして、遅延設定回路120及び遅延付与回路122を含む調整回路(22)は、“Td_Lon>Td_Hoff”である状態を起点に(図3及び図9参照)、エッジタイミングtHoff及びtLon間の差に基づいて遅延時間Tdly_L1を減少させることにより遅延時間Td_Lonを減少させ、これによって第2デッドタイムTDEAD2を減少させることができる。
 付与遅延時間に相当する遅延時間Tdly_L1は、トランジスタML1のターンオン時の総遅延時間(即ち遅延時間Td_Lon)の一部である。故に、遅延時間Tdly_L1の増減に伴って遅延時間Td_Lonも増減する。また、遅延付与回路112にて付与される遅延時間Tdly_fixは遅延時間Td_Hoffの一部である。尚、仮に、エッジタイミングtLonがエッジタイミングtHoffよりも先になる程度に遅延時間Tdly_L1が短くなった場合、信号Lon及びHoffに基づき遅延設定回路120及び遅延付与回路122により遅延時間Tdly_L1が増大補正される。
 図10に遅延設定回路110及び120の構成例を示す。図10の構成例において、遅延設定回路110はエッジ比較回路110a及び変換回路110bを備え、遅延設定回路120はエッジ比較回路120a及び変換回路120bを備える。
 エッジ比較回路110aは、信号Loff及びHonに基づいてエッジタイミングtLoff及びtHon間の差を検出し、検出結果に応じた信号S110aを出力する。エッジ比較回路110aでの検出が行われるごとに信号S110aにパルスが含められる。信号S110aにおけるパルスの時間長さに相当するパルス幅は、エッジタイミングtLoff及びtHonの前後関係並びにエッジタイミングtLoff及びtHon間の差に依存する。変換回路110bは信号S110aのパルス幅を電圧に変換し、得られた電圧を有する信号を信号S110として出力する。
 エッジ比較回路120aは、信号Hoff及びLonに基づいてエッジタイミングtHoff及びtLon間の差を検出し、検出結果に応じた信号S120aを出力する。エッジ比較回路120aでの検出が行われるごとに信号S120aにパルスが含められる。信号S120aにおけるパルスの時間長さに相当するパルス幅は、エッジタイミングtHoff及びtLonの前後関係並びにエッジタイミングtHoff及びtLon間の差に依存する。変換回路120bは信号S120aのパルス幅を電圧に変換し、得られた電圧を有する信号を信号S120として出力する。
<<実施例EX1_B>>
 実施例EX1_Bを説明する。実施例EX1_Bは実施例EX1_Aを基礎とする実施例であり、実施例EX1_Bにて特に記述しない事項に関しては、矛盾無き限り、実施例EX1_Aで述べた事項が実施例EX1_Bにも適用される。
 図11に実施例EX1_Bに係るスイッチングIC1の一部内部回路を示す。実施例EX1_Bに係るスイッチングIC1において、スイッチング制御回路10はスイッチング制御回路100aであり、トランジスタMH及びMLは夫々トランジスタMH1及びML1である。スイッチング制御回路100aは、実施例EX1_Aに係るスイッチング制御回路100(図5)に対し、回路135及び136を追加した構成を有する。当該追加及び実施例EX1_B中で以下に示す事項を除き、スイッチング制御回路100aの構成及び動作は、スイッチング制御回路100のそれらと同じである。
 回路135はシュミットトリガ型のインバータ回路(換言すればヒステリシス付きのインバータ回路)である。回路135の入力端子はスイッチ端子TLXに接続されてスイッチ電圧VLXを受ける。回路135はスイッチ電圧VLXに応じた信号S135を出力する。信号S135がローレベルである状態を起点に、スイッチ電圧VLXが所定の正の閾電圧VTH135を下回ると信号S135にアップエッジが生じ、その後、スイッチ電圧VLXが電圧(VTH135+ΔVHYS)を上回ると信号S135にダウンエッジが生じる。ここで、不等式“0<VTH135<VTH135+ΔVHYS<VIN”が成立する。
 回路136は2入力の論理積回路である。回路136は回路135からの信号S135及び回路133からの信号Hoffの論理積信号を信号S136として出力する。従って、信号S135及びHoffが共にハイレベルであるときに限り、信号S136はハイレベルとなる。信号S135及びHoffの内、少なくとも一方がローレベルであれば信号S136はローレベルとなる。
 実施例EX1_Bに係る遅延設定回路120には、信号Hoff及びLonの組み合わせの代わりに信号S136及びLonが入力される。即ち、実施例EX1_Bに係る遅延設定回路120は、信号Hoff及びLonではなく、信号S136及びLonに基づいて信号S120を生成及び出力する。実施例EX1_Bに係る遅延設定回路120は、信号S136を信号Hoffとみなして(即ち、信号S136のアップエッジタイミングを信号Hoffのアップエッジタイミングとみなして)、実施例EX1_Aと同様の方法にて信号S120を生成及び出力することにより、遅延回路122にて付加されるべき遅延時間Tdly_L1を指定及び制御する。
 実施例EX1_Bに係るスイッチングIC1をDC/DCコンバータ2(図4)に組み込むことを想定して回路135及び136の作用を説明する。負荷電流ILDが相対的に大きい状態を重負荷状態と称し、負荷電流ILDが相対的に小さい状態を軽負荷状態と称する。軽負荷状態では負荷電流ILDが実質的にゼロとなり得る。
 図12に重負荷状態における幾つかの信号又は電圧の波形を示す。駆動制御信号CNTのダウンエッジが生じると、実施例EX1_Aで述べた信号伝達を経てゲート信号GHの電位がローレベルからハイレベルへと上昇し、その上昇過程のエッジタイミングtHoffにて信号Hoffにアップエッジが生じる。重負荷状態では、ゲート信号GHの電位上昇に伴うトランジスタMH1のチャネルの抵抗値の増大過程で、比較的大きな負荷電流ILD及びコイルLOUTの作用により、スイッチ電圧VLXが0Vに向けて又は負の電圧に向けて急峻に低下する。結果、重負荷状態では、信号Hoffのアップエッジと略同時に信号S135にアップエッジが生じる。このため、重負荷状態では、信号HoffのアップエッジタイミングtHoffと信号S136のアップエッジタイミングは、実質的に同じとなる。故に、重負荷状態において、スイッチング制御回路100aの動作は、スイッチング制御回路100の動作のそれと実質的に同じとなる。以下、信号S136のアップエッジタイミングを記号“t136”にて参照し、エッジタイミングt136又はタイミングt136と称する。
 図13に軽負荷状態における幾つかの信号又は電圧の波形を示す。駆動制御信号CNTのダウンエッジが生じると、実施例EX1_Aで述べた信号伝達を経てゲート信号GHの電位がローレベルからハイレベルへと上昇し、その上昇過程のエッジタイミングtHoffにて信号Hoffにアップエッジが生じる。この点は、重負荷状態と軽負荷状態とで変わりは無い。但し、軽負荷状態では、ゲート信号GHの電位上昇に伴ってトランジスタMH1のチャネルの抵抗値が増大し、遂にはトランジスタMH1のチャネルが遮断されるものの、負荷電流ILDが小さいがためにスイッチ電圧VLXの低下は重負荷状態よりも緩やかとなる。そして、スイッチ電圧VLXが十分に低下した時点で信号S135にアップエッジが生し、信号S135のアップエッジを契機に信号S136にもアップエッジが生じる。
 尚、図13の波形では、スイッチ電圧VLXが0Vに向けて低下する過程でトランジスタML1がオフに維持されることが想定されている。仮に、軽負荷状態でのスイッチ電圧VLXの低下過程において、スイッチ電圧VLXが入力電圧VIN近辺にあるときにトランジスタML1をターンオンしたならば、図14に示す如く、トランジスタML1のチャネルを通じて電荷がグランドに引き込まれてスイッチ電圧VLXが急峻に0Vまで低下する。これは、電荷を不必要にグランドに引き込む(いわば電荷を捨てる)ことに相当し、効率の低下を招く。
 スイッチング制御回路100aでは、回路135及び136の導入により、軽負荷状態での効率低下を防止する、換言すれば軽負荷状態での効率を改善する。当該効率改善は、信号S136及びLonに基づく遅延時間Tdly_L1の補正により実現される。遅延設定回路120は、エッジタイミングt136及びtLonの関係を検出し、検出結果に応じた信号S120を生成及び出力する。遅延設定回路120での検出内容は、エッジタイミングt136及びtLon間の差を含む他、エッジタイミングt136及びtLonの前後関係を含む。図15を参照して、スイッチング制御回路100aにおける遅延設定回路120及び遅延付与回路122の動作を説明する。
 上述したように重負荷状態においてエッジタイミングtHoffとエッジタイミングt136は実質的に同じであり、スイッチング制御回路100aでは実施例EX1_Aと同様の動作が行われる。即ち、エッジタイミングt136がエッジタイミングtLonよりも先である第1状況(信号S136のアップエッジの位相が信号Lonのアップエッジの位相よりも進んでいる状況)において、遅延設定回路120は遅延時間Tdly_L1を減少させるための信号S120を生成及び出力し、当該信号S120を受けて遅延付与回路122は遅延時間Tdly_L1を減少させる。この際の減少量は、エッジタイミングt136及びtLon間の差が大きいほど大きくて良い、或いは、一定であっても良い。
 初期遅延状態を起点に駆動制御信号CNTのハイレベル及びローレベル間での切り替わりが繰り返される。重負荷状態が維持されるのでれば、エッジタイミングt136及びtLon間の差に応じて遅延時間Tdly_L1が減少してゆき、エッジタイミングt136及びtLon間の差がゼロ又は微小となる状態にて安定化する。
 この後、重負荷状態から軽負荷状態に切り替わったことを想定する。軽負荷状態に切り替わることでエッジタイミングt136が重負荷状態よりも遅れて発生し、結果、エッジタイミングt136がエッジタイミングtHoffよりも相応に遅れる第2状況(信号S136のアップエッジの位相が信号Hoffのアップエッジの位相よりも遅れている状況)に至る。第2状況では、トランジスタMH1がターンオフしただけではスイッチ電圧VLXが十分に低下しないため信号S135がローレベルに維持される。そして、伝搬経路630(図8)でのゲート信号GLによりトランジスタML1がターンオンし、トランジスタML1のターンオンに基づくスイッチ電圧VLXの低下が信号S135にアップエッジを発生させ、続いて信号S136にアップエッジを発生させる。つまり、第2状況では、エッジタイミングtLonよりもエッジタイミングt136の方が後となる(信号S136のアップエッジの位相が信号Lonのアップエッジの位相よりも遅れている)。エッジタイミングtLonよりもエッジタイミングt136の方が後であるとき、遅延設定回路120は遅延時間Tdly_L1を増大させるための信号S120を生成及び出力し、当該信号S120を受けて遅延付与回路122は遅延時間Tdly_L1を増大させる。この際の増大量は、エッジタイミングt136及びtLon間の差に応じた量であっても良いし、一定であっても良い。遅延時間Tdly_L1の増大によって第2デッドタイムTDEAD2が増大することになるが、軽負荷状態では、その方が効率が高まる。
 第2状況への遷移後、軽負荷状態が維持されるのであれば遅延時間Tdly_L1が増大してゆく。これにより、軽負荷状態においてスイッチ電圧VLXが十分に低下した後にトランジスタML1がターンオンされるようになり、上述したような効率低下が抑制される。尚、遅延時間Tdly_L1の増大に上限を設けても良い(所定の上限時間を超えて遅延時間Tdly_L1が増大することを禁止しても良い)。以後、軽負荷状態から重負荷状態に戻ったのであれば、重負荷状態に適応して遅延時間Tdly_L1が減少せしめられる。つまり、負荷電流ILDに応じて遅延時間Tdly_L1が適正に調整されることになる。
 このように、実施例EX1_Bでは、遅延設定回路120及び遅延付与回路122を含んで構成される調整回路22(図1参照)により、信号Hoffと、信号Lonと、スイッチ電圧VLXに応じた信号S135と、に基づいて、第2デッドタイムTDEAD2が調整されることになる。遅延時間Td_Lon(図3)は図8の伝搬経路630に対応して生じるものであり、故に遅延時間Tdly_L1の増減を通じてトランジスタML1のターンオンに関わる遅延時間Td_Lonが増減される。遅延時間Td_Lonの増減に伴って第2デッドタイムTDEAD2も増減する(図3参照)。
<<実施例EX1_C>>
 実施例EX1_Cを説明する。実施例EX1_Cでは、実施例EX1_A又はEX1_Bに対する変形技術等を説明する。
 図10に示した遅延設定回路110及び120の構成は例示に過ぎない。実施例EX1_A又は実施例EX1_Bにおいて、エッジタイミングtLoff及びtHon間の関係(それらの差及び前後関係)に応じた信号を信号S110として生成できる限り、遅延設定回路110は、任意のデジタル回路又はアナログ回路にて構成されて良い。実施例EX1_Aにおいて、エッジタイミングtHoff及びtLon間の関係(それらの差及び前後関係)に応じた信号を信号S120として生成できる限り、遅延設定回路120は、任意のデジタル回路又はアナログ回路にて構成されて良い。実施例EX1_Bにおいて、エッジタイミングt136及びtLon間の関係(それらの差及び前後関係)に応じた信号を信号S120として生成できる限り、遅延設定回路120は、任意のデジタル回路又はアナログ回路にて構成されて良い。
 実施例EX1_A又はEX1_Bにおいて、トランジスタMH1をPチャネル型のIGBTにて形成し、トランジスタML1をNチャネル型のIGBTにて形成しても良い。この場合、実施例EX1_A又はEX1_Bにおいて、トランジスタMH1のソース、ドレインは、夫々、エミッタ、コレクタに読み替えられ、トランジスタML1のソース、ドレインは、夫々、エミッタ、コレクタに読み替えられる。
<<実施例EX2_A>>
 実施例EX2_Aを説明する。図16に実施例EX2_Aに係るスイッチングIC1の一部内部回路を示す。実施例EX2_Aに係るスイッチングIC1において、スイッチング制御回路10(図1参照)はスイッチング制御回路200であり、トランジスタMH及びMLは夫々トランジスタMH2及びML2である。トランジスタMH2及びML2は共にNチャネル型のMOSFETにより構成される。
 トランジスタMH2におけるドレインは電源入力端子TVINに接続されて入力電圧VINの供給を受ける。トランジスタMH2におけるソースはスイッチ端子TLXに接続される。トランジスタML2におけるドレインはスイッチ端子TLXに接続される。即ち、トランジスタMH2のソース及びトランジスタML2のドレインはスイッチ端子TLXにて共通接続される。トランジスタML2におけるソースはグランド端子TGNDに接続され、グランド端子TGNDを通じてグランドに接続される。実施例EX2_Aにて述べるゲート信号GH、GLは、夫々、トランジスタMH2、ML2のゲートに加わるゲート信号を指す(後述の実施例EX2_B及びEX2_Cでも同様)。
 実施例EX2_Aに係るスイッチングIC1にはブート端子TBOOTが設けられる。ブート端子TBOOTはスイッチングIC1の外部端子であって良い。ブート端子TBOOTにはスイッチ電圧VLXよりも高いブート電圧VBOOTが加わる。例えば、スイッチングIC1が図4のDC/DCコンバータ2に組み込まれる場合、スイッチ電圧VLXの変動を利用した周知のブートストラップ回路(不図示)を用いてブート電圧VBOOTを生成することができる。入力電圧VINを任意の昇圧回路(不図示)にて昇圧することでブート電圧VBOOTが生成されても良い。
 スイッチング制御回路200は、符号210~212、220~222、231~234、241~247、251~257及び261参照される回路又は素子を有する。
 回路210~212、220~222、231~234及び252~255は、グランド電位を基準に内部電源電圧Vregにて駆動するデジタル又はアナログ回路である。それらの内、回路211~212、221~222、231~234及び252~255は、ハイレベル及びローレベルの何れかをとる二値化信号を出力する。回路211~212、221~222、231~234及び252~255の各入力信号及び各出力信号において、並びに、駆動制御信号CNTにおいて、ローレベルはグランド電位を有し、ハイレベルは内部電源電圧Vregの電位を有する。内部電源電圧Vregは、スイッチングIC1内に設けられた内部電源回路(不図示)により入力電圧VINに基づいて生成される正の直流電圧である。但し、入力電圧VINそのものが内部電源電圧Vregとして用いられても良い。
 回路242~245は、スイッチ端子TLXの電位を基準にブート電圧VBOOTにて駆動するデジタル回路である。回路242~245は、ハイレベル及びローレベルの何れかをとる二値化信号を出力する。回路242~245の各入力信号及び各出力信号において、ローレベルはスイッチ端子TLXでの電位(即ちスイッチ電圧VLXの電位)を有し、ハイレベルはブート電圧VBOOTの電位を有する。トランジスタ246及び256はPチャネル型のMOSFETであり、トランジスタ247及び257はNチャネル型のMOSFETである。
 回路211及び221は遅延付与回路である。遅延付与回路211及び221の夫々に対し駆動制御信号CNTが入力される。遅延付与回路211、221は、駆動制御信号CNTに対し、夫々、遅延時間Tdly_H2、Tdly_L2による遅延を付与し、遅延付与後の信号を出力する。遅延時間Tdly_H2及びTdly_L2は、積極的に付与される遅延時間であるため、それらを付与遅延時間又は挿入遅延時間と称することもできる。
 遅延付与回路211は、駆動制御信号CNTを遅延時間Tdly_H2だけ遅延させた信号を信号S211として出力する。従って、駆動制御信号CNTのアップエッジタイミングから遅延時間Tdly_H2だけ後のタイミングにおいて信号S211にアップエッジが生じる。同様に、駆動制御信号CNTのダウンエッジタイミングから遅延時間Tdly_H2だけ後のタイミングにおいて信号S211にダウンエッジが生じる。
 遅延付与回路221は、駆動制御信号CNTを遅延時間Tdly_L2だけ遅延させた信号を信号S221として出力する。従って、駆動制御信号CNTのアップエッジタイミングから遅延時間Tdly_L2だけ後のタイミングにおいて信号S221にアップエッジが生じる。同様に、駆動制御信号CNTのダウンエッジタイミングから遅延時間Tdly_L2だけ後のタイミングにおいて信号S221にダウンエッジが生じる。
 ここで、遅延時間Tdly_H2及びTdly_L2は可変である。但し、遅延時間Tdly_H2に対して上限が定められていて良い。例えば、遅延時間Tdly_H2が後述の伝搬遅延時間Tdly_LVS1以上になることが無いように、又は、時間(Tdly_LVS1-ΔT)以上になることが無いように(図18参照)、遅延時間Tdly_H2に対して上限が定められていて良い。時間(Tdly_LVS1-ΔT)は伝搬遅延時間Tdly_LVS1よりも所定時間ΔTだけ短い時間を指す。また、遅延時間Tdly_L2に対して下限が定められていて良い。例えば、遅延時間Tdly_L2が後述の伝搬遅延時間Tdly_LVS2以下になることが無いように、又は、時間(Tdly_LVS2+ΔT)以下になることが無いように(図20参照)、遅延時間Tdly_L2に対して上限が定められていて良い。時間(Tdly_LVS2+ΔT)は伝搬遅延時間Tdly_LVS2よりも所定時間ΔTだけ長い時間を指す。
 回路212は2入力の論理積回路である。回路212は信号S211及びCNTの論理積信号を信号S212として出力する。従って、信号S211及びCNTが共にハイレベルであるときに限り、信号S212はハイレベルとなる。信号S211及びCNTの内、少なくとも一方がローレベルであれば信号S212はローレベルとなる。
 回路222は2入力の論理和回路である。回路222は信号S221及びCNTの論理和信号を信号S222として出力する。従って、信号S221及びCNTが共にローレベルであるときに限り、信号S222はローレベルとなる。信号S221及びCNTの内、少なくとも一方がハイレベルであれば信号S222はハイレベルとなる。
 回路252はセレクタである。セレクタ252は、駆動制御信号CNTに応じて信号S12及びS222の何れか一方を選択し、選択した信号を信号S252として出力する。セレクタ252は、駆動制御信号CNTがハイレベルであれば信号S212を信号S252として選択及び出力し、駆動制御信号CNTがローレベルであれば信号S222を信号S252として選択及び出力する。
 回路241、251及び261はレベルシフタである。各レベルシフタ(241、251、261)は、内部電源電圧Vreg、ブート電圧VBOOT及びスイッチ電圧VLXの供給を受けると共にグランドに接続され、自身への入力信号を高電位側に又は低電位側にレベルシフトし、レベルシフト後の信号を出力する。この種のレベルシフタの構成は公知であるため、レベルシフタの内部構成の説明を省略する。ブート電圧VBOOTの印加に耐え得る高耐圧素子を用いて各レベルシフタ(241、251、261)が構成される。各レベルシフタ(241、251、261)において、高耐圧素子を用いてレベルシフトを行うことからレベルシフタ内で比較的大きな信号伝搬遅延が生じる。
 レベルシフタ241は、グランド電位を基準とする駆動制御信号CNTをスイッチ電圧VLXを基準とする信号にレベルシフトすることで、駆動制御信号CNTに基づくローレベル又はハイレベルの信号S241を生成及び出力する。即ち、信号S241はレベルシフト後の駆動制御信号CNT(シフト駆動制御信号)である。信号S241において、ローレベルはスイッチ端子TLXでの電位(即ちスイッチ電圧VLXの電位)を有し、ハイレベルはブート電圧VBOOTの電位を有する。駆動制御信号CNTのアップエッジに応答して信号S241にもアップエッジが生じることで信号S241がハイレベルとなり、駆動制御信号CNTのダウンエッジに応答して信号S241にもダウンエッジが生じることで信号S241がローレベルとなる。
 この際、レベルシフタ241で生じる信号伝搬遅延により、駆動制御信号CNTのアップエッジタイミングから伝搬遅延時間Tdly_LVS1だけ後のタイミングにおいて信号S241にアップエッジが生じ(図18参照)、駆動制御信号CNTのダウンエッジタイミングから伝搬遅延時間Tdly_LVS2だけ後のタイミングにおいて信号S241にダウンエッジが生じる(図20参照)。伝搬遅延時間Tdly_LVS1及びTdly_LVS2は、レベルシフタ241の特性等に依存する所定時間である。尚、伝搬遅延時間Tdly_LVS1及びTdly_LVS2は回路241~243の全体における伝搬遅延時間であると解しても良い。
 回路242及び243はインバータ回路である。回路242は信号S241を受けて信号S241の反転信号S242を出力し、回路243は信号S242を受けて信号S242の反転信号S243を出力する。故に、信号S241がハイレベルであれば信号S243もハイレベルであり、信号S241がローレベルであれば信号S243もローレベルである。
 回路244及び245並びにトランジスタ246及び247により、トランジスタMH2のゲートを駆動するためのハイサイドプリドライバが構成される。当該ハイサイドプリドライバは、信号S243のハイレベル期間においてハイレベルのゲート信号GHをトランジスタMH2のゲートに与えることでトランジスタMH2をオン状態とし、信号S243のローレベル期間においてローレベルのゲート信号GHをトランジスタMH2のゲートに与えることでトランジスタMH2をオフ状態とする。実施例EX2_Aにおいて、ハイレベルのゲート信号GHはブート電圧VBOOTの電位を有し、ローレベルのゲート信号GHはスイッチ電圧VLXの電位を有する。電圧VBOOT及びVLX間の電位差はトランジスタMH2のゲート閾電圧よりも大きい。
 具体的には、回路244及び245はインバータ回路である。回路244及び245は夫々に信号S243を受けて信号S243の反転信号を出力する。回路244の出力信号がトランジスタ246のゲートに供給され、回路245の出力信号がトランジスタ247のゲートに供給される。トランジスタ246のソースはブート端子TBOOTに接続されてブート電圧VBOOTの供給を受ける。トランジスタ247のソースはスイッチ端子TLXに接続される。トランジスタ246及び247の各ドレインは互いに接続され、ゲート配線248を通じてトランジスタMH2のゲートに接続される。ゲート配線248に生じる信号がゲート信号GHである。
 レベルシフタ251は、スイッチ電圧VLXを基準とする信号S241をグランド電位を基準とする信号にレベルシフトすることで、信号S241に基づくローレベル又はハイレベルの信号S251を生成及び出力する。信号S251において、ローレベルはグランド電位を有し、ハイレベルは内部電源電圧Vregの電位を有する。信号S241のアップエッジに応答して信号S251にもアップエッジが生じることで信号S251がハイレベルとなり、信号S241のダウンエッジに応答して信号S251にもダウンエッジが生じることで信号S251がローレベルとなる。レベルシフタ251内でも相応の信号伝搬遅延が生じる。
 回路253は2入力の否定論理和回路である。回路253は信号S251及びS252の否定論理和信号を信号S253として出力する。従って、信号S251及びS252が共にローレベルであるときに限り、信号S253はハイレベルとなる。信号S251及びS252の内、少なくとも一方がハイレベルであれば信号S253はローレベルとなる。
 回路254及び255並びにトランジスタ256及び257により、トランジスタML2のゲートを駆動するためのローサイドプリドライバが構成される。当該ローサイドプリドライバは、信号S253のハイレベル期間においてハイレベルのゲート信号GLをトランジスタML2のゲートに与えることでトランジスタML2をオン状態とし、信号S253のローレベル期間においてローレベルのゲート信号GLをトランジスタML2のゲートに与えることでトランジスタML2をオフ状態とする。実施例EX2_Aにおいて、ハイレベルのゲート信号GLは内部電源電圧Vregの電位を有し、ローレベルのゲート信号GLはグランド電位を有する。内部電源電圧VregはトランジスタMH2のゲート閾電圧よりも大きい。
 具体的には、回路254及び255はインバータ回路である。回路254及び255は夫々に信号S253を受けて信号S253の反転信号を出力する。回路254の出力信号がトランジスタ256のゲートに供給され、回路255の出力信号がトランジスタ257のゲートに供給される。トランジスタ256のソースは内部電源電圧Vregが加わる配線に接続されて内部電源電圧Vregの供給を受ける。トランジスタ257のソースはグランド端子TGNDに接続される。トランジスタ256及び257の各ドレインは互いに接続され、ゲート配線258を通じてトランジスタML2のゲートに接続される。ゲート配線258に生じる信号がゲート信号GLである。
 レベルシフタ261は、ゲート配線248に接続されてゲート信号GHを受ける。レベルシフタ261は、スイッチ電圧VLXを基準とするゲート信号GHをグランド電位を基準とする信号にレベルシフトし、レベルシフト後のゲート信号GHを信号GH’として出力する。信号GH’は、以下、シフトゲート信号GH’と称され得る。シフトゲート信号GH’において、ハイレベルは内部電源電圧Vregの電位を有し、ローレベルはグランド電位を有する。ゲート信号GHがハイレベルであるときにはシフトゲート信号GH’もハイレベルとなり、ゲート信号GHがローレベルであるときにはシフトゲート信号GH’もローレベルとなる。但し、ゲート信号GHの電位はスイッチ電圧VLXとブート電圧VBOOTとの間で変動するに対し、シフトゲート信号GH’の電位はグランド電位と内部電源電圧Vregの電位との間で変動する。ゲート信号GHの電位がブート電圧VBOOTの電位からスイッチ電圧VLXの電位へ低下するにつれて、シフトゲート信号GH’の電位は内部電源電圧Vregの電位からグランド電位へ低下する。ゲート信号GHの電位がスイッチ電圧VLXの電位からブート電圧VBOOTの電位へ上昇するにつれて、シフトゲート信号GH’の電位はグランド電位から内部電源電圧Vregの電位へ上昇する。典型的には例えば、スイッチ電圧VLX及びブート電圧VBOOT間の電位差は内部電源電圧Vregの大きさと同じであって良い。そして、グランド電位から見た信号GH’の電位は、スイッチ端子TLXの電位から見た信号GHの電位と同じであって良い。但し、レベルシフタ261内でも相応の信号伝搬遅延が生じる。
 回路231はシュミットトリガ型のバッファ回路であり、回路232はシュミットトリガ型のインバータ回路である。スイッチング制御回路200では、回路231、232が、夫々、図1に示される回路11H、11Lに相当し、回路231、232の出力信号が、夫々、信号Hon、Loffに相当する。故に、スイッチング制御回路200では、回路231、232の出力信号のアップエッジタイミングが、夫々、エッジタイミングtHon、tLoffに相当する(図3参照)。
 回路231の入力端子にてシフトゲート信号GH’を受ける。回路231はシフトゲート信号GH’に応じた信号Honを出力する。ここでシフトゲート信号GH’の電圧(電位)をシフトゲート電圧と称し、記号“VGH’”にて表す。信号Honがローレベルである状態を起点に、シフトゲート電圧VGH’が所定の正の閾電圧VTH231を上回ると信号Honにアップエッジが生じ、その後、シフトゲート電圧VGH’が電圧(VTH231-ΔVHYS)を下回ると信号Honにダウンエッジが生じる。ここで、不等式“0<VTH231-ΔVHYS<VTH231<Vreg”が成立する。ΔVHYSは正のヒステリシス電圧である。トランジスタMH2のゲート-ソース間電圧がトランジスタMH2のゲート閾電圧と一致している状態でのシフトゲート電圧VGH’と、閾電圧VTH231とが一致又は同程度となるように、閾電圧VTH231が定められて良い。
 回路232の入力端子はゲート配線258に接続されてゲート信号GLを受ける。回路232はゲート信号GLに応じた信号Loffを出力する。実施例EX1_Aと同様、ゲート信号GLの電圧(電位)をゲート電圧と称し、記号“VGL”にて表す。信号Loffがローレベルである状態を起点に、ゲート電圧VGLが所定の正の閾電圧VTH232を下回ると信号Loffにアップエッジが生じ、その後、ゲート電圧VGLが電圧(VTH232+ΔVHYS)を上回ると信号Loffにダウンエッジが生じる。ここで、不等式“0<VTH232<VTH232+ΔVHYS<Vreg”が成立する。電圧VTH232がトランジスタML2のゲート閾電圧と一致又は同程度となるように、閾電圧VTH232が定められて良い。
 回路233はシュミットトリガ型のインバータ回路であり、回路234はシュミットトリガ型のバッファ回路である。スイッチング制御回路200では、回路233、234が、夫々、図1の回路12H、12Lに相当し、回路233、234の出力信号が、夫々、信号Hoff、Lonに相当する。故に、スイッチング制御回路200では、回路233、234の出力信号のアップエッジタイミングが、夫々、エッジタイミングtHoff、tLonに相当する(図3参照)。
 回路233の入力端子にてシフトゲート信号GH’を受ける。回路233はシフトゲート信号GH’に応じた信号Hoffを出力する。信号Hoffがローレベルである状態を起点に、シフトゲート電圧VGH’が所定の正の閾電圧VTH233を下回ると信号Hoffにアップエッジが生じ、その後、シフトゲート電圧VGH’が電圧(VTH233+ΔVHYS)を上回ると信号Hoffにダウンエッジが生じる。ここで、不等式“0<VTH233<VTH233+ΔVHYS<Vreg”が成立する。トランジスタMH2のゲート-ソース間電圧がトランジスタMH2のゲート閾電圧と一致している状態でのシフトゲート電圧VGH’と、閾電圧VTH233とが一致又は同程度となるように、閾電圧VTH233が定められて良い。
 回路234の入力端子はゲート配線258に接続されてゲート信号GLを受ける。回路234はゲート信号GLに応じた信号Lonを出力する。信号Lonがローレベルである状態を起点に、ゲート電圧VGLが所定の正の閾電圧VTH234を上回ると信号Lonにアップエッジが生じ、その後、ゲート電圧VGLが電圧(VTH234-ΔVHYS)を下回ると信号Lonにダウンエッジが生じる。ここで、不等式“0<VTH234-ΔVHYS<VTH234<Vreg”が成立する。閾電圧VTH234がトランジスタML2のゲート閾電圧と一致又は同程度となるように、閾電圧VTH234が定められて良い。
 遅延設定回路210は、回路231及び232からの信号Hon及びLoffに基づき、遅延付与回路211における遅延時間Tdly_H2を指定及び制御する信号S210を生成し、生成した信号S210を遅延付与回路211に出力する。遅延付与回路211において、信号S210に応じた遅延時間Tdly_H2が駆動制御信号CNTに付与される。実施例EX2_Aに係る調整回路21(図1参照)は、回路210~212を含み、更に回路251~253の全部又は一部も含み得る。
 遅延設定回路220は、回路233及び234からの信号Hoff及びLonに基づき、遅延付与回路221における遅延時間Tdly_L2を指定及び制御する信号S220を生成し、生成した信号S220を遅延付与回路221に出力する。遅延付与回路221において、信号S220に応じた遅延時間Tdly_L2が駆動制御信号CNTに付与される。実施例EX2_Aに係る調整回路22(図1参照)は、回路220~222を含み、更に回路251~253の全部又は一部も含み得る。
 駆動制御信号CNTにアップエッジが生じるごとに信号Hon及びLoffに1回ずつアップエッジが発生する。遅延設定回路210は、駆動制御信号CNTのアップエッジに基づく信号HonのアップエッジタイミングtHonと信号LoffのアップエッジタイミングtLoffとの関係を検出し(図3参照)、検出結果に応じた信号S210を生成及び出力する。遅延設定回路210での検出内容は、エッジタイミングtHon及びtLoff間の差を含む他、エッジタイミングtHon及びtLoffの前後関係を含む。遅延付与回路211における遅延時間Tdly_H2は信号S210に従う。この際、上述の第1デッドタイム減少動作が実現されるよう、回路210及び211は遅延時間Tdly_H2を変更することができる。尚、エッジタイミングtHon及びtLoff間の差を、信号Honにおけるアップエッジの位相と信号Loffにおけるアップエッジの位相との差と解することもできる。
 駆動制御信号CNTにダウンエッジが生じるごとに信号Hoff及びLonに1回ずつアップエッジが発生する。遅延設定回路220は、駆動制御信号CNTのダウンエッジに基づく信号HoffのアップエッジタイミングtHoffと信号LonのアップエッジタイミングtLonとの関係を検出し(図3参照)、検出結果に応じた信号S220を生成及び出力する。遅延設定回路220での検出内容は、エッジタイミングtHoff及びtLon間の差を含む他、エッジタイミングtHoff及びtLonの前後関係を含む。遅延付与回路221における遅延時間Tdly_L2は信号S220に従う。この際、上述の第2デッドタイム減少動作が実現されるよう、回路220及び221は遅延時間Tdly_L2を変更することができる。尚、エッジタイミングtHoff及びtLon間の差を、信号Hoffにおけるアップエッジの位相と信号Lonにおけるアップエッジの位相との差と解することもできる。
 図17及び図18を参照して、駆動制御信号CNTのアップエッジに応答したスイッチング制御回路200の動作を説明する。図17において、矢印付き実線710は、駆動制御信号CNTのアップエッジに応答してゲート信号GHの電位上昇を生じさせる信号の伝搬経路を示す。図17において、矢印付き破線712は、トランジスタMH2のターンオンに対応する信号が遅延設定回路210に伝搬される様子を示す。図17において、矢印付き実線720は、駆動制御信号CNTのアップエッジに応答してゲート信号GLの電位低下を生じさせる信号の伝搬経路を示す。図17において、矢印付き破線722は、トランジスタML2のターンオフに対応する信号が遅延設定回路210に伝搬される様子を示す。
 図18は、駆動制御信号CNTのアップエッジに応答したスイッチング制御回路200のタイミングチャートである。スイッチングIC1の起動直後における初期遅延状態では、遅延時間Td_Honが遅延時間Td_Loffよりも必ず長くなるように(即ち、必ず“TDEAD1>0”となるように:図3参照)、十分に短い所定の初期時間が遅延時間Tdly_H2に設定されている。即ち、初期遅延状態において、遅延時間Tdly_H2は、レベルシフタ241での伝搬遅延時間Tdly_LVS1よりも十分に短く設定されている。図18は、初期遅延状態でのタイミングチャート、又は、第1デッドタイムTDEAD1が十分に長いときのタイミングチャートである。
 図18を参照し、時刻t1にて駆動制御信号CNTにアップエッジが生じる(図3も参照)。すると、時刻t1から伝搬遅延時間Tdly_LVS1が経過した時点で信号S241にアップエッジが生じる。一方で、時刻t1から遅延時間Tdly_H2が経過した時点で信号S211にアップエッジが生じる。信号S211のアップエッジに同期して信号S212にもアップエッジが生じる。上述したように、駆動制御信号CNTがハイレベルであるとき、セレクタ252にて信号S212が選択される。このため、信号S211のアップエッジは回路212及びセレクタ252を通じて信号S252にアップエッジを生じさせる。この段階において、信号S241には未だアップエッジが生じておらず、信号S241のアップエッジよりも後に信号S251のアップエッジが発生する。故に、否定論理和回路253の機能により、信号S252のアップエッジに同期して信号S253にダウンエッジが生じる。信号S253のダウンエッジを受けて上記ローサイドプリドライバ(254~257)はゲート信号GLの電位をハイレベル(内部電源電圧Vregのレベル)からローレベル(グランドのレベル)に向けて低下させる。ゲート信号GLの電位低下過程において、タイミングtLoffにて信号Loffにアップエッジが生じる。
 一方、信号S241のアップエッジは回路242及び243を通じて信号S243にアップエッジを生じさせる。信号S243のアップエッジを受けて上記ハイサイドプリドライバ(244~247)はゲート信号GHの電位をローレベル(スイッチ電圧VLXのレベル)からハイレベル(ブート電圧VBOOTのレベル)に向けて上昇させる。ゲート信号GHの電位上昇過程において、レベルシフタ261及び回路231を通じ、タイミングtHonにて信号Honにアップエッジが生じる。
 エッジタイミングtLoffがエッジタイミングtHonよりも先である状況において(即ち信号Loffのアップエッジの位相が信号Honのアップエッジの位相よりも進んでいる状況において)、エッジタイミングtLoff及びtHon間の差に応じた信号S210が遅延付与回路211に与えられたとき、遅延付与回路211は遅延時間Tdly_H2を増大させる。この際の増大量は、エッジタイミングtLoff及びtHon間の差が大きいほど(即ち第1デッドタイムTDEAD1が大きいほど)大きくて良い、或いは、一定であっても良い。
 初期遅延状態を起点に駆動制御信号CNTのハイレベル及びローレベル間での切り替わりが繰り返されると、エッジタイミングtLoff及びtHon間の差に応じて遅延時間Tdly_H2が増大してゆき、エッジタイミングtLoff及びtHon間の差がゼロ又は微小となる状態にて安定化する。
 駆動制御信号CNTのアップエッジに注目した場合、遅延付与回路211は、駆動制御信号CNTのアップエッジから可変の遅延時間Tdly_H2後にアクティブ信号を出力する可変遅延回路の例である。ここにおけるアクティブ信号はハイレベルの信号S211に相当する。スイッチング制御回路200は、アクティブ信号に基づき(アクティブ信号の出力を契機に)トランジスタML2のゲート電位を低下させるゲート信号GLをトランジスタML2に供給することでトランジスタML2をターンオフさせる。一方、スイッチング制御回路200は、駆動制御信号CNTのアップエッジに基づく信号S241(シフト駆動制御信号)のレベル変化に応答して、トランジスタMH2のゲート電位を上昇させるゲート信号GHをトランジスタMH2に供給し、これによってトランジスタMH2をターンオンさせる。そして、遅延設定回路210及び遅延付与回路211を含む調整回路(21)は、“Td_Hon>Td_Loff”である状態を起点に(図3及び図18参照)、エッジタイミングtHon及びtLoff間の差に基づいて遅延時間Tdly_H2を増大させることにより遅延時間Td_Loffを増大させ、これによって第1デッドタイムTDEAD1を減少させることができる。
 付与遅延時間に相当する遅延時間Tdly_H2は、トランジスタML2のターンオフ時の総遅延時間(即ち遅延時間Td_Loff)の一部である。故に、遅延時間Tdly_H2の増減に伴って遅延時間Td_Loffも増減する。また、LVS241における伝搬遅延時間Tdly_LVS1は、トランジスタMH2のターンオン時の総遅延時間(即ち遅延時間Td_Hon)の一部である。尚、仮に、エッジタイミングtHonがエッジタイミングtLoffよりも先になる程度に遅延時間Tdly_H2が長くなった場合、信号Hon及びLoffに基づき遅延設定回路210及び遅延付与回路211により遅延時間Tdly_H2が減少補正される。
 図19及び図20を参照して、駆動制御信号CNTのダウンエッジに応答したスイッチング制御回路200の動作を説明する。図19において、矢印付き実線730は、駆動制御信号CNTのダウンエッジに応答してゲート信号GLの電位上昇を生じさせる信号の伝搬経路を示す。図19において、矢印付き破線732は、トランジスタML2のターンオンに対応する信号が遅延設定回路220に伝搬される様子を示す。図19において、矢印付き実線740は、駆動制御信号CNTのダウンエッジに応答してゲート信号GHの電位低下を生じさせる信号の伝搬経路を示す。図19において、矢印付き破線742は、トランジスタMH2のターンオフに対応する信号が遅延設定回路220に伝搬される様子を示す。
 図20は、駆動制御信号CNTのダウンエッジに応答したスイッチング制御回路200のタイミングチャートである。スイッチングIC1の起動直後における初期遅延状態では、遅延時間Td_Lonが遅延時間Td_Hoffよりも必ず長くなるように(即ち、必ず“TDEAD2>0”となるように:図3参照)、十分に長い所定の初期時間が遅延時間Tdly_L2に設定されている。即ち、初期遅延状態において、遅延時間Tdly_L2は、レベルシフタ241での伝搬遅延時間Tdly_LVS2よりも十分に長く設定されている。図20は、初期遅延状態でのタイミングチャート、又は、第2デッドタイムTDEAD2が十分に長いときのタイミングチャートである。
 図20を参照し、時刻t2にて駆動制御信号CNTにダウンエッジが生じる(図3も参照)。すると、時刻t2から伝搬遅延時間Tdly_LVS2が経過した時点で信号S241にダウンエッジが生じる。信号S241のダウンエッジは回路242及び243を通じて信号S243にダウンエッジを生じさせる。信号S243のダウンエッジを受けて上記ハイサイドプリドライバ(244~247)はゲート信号GHの電位をハイレベル(ブート電圧VBOOTのレベル)からローレベル(スイッチ電圧VLXのレベル)に向けて低下させる。ゲート信号GHの電位低下過程において、レベルシフタ261及び回路233を通じ、タイミングtHoffにて信号Hoffにアップエッジが生じる。
 一方、時刻t2から遅延時間Tdly_L2が経過した時点で信号S221にダウンエッジが生じる。信号S221のダウンエッジに同期して信号S222にもダウンエッジが生じる。上述したように、駆動制御信号CNTがローレベルであるとき、セレクタ252にて信号S222が選択される。このため、信号S221のダウンエッジは回路222及びセレクタ252を通じて信号S252にダウンエッジを生じさせる。信号S252のダウンエッジよりも後に信号S251にダウンエッジが生じることもあり得るが、少なくとも初期遅延状態では、信号S251のダウンエッジよりも後に信号S252にダウンエッジが生じる。故に、否定論理和回路253の機能により、信号S252のダウンエッジに同期して信号S253にアップエッジが生じる。信号S253のアップエッジを受けて上記ローサイドプリドライバ(254~257)はゲート信号GLの電位をローレベル(グランドのレベル)からハイレベル(内部電源電圧Vregのレベル)に向けて上昇させる。ゲート信号GLの電位上昇過程において、タイミングtLonにて信号Lonにアップエッジが生じる。
 エッジタイミングtHoffがエッジタイミングtLonよりも先である状況において(即ち信号Hoffのアップエッジの位相が信号Lonのアップエッジの位相よりも進んでいる状況において)、エッジタイミングtHoff及びLon間の差に応じた信号S220が遅延付与回路221に与えられたとき、遅延付与回路221は遅延時間Tdly_L2を減少させる。この際の減少量は、エッジタイミングtHoff及びtLon間の差が大きいほど(即ち第2デッドタイムTDEAD2が大きいほど)大きくて良い、或いは、一定であっても良い。
 初期遅延状態を起点に駆動制御信号CNTのハイレベル及びローレベル間での切り替わりが繰り返されると、エッジタイミングtHoff及びtLon間の差に応じて遅延時間Tdly_L2が減少してゆき、エッジタイミングtHoff及びtLon間の差がゼロ又は微小となる状態にて安定化する。
 駆動制御信号CNTのダウンエッジに注目した場合、遅延付与回路221は、駆動制御信号CNTのダウンエッジから可変の遅延時間Tdly_L2後にアクティブ信号を出力する可変遅延回路の例である。ここにおけるアクティブ信号はローレベルの信号S221に相当する。スイッチング制御回路200は、アクティブ信号に基づき(アクティブ信号の出力を契機に)トランジスタML2のゲート電位を上昇させるゲート信号GLをトランジスタML2に供給することでトランジスタML2をターンオンさせる。一方、スイッチング制御回路200は、駆動制御信号CNTのダウンエッジに基づく信号S241(シフト駆動制御信号)のレベル変化に応答して、トランジスタMH2のゲート電位を低下させるゲート信号GHをトランジスタMH2に供給し、これによってトランジスタMH2をターンオフさせる。そして、遅延設定回路220及び遅延付与回路221を含む調整回路(22)は、“Td_Lon>Td_Hoff”である状態を起点に(図3及び図20参照)、エッジタイミングtHoff及びtLon間の差に基づいて遅延時間Tdly_L2を減少させることにより遅延時間Td_Lonを減少させ、これによって第2デッドタイムTDEAD2を減少させることができる。
 付与遅延時間に相当する遅延時間Tdly_L2は、トランジスタML2のターンオン時の総遅延時間(即ち遅延時間Td_Lon)の一部である。故に、遅延時間Tdly_L2の増減に伴って遅延時間Td_Lonも増減する。また、LVS241における伝搬遅延時間Tdly_LVS2は、トランジスタMH2のターンオフ時の総遅延時間(即ち遅延時間Td_Hoff)の一部である。尚、仮に、エッジタイミングtLonがエッジタイミングtHoffよりも先になる程度に遅延時間Tdly_L2が短くなった場合、信号Lon及びHoffに基づき遅延設定回路220及び遅延付与回路221により遅延時間Tdly_L2が増大補正される。
 遅延設定回路210及び220の構成は、実施例EX1_Aで述べた遅延設定回路110及び120の構成(図10参照)と同様であって良い。このため、遅延設定回路210及び220の構成例の図示を省略する。
<<実施例EX2_B>>
 実施例EX2_Bを説明する。実施例EX2_Bは実施例EX2_Aを基礎とする実施例であり、実施例EX2_Bにて特に記述しない事項に関しては、矛盾無き限り、実施例EX2_Aで述べた事項が実施例EX2_Bにも適用される。
 図21に実施例EX2_Bに係るスイッチングIC1の一部内部回路を示す。実施例EX2_Bに係るスイッチングIC1において、スイッチング制御回路10はスイッチング制御回路200aであり、トランジスタMH及びMLは夫々トランジスタMH2及びML2である。スイッチング制御回路200aは、実施例EX2_Aに係るスイッチング制御回路200(図16)に対し、回路235及び236を追加した構成を有する。当該追加及び実施例EX2_B中で以下に示す事項を除き、スイッチング制御回路200aの構成及び動作は、スイッチング制御回路200のそれらと同じである。
 回路235はシュミットトリガ型のインバータ回路(換言すればヒステリシス付きのインバータ回路)である。回路235の入力端子はスイッチ端子TLXに接続されてスイッチ電圧VLXを受ける。回路235はスイッチ電圧VLXに応じた信号S235を出力する。信号S235がローレベルである状態を起点に、スイッチ電圧VLXが所定の正の閾電圧VTH235を下回ると信号S235にアップエッジが生じ、その後、スイッチ電圧VLXが電圧(VTH235+ΔVHYS)を上回ると信号S235にダウンエッジが生じる。ここで、不等式“0<VTH235<VTH235+ΔVHYS<Vreg”が成立する。
 回路236は2入力の論理積回路である。回路236は回路235からの信号S235及び回路233からの信号Hoffの論理積信号を信号S236として出力する。従って、信号S235及びHoffが共にハイレベルであるときに限り、信号S236はハイレベルとなる。信号S235及びHoffの内、少なくとも一方がローレベルであれば信号S236はローレベルとなる。
 実施例EX2_Bに係る遅延設定回路220には、信号Hoff及びLonの組み合わせの代わりに信号S236及びLonが入力される。即ち、実施例EX2_Bに係る遅延設定回路220は、信号Hoff及びLonではなく、信号S236及びLonに基づいて信号S220を生成及び出力する。実施例EX2_Bに係る遅延設定回路220は、信号S236を信号Hoffとみなして(即ち、信号S236のアップエッジタイミングを信号Hoffのアップエッジタイミングとみなして)、実施例EX2_Aと同様の方法にて信号S220を生成及び出力することにより、遅延回路221にて付加されるべき遅延時間Tdly_L2を指定及び制御する。
 実施例EX2_Bに係るスイッチングIC1をDC/DCコンバータ2(図4)に組み込むことを想定する。この際、回路235及び236は、実施例EX1_Bに係る回路135及び136(図11)と同様の作用をもたらす。即ち、負荷電流ILDが相対的に大きい重負荷状態では、スイッチング制御回路200aの動作はスイッチング制御回路200の動作と実質的に同じとなる。これに対し、負荷電流ILDが相対的に小さい軽負荷状態において、トランジスタMH2のターンオフに伴うスイッチ電圧VLXの低下は重負荷状態よりも緩やかとなる。そして、スイッチ電圧VLXが十分に低下した時点で信号S235にアップエッジが生し、信号S235のアップエッジを契機に信号S236にもアップエッジが生じる。仮に、軽負荷状態でのスイッチ電圧VLXの低下過程において、スイッチ電圧VLXが十分に高いときにトランジスタML2をターンオンしたならば、トランジスタML2のチャネルを通じて電荷がグランドに引き込まれてスイッチ電圧VLXが急峻に0Vまで低下する。これは、電荷を不必要にグランドに引き込む(いわば電荷を捨てる)ことに相当し、効率の低下を招く。
 スイッチング制御回路200aでは、回路235及び236の導入により、軽負荷状態での効率低下を防止する、換言すれば軽負荷状態での効率を改善する。当該効率改善は、信号S236及びLonに基づく遅延時間Tdly_L2の補正により実現される。以下、信号S236のアップエッジタイミングを記号“t236”にて参照し、エッジタイミングt236又はタイミングt236と称する。
 遅延設定回路220は、エッジタイミングt236及びtLonの関係を検出し、検出結果に応じた信号S220を生成及び出力する。遅延設定回路220での検出内容は、エッジタイミングt236及びtLon間の差を含む他、エッジタイミングt236及びtLonの前後関係を含む。図22を参照して、スイッチング制御回路200aにおける遅延設定回路220及び遅延付与回路221の動作を説明する。
 重負荷状態においてエッジタイミングtHoffとエッジタイミングt236は実質的に同じであり、スイッチング制御回路200aでは実施例EX2_Aと同様の動作が行われる。即ち、エッジタイミングt236がエッジタイミングtLonよりも先である第3状況(信号S236のアップエッジの位相が信号Lonのアップエッジの位相よりも進んでいる状況)において、遅延設定回路220は遅延時間Tdly_L2を減少させるための信号S220を生成及び出力し、当該信号S220を受けて遅延付与回路221は遅延時間Tdly_L2を減少させる。この際の減少量は、エッジタイミングt236及びtLon間の差が大きいほど大きくて良い、或いは、一定であっても良い。
 初期遅延状態を起点に駆動制御信号CNTのハイレベル及びローレベル間での切り替わりが繰り返される。重負荷状態が維持されるのでれば、エッジタイミングt236及びtLon間の差に応じて遅延時間Tdly_L2が減少してゆき、エッジタイミングt236及びtLon間の差がゼロ又は微小となる状態にて安定化する。
 この後、重負荷状態から軽負荷状態に切り替わったことを想定する。軽負荷状態に切り替わることでエッジタイミングt236が重負荷状態よりも遅れて発生し、結果、エッジタイミングt236がエッジタイミングtHoffよりも相応に遅れる第4状況(信号S236のアップエッジの位相が信号Hoffのアップエッジの位相よりも遅れている状況)に至る。第4状況では、トランジスタMH2がターンオフしただけではスイッチ電圧VLXが十分に低下しないため信号S235がローレベルに維持される。そして、伝搬経路730(図19)でのゲート信号GLによりトランジスタML2がターンオンし、トランジスタML2のターンオンに基づくスイッチ電圧VLXの低下が信号S235にアップエッジを発生させ、続いて信号S236にアップエッジを発生させる。つまり、第4状況では、エッジタイミングtLonよりもエッジタイミングt236の方が後となる(信号S236のアップエッジの位相が信号Lonのアップエッジの位相よりも遅れている)。エッジタイミングtLonよりもエッジタイミングt236の方が後であるとき、遅延設定回路220は遅延時間Tdly_L2を増大させるための信号S220を生成及び出力し、当該信号S220を受けて遅延付与回路221は遅延時間Tdly_L2を増大させる。この際の増大量は、エッジタイミングt236及びtLon間の差に応じた量であっても良いし、一定であっても良い。遅延時間Tdly_L2の増大によって第2デッドタイムTDEAD2が増大することになるが、軽負荷状態では、その方が効率が高まる。
 第4状況への遷移後、軽負荷状態が維持されるのであれば遅延時間Tdly_L2が増大してゆく。これにより、軽負荷状態においてスイッチ電圧VLXが十分に低下した後にトランジスタML2がターンオンされるようになり、上述したような効率低下が抑制される。尚、遅延時間Tdly_L2の増大に上限を設けても良い(所定の上限時間を超えて遅延時間Tdly_L2が増大することを禁止しても良い)。以後、軽負荷状態から重負荷状態に戻ったのであれば、重負荷状態に適応して遅延時間Tdly_L2が減少せしめられる。つまり、負荷電流ILDに応じて遅延時間Tdly_L2が適正に調整されることになる。
 このように、実施例EX2_Bでは、遅延設定回路220及び遅延付与回路221を含んで構成される調整回路22(図1参照)により、信号Hoffと、信号Lonと、スイッチ電圧VLXに応じた信号S235と、に基づいて、第2デッドタイムTDEAD2が調整されることになる。遅延時間Td_Lon(図3)は図19の伝搬経路730に対応して生じるものであり、故に遅延時間Tdly_L2の増減を通じてトランジスタML2のターンオンに関わる遅延時間Td_Lonが増減される。遅延時間Td_Lonの増減に伴って第2デッドタイムTDEAD2も増減する(図3参照)。
<<実施例EX2_C>>
 実施例EX2_Cを説明する。実施例EX2_Cでは、実施例EX2_A又はEX2_Bに対する変形技術等を説明する。
 遅延設定回路210及び220の構成は遅延設定回路110及び120の構成と同様であって良いと述べた。しかしながら、実施例EX2_A又は実施例EX2_Bにおいて、エッジタイミングtLoff及びtHon間の関係(それらの差及び前後関係)に応じた信号を信号S210として生成できる限り、遅延設定回路210は、任意のデジタル回路又はアナログ回路にて構成されて良い。実施例EX2_Aにおいて、エッジタイミングtHoff及びtLon間の関係(それらの差及び前後関係)に応じた信号を信号S220として生成できる限り、遅延設定回路220は、任意のデジタル回路又はアナログ回路にて構成されて良い。実施例EX2_Bにおいて、エッジタイミングt236及びtLon間の関係(それらの差及び前後関係)に応じた信号を信号S220として生成できる限り、遅延設定回路220は、任意のデジタル回路又はアナログ回路にて構成されて良い。
 実施例EX2_A又はEX2_Bにおいて、トランジスタMH2及びML2の夫々をNチャネル型のIGBTにて形成しても良い。この場合、実施例EX2_A又はEX2_Bにおいて、トランジスタMH2のソース、ドレインは、夫々、エミッタ、コレクタに読み替えられ、トランジスタML2のソース、ドレインは、夫々、エミッタ、コレクタに読み替えられる。
<<実施例EX3>>
 実施例EX3を説明する。実施例EX3では、上述の各事項に対する応用技術、変形技術又は補足事項等を説明する。
 スイッチングIC1は本開示に係るスイッチング装置の例である。スイッチングIC1をDC/DCコンバータ2に組み込む例を上述したが、スイッチングIC1の適用先はDC/DCコンバータに限定されない。例えば、スイッチングIC1をモータドライバとして利用することもできる。この場合、トランジスタMH及びMLから成るハーフブリッジ回路とスイッチング制御回路10とを備えたブロックを3相分備えたモータドライバICを形成し、モータドライバICにて三相モータを駆動するようにしても良い。当該モータドライバICもスイッチング装置の例である。
 任意の信号又は電圧に関して、上述の主旨を損なわない形で、それらのハイレベルとローレベルの関係は上述したものの逆とされ得る。
 各実施形態に示されたFET(電界効果トランジスタ)のチャネルの種類は例示である。上述の主旨を損なわない形で、任意のFETのチャネルの種類はPチャネル型及びNチャネル型間で変更され得る。
 不都合が生じない限り、上述の任意のトランジスタは、任意の種類のトランジスタであって良い。例えば、MOSFETとして上述された任意のトランジスタを、不都合が生じない限り、接合型FET、IGBT又はバイポーラトランジスタに置き換えることも可能である。任意のトランジスタは第1電極、第2電極及び制御電極を有する。FETにおいては、第1及び第2電極の内の一方がドレインで他方がソースであり且つ制御電極がゲートである。IGBTにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がゲートである。IGBTに属さないバイポーラトランジスタにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がベースである。
 本開示において、任意の第1物理量と任意の第2物理量が“同じ”であるとは、誤差を含む概念と解される。即ち、第1物理量と第2物理量が“同じ”であるとは、第1物理量と第2物理量が“同じ”となることを目指して設計又は製造が成されていることを意味し、第1及び第2物理量間に若干の誤差が存在する場合も、第1物理量と第2物理量が“同じ”であると解されるべきである。これは、“同じ”に類する表現(例えば“同一”又は“一致”)についても同様に解されるべきである。
 本開示の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本開示の実施形態の例であって、本開示ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。
<<付記>>
 上述の実施形態にて具体的構成例が示された本開示について付記を設ける。
 本開示の一側面に係るスイッチング装置(1;図1及び図3参照)は、第1トランジスタ(MH)と、前記第1トランジスタよりも低電位側に配置され且つ前記第1トランジスタに対し直列接続された第2トランジスタ(ML)と、駆動制御信号(CNT)に基づき、前記第1トランジスタに対して第1ゲート信号(GH)を供給することで前記第1トランジスタのオン又はオフを制御し、且つ、前記第2トランジスタに対して第2ゲート信号(GL)を供給することで前記第2トランジスタのオン又はオフを制御するよう構成されたスイッチング制御回路(10)と、を備え、前記スイッチング制御回路は、前記駆動制御信号のレベルの第1レベルから第2レベルへの変化に応答して、第1遅延時間(Td_Hon)を経てから前記第1トランジスタをターンオンさせる一方、第2遅延時間(Td_Loff)を経てから前記第2トランジスタをターンオフさせ、前記スイッチング制御回路は、前記第1ゲート信号に基づき前記第1トランジスタがターンオンする第1タイミング(tHon)を検出する第1検出回路(11H)と、前記第2ゲート信号に基づき前記第2トランジスタがターンオフする第2タイミング(tLoff)を検出する第2検出回路(11L)と、前記第1遅延時間が前記第2遅延時間よりも長い基準状態を起点に、前記第1タイミング及び前記第2タイミング間の差に基づいて前記第1遅延時間及び前記第2遅延時間の内の少なくとも一方を変化させることにより、前記第2トランジスタのターンオフ及び前記第1トランジスタのターンオン間のデッドタイム(TDEAD1)を減少させるよう構成された調整回路(21)と、を有する構成(第1の構成)である。
 これにより、様々な条件下においてデッドタイムを小さくすることができる。デッドタイムの縮小により損失の低減(逆に言えば効率の向上)を図ることができる。
 上記第1の構成に係るスイッチング装置において(実施例EX1_A;図5~図7参照)、前記第1トランジスタ(MH1)はPチャネル型の電界効果トランジスタ又はPチャネル型の絶縁ゲートバイポーラトランジスタであり、前記第2トランジスタ(ML1)はNチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、前記調整回路(110~112)は、前記駆動制御信号の前記第2レベルへの変化から可変時間(Tdly_H1)後にアクティブ信号(図6の例ではハイレベルのS111)を出力するよう構成された可変遅延回路(111)を有し、前記スイッチング制御回路は、前記アクティブ信号に基づき前記第1トランジスタのゲート電位を低下させる前記第1ゲート信号を前記第1トランジスタに供給することで前記第1トランジスタをターンオンさせ、前記調整回路は、前記基準状態を起点に、前記第1タイミング及び前記第2タイミング間の差に基づいて前記可変遅延回路における前記可変時間(Tdly_H1)を減少させることにより前記第1遅延時間(Td_Hon)を減少させ、これによって前記デッドタイム(TDEAD1)を減少させる構成(第2の構成)であっても良い。
 これにより、様々な条件下においてデッドタイムを小さくすることができる。
 上記第1の構成に係るスイッチング装置において(実施例EX2_A;図16~図18参照)、前記第1トランジスタ(MH2)及び前記第2トランジスタ(MHL)は、夫々に、Nチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、前記スイッチング制御回路は、前記駆動制御信号(CNT)をグランド電位を基準とするレベルから前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位(VLX)を基準とするレベルにレベルシフトすることで、シフト駆動制御信号(S241)を生成するよう構成されたレベルシフタ(241)を有し、前記駆動制御信号の前記第2レベルへの変化に基づく前記シフト駆動制御信号のレベル変化に応答して、前記第1トランジスタのゲート電位を上昇させる前記第1ゲート信号を前記第1トランジスタに供給することにより前記第1トランジスタをターンオンさせ、前記調整回路(210~212)は、前記駆動制御信号の前記第2レベルへの変化から可変時間(Tdly_H2)後にアクティブ信号(図17の例ではハイレベルのS211)を出力するよう構成された可変遅延回路(211)を有し、前記スイッチング制御回路は、前記アクティブ信号に基づき前記第2トランジスタのゲート電位を低下させる前記第2ゲート信号を前記第2トランジスタに供給することにより前記第2トランジスタをターンオフさせ、前記調整回路は、前記基準状態を起点に、前記第1タイミング及び前記第2タイミング間の差に基づいて前記可変遅延回路における前記可変時間(Tdly_H2)を増大させることにより前記第2遅延時間(Td_Loff)を増大させ、これによって前記デッドタイム(TDEAD1)を減少させる構成(第3の構成)であっても良い。
 これにより、様々な条件下においてデッドタイムを小さくすることができる。
 上記第1の構成に係るスイッチング装置において(図1及び図3参照)、前記調整回路は第1調整回路(21)であり、前記スイッチング制御回路は、前記駆動制御信号のレベルの前記第2レベルから前記第1レベルへの変化に応答して、第3遅延時間(Td_Hoff)を経てから前記第1トランジスタをターンオフさせる一方、第4遅延時間(Td_Lon)を経てから前記第2トランジスタをターンオンさせ、前記スイッチング制御回路は、前記第1ゲート信号に基づき前記第1トランジスタがターンオフする第3タイミング(tHoff)を検出する第3検出回路(12H)と、前記第2ゲート信号に基づき前記第2トランジスタがターンオンする第4タイミング(tLon)を検出する第4検出回路(12L)と、前記第4遅延時間が前記第3遅延時間よりも長い第2基準状態を起点に、前記第3タイミング及び前記第4タイミング間の差に基づいて前記第3遅延時間及び前記第4遅延時間の内の少なくとも一方を変化させることにより、前記第1トランジスタのターンオフ及び前記第2トランジスタのターンオン間の第2デッドタイム(TDEAD2)を減少させるよう構成された第2調整回路(22)と、を更に有する構成(第4の構成)であっても良い。
 これにより、様々な条件下において第2デッドタイムを小さくすることができる。
 上記第4の構成に係るスイッチング装置において(実施例EX1_A;図5、図8及び図9参照)、前記第1トランジスタ(MH1)はPチャネル型の電界効果トランジスタ又はPチャネル型の絶縁ゲートバイポーラトランジスタであり、前記第2トランジスタ(ML1)はNチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、前記第2調整回路(120~122)は、前記駆動制御信号の前記第1レベルへの変化から可変時間(Tdly_L1)後にアクティブ信号(図8の例ではローレベルのS122)を出力するよう構成された可変遅延回路(122)を有し、前記スイッチング制御回路は、前記アクティブ信号に基づき前記第2トランジスタのゲート電位を上昇させる前記第2ゲート信号を前記第2トランジスタに供給することで前記第2トランジスタをターンオンさせ、前記第2調整回路は、前記第2基準状態を起点に、前記第3タイミング及び前記第4タイミング間の差に基づいて前記可変遅延回路における前記可変時間(Tdly_L1)を減少させることにより前記第4遅延時間(Td_Lon)を減少させ、これによって前記第2デッドタイム(TDEAD2)を減少させる構成(第5の構成)であっても良い。
 これにより、様々な条件下において第2デッドタイムを小さくすることができる。
 上記第4の構成に係るスイッチング装置において(実施例EX2_A;図16、図19及び図20参照)、前記第1トランジスタ(MH2)及び前記第2トランジスタ(ML2)は、夫々に、Nチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、前記スイッチング制御回路は、前記駆動制御信号をグランド電位を基準とするレベルから前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位(VLX)を基準とするレベルにレベルシフトすることで、シフト駆動制御信号(S241)を生成するよう構成されたレベルシフタ(241)を有し、前記駆動制御信号の前記第1レベルへの変化に基づく前記シフト駆動制御信号のレベル変化に応答して、前記第1トランジスタのゲート電位を低下させる前記第1ゲート信号を前記第1トランジスタに供給することにより前記第1トランジスタをターンオフさせ、前記第2調整回路(220~222)は、前記駆動制御信号の前記第1レベルへの変化から可変時間(Tdly_L2)後にアクティブ信号(図19の例ではローレベルのS221)を出力するよう構成された可変遅延回路(221)を有し、前記スイッチング制御回路は、前記アクティブ信号に基づき前記第2トランジスタのゲート電位を上昇させる前記第2ゲート信号を前記第2トランジスタに供給することにより前記第2トランジスタをターンオンさせ、
 前記第2調整回路は、前記第2基準状態を起点に、前記第3タイミング及び前記第4タイミング間の差に基づいて前記可変遅延回路における前記可変時間(Tdly_L2)を減少させることにより前記第4遅延時間(Td_Lon)を減少させ、これによって前記第2デッドタイム(TDEAD2)を減少させる構成(第6の構成)であっても良い。
 これにより、様々な条件下において第2デッドタイムを小さくすることができる。
 上記第1の構成に係るスイッチング装置において(図1及び図3と、図11又は図21と、を参照)、前記調整回路は第1調整回路(21)であり、前記スイッチング制御回路は、前記駆動制御信号のレベルの前記第2レベルから前記第1レベルへの変化に応答して、第3遅延時間(Td_Hoff)を経てから前記第1トランジスタをターンオフさせる一方、第4遅延時間(Td_Lon)を経てから前記第2トランジスタをターンオンさせ、前記スイッチング制御回路は、前記第1ゲート信号に基づき前記第1トランジスタがターンオフする第3タイミング(tHoff)を検出する第3検出回路(12H)と、前記第2ゲート信号に基づき前記第2トランジスタがターンオンする第4タイミング(tLon)を検出する第4検出回路(12L)と、前記第3タイミングを示す信号と、前記第4タイミングを示す信号と、前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位に応じた信号と、に基づき、前記第1トランジスタのターンオフ及び前記第2トランジスタのターンオン間の第2デッドタイムを調整するよう構成された第2調整回路(22;図11では120~122、図21では220~222)と、を更に有する構成(第7の構成)であっても良い。
 これにより、様々な条件下において第2デッドタイムを適正に調整することができる。
 上記第7の構成に係るスイッチング装置において(実施例EX1_B;図11参照)、前記第1トランジスタ(MH1)はPチャネル型の電界効果トランジスタ又はPチャネル型の絶縁ゲートバイポーラトランジスタであり、前記第2トランジスタ(ML1)はNチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、前記第2調整回路(120~122)は、前記駆動制御信号の前記第1レベルへの変化から可変時間(Tdly_L1)後にアクティブ信号(図8の例ではローレベルのS122)を出力するよう構成された可変遅延回路(122)を有し、前記スイッチング制御回路は、前記アクティブ信号に基づき前記第2トランジスタのゲート電位を上昇させる前記第2ゲート信号を前記第2トランジスタに供給することで前記第2トランジスタをターンオンさせ、前記第2調整回路は、前記第3タイミングを示す信号(Hoff)と、前記第4タイミングを示す信号(Lon)と、前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位(VLX)に応じた信号(S135)と、に基づき、前記可変時間(Tdly_L1)の調整を通じて前記第4遅延時間(Td_Lon)を調整し、これによって前記第2デッドタイム(VDEAD2)を調整する構成(第8の構成)であっても良い。
 これにより、様々な条件下において第2デッドタイムを適正に調整することができる。
 上記第7の構成に係るスイッチング装置において(実施例EX2_B;図21参照)、前記第1トランジスタ(MH2)及び前記第2トランジスタ(ML2)は、夫々に、Nチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、前記スイッチング制御回路は、前記駆動制御信号をグランド電位を基準とするレベルから前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位(VLX)を基準とするレベルにレベルシフトすることで、シフト駆動制御信号(S241)を生成するよう構成されたレベルシフタ(241)を有し、前記駆動制御信号の前記第1レベルへの変化に基づく前記シフト駆動制御信号のレベル変化に応答して、前記第1トランジスタのゲート電位を低下させる前記第1ゲート信号を前記第1トランジスタに供給することにより前記第1トランジスタをターンオフさせ、前記第2調整回路(220~222)は、前記駆動制御信号の前記第1レベルへの変化から可変時間(Tdly_L2)後にアクティブ信号(図19の例ではローレベルのS221)を出力するよう構成された可変遅延回路(221)を有し、前記スイッチング制御回路は、前記アクティブ信号に基づき前記第2トランジスタのゲート電位を上昇させる前記第2ゲート信号を前記第2トランジスタに供給することにより前記第2トランジスタをターンオンさせ、前記第2調整回路は、前記第3タイミングを示す信号(Hoff)と、前記第4タイミングを示す信号(Lon)と、前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位(VLX)に応じた信号(S235)と、に基づき、前記可変時間の調整(Tdly_L2)を通じて前記第4遅延時間(Td_Lon)を調整し、これによって前記第2デッドタイム(VDEAD2)を調整する構成(第9の構成)であっても良い。
 これにより、様々な条件下において第2デッドタイムを適正に調整することができる。
 本開示の一側面に係るDC/DCコンバータ(2;図4参照)は、第1~第9の構成の何れかに係るスイッチング装置(1)と、前記第1トランジスタ及び前記第2トランジスタ間の接続ノードに生じる電圧(VLX)を整流及び平滑化することで出力電圧(VOUT)を生成するよう構成された整流平滑回路(LOUT、COUT)と、を備え、前記スイッチング装置は、前記出力電圧に応じた帰還電圧(VFB)に基づき前記駆動制御信号を生成するよう構成された帰還制御回路(30)を有する構成(第10の構成)である。
 これにより、様々な条件下においてデッドタイムを適正化することができ、DC/DCコンバータの効率を高めることが可能となる。
  1 スイッチングIC
  2 DC/DCコンバータ
 10 スイッチング制御回路
11H ハイサイドターンオン検出回路
11L ローサイドターンオフ検出回路
12H ローサイドターンオフ検出回路
12L ハイサイドターンオン検出回路
 21、22 調整回路
 30 帰還制御回路
OUT コイル
OUT コンデンサ
R1、R2 抵抗
VIN 電源入力端子
LX スイッチ端子
GND グランド端子
FB 帰還端子
MH トランジスタ(ハイサイドトランジスタ)
ML トランジスタ(ローサイドトランジスタ)
GH、GL ゲート信号
100 スイッチング制御回路
110、120 遅延設定回路
111、112、121、122 遅延付与回路
MH1 トランジスタ(ハイサイドトランジスタ)
ML1 トランジスタ(ローサイドトランジスタ)
200 スイッチング制御回路
210、220 遅延設定回路
211、221 遅延付与回路
241、251、261 レベルシフタ
MH2 トランジスタ(ハイサイドトランジスタ)
ML2 トランジスタ(ローサイドトランジスタ)

Claims (10)

  1.  第1トランジスタと、
     前記第1トランジスタよりも低電位側に配置され且つ前記第1トランジスタに対し直列接続された第2トランジスタと、
     駆動制御信号に基づき、前記第1トランジスタに対して第1ゲート信号を供給することで前記第1トランジスタのオン又はオフを制御し、且つ、前記第2トランジスタに対して第2ゲート信号を供給することで前記第2トランジスタのオン又はオフを制御するよう構成されたスイッチング制御回路と、を備え、
     前記スイッチング制御回路は、前記駆動制御信号のレベルの第1レベルから第2レベルへの変化に応答して、第1遅延時間を経てから前記第1トランジスタをターンオンさせる一方、第2遅延時間を経てから前記第2トランジスタをターンオフさせ、
     前記スイッチング制御回路は、
     前記第1ゲート信号に基づき前記第1トランジスタがターンオンする第1タイミングを検出する第1検出回路と、
     前記第2ゲート信号に基づき前記第2トランジスタがターンオフする第2タイミングを検出する第2検出回路と、
     前記第1遅延時間が前記第2遅延時間よりも長い基準状態を起点に、前記第1タイミング及び前記第2タイミング間の差に基づいて前記第1遅延時間及び前記第2遅延時間の内の少なくとも一方を変化させることにより、前記第2トランジスタのターンオフ及び前記第1トランジスタのターンオン間のデッドタイムを減少させるよう構成された調整回路と、を有する
    、スイッチング装置。
  2.  前記第1トランジスタはPチャネル型の電界効果トランジスタ又はPチャネル型の絶縁ゲートバイポーラトランジスタであり、前記第2トランジスタはNチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、
     前記調整回路は、前記駆動制御信号の前記第2レベルへの変化から可変時間後にアクティブ信号を出力するよう構成された可変遅延回路を有し、
     前記スイッチング制御回路は、前記アクティブ信号に基づき前記第1トランジスタのゲート電位を低下させる前記第1ゲート信号を前記第1トランジスタに供給することで前記第1トランジスタをターンオンさせ、
     前記調整回路は、前記基準状態を起点に、前記第1タイミング及び前記第2タイミング間の差に基づいて前記可変遅延回路における前記可変時間を減少させることにより前記第1遅延時間を減少させ、これによって前記デッドタイムを減少させる
    、請求項1に記載のスイッチング装置。
  3.  前記第1トランジスタ及び前記第2トランジスタは、夫々に、Nチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、
     前記スイッチング制御回路は、前記駆動制御信号をグランド電位を基準とするレベルから前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位を基準とするレベルにレベルシフトすることで、シフト駆動制御信号を生成するよう構成されたレベルシフタを有し、前記駆動制御信号の前記第2レベルへの変化に基づく前記シフト駆動制御信号のレベル変化に応答して、前記第1トランジスタのゲート電位を上昇させる前記第1ゲート信号を前記第1トランジスタに供給することにより前記第1トランジスタをターンオンさせ、
     前記調整回路は、前記駆動制御信号の前記第2レベルへの変化から可変時間後にアクティブ信号を出力するよう構成された可変遅延回路を有し、
     前記スイッチング制御回路は、前記アクティブ信号に基づき前記第2トランジスタのゲート電位を低下させる前記第2ゲート信号を前記第2トランジスタに供給することにより前記第2トランジスタをターンオフさせ、
     前記調整回路は、前記基準状態を起点に、前記第1タイミング及び前記第2タイミング間の差に基づいて前記可変遅延回路における前記可変時間を増大させることにより前記第2遅延時間を増大させ、これによって前記デッドタイムを減少させる
    、請求項1に記載のスイッチング装置。
  4.  前記調整回路は第1調整回路であり、
     前記スイッチング制御回路は、前記駆動制御信号のレベルの前記第2レベルから前記第1レベルへの変化に応答して、第3遅延時間を経てから前記第1トランジスタをターンオフさせる一方、第4遅延時間を経てから前記第2トランジスタをターンオンさせ、
     前記スイッチング制御回路は、
     前記第1ゲート信号に基づき前記第1トランジスタがターンオフする第3タイミングを検出する第3検出回路と、
     前記第2ゲート信号に基づき前記第2トランジスタがターンオンする第4タイミングを検出する第4検出回路と、
     前記第4遅延時間が前記第3遅延時間よりも長い第2基準状態を起点に、前記第3タイミング及び前記第4タイミング間の差に基づいて前記第3遅延時間及び前記第4遅延時間の内の少なくとも一方を変化させることにより、前記第1トランジスタのターンオフ及び前記第2トランジスタのターンオン間の第2デッドタイムを減少させるよう構成された第2調整回路と、を更に有する
    、請求項1に記載のスイッチング装置。
  5.  前記第1トランジスタはPチャネル型の電界効果トランジスタ又はPチャネル型の絶縁ゲートバイポーラトランジスタであり、前記第2トランジスタはNチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、
     前記第2調整回路は、前記駆動制御信号の前記第1レベルへの変化から可変時間後にアクティブ信号を出力するよう構成された可変遅延回路を有し、
     前記スイッチング制御回路は、前記アクティブ信号に基づき前記第2トランジスタのゲート電位を上昇させる前記第2ゲート信号を前記第2トランジスタに供給することで前記第2トランジスタをターンオンさせ、
     前記第2調整回路は、前記第2基準状態を起点に、前記第3タイミング及び前記第4タイミング間の差に基づいて前記可変遅延回路における前記可変時間を減少させることにより前記第4遅延時間を減少させ、これによって前記第2デッドタイムを減少させる
    、請求項4に記載のスイッチング装置。
  6.  前記第1トランジスタ及び前記第2トランジスタは、夫々に、Nチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、
     前記スイッチング制御回路は、前記駆動制御信号をグランド電位を基準とするレベルから前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位を基準とするレベルにレベルシフトすることで、シフト駆動制御信号を生成するよう構成されたレベルシフタを有し、前記駆動制御信号の前記第1レベルへの変化に基づく前記シフト駆動制御信号のレベル変化に応答して、前記第1トランジスタのゲート電位を低下させる前記第1ゲート信号を前記第1トランジスタに供給することにより前記第1トランジスタをターンオフさせ、
     前記第2調整回路は、前記駆動制御信号の前記第1レベルへの変化から可変時間後にアクティブ信号を出力するよう構成された可変遅延回路を有し、
     前記スイッチング制御回路は、前記アクティブ信号に基づき前記第2トランジスタのゲート電位を上昇させる前記第2ゲート信号を前記第2トランジスタに供給することにより前記第2トランジスタをターンオンさせ、
     前記第2調整回路は、前記第2基準状態を起点に、前記第3タイミング及び前記第4タイミング間の差に基づいて前記可変遅延回路における前記可変時間を減少させることにより前記第4遅延時間を減少させ、これによって前記第2デッドタイムを減少させる
    、請求項4に記載のスイッチング装置。
  7.  前記調整回路は第1調整回路であり、
     前記スイッチング制御回路は、前記駆動制御信号のレベルの前記第2レベルから前記第1レベルへの変化に応答して、第3遅延時間を経てから前記第1トランジスタをターンオフさせる一方、第4遅延時間を経てから前記第2トランジスタをターンオンさせ、
     前記スイッチング制御回路は、
     前記第1ゲート信号に基づき前記第1トランジスタがターンオフする第3タイミングを検出する第3検出回路と、
     前記第2ゲート信号に基づき前記第2トランジスタがターンオンする第4タイミングを検出する第4検出回路と、
     前記第3タイミングを示す信号と、前記第4タイミングを示す信号と、前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位に応じた信号と、に基づき、前記第1トランジスタのターンオフ及び前記第2トランジスタのターンオン間の第2デッドタイムを調整するよう構成された第2調整回路と、を更に有する
    、請求項1に記載のスイッチング装置。
  8.  前記第1トランジスタはPチャネル型の電界効果トランジスタ又はPチャネル型の絶縁ゲートバイポーラトランジスタであり、前記第2トランジスタはNチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、
     前記第2調整回路は、前記駆動制御信号の前記第1レベルへの変化から可変時間後にアクティブ信号を出力するよう構成された可変遅延回路を有し、
     前記スイッチング制御回路は、前記アクティブ信号に基づき前記第2トランジスタのゲート電位を上昇させる前記第2ゲート信号を前記第2トランジスタに供給することで前記第2トランジスタをターンオンさせ、
     前記第2調整回路は、前記第3タイミングを示す信号と、前記第4タイミングを示す信号と、前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位に応じた信号と、に基づき、前記可変時間の調整を通じて前記第4遅延時間を調整し、これによって前記第2デッドタイムを調整する
    、請求項7に記載のスイッチング装置。
  9.  前記第1トランジスタ及び前記第2トランジスタは、夫々に、Nチャネル型の電界効果トランジスタ又はNチャネル型の絶縁ゲートバイポーラトランジスタであり、
     前記スイッチング制御回路は、前記駆動制御信号をグランド電位を基準とするレベルから前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位を基準とするレベルにレベルシフトすることで、シフト駆動制御信号を生成するよう構成されたレベルシフタを有し、前記駆動制御信号の前記第1レベルへの変化に基づく前記シフト駆動制御信号のレベル変化に応答して、前記第1トランジスタのゲート電位を低下させる前記第1ゲート信号を前記第1トランジスタに供給することにより前記第1トランジスタをターンオフさせ、
     前記第2調整回路は、前記駆動制御信号の前記第1レベルへの変化から可変時間後にアクティブ信号を出力するよう構成された可変遅延回路を有し、
     前記スイッチング制御回路は、前記アクティブ信号に基づき前記第2トランジスタのゲート電位を上昇させる前記第2ゲート信号を前記第2トランジスタに供給することにより前記第2トランジスタをターンオンさせ、
     前記第2調整回路は、前記第3タイミングを示す信号と、前記第4タイミングを示す信号と、前記第1トランジスタ及び前記第2トランジスタ間の接続ノードの電位に応じた信号と、に基づき、前記可変時間の調整を通じて前記第4遅延時間を調整し、これによって前記第2デッドタイムを調整する
    、請求項7に記載のスイッチング装置。
  10.  請求項1~9の何れかに記載のスイッチング装置と、
     前記第1トランジスタ及び前記第2トランジスタ間の接続ノードに生じる電圧を整流及び平滑化することで出力電圧を生成するよう構成された整流平滑回路と、を備え、
     前記スイッチング装置は、前記出力電圧に応じた帰還電圧に基づき前記駆動制御信号を生成するよう構成された帰還制御回路を有する
    、DC/DCコンバータ。
PCT/JP2023/002642 2022-03-23 2023-01-27 スイッチング装置及びdc/dcコンバータ WO2023181633A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-046475 2022-03-23
JP2022046475 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023181633A1 true WO2023181633A1 (ja) 2023-09-28

Family

ID=88101046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002642 WO2023181633A1 (ja) 2022-03-23 2023-01-27 スイッチング装置及びdc/dcコンバータ

Country Status (1)

Country Link
WO (1) WO2023181633A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204581A (ja) * 2001-01-09 2002-07-19 Fuji Electric Co Ltd 電力用半導体モジュール
JP2011055470A (ja) * 2009-07-13 2011-03-17 Rohm Co Ltd 出力回路
US20150357915A1 (en) * 2014-06-09 2015-12-10 Samsung Electronics Co., Ltd. Driving circuit, voltage converter having adaptive dead time control function and method of controlling dead time
US20160036328A1 (en) * 2014-08-04 2016-02-04 Gwang-yol NOH Voltage converter and a voltage conversion method of the voltage converter
JP2020127145A (ja) * 2019-02-05 2020-08-20 ローム株式会社 ブリッジ出力回路、電源装置及び半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204581A (ja) * 2001-01-09 2002-07-19 Fuji Electric Co Ltd 電力用半導体モジュール
JP2011055470A (ja) * 2009-07-13 2011-03-17 Rohm Co Ltd 出力回路
US20150357915A1 (en) * 2014-06-09 2015-12-10 Samsung Electronics Co., Ltd. Driving circuit, voltage converter having adaptive dead time control function and method of controlling dead time
US20160036328A1 (en) * 2014-08-04 2016-02-04 Gwang-yol NOH Voltage converter and a voltage conversion method of the voltage converter
JP2020127145A (ja) * 2019-02-05 2020-08-20 ローム株式会社 ブリッジ出力回路、電源装置及び半導体装置

Similar Documents

Publication Publication Date Title
US10651846B2 (en) Driver circuit and switching regulator
EP3537582B1 (en) Drive circuit for power element
JP4763606B2 (ja) 半導体スイッチの高周波制御
US8120338B2 (en) Dropper-type regulator
JP2019514330A (ja) Dc−dcコンバータ及び制御回路
US8299766B2 (en) Switching output circuit
US10958269B2 (en) Bridge output circuit, power device and semiconductor device
US6538418B2 (en) Driving signal supply circuit
US11543846B2 (en) Gate driver circuit for reducing deadtime inefficiencies
CN109547008B (zh) 驱动电路
JP3430878B2 (ja) Mosゲート形素子の駆動回路
JP7210928B2 (ja) 高耐圧集積回路
EP3557763B1 (en) A drive circuit for half-bridges, corresponding driver, device and method
WO2023181633A1 (ja) スイッチング装置及びdc/dcコンバータ
US10483977B1 (en) Level shifter
US11888397B2 (en) Driver circuit for switching converters
CN115833542A (zh) 开关变换器的驱动控制电路及驱动方法
JP2012109916A (ja) 負荷駆動回路
JP2020195213A (ja) スイッチングトランジスタの駆動回路
US10985752B2 (en) Hybrid drive circuit
US11012055B2 (en) Comparator system
TW201916559A (zh) 用於對直流-直流轉換器的死區時間進行控制的控制電路
US20230039198A1 (en) Systems and Methods for Regulation of Propagation Delay in DC Motor Drivers
JP3633540B2 (ja) 降圧コンバータおよび降圧コンバータのfet駆動方法
CN118041047A (en) Switching power supply with overshoot protection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774232

Country of ref document: EP

Kind code of ref document: A1