WO2023042393A1 - スイッチング制御装置、スイッチング電源装置および電力供給システム - Google Patents

スイッチング制御装置、スイッチング電源装置および電力供給システム Download PDF

Info

Publication number
WO2023042393A1
WO2023042393A1 PCT/JP2021/034389 JP2021034389W WO2023042393A1 WO 2023042393 A1 WO2023042393 A1 WO 2023042393A1 JP 2021034389 W JP2021034389 W JP 2021034389W WO 2023042393 A1 WO2023042393 A1 WO 2023042393A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
voltage
delay time
power supply
value
Prior art date
Application number
PCT/JP2021/034389
Other languages
English (en)
French (fr)
Inventor
正彦 広川
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2021/034389 priority Critical patent/WO2023042393A1/ja
Priority to JP2023548076A priority patent/JPWO2023042393A1/ja
Publication of WO2023042393A1 publication Critical patent/WO2023042393A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a switching power supply device that performs voltage conversion using switching elements, a switching control device applied to such a switching power supply device, and a power supply system provided with such a switching power supply device.
  • This type of DC-DC converter generally includes an inverter circuit including switching elements, a power conversion transformer (transformer), and a rectifying/smoothing circuit.
  • a switching control device is arranged between a transformer having a primary winding and a secondary winding, an input terminal pair to which an input voltage is input, and the primary winding. and a rectifying/smoothing circuit disposed between an output terminal pair from which an output voltage is output and a secondary winding, the control device being applied to a switching power supply device, the inverter comprising: a voltage detection unit for detecting a voltage across a first switching element of a plurality of switching elements included in at least one of a circuit and a rectifying/smoothing circuit at a time point of switching from an off state to an on state; The delay time from when the second switching element among the switching elements switches from the ON state to the OFF state to when the first switching element switches from the OFF state to the ON state is defined as the delay time in the first switching element.
  • a delay time setting unit that is set as needed according to the result of comparison between the value of the voltage across both terminals and the first threshold voltage and the second threshold voltage that are two different threshold voltages; and this delay time setting unit. and a drive circuit for controlling switching operations of a plurality of switching elements including the first and second switching elements using the delay times set in .
  • a switching power supply device includes the input terminal pair, the output terminal pair, the transformer, the inverter circuit, the rectifying/smoothing circuit, and the and a switching control device.
  • a power supply system includes the switching power supply device according to the embodiment of the present invention, and a power supply that supplies the input voltage to the input terminal pair. be.
  • switching control device switching power supply device, and power supply system according to one embodiment of the present invention.
  • FIG. 1 is a circuit diagram showing a schematic configuration example of a switching power supply device according to an embodiment of the present invention
  • FIG. 2 is a timing chart showing an operation example of the switching power supply device shown in FIG. 1
  • FIG. FIG. 4 is a diagram showing an example of conduction characteristics in a transistor
  • 2 is a timing chart showing an example of waveforms during resonance operation in the switching power supply device shown in FIG. 1
  • FIG. 7 is a flow chart showing an example of processing when setting dead time according to the embodiment
  • 3 is a circuit diagram showing a schematic configuration example of a switching power supply device according to Modification 1
  • FIG. FIG. 11 is a circuit diagram showing a schematic configuration example of a switching power supply device according to Modification 2
  • FIG. 11 is a circuit diagram showing a schematic configuration example of a switching power supply device according to Mod
  • FIG. 1 is a circuit diagram showing a schematic configuration example of a switching power supply (switching power supply 1) according to an embodiment of the present invention.
  • the switching power supply 1 functions as a DC-DC converter that converts a DC input voltage Vin supplied from a DC input power supply 10 (eg, a battery) into a DC output voltage Vout and supplies power to a load 9. .
  • the load 9 may be, for example, an electronic device, a battery, or the like.
  • the switching power supply device 1 is a so-called "(insulated half-bridge) LLC resonant type" DC-DC converter, as will be described below.
  • the mode of voltage conversion in the switching power supply device 1 may be either up-conversion (boosting) or down-conversion (stepping down).
  • the DC input voltage Vin corresponds to a specific example of "input voltage” in the present invention
  • the DC output voltage Vout corresponds to a specific example of "output voltage” in the present invention
  • the DC input power supply 10 corresponds to a specific example of the "power supply” in the present invention
  • a system including the DC input power supply 10 and the switching power supply device 1 is a specific example of the "power supply system” in the present invention. corresponds to the example.
  • the switching power supply device 1 includes two input terminals T1 and T2, two output terminals T3 and T4, an inverter circuit 2, a transformer 3, a rectifying/smoothing circuit 4, and a control circuit 7.
  • a DC input voltage Vin is input between the input terminals T1 and T2, and a DC output voltage Vout is output between the output terminals T3 and T4.
  • the primary low-voltage line L1L is connected to the ground GND.
  • the input terminals T1 and T2 correspond to a specific example of "input terminal pair” in the present invention
  • the output terminals T3 and T4 correspond to a specific example of "output terminal pair” in the present invention.
  • the control circuit 7 corresponds to a specific example of the "switching control device" of the present invention.
  • An input smoothing capacitor may be arranged between the primary side high voltage line L1H connected to the input terminal T1 and the primary side low voltage line L1L connected to the input terminal T2. Specifically, the first end (one end) of the input smoothing capacitor is connected to the primary side high voltage line L1H at a position between the inverter circuit 2 and the input terminals T1 and T2, which will be described later, and the input smoothing capacitor The second end (the other end) may be connected to the primary side low pressure line L1L.
  • Such an input smoothing capacitor is a capacitor for smoothing the DC input voltage Vin input from the input terminals T1 and T2.
  • the inverter circuit 2 is arranged between the input terminals T1, T2 and a primary winding 31 of the transformer 3, which will be described later.
  • the inverter circuit 2 has two switching elements S1 and S2, a resonant inductor Lr, and a resonant capacitor Cr, and is a so-called "half-bridge type" inverter circuit.
  • the resonance inductor Lr may be configured by a leakage inductance in the transformer 3, which will be described later, or may be provided separately from such a leakage inductance.
  • the switching elements S1 and S2 described above each correspond to a specific example of "a plurality of switching elements" in the present invention.
  • the switching element S2 corresponds to a specific example of the "first switching element” in the present invention
  • the switching element S1 corresponds to a specific example of the "second switching element” in the present invention.
  • MOS-FET Metal Oxide Semiconductor-Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • HEMT a GaN (gallium nitride) transistor.
  • the switching elements S1 and S2 are each composed of a transistor made up of a MOS-FET or HEMT.
  • MOS-FETs and HEMTs are used as the switching elements S1 and S2
  • the capacitors and diodes connected in parallel to the switching elements S1 and S2 are respectively replaced by the parasitic capacitances or parasitic capacitances of the MOS-FETs and HEMTs. It can be constructed from a diode.
  • a capacitor Cds1 made up of a parasitic capacitance and a diode D1 made up of a parasitic diode are connected in parallel across the switching element S1 (between the source and the drain).
  • a capacitor Cds2 made up of a parasitic capacitance and a diode D2 made up of a parasitic diode are connected in parallel across the switching element S2 (between the source and the drain).
  • two switching elements S1 and S2 are connected in series in this order between the input terminals T1 and T2 (between the primary high voltage line L1H and the primary low voltage line L1L).
  • the switching element S1 is arranged between the primary side high voltage line L1H and the connection point P1
  • the switching element S2 is arranged between the connection point P1 and the primary side low voltage line L1L.
  • the resonance inductor Lr and the resonance capacitor Cr in the inverter circuit 2 and the primary winding 31 in the transformer 3, which will be described later, are connected in series between the connection point P1 and the primary low-voltage line L1L. It is Specifically, in the example of FIG. 1, the first end (one end) of the resonance capacitor Cr is connected to the connection point P1, and the second end (the other end) of the resonance capacitor Cr is connected to the first end of the resonance inductor Lr. (one end). A second end (the other end) of the resonant inductor Lr is connected to one end of the primary winding 31, and the other end of the primary winding 31 is connected to the primary low-voltage line L1L. ing.
  • the switching elements S1 and S2 perform switching operations (on/off operations) in accordance with drive signals SG1 and SG2 supplied from the drive circuit 5 in the control circuit 7, which will be described later. , becomes: That is, the DC input voltage Vin applied between the input terminals T1 and T2 is converted into AC voltage and output to the transformer 3 (primary winding 31).
  • the transformer 3 has one primary winding 31 and two secondary windings 321 and 322 .
  • the first end (one end) of the primary winding 31 is connected to the second end (other end) of the resonance inductor Lr described above, and the second end of the primary winding 31 (the other end) is connected to the primary side low pressure line L1L described above.
  • a first end of the secondary winding 321 is connected to a cathode of the rectifier diode 41 described later via a connection line L21 described later, and a second end of the secondary winding 321 is connected. is connected to a center tap P6 in a rectifying/smoothing circuit 4 which will be described later.
  • a first end of the secondary winding 322 is connected to a cathode of a rectifier diode 42 described later via a connection line L22 described later, and a second end of the secondary winding 322 is connected. is connected to the center tap P6. That is, the second ends of the secondary windings 321 and 322 are commonly connected to the center tap P6.
  • the transformer 3 converts the voltage generated by the inverter circuit 2 (rectangular pulse wave voltage input to the primary winding 31 of the transformer 3), and the secondary windings 321 and 322 AC voltage is output from the end.
  • the rectifying/smoothing circuit 4 has two rectifying diodes 41 and 42 and one output smoothing capacitor Cout. Specifically, the rectifying/smoothing circuit 4 includes a rectifying circuit having rectifying diodes 41 and 42 and a smoothing circuit having an output smoothing capacitor Cout.
  • the above rectifier circuit is a so-called "center tap type" rectifier circuit. That is, the anodes of the rectifier diodes 41 and 42 are respectively connected to the ground line LG, and the cathode of the rectifier diode 41 is connected to the aforementioned first end of the secondary winding 321 via the connection line L21 to The cathode of diode 42 is connected to the aforementioned first end of secondary winding 322 via connection line L22. Further, as described above, the second ends of the secondary windings 321 and 322 are commonly connected to the center tap P6, and the center tap P6 is connected via the output line LO. It is connected to the output terminal T3.
  • the ground line LG described above is connected to the output terminal T4 described above.
  • an output smoothing capacitor Cout is connected between the output line LO and the ground line LG (between the output terminals T3 and T4). That is, the first end of the output smoothing capacitor Cout is connected to the output line LO, and the second end of the output smoothing capacitor Cout is connected to the ground line LG.
  • the rectifying circuit including the rectifying diodes 41 and 42 rectifies and outputs the AC voltage output from the transformer 3 .
  • a smoothing circuit including an output smoothing capacitor Cout smoothes the voltage rectified by the rectifying circuit to generate a DC output voltage Vout.
  • the DC output voltage Vout generated in this way causes the DC output current Iout (load current) to flow to the load 9, and power is supplied to the load 9 from the output terminals T3 and T4. It's becoming
  • the DC output current Iout (load current) described above corresponds to a specific example of the "output current" in the present invention.
  • the control circuit 7 is a circuit that controls the switching power supply device 1 .
  • the control circuit 7 has a voltage detection section 61, a delay time setting section 62 and a drive circuit 5, as shown in FIG.
  • FIG. 2 is a timing chart showing an operation example (waveform examples of various voltages and currents) of the switching power supply device 1 .
  • FIG. 2A shows the drive signal SG1 (the voltage Vgs1 between the gate and source of the switching element S1), and FIG. Each waveform example is shown for the voltage Vgs2) between the sources.
  • FIG. 2C shows a voltage Vds2 between the drain and source (across both ends) of the switching element S2 (shown in FIG. 1) and a current Ids2 flowing between the drain and source of the switching element S2 (shown in FIG. 1). ) and waveform examples are shown.
  • the horizontal axis indicates time t.
  • the voltage detection unit 61 the delay time setting unit 62, and the driving circuit 5 will be described in detail below with reference to FIGS. 1 and 2.
  • FIG. 1 The voltage detection unit 61, the delay time setting unit 62, and the driving circuit 5 will be described in detail below with reference to FIGS. 1 and 2.
  • FIG. 1 The voltage detection unit 61, the delay time setting unit 62, and the driving circuit 5 will be described in detail below with reference to FIGS. 1 and 2.
  • the delay time setting unit 62 sets the value of the voltage Vds2 output from the voltage detection unit 61 (the voltage Vds2 at the timing tds described above) and two different threshold voltages Vth1, (- Vth2) (see FIG. 2(C)). Further, the delay time setting unit 62 sets the length of the dead time Td as a delay time when switching driving is performed in the drive circuit 5, which will be described later. Vth2) is set at any time according to the result of comparison (see FIG. 1). The dead time Td set in this manner is, as shown in FIG.
  • the dead time Td described above is, for example, as shown in FIG. is switched from the off state to the on state (timing tds).
  • this dead time Td is a period during which both of these two switching elements S1 and S2 are set to the OFF state.
  • this dead time Td corresponds to a specific example of "delay time" in the present invention.
  • the threshold voltage (-Vth2) described above is a value smaller than the threshold voltage Vth1 in the example shown in FIG.
  • the threshold voltage Vth1 is a predetermined positive voltage (eg, about 0.2 V)
  • the threshold voltage (-Vth2) is a predetermined negative voltage (eg, - about 0.2 V). It should be noted that such a threshold voltage Vth1 corresponds to a specific example of the "first threshold voltage” in the present invention. Also, the threshold voltage (-Vth2) corresponds to a specific example of the "second threshold voltage” in the present invention.
  • the delay time setting unit 62 also causes the end timing of the dead time Td (timing tds shown in FIG. 2) to converge (substantially coincide with) the zero crossing point Pzc of the voltage Vds2 described above, although the details will be described later. ), the dead time Td is set as needed. The details of the dead time Td setting method will be described later (FIGS. 4 to 7).
  • the drive circuit 5 is a circuit that performs switching drive for controlling the operations of the switching elements S1 and S2 in the inverter circuit 2, respectively. Specifically, the drive circuit 5 controls switching operations (ON/OFF operations) of the switching elements S1 and S2 by supplying the driving signals SG1 and SG2 to the switching elements S1 and S2, respectively. It is designed to
  • the drive circuit 5 performs switching frequency control when controlling switching operations of the switching elements S1 and S2 (performing switching driving). That is, PFM (Pulse Frequency Modulation) control is performed in the drive signals SG1 and SG2.
  • PFM Pulse Frequency Modulation
  • the drive circuit 5 performs the above-described switching drive so that the switching elements S1 and S2 perform switching operations at fixed duty ratios and the switching frequency fsw varies.
  • Ton1 and Ton2 the on-periods of the switching elements S1 and S2 are represented by Ton1 and Ton2, respectively.
  • the duty ratio of each of the switching elements S1 and S2 is expressed by (Ton1/ Tsw), (Ton2/Tsw). Both of these (Ton1/Tsw) and (Ton2/Tsw) are less than 50%. , a dead time Td described below is provided.
  • the drive circuit 5 also uses the dead time Td output from the delay time setting unit 62 (the dead time Td set at any time by the delay time setting unit 62) when performing the switching drive described above.
  • the switching operations in the elements S1 and S2 are controlled respectively. Specifically, for example, as shown in FIG. 2, the driving circuit 5 performs the next switching operation at the dead time Td (for example, the dead time Td' shown in FIG. 2) set as needed. A switching operation is performed with a period Tsw.
  • the AC voltage (transformed AC voltage described above) output from the transformer 3 is rectified by the rectifying diodes 41 and 42 in the rectifying circuit, and then is rectified by the output smoothing capacitor Cout in the smoothing circuit. smoothed.
  • the DC output voltage Vout is output from the output terminals T3 and T4. This DC output voltage Vout causes a DC output current Iout to flow to the load 9 and power to be supplied to the load 9 .
  • a reverse voltage drop of, for example, 2 V or more occurs between the drain and source of the transistor as the switching element.
  • Such a reverse voltage and the drain current flowing through the transistor cause conduction loss in the switching element.
  • the reverse voltage drop described above increases, as shown in FIG.
  • FIG. 3 shows an example of conduction characteristics in a general transistor (an example of the correspondence relationship between the drain-source voltage Vds and the drain-source current Ids in the case of the GaN transistor described above). is.
  • GaN transistor does not incorporate a body diode in its device structure, it has a pseudo body diode during circuit operation of the GaN transistor.
  • the VF becomes even larger as shown in FIG. 3, for example. Since this VF is large, if the period during which the pseudo body diode is conductive is long and the current Ids is large, a larger conduction loss will occur.
  • the conduction of the body diode or pseudo body diode in the switching element is immediately before or after the switching element turns on when performing synchronous rectification or when performing zero voltage switching (ZVS). Occur. Also, just before the switching element is turned on, it is ideal that the switching element is turned on at the same time as the voltage Vds becomes a negative voltage. If the switching element is turned on too early, the charge accumulated in the output capacitance Coss of the switching element is short-circuited by the turn-on, resulting in power loss. flows. Conversely, if it turns on too late, the conduction period of the body diode or pseudo-body diode will be lengthened.
  • the voltage Vds drops rapidly just before the switching element turns on, current may flow through the gate of the switching element through the feedback capacitance, causing the voltage Vgs to become a negative voltage.
  • the negative voltage of the voltage Vgs increases VF, and the power loss due to conduction of the pseudo-body diode increases.
  • the appropriate turn-on or turn-off timing differs depending on the operating conditions of the switching power supply (input voltage, load, etc.) and variations in constants such as parasitic capacitance and inductance. Therefore, the turn-on timing is set later than ideal and the turn-off timing is set earlier than ideal to avoid fatal increase in power loss, surge and noise caused by turning on too early or turning off too late. It can be said that it is desirable to be
  • the length of the dead time Td during switching drive is determined by the value of the voltage Vds2 described above and two types of threshold voltages Vth1 and (-Vth2). is set by the control circuit 7 at any time according to the result of comparison between .
  • FIG. 4 shows a setting example of the dead time Td according to this embodiment.
  • FIG. 5 is a timing chart showing examples of waveforms during resonance operation in the switching power supply device 1 .
  • FIG. 6 is a flow chart showing an example of processing when setting the dead time Td according to the present embodiment.
  • FIG. 7 shows a setting example of the maximum dead time Tdmax and the minimum dead time Tdmin according to this embodiment.
  • the maximum dead time Tdmax is the maximum value that can be set as the dead time Td, and corresponds to a specific example of the "maximum delay time” in the present invention.
  • the minimum dead time Tdmin is the minimum value that can be set as the dead time Td, and corresponds to a specific example of the "minimum delay time” in the present invention.
  • the delay time setting unit 62 in the control circuit 7 compares the value of the voltage Vds2 described above with the two threshold voltages Vth1 and (-Vth2). Depending on the result, the dead time Td is shortened, extended or maintained.
  • the delay time setting unit 62 sets the initial value T1 of the dead time Td, which corresponds to the ideal value of the dead time Td described above (for example, as shown in FIG. equivalent to the ideal fall time).
  • This initial value T1 is defined, for example, using the following equations (1) to (3) with reference to the waveform example during the resonance operation shown in FIG.
  • equations (1) to (3) along with the DC input voltage Vin, the DC output voltage Vout, the capacitance value of the capacitor Cds2 connected in parallel to the switching element S2, the switching period Tsw, and the turns ratio n of the transformer 3, the primary side of the transformer 3
  • a transformer exciting current Im (see FIG. 5) flowing through the winding 31 and a mutual inductance Lm in the transformer 3 are used.
  • FIG. 5 also shows the variation ⁇ Im of the transformer exciting current Im and the resonant inductor current ILr flowing through the resonant inductor Lr.
  • the delay time setting unit 62 Based on the initial value T1 of the dead time Td thus set, the delay time setting unit 62 compares the value of the voltage Vds2 and the two threshold voltages Vth1 and (-Vth2). Depending on the results, the dead time Td is shortened, extended, or maintained as needed.
  • the delay time setting unit 62 sets the dead time Td be shortened.
  • the delay time setting unit 62 extends the dead time Td when the value of the voltage Vds2 exceeds the threshold voltage Vth1 (Vds2>Vth1). Further, the delay time setting unit 62 maintains the dead time Td when the value of the voltage Vds2 is equal to or higher than the threshold voltage (-Vth2) and equal to or lower than the threshold voltage Vth1 (-Vth2 ⁇ Vds2 ⁇ Vth1).
  • the dead time Td when the value of the dead time Td is greater than the maximum dead time Tdmax (Td>Tdmax), the dead time Td is set to the maximum dead time Tdmax as shown in FIG. 4, for example.
  • the dead time Td is smaller than the minimum dead time Tdmin (Td ⁇ Tdmin), the dead time Td is set to the minimum dead time Tdmin as shown in FIG. 4, for example.
  • the delay time setting unit 62 causes the end timing of the dead time Td (the timing tds shown in FIG. 2) to converge at the zero crossing point Pzc of the voltage Vds2 across the switching element S2, as described above. , the dead time Td is set at any time.
  • the delay time setting unit 62 determines whether or not the value of the voltage Vds2 is less than the threshold voltage Vth1 (Vds2 ⁇ Vth1) (step S12).
  • step S12 determines whether or not the value of the voltage Vds2 is less than the threshold voltage Vth1 (Vds2 ⁇ Vth1) (step S12).
  • step S12 determines whether or not the value of the voltage Vds2 is less than the threshold voltage Vth1 (Vds2 ⁇ Vth1) (step S12).
  • step S12 N
  • the delay time setting unit 62 determines whether or not the current dead time Td exceeds the maximum dead time Tdmax (Td>Tdmax) (step S13).
  • step S13 Y
  • step S16 the delay time setting unit 62 determines whether or not the value of the voltage Vds2 exceeds the threshold voltage (-Vth2) (Vds2 ⁇ -Vth2).
  • the threshold voltage -Vth2
  • step S16: N the threshold voltage
  • the delay time setting unit 62 determines whether or not the value of the current dead time Td is less than the minimum dead time Tdmin (Td ⁇ Tdmin) (step S17).
  • step S17 Y
  • the values of the maximum dead time Tdmax and the minimum dead time Tdmin correspond to the operating state of the switching power supply 1 (for example, the DC output current Iout, the DC input voltage Vin, DC output voltage Vout, etc.).
  • the length of the dead time Td during switching drive is determined according to the result of comparison between the value of the voltage Vds2 and the two types of threshold voltages Vth1 and (-Vth2). are set as needed by the control circuit 7, so that the following is obtained. That is, it is possible to shorten the period in which the above-described reverse voltage is generated in the switching element S2 while ensuring the above-described ZVS in the switching element S2. Specifically, the dead time Td described above can be shortened, and the conduction loss in the switching element S2 (in the body diode described above) can be reduced. As a result, in the present embodiment, power loss in switching power supply 1 can be suppressed.
  • the reverse voltage drop is large as described above. That is, in this case, it can be said that the effect of suppressing the power loss in the switching power supply device 1 is particularly large due to the reduction in the conduction loss in the switching elements S1 and S2.
  • the dead time Td is adjusted so that the end timing of the dead time Td described above (timing tds shown in FIG. 2) converges at the zero crossing point Pzc of the voltage Vds2 across the switching element S2. is set, so it looks like this: That is, as a result of being able to achieve ZVS in the switching element S2 described above more reliably, the power loss in the switching power supply device 1 can be further suppressed.
  • the values of the maximum dead time Tdmax and the minimum dead time Tdmin are changed according to the operating state of the switching power supply 1, so the following is obtained. That is, since the range of the dead time Td can be appropriately adjusted according to the operating state of the switching power supply 1, power loss in the switching power supply 1 can be further suppressed.
  • the value of the minimum dead time Tdmin is changed so as to be relatively large. From the following: That is, since the value of the minimum dead time Tdmin can be appropriately adjusted in response to a sudden change in the operating state of the switching power supply 1, power loss in the switching power supply 1 can be further suppressed.
  • the rectifier circuit in the rectifier/smoothing circuit 4 is a so-called "center tap type" rectifier circuit. Become. That is, the number of rectifying elements is reduced to two (rectifying diodes 41 and 42), and as a result, it is possible to reduce the size, loss, and cost of the rectifying circuit.
  • FIG. 8 is a circuit diagram showing a schematic configuration example of a switching power supply (switching power supply 1A) according to Modification 1. As shown in FIG.
  • a system including the DC input power supply 10 and the switching power supply device 1A corresponds to a specific example of the "power supply system" of the present invention.
  • the switching power supply 1A of Modification 1 is provided with a transformer 3A and a rectifying/smoothing circuit 4A instead of the transformer 3 and the rectifying/smoothing circuit 4 in the switching power supply 1 (see FIG. 1) of the embodiment. They correspond, and other configurations are the same.
  • the transformer 3A has one primary winding 31 and one secondary winding 32. That is, the transformer 3 is provided with two secondary windings 321 and 322, whereas the transformer 3A is provided with only one secondary winding 32.
  • FIG. The secondary winding 32 has a first end connected to a connection point P7 in the rectification/smoothing circuit 4A, which will be described later, and a second end connected to a connection point P8 in the rectification/smoothing circuit 4A.
  • the transformer 3A also converts the voltage (rectangular pulse wave voltage) generated by the inverter circuit 2 and outputs an AC voltage from the end of the secondary winding 32.
  • the degree of voltage conversion of the DC output voltage Vout with respect to the DC input voltage Vin is determined by the turns ratio n between the primary winding 31 and the secondary winding 32 and the switching frequency fsw described above. determined.
  • the rectifying/smoothing circuit 4A has four rectifying diodes 41 to 44 and one output smoothing capacitor Cout. Specifically, the rectifying/smoothing circuit 4A includes a rectifying circuit having rectifying diodes 41 to 44 and a smoothing circuit having an output smoothing capacitor Cout. In other words, the rectifying/smoothing circuit 4A is obtained by changing the configuration of the rectifying circuit in the rectifying/smoothing circuit 4. FIG.
  • the rectifier circuit of Modification 1 is a so-called “bridge type” rectifier circuit, unlike the rectifier circuit of the embodiment (so-called “center tap type” rectifier circuit). That is, the cathodes of rectifier diodes 41 and 43 are connected to output line LO, respectively, and the anode of rectifier diode 41 is connected to the cathode of rectifier diode 42 and the first end of secondary winding 32 at connection point P7. It is connected.
  • the anodes of the rectifier diodes 42 and 44 are connected to the ground line LG, respectively, and the cathode of the rectifier diode 44 is connected to the anode of the rectifier diode 43 and the second end of the secondary winding 32 at the connection point P8. It is connected.
  • the rectifying circuit 4A having such a configuration, as in the rectifying/smoothing circuit 4, the rectifying circuit including the rectifying diodes 41 to 44 rectifies and outputs the AC voltage output from the transformer 3A. It's becoming
  • the rectifying circuit in the rectifying/smoothing circuit 4A is a bridge-type rectifying circuit. ) becomes one (secondary winding 32), which decreases. As a result, it is possible to reduce the size and loss of the transformer 3A.
  • FIG. 9 is a circuit diagram showing a schematic configuration example of a switching power supply device 1B according to Modification 2. As shown in FIG.
  • a system including the DC input power supply 10 and the switching power supply device 1B corresponds to a specific example of the "power supply system" of the present invention.
  • the switching power supply device 1B of Modification 2 corresponds to the switching power supply device 1 of the embodiment provided with a rectifying/smoothing circuit 4B and a control circuit 7B instead of the rectifying/smoothing circuit 4 and the control circuit 7, respectively. , and other configurations are the same.
  • synchronous rectification circuit rectification/smoothing circuit 4B
  • Modification 2 the MOS transistors M9 and M10 themselves are controlled to be turned on (perform synchronous rectification) in synchronization with the period during which the parasitic diodes of the MOS transistors M9 and M10 are conducting.
  • a drive circuit 5 in a control circuit 7B which will be described later, uses drive signals SG9 and SG10 to control the on/off operations of the MOS transistors M9 and M10. (See Figure 9).
  • MOS transistors M9 and M10 each correspond to a specific example of a "switching element that performs synchronous rectification" in the present invention.
  • control circuit 7B of the modified example 2 basically has the voltage detection unit 61, the delay time setting unit 62 and the drive circuit 5, similarly to the control circuit 7 of the embodiment and the modified example 1. are doing. However, unlike the control circuit 7, the control circuit 7B is configured as follows.
  • both of the two switching elements S2 and S1 (corresponding to the "first and second switching elements” in the present invention) for which the dead time Td is to be set are included in the inverter circuit 2. It was an arranged switching element.
  • the control circuit 7B at least one of the two switching elements (corresponding to "first and second switching elements” in the present invention) for which the dead time Td is to be set is the rectifying/smoothing circuit described above. 4B is a switching element (at least one of the MOS transistors M9 and M10 described above) that performs synchronous rectification.
  • the two switching elements for which the dead time Td is to be set are as shown in (a) or (b) below.
  • (a) One of the switching elements S1 and S2 and one of the MOS transistors M9 and M10 are the two switching elements for which the dead time Td is set.
  • (b) The MOS transistors M9 and M10. are two switching elements for which the dead time Td is set.
  • the control circuit 7B based on the voltage across one of these two switching elements (corresponding to the "first switching element" in the present invention), is controlled according to the embodiment and modification 1.
  • the dead time Td is set. Specifically, the control circuit 7B controls the dead time during switching drive according to the result of comparison between the voltage value between both ends and the two types of threshold voltages Vth1 and (-Vth2) described above. The length of Td is set at any time. Then, the control circuit 7B uses the dead time Td thus set at any time to perform switching operations in a plurality of switching elements (switching elements S1 and S2 and MOS transistors M9 and M10) including the two switching elements described above. , respectively.
  • control circuit 7B corresponds to a specific example of the "switching control device" of the present invention.
  • switching elements S1 and S2 and the MOS transistors M9 and M10 described above each correspond to a specific example of "a plurality of switching elements” in the present invention.
  • any two of these switching elements S1, S2 and MOS transistors M9, M10 are the “first switching element” and the "second switching element” in the present invention. corresponds to a specific example of
  • FIG. 10 is a circuit diagram showing a schematic configuration example of a switching power supply device 1C according to Modification 3. As shown in FIG.
  • a system including the DC input power supply 10 and the switching power supply device 1C corresponds to a specific example of the "power supply system" of the present invention.
  • the switching power supply 1C of Modification 3 corresponds to the switching power supply 1A of Modification 1 in which a rectifying/smoothing circuit 4C and a control circuit 7C are provided instead of the rectifying/smoothing circuit 4A and the control circuit 7, respectively. , and other configurations are the same.
  • MOS transistors M11 to M14 each correspond to a specific example of a "switching element that performs synchronous rectification" in the present invention.
  • control circuit 7C of Modification 3 basically includes the voltage detection section 61, the delay time setting section 62, and the drive circuit 5, similarly to the control circuit 7 of the embodiment and Modification 1. are doing. However, this control circuit 7C is different from the control circuit 7, and like the control circuit 7B described in the modified example 2, it is configured as follows.
  • At least one of the two switching elements (corresponding to the "first and second switching elements" in the present invention) for which the dead time Td is set is located in the rectifying/smoothing circuit 4C.
  • a switching element (at least one of the MOS transistors M11 to M14 described above) that performs synchronous rectification is arranged in the .
  • the two switching elements for which the dead time Td is to be set are as indicated by (c) or (d) below.
  • (c) One of the switching elements S1 and S2 and one of the MOS transistors M11 to M14 are the two switching elements for which the dead time Td is set.
  • MOS transistors M11 to M14. are two switching elements for which the dead time Td is to be set.
  • the control circuit 7C based on the voltage across one of these two switching elements (corresponding to the "first switching element" in the present invention), is controlled according to the first embodiment and the first modification. , 2, the dead time Td is set. Specifically, the control circuit 7C controls the dead time during switching drive according to the result of comparison between the voltage value between both ends and the two types of threshold voltages Vth1 and (-Vth2) described above. The length of Td is set at any time. Then, the control circuit 7C uses the dead time Td set at any time in this manner to perform the switching operations of the plurality of switching elements (the switching elements S1 and S2 and the MOS transistors M11 to M14) including the two switching elements described above. , respectively.
  • control circuit 7C corresponds to a specific example of the "switching control device" of the present invention.
  • switching elements S1 and S2 and the MOS transistors M11 to M14 described above each correspond to a specific example of "a plurality of switching elements” in the present invention.
  • any two of these switching elements S1, S2 and MOS transistors M11 to M14 are the “first switching element” and the "second switching element” in the present invention. corresponds to a specific example of
  • a plurality of rectifying elements (rectifying diodes) in the rectifying circuit are each composed of a switching element, and the rectifying circuit is a synchronous rectifying circuit. It looks like this: That is, such a synchronous rectification circuit reduces the conduction loss during rectification, so that it is possible to reduce the size and loss of the rectification circuit.
  • switching elements include, for example, the above-described HEMTs, IGBTs with diodes added in parallel, bipolar transistors, and the like.
  • the configuration of the inverter circuit was specifically described, but it is not limited to the examples of the above embodiments and the like. good too.
  • the arrangement relationship between the resonant inductor Lr, the resonant capacitor Cr, and the primary winding 31, which are connected in series with each other is not limited to the arrangement relationship described in the embodiment and the like.
  • the two arrangement positions may be in random order with respect to each other.
  • an example of a so-called "half-bridge type" inverter circuit has been described, but the invention is not limited to this example, and a so-called "full-bridge type” inverter circuit, for example, may be used.
  • transformer primary winding and secondary winding
  • Primary winding and secondary winding may have other configurations.
  • rectifying and smoothing circuit (rectifying circuit and smoothing circuit) was specifically described, but it is not limited to the examples of the above-described embodiments and the like.
  • a rectifying circuit and a smoothing circuit may have other configurations.
  • a DC-DC converter has been described as an example of a switching power supply device according to the present invention, but the present invention is applicable to other types of switching power supply devices such as an AC-DC converter. It can also be applied to

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本発明の一実施の形態に係るスイッチング制御装置は、インバータ回路および整流平滑回路の少なくとも一方に含まれる複数のスイッチング素子のうちの、第1のスイッチング素子におけるオフ状態からオン状態への切り替わり時点での両端間の電圧を検出する電圧検出部と、複数のスイッチング素子のうちの第2のスイッチング素子がオン状態からオフ状態へと切り替わった時点から、第1のスイッチング素子がオフ状態からオン状態へと切り替わる時点までの遅れ時間を、第1のスイッチング素子における両端間の電圧の値と、互いに異なる2種類の閾値電圧である第1閾値電圧および第2閾値電圧との間の比較結果に応じて、随時設定する遅れ時間設定部と、この遅れ時間設定部において設定した遅れ時間を用いて、第1および第2のスイッチング素子を含む複数のスイッチング素子におけるスイッチング動作を、それぞれ制御する駆動回路と、を備えている。

Description

スイッチング制御装置、スイッチング電源装置および電力供給システム
 本発明は、スイッチング素子を用いて電圧変換を行うスイッチング電源装置、そのようなスイッチング電源装置に適用されるスイッチング制御装置、および、そのようなスイッチング電源装置を備えた電力供給システムに関する。
 スイッチング電源装置の一例として種々のDC-DCコンバータが提案され、実用に供されている(例えば、特許文献1参照)。この種のDC-DCコンバータは一般に、スイッチング素子を含むインバータ回路と、電力変換トランス(変圧器)と、整流平滑回路とを備えている。
特開2015-204716号公報
 ところで、このようなDC-DCコンバータ等のスイッチング電源装置では一般に、電力損失を抑えることが求められている。電力損失を抑えることが可能なスイッチング制御装置、スイッチング電源装置および電力供給システムを提供することが望ましい。
 本発明の一実施の形態に係るスイッチング制御装置は、1次側巻線および2次側巻線を有するトランスと、入力電圧が入力される入力端子対と1次側巻線との間に配置されたインバータ回路と、出力電圧が出力される出力端子対と2次側巻線との間に配置された整流平滑回路と、を備えたスイッチング電源装置に適用される制御装置であって、インバータ回路および整流平滑回路の少なくとも一方に含まれる複数のスイッチング素子のうちの、第1のスイッチング素子におけるオフ状態からオン状態への切り替わり時点での両端間の電圧を検出する電圧検出部と、複数のスイッチング素子のうちの第2のスイッチング素子がオン状態からオフ状態へと切り替わった時点から、第1のスイッチング素子がオフ状態からオン状態へと切り替わる時点までの遅れ時間を、第1のスイッチング素子における両端間の電圧の値と、互いに異なる2種類の閾値電圧である第1閾値電圧および第2閾値電圧との間の比較結果に応じて、随時設定する遅れ時間設定部と、この遅れ時間設定部において設定した遅れ時間を用いて、第1および第2のスイッチング素子を含む複数のスイッチング素子におけるスイッチング動作を、それぞれ制御する駆動回路と、を備えたものである。
 本発明の一実施の形態に係るスイッチング電源装置は、上記入力端子対と、上記出力端子対と、上記トランスと、上記インバータ回路と、上記整流平滑回路と、上記本発明の一実施の形態に係るスイッチング制御装置と、を備えたものである。
 本発明の一実施の形態に係る電力供給システムは、上記本発明の一実施の形態に係るスイッチング電源装置と、上記入力端子対に対して上記入力電圧を供給する電源と、を備えたものである。
 本発明の一実施の形態に係るスイッチング制御装置、スイッチング電源装置および電力供給システムによれば、電力損失を抑えることが可能となる。
本発明の一実施の形態に係るスイッチング電源装置の概略構成例を表す回路図である。 図1に示したスイッチング電源装置の動作例を表すタイミング図である。 トランジスタにおける導通特性例を表す図である。 実施の形態に係るデッドタイムの設定例を表す図である。 図1に示したスイッチング電源装置における共振動作の際の波形例を表すタイミング図である。 実施の形態に係るデッドタイムの設定の際の処理例を表す流れ図である。 実施の形態に係る最大デッドタイムおよび最小デッドタイムの設定例を表す図である。 変形例1に係るスイッチング電源装置の概略構成例を表す回路図である。 変形例2に係るスイッチング電源装置の概略構成例を表す回路図である。 変形例3に係るスイッチング電源装置の概略構成例を表す回路図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(センタタップ型の整流回路を用いた場合の例)
2.変形例
   変形例1(ブリッジ型の整流回路を用いた場合の例)
   変形例2,3(同期整流回路とした場合の例)
3.その他の変形例
<1.実施の形態>
[構成]
 図1は、本発明の一実施の形態に係るスイッチング電源装置(スイッチング電源装置1)の概略構成例を、回路図で表したものである。このスイッチング電源装置1は、直流入力電源10(例えばバッテリ)から供給される直流入力電圧Vinを直流出力電圧Voutに電圧変換し、負荷9に電力を供給するDC-DCコンバータとして機能するものである。なお、この負荷9としては、例えば電子機器やバッテリ等が挙げられる。また、このスイッチング電源装置1は、以下説明するように、いわゆる「(絶縁型ハーフブリッジ)LLC共振型」のDC-DCコンバータとなっている。なお、スイッチング電源装置1における電圧変換の態様としては、アップコンバート(昇圧)およびダウンコンバート(降圧)のいずれであってもよい。
 ここで、直流入力電圧Vinは、本発明における「入力電圧」の一具体例に対応し、直流出力電圧Voutは、本発明における「出力電圧」の一具体例に対応している。また、直流入力電源10は、本発明における「電源」の一具体例に対応し、この直流入力電源10とスイッチング電源装置1とを備えたシステムが、本発明における「電力供給システム」の一具体例に対応している。
 スイッチング電源装置1は、2つの入力端子T1,T2と、2つの出力端子T3,T4と、インバータ回路2と、トランス3と、整流平滑回路4と、制御回路7とを備えている。入力端子T1,T2間には直流入力電圧Vinが入力され、出力端子T3,T4の間からは直流出力電圧Voutが出力されるようになっている。なお、図1に示した例では、1次側低圧ラインL1LがグランドGNDに接続されている。
 ここで、入力端子T1,T2は、本発明における「入力端子対」の一具体例に対応し、出力端子T3,T4は、本発明における「出力端子対」の一具体例に対応している。また、制御回路7は、本発明における「スイッチング制御装置」の一具体例に対応している。
 なお、入力端子T1に接続された1次側高圧ラインL1Hと、入力端子T2に接続された1次側低圧ラインL1Lとの間に、例えば、入力平滑コンデンサが配置されているようにしてもよい。具体的には、後述するインバータ回路2と入力端子T1,T2との間の位置において、入力平滑コンデンサの第1端(一端)が1次側高圧ラインL1Hに接続されると共に、入力平滑コンデンサの第2端(他端)が1次側低圧ラインL1Lに接続されているようにしてもよい。このような入力平滑コンデンサは、入力端子T1,T2から入力された直流入力電圧Vinを平滑化するためのコンデンサである。
(A.インバータ回路2)
 インバータ回路2は、入力端子T1,T2と、後述するトランス3における1次側巻線31との間に、配置されている。このインバータ回路2は、2つのスイッチング素子S1,S2と、共振インダクタLrと、共振コンデンサCrとを有しており、いわゆる「ハーフブリッジ型」のインバータ回路となっている。なお、共振インダクタLrは、後述するトランス3における漏れインダクタンスにより構成されていてもよいし、あるいは、そのような漏れインダクタンスとは別個に設けられているようにしてもよい。
 ここで、上記したスイッチング素子S1、S2はそれぞれ、本発明における「複数のスイッチング素子」の一具体例に対応している。また、スイッチング素子S2は、本発明における「第1のスイッチング素子」の一具体例に対応し、スイッチング素子S1は、本発明における「第2のスイッチング素子」の一具体例に対応している。
 なお、スイッチング素子S1,S2としては、例えば電界効果型トランジスタ(MOS-FET;Metal Oxide Semiconductor-Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)、HEMT((High Electron Mobility Transistor)=HFET(Heterostructure Field-Effect Transistor))などの、各種のスイッチ素子が用いられる。また、HEMTの一例としては、GaN(窒化ガリウム)トランジスタが挙げられる。
 図1に示した例では、スイッチング素子S1,S2がそれぞれ、MOS―FETまたはHEMTからなるトランジスタにより構成されている。このようにして、スイッチング素子S1,S2としてMOS―FETやHEMTを用いた場合には、各スイッチング素子S1,S2に並列接続されるコンデンサおよびダイオードをそれぞれ、MOS―FETやHEMTの寄生容量または寄生ダイオードから構成することが可能である。具体的には、図1に示した例では、スイッチング素子S1の両端間(ソース・ドレイン間)に、寄生容量からなるコンデンサCds1と、寄生ダイオードからなるダイオードD1とがそれぞれ、並列接続されている。同様に、図1に示した例では、スイッチング素子S2の両端間(ソース・ドレイン間)に、寄生容量からなるコンデンサCds2と、寄生ダイオードからなるダイオードD2とがそれぞれ、並列接続されている。
 このインバータ回路2では、入力端子T1,T2の間(1次側高圧ラインL1Hと1次側低圧ラインL1Lとの間)において、2つのスイッチング素子S1,S2が、この順序で互いに直列接続されている。具体的には、1次側高圧ラインL1Hと接続点P1との間に、スイッチング素子S1が配置され、接続点P1と1次側低圧ラインL1Lとの間に、スイッチング素子S2が配置されている。
 また、このインバータ回路2における共振インダクタLrおよび共振コンデンサCrと、後述するトランス3における1次側巻線31とが、上記した接続点P1と1次側低圧ラインL1Lとの間において、互いに直列接続されている。具体的には、図1の例では、共振コンデンサCrの第1端(一端)が接続点P1に接続され、この共振コンデンサCrの第2端(他端)が、共振インダクタLrの第1端(一端)に接続されている。また、共振インダクタLrの第2端(他端)が、上記した1次側巻線31の一端に接続され、この1次側巻線31の他端が、1次側低圧ラインL1Lに接続されている。
 このような構成によりインバータ回路2では、後述する制御回路7内の駆動回路5から供給される駆動信号SG1,SG2に従って、各スイッチング素子S1,S2がスイッチング動作(オン・オフ動作)を行うことで、以下のようになる。すなわち、入力端子T1,T2間に印加される直流入力電圧Vinを交流電圧に変換して、トランス3(1次側巻線31)へと出力するようになっている。
(B.トランス3)
 トランス3は、1つの1次側巻線31と、2つの2次側巻線321,322とを有している。
 1次側巻線31では、1次側巻線31の第1端(一端)が、前述した共振インダクタLrにおける第2端(他端)に接続され、1次側巻線31の第2端(他端)が、前述した1次側低圧ラインL1Lに接続されている。
 2次側巻線321では、2次側巻線321の第1端が、後述する接続ラインL21を介して、後述する整流ダイオード41のカソードに接続され、2次側巻線321の第2端が、後述する整流平滑回路4内のセンタタップP6に接続されている。2次側巻線322では、2次側巻線322の第1端が、後述する接続ラインL22を介して、後述する整流ダイオード42のカソードに接続され、2次側巻線322の第2端が、上記したセンタタップP6に接続されている。つまり、2次側巻線321,322における第2端同士は、このセンタタップP6に対して互いに共通接続されている。
 このトランス3は、インバータ回路2によって生成された電圧(トランス3の1次側巻線31に入力される、矩形パルス波化した電圧)を電圧変換し、2次側巻線321,322の各端部から交流電圧を出力するようになっている。なお、この場合における、直流入力電圧Vinに対する直流出力電圧Voutの電圧変換の度合いは、1次側巻線31と2次側巻線321,322との巻数比n(=1次側巻線31の巻数np/2次側巻線321,322の巻数ns)、および、後述するスイッチング周期Tsw(スイッチング周波数fsw=1/Tsw)によって、定まる。
(C.整流平滑回路4)
 整流平滑回路4は、2個の整流ダイオード41,42と、1個の出力平滑コンデンサCoutとを有している。具体的には、この整流平滑回路4は、整流ダイオード41,42を有する整流回路と、出力平滑コンデンサCoutを有する平滑回路と、を含んでいる。
 上記した整流回路は、いわゆる「センタタップ型」の整流回路となっている。すなわち、整流ダイオード41,42のアノードがそれぞれ、接地ラインLGに接続され、整流ダイオード41のカソードが、接続ラインL21を介して、2次側巻線321における前述した第1端に接続され、整流ダイオード42のカソードが、接続ラインL22を介して、2次側巻線322における前述した第1端に接続されている。また、前述したように、2次側巻線321,322における第2端同士は、センタタップP6に対して互いに共通接続されており、このセンタタップP6は、出力ラインLOを介して、前述した出力端子T3に接続されている。なお、上記した接地ラインLGは、前述した出力端子T4に接続されている。
 上記した平滑回路では、上記した出力ラインLOと接地ラインLGとの間(出力端子T3,T4の間)に、出力平滑コンデンサCoutが接続されている。すなわち、この出力平滑コンデンサCoutの第1端は、出力ラインLOに接続され、出力平滑コンデンサCoutの第2端は、接地ラインLGに接続されている。
 このような構成の整流平滑回路4では、整流ダイオード41,42を含んで構成される整流回路において、トランス3から出力される交流電圧を整流して出力するようになっている。また、出力平滑コンデンサCoutを含んで構成される平滑回路において、上記整流回路によって整流された電圧を平滑化することで、直流出力電圧Voutを生成するようになっている。なお、このようにして生成された直流出力電圧Voutにより、前述した負荷9へと直流出力電流Iout(負荷電流)が流れ、出力端子T3,T4から負荷9に対して電力が供給されるようになっている。
 ここで、上記した直流出力電流Iout(負荷電流)は、本発明における「出力電流」の一具体例に対応している。
(D.制御回路7)
 制御回路7は、スイッチング電源装置1の制御を行う回路である。この制御回路7は、図1に示したように、電圧検出部61、遅れ時間設定部62および駆動回路5を有している。
 ここで、図2は、スイッチング電源装置1の動作例(各種の電圧や電流の波形例)を、タイミング図で表したものである。具体的には、図2(A)は、前述した駆動信号SG1(スイッチング素子S1のゲート・ソース間の電圧Vgs1)、図2(B)は、前述した駆動信号SG2(スイッチング素子S2のゲート・ソース間の電圧Vgs2)について、各波形例を示している。また、図2(C)は、スイッチング素子S2のドレイン・ソース間(両端間)の電圧Vds2(図1中に図示)と、スイッチング素子S2のドレイン・ソース間を流れる電流Ids2(図1中に図示)とについて、各波形例を示している。なお、図2において、横軸は時間tを示している。また、この図2中には、スイッチング電源装置1におけるスイッチング周期Tsw(=1/fsw)についても、示している。
 以下では図1,図2を参照して、上記した電圧検出部61、遅れ時間設定部62および駆動回路5について、詳細に説明する。
(電圧検出部61)
 電圧検出部61は、図1に示したように、インバータ回路2に含まれるスイッチング素子S2の両端間の電圧(接続点P1にて検出される、上記したドレイン・ソース間の電圧Vds2)を、検出する回路である。具体的には、電圧検出部61は、このスイッチング素子S2におけるオフ状態(Vgs2=0V)からオン状態(Vgs2=例えば5V)への切り替わり時点(図2中に示したタイミングtds)での電圧Vds2を、検出するようになっている。
(遅れ時間設定部62)
 遅れ時間設定部62は、図1に示したように、電圧検出部61から出力される電圧Vds2(上記したタイミングtdsでの電圧Vds2)の値と、互いに異なる2種類の閾値電圧Vth1,(-Vth2)(図2(C)参照)とをそれぞれ、比較する回路である。また、遅れ時間設定部62は、後述する駆動回路5においてスイッチング駆動を行う際の遅れ時間としてのデッドタイムTdの長さを、このような電圧Vds2の値と2種類の閾値電圧Vth1,(-Vth2)との間の比較結果に応じて、随時設定するようになっている(図1参照)。なお、このようにして設定されたデッドタイムTdは、図1に示したように、後述する駆動回路5へと随時出力されるようになっている。
 ここで、上記したデッドタイムTdとは、例えば図2に示したように、スイッチング素子S1がオン状態(Vgs1=例えば5V)からオフ状態(Vgs1=0V)へと切り替わった時点から、スイッチング素子S2がオフ状態からオン状態へと切り替わる時点(タイミングtds)までの期間である。つまり、このデッドタイムTdでは、これら2つのスイッチング素子S1,S2がいずれも、オフ状態に設定されている期間である。
 なお、このデッドタイムTdは、本発明における「遅れ時間」の一具体例に対応している。
 また、上記した閾値電圧(-Vth2)は、図2に示した例では、閾値電圧Vth1よりも小さな値となっている。具体的には、図2に示した例では、閾値電圧Vth1が、所定の正電圧(例えば、0.2V程度)であると共に、閾値電圧(-Vth2)が、所定の負電圧(例えば、-0.2V程度)となっている。なお、このような閾値電圧Vth1は、本発明における「第1閾値電圧」の一具体例に対応している。また、閾値電圧(-Vth2)は、本発明における「第2閾値電圧」の一具体例に対応している。
 ここで、遅れ時間設定部62はまた、詳細は後述するが、デッドタイムTdの終了タイミング(図2中に示したタイミングtds)が、上記した電圧Vds2におけるゼロクロス点Pzcに収束する(略一致する)ように、デッドタイムTdを随時設定するようになっている。なお、このようなデッドタイムTdの設定手法の詳細については、後述する(図4~図7)。
(駆動回路5)
 駆動回路5は、インバータ回路2におけるスイッチング素子S1,S2の動作をそれぞれ制御する、スイッチング駆動を行う回路である。具体的には、駆動回路5は、スイッチング素子S1,S2に対してそれぞれ、駆動信号SG1,SG2を個別に供給することで、各スイッチング素子S1,S2におけるスイッチング動作(オン・オフ動作)を制御するようになっている。
 また、駆動回路5は、各スイッチング素子S1,S2のスイッチング動作を制御する(スイッチング駆動を行う)際に、スイッチング周波数制御を行うようになっている。すなわち、駆動信号SG1,SG2において、PFM(Pulse Frequency Modulation:パルス周波数変調)制御を行うようになっている。
 更に、駆動回路5は、スイッチング素子S1,S2がそれぞれ、固定された時比率にてスイッチング動作すると共に、スイッチング周波数fswが可変動作するように、上記したスイッチング駆動を行うようになっている。ちなみに、スイッチング素子S1,S2のオン期間をそれぞれ、Ton1,Ton2として表した場合、上記した各スイッチング素子S1,S2の時比率は、スイッチング周期Tsw(=1/fsw)を用いて、(Ton1/Tsw),(Ton2/Tsw)として表される。また、これらの(Ton1/Tsw),(Ton2/Tsw)はいずれも、50%未満の値となっており、オン期間Ton1,Ton2の間には、同時のオン期間による短絡破損を防ぐための、以下説明するデッドタイムTdが設けられるようになっている。
 ここで、この駆動回路5はまた、上記したスイッチング駆動を行う際に、遅れ時間設定部62から出力されるデッドタイムTd(遅れ時間設定部62において随時設定したデッドタイムTd)を用いて、スイッチング素子S1,S2におけるスイッチング動作を、それぞれ制御するようになっている。具体的には、例えば図2に示したように、駆動回路5は、このようにして随時設定されたデッドタイムTd(例えば、図2中に示したデッドタイムTd’)にて、次のスイッチング周期Tswでのスイッチング動作を行う。
[動作および作用・効果]
(A.基本動作)
 このスイッチング電源装置1では、インバータ回路2において、直流入力電源10から入力端子T1,T2を介して供給される直流入力電圧Vinが、スイッチング素子S1,S2によってスイッチングされることで、矩形パルス波化した電圧が生成される。この矩形パルス波化した電圧は、トランス3における1次側巻線31へと供給され、このトランス3において変圧されることで、2次側巻線321,322から、変圧された交流電圧が出力される。
 整流平滑回路4では、トランス3から出力された交流電圧(上記した変圧された交流電圧)が、整流回路内の整流ダイオード41,42によって整流された後、平滑回路内の出力平滑コンデンサCoutによって、平滑化される。これにより、出力端子T3,T4から直流出力電圧Voutが出力される。そして、この直流出力電圧Voutにより、負荷9へと直流出力電流Ioutが流れるとともに、負荷9に対して電力が供給される。
(B.トランジスタの導通特性について)
 ところで、トランジスタをスイッチング素子として用いている、従来の一般的なスイッチング電源装置では、以下のようなおそれがある。
 すなわち、前述したデッドタイムTdにおいて、スイッチング素子としてのトランジスタのドレイン・ソース間に、例えば2V以上の逆方向電圧降下が生じる。そして、このような逆方向電圧と、そのトランジスタを流れるドレイン電流とにより、スイッチング素子での導通損失が発生してしまうことになる。特に、スイッチング素子として、前述したGaNトランジスタを用いるようにした場合、例えば以下の図3に示したように、上記した逆方向電圧降下が大きくなることから、上記した導通損失も大きくなってしまう。
 図3は、一般的なトランジスタにおける導通特性例(上記したGaNトランジスタの場合における、ドレイン・ソース間の電圧Vdsと、ドレイン・ソース間を流れる電流Idsとの対応関係の一例)を、表したものである。なお、この図3の例では、ゲート・ソース間の電圧Vgs=-3V,-2V,0V,2V,6Vの各場合について、そのような導通特性例を示している。
 まず、このようなGaNトランジスタは、デバイス構造にてボディダイオードを内蔵していないものの、GaNトランジスタの回路動作の際に、疑似ボディダイオードを持つことになる。この疑似ボディダイオードは、GaNトランジスタのゲートがオフ状態の場合において、上記した電圧Vdsが負電圧になったときに、ゲート・ドレイン間の電圧Vgdが正電圧となり、所定の閾値を超えてチャネルが導通することで、動作する。このため、このGaNトランジスタでは、シリコン型のMOS-FETにおける、ボディダイオードの順方向の降下電圧VF=0.7Vより高い、2V程度のVFとなる。
 また、GaNトランジスタのゲートがオフ状態において、電圧Vgsが負電圧の場合には、例えば図3に示したように、更に大きなVFとなる。そして、このVFが大きいことから、上記した疑似ボディダイオードが導通している期間が長く、上記した電流Idsが大きいと、更に大きな導通損失が発生することになる。
 ここで、スイッチング素子におけるボディダイオードや疑似ボディダイオードの導通は、同期整流を行う場合、または、ゼロボルト・スイッチング(ZVS:Zero Voltage Switching)を行う場合に、そのスイッチング素子がターンオンする直前または直後に、発生する。また、スイッチング素子がターンオンする直前の場合には、上記した電圧Vdsが負電圧になると同時にターンオンするのが、理想的である。ターンオンするのが早過ぎると、スイッチング素子の出力容量Cossに蓄積された電荷がターンオンにより短絡して電力損失が発生したり、別のスイッチング素子のオン期間とターンオンのタイミングとが重なって、貫通電流が流れたりする。逆に、ターンオンするのが遅過ぎると、ボディダイオードまたは疑似ボディダイオードの導通期間が、長くなる。
 また、スイッチング素子のターンオンの直前に、電圧Vdsが急速に低下するため、帰還容量を通してスイッチング素子のゲートに電流が流れ、電圧Vgsが負電圧になる場合がある。GaNトランジスタでは、電圧Vgsの負電圧によってVFが大きくなり、疑似ボディダイオードの導通による電力損失が、大きくなってしまう。
 更に、適切なターンオンまたはターンオフのタイミングは、スイッチング電源装置の動作条件(入力電圧や負荷など)、寄生容量やインダクタンスなどの定数のばらつきにより、異なる。したがって、ターンオンが早過ぎたりターンオフが遅過ぎたりすることによる致命的な電力損失の増加や、サージやノイズを避けるため、ターンオンのタイミングは理想よりも遅く設定され、ターンオフのタイミングは理想より早く設定されるのが望ましいと言える。
 このようにして、トランジスタをスイッチング素子として用いている、従来の一般的なスイッチング電源装置では、スイッチング素子における逆方向電圧の発生等に起因して、電力損失が増大してしまうおそれがある。したがって、上記したデッドタイムTdを最小化することが求められると言える。
(C.本実施の形態の動作例)
 そこで、本実施の形態のスイッチング電源装置1では、前述したように、スイッチング駆動を行う際のデッドタイムTdの長さが、前述した電圧Vds2の値と2種類の閾値電圧Vth1,(-Vth2)との間の比較結果に応じて、制御回路7によって随時設定されるようになっている。
 ここで、図4~図7を参照して、このようなデッドタイムTdの設定手法の一例について、詳細に説明する。図4は、本実施の形態に係るデッドタイムTdの設定例を、表したものである。図5は、スイッチング電源装置1における共振動作の際の波形例を、タイミング図で表したものである。図6は、本実施の形態に係るデッドタイムTdの設定の際の処理例を、流れ図で表したものである。また、図7は、本実施の形態に係る最大デッドタイムTdmaxおよび最小デッドタイムTdminの設定例を、表したものである。
 なお、最大デッドタイムTdmaxは、デッドタイムTdとして設定可能な最大値であり、本発明における「最大遅れ時間」の一具体例に対応している。また、最小デッドタイムTdminは、デッドタイムTdとして設定可能な最小値であり、本発明における「最小遅れ時間」の一具体例に対応している。
 本実施の形態では、例えば図4に示したように、制御回路7内の遅れ時間設定部62は、前述した電圧Vds2の値と2種類の閾値電圧Vth1,(-Vth2)との間の比較結果に応じて、デッドタイムTdを短縮、延長または維持させるようになっている。
 具体的には、まず、遅れ時間設定部62は、上記したデッドタイムTdの理想値に相当する、デッドタイムTdの初期値T1(例えば図2(C)中に示したように、電圧Vds2における理想的な立下り時間に相当)を設定する。
 この初期値T1は、図5に示した共振動作の際の波形例も参照すると、例えば、以下の(1)~(3)式を用いて規定される。これらの式中では、前述した直流入力電圧Vin、直流出力電圧Vout、スイッチング素子S2に並列接続されたコンデンサCds2の容量値、スイッチング周期Tswおよびトランス3における巻数比nとともに、トランス3の1次側巻線31に流れるトランス励磁電流Im(図5参照)、および、トランス3における相互インダクタンスLmが、用いられている。なお、図5中には、上記したトランス励磁電流Imとともに、このトランス励磁電流Imの変化量ΔImと、共振インダクタLrに流れる共振インダクタ電流ILrとについても、示している。
・T1=(2×Cds2×Vin)/Im
   =(16×Cds2×Lm)/Tsw   ……(1)
・Im=(n×Vout×(Tsw/4))/Lm ……(2)
・(n×Vout)=(Vin/2)        ……(3)
 そして、遅れ時間設定部62は、このようにして設定したデッドタイムTdの初期値T1を基にして、前述した電圧Vds2の値と2種類の閾値電圧Vth1,(-Vth2)との間の比較結果に応じて、デッドタイムTdの短縮、延長または維持を、随時行うようになっている。
 具体的には、例えば図4に示したように、遅れ時間設定部62は、上記した電圧Vds2の値が閾値電圧(-Vth2)未満である場合(Vds2<-Vth2)には、デッドタイムTdを短縮させる。一方、遅れ時間設定部62は、電圧Vds2の値が閾値電圧Vth1超過である場合(Vds2>Vth1)には、デッドタイムTdを延長させる。また、遅れ時間設定部62は、電圧Vds2の値が、閾値電圧(-Vth2)以上かつ閾値電圧Vth1以下である場合(-Vth2≦Vds2≦Vth1)には、デッドタイムTdを維持させる。
 また、デッドタイムTdの値が最大デッドタイムTdmaxよりも大きくなる場合(Td>Tdmax)には、例えば図4に示したように、デッドタイムTdが最大デッドタイムTdmaxに設定される。同様に、デッドタイムTdの値が最小デッドタイムTdminよりも小さくなる場合(Td<Tdmin)には、例えば図4に示したように、デッドタイムTdが最小デッドタイムTdminに設定される。
 このようにして遅れ時間設定部62は、前述したように、デッドタイムTdの終了タイミング(図2中に示したタイミングtds)が、スイッチング素子S2の両端間の電圧Vds2におけるゼロクロス点Pzcに収束するように、デッドタイムTdを随時設定するようになっている。
 ここで、図6を参照して、このようなデッドタイムTdの設定の際の具体的な処理例について、流れ図を用いて詳細に説明する。
 この図6に示した処理例では、まず、遅れ時間設定部62は、デッドタイムTdを前述した初期値T1に設定する(Td=T1:ステップS11)。次いで、遅れ時間設定部62は、上記した電圧Vds2の値が、閾値電圧Vth1未満である(Vds2<Vth1)のか否かについて、判定を行う(ステップS12)。ここで、電圧Vds2の値が閾値電圧Vth1未満であると判定された場合(ステップS12:Y)には、後述するステップS16へと進むことになる。
 一方、電圧Vds2の値が閾値電圧Vth1以上である(Vds2≧Vth1)と判定された場合(ステップS12:N)には、以下のようになる。すなわち、次に遅れ時間設定部62は、現在のデッドタイムTdの値が、前述した最大デッドタイムTdmax超過である(Td>Tdmax)であるのか否かについて、判定を行う(ステップS13)。
 ここで、現在のデッドタイムTdの値が最大デッドタイムTdmax以下である(Td≦Tdmax)と判定された場合(ステップS13:N)には、遅れ時間設定部62は、デッドタイムTdの値を、所定値ΔTの分だけ増加させる(Td=Td+ΔT:ステップS14)。つまり、この場合には、図4を用いて前述したように、遅れ時間設定部62は、デッドタイムTdを延長させる。なお、その後は、前述したステップS12へと戻ることになる。
 一方、現在のデッドタイムTdの値が最大デッドタイムTdmax超過であると判定された場合(ステップS13:Y)には、以下のようになる。すなわち、この場合には、図4を用いて前述したように、遅れ時間設定部62は、デッドタイムTdの値を、最大デッドタイムTdmaxに設定する(Td=Tdmax:ステップS15)。なお、その後は、前述したステップS12へと戻ることになる。
 続いて、前述したステップS16では、遅れ時間設定部62は、電圧Vds2の値が、閾値電圧(-Vth2)超過である(Vds2<-Vth2)のか否かについて、判定を行う。ここで、電圧Vds2の値が閾値電圧(-Vth2)以下である(Vds2≦-Vth2)と判定された場合(ステップS16:N)には、以下のようになる。すなわち、次に遅れ時間設定部62は、現在のデッドタイムTdの値が、前述した最小デッドタイムTdmin未満である(Td<Tdmin)であるのか否かについて、判定を行う(ステップS17)。
 ここで、現在のデッドタイムTdの値が最小デッドタイムTdmin以上である(Td≧Tdmin)と判定された場合(ステップS17:N)には、遅れ時間設定部62は、デッドタイムTdの値を、所定値ΔTの分だけ減少させる(Td=Td-ΔT:ステップS18)。つまり、この場合には、図4を用いて前述したように、遅れ時間設定部62は、デッドタイムTdを短縮させる。なお、その後は、前述したステップS12へと戻ることになる。
 一方、現在のデッドタイムTdの値が最小デッドタイムTdmin未満であると判定された場合(ステップS17:Y)には、以下のようになる。すなわち、この場合には、図4を用いて前述したように、遅れ時間設定部62は、デッドタイムTdの値を、最小デッドタイムTdminに設定する(Td=Tdmin:ステップS19)。なお、その後は、前述したステップS12へと戻ることになる。
 また、上記したステップS16において、電圧Vds2の値が閾値電圧(-Vth2)超過であると判定された場合(ステップS16:Y)には、以下のようになる。すなわち、この場合には、図4を用いて前述したように、遅れ時間設定部62は、デッドタイムTdを維持させる(Td=Td:ステップS20)。なお、その後は、前述したステップS12へと戻ることになる。
 以上で、図6に示した一連の処理例についての説明が、終了となる。なお、この図6に示した処理例では、デッドタイムTdを延長させる際および短縮させる際の変化量(増加量および減少量)が、互いに一致している場合(上記した所定値ΔTに相当)について説明したが、この場合には限られない。すなわち、そのようなデッドタイムTdの増加量と減少量とが、互いに異なる値に設定されているようにしてもよい。
 また、例えば図7に示したように、本実施の形態では、上記した最大デッドタイムTdmaxおよび最小デッドタイムTdminの値がそれぞれ、スイッチング電源装置1の動作状態(例えば、直流出力電流Iout、直流入力電圧Vin、直流出力電圧Voutの値など)に応じて、随時変更されるようになっている。
 具体的には、例えば図7に示したように、スイッチング電源装置1の動作状態としての直流出力電流Ioutの値が、相対的に小さくなった場合には、最大デッドタイムTdmaxおよび最小デッドタイムTdminの値がそれぞれ、相対的に大きくなるように変更される。一方、直流出力電流Ioutの値が、相対的に大きくなった場合には、最大デッドタイムTdmaxおよび最小デッドタイムTdminの値がそれぞれ、相対的に小さくなるように変更される。
 また、例えば図7に示したように、スイッチング電源装置1の動作状態としての、直流入力電圧Vinまたは直流出力電圧Voutの値が、相対的に小さくなった場合には、最大デッドタイムTdmaxおよび最小デッドタイムTdminの値がそれぞれ、相対的に小さくなるように変更される。一方、直流入力電圧Vinまたは直流出力電圧Voutの値が、相対的に大きくなった場合には、最大デッドタイムTdmaxおよび最小デッドタイムTdminの値がそれぞれ、相対的に大きくなるように変更される。
 更に、例えば図7に示したように、上記した直流入力電圧Vinの値、または、直流出力電流Ioutの値が、急変した場合(急に増加または減少した場合)には、最小デッドタイムTdminの値が、相対的に大きくなるように変更される。
(D.作用・効果)
 このようにして本実施の形態では、スイッチング駆動を行う際のデッドタイムTdの長さが、前述した電圧Vds2の値と2種類の閾値電圧Vth1,(-Vth2)との間の比較結果に応じて、制御回路7によって随時設定されるようにしたので、以下のようになる。すなわち、スイッチング素子S2において前述したZVSを確実に行いつつ、スイッチング素子S2にて前述した逆方向電圧が生じる期間を、短縮することができる。具体的には、上記したデッドタイムTdを短縮して、スイッチング素子S2における(前述したボディダイオードでの)導通損失を、低減することができる。その結果、本実施の形態では、スイッチング電源装置1における電力損失を抑えることが可能となる。
 特に、スイッチング素子S1,S2として、GaNトランジスタを用いるようにした場合には、前述したように、逆方向電圧降下が大きいことから、以下のようになる。すなわち、この場合には、上記したスイッチング素子S1,S2での導通損失の低減による、スイッチング電源装置1での電力損失の抑制効果が、特に大きいと言える。
 また、上記したように、スイッチング素子S2における導通損失が低減されることから、スイッチング電源装置1の小型化や低コスト化を図ることも可能となる。
 また、本実施の形態では、前述したデッドタイムTdの終了タイミング(図2中に示したタイミングtds)が、スイッチング素子S2の両端間の電圧Vds2におけるゼロクロス点Pzcに収束するように、デッドタイムTdを設定するようにしたので、以下のようになる。すなわち、上記したスイッチング素子S2におけるZVSを、より確実に実現することができる結果、スイッチング電源装置1における電力損失を、更に抑えることが可能となる。
 更に、本実施の形態では、前述した最大デッドタイムTdmaxおよび最小デッドタイムTdminの値がそれぞれ、前述したスイッチング電源装置1の動作状態に応じて変更されるようにしたので、以下のようになる。すなわち、このようなスイッチング電源装置1の動作状態に応じて、デッドタイムTdの範囲を適切に調整することができることから、スイッチング電源装置1における電力損失を、更に抑えることが可能となる。
 加えて、本実施の形態では、直流入力電圧Vinの値、または、直流出力電流Ioutの値が、急変した場合には、最小デッドタイムTdminの値が相対的に大きくなるように変更されることから、以下のようになる。すなわち、スイッチング電源装置1の動作状態の急変に対処して、最小デッドタイムTdminの値を適切に調整することができることから、スイッチング電源装置1における電力損失を、更に抑えることが可能となる。
 また、本実施の形態では、整流平滑回路4における整流回路を、いわゆる「センタタップ型」の整流回路としたので、例えば、いわゆる「ブリッジ型」の整流回路とした場合と比べ、以下のようになる。すなわち、整流素子の個数が2つ(整流ダイオード41,42)となって、少なくなる結果、整流回路の小型化や低損失化、低コスト化を図ることが可能となる。
<2.変形例>
 続いて、上記実施の形態の変形例(変形例1~3)について説明する。なお、以下では、実施の形態における構成要素と同一のものには同一の符号を付し、適宜説明を省略する。
[変形例1]
(構成)
 図8は、変形例1に係るスイッチング電源装置(スイッチング電源装置1A)の概略構成例を、回路図で表したものである。
 なお、実施の形態と同様に、直流入力電源10とこのスイッチング電源装置1Aとを備えたシステムは、本発明における「電力供給システム」の一具体例に対応している。
 この変形例1のスイッチング電源装置1Aは、実施の形態のスイッチング電源装置1(図1参照)において、トランス3および整流平滑回路4の代わりに、トランス3Aおよび整流平滑回路4Aをそれぞれ設けたものに対応しており、他の構成は同様となっている。
 トランス3Aは、1つの1次側巻線31と、1つの2次側巻線32とを有している。すなわち、トランス3では、2つの2次側巻線321,322が設けられていたのに対し、トランス3Aでは、1つの2次側巻線32のみが設けられている。この2次側巻線32では、第1端が、後述する整流平滑回路4A内の接続点P7に接続され、第2端が、この整流平滑回路4A内の接続点P8に接続されている。
 このトランス3Aもトランス3と同様に、インバータ回路2によって生成された電圧(矩形パルス波化した電圧)を電圧変換し、2次側巻線32の端部から交流電圧を出力するようになっている。なお、この場合における、直流入力電圧Vinに対する直流出力電圧Voutの電圧変換の度合いは、1次側巻線31と2次側巻線32との巻数比n、および、前述したスイッチング周波数fswによって、定まる。
 整流平滑回路4Aは、4個の整流ダイオード41~44と、1個の出力平滑コンデンサCoutとを有している。具体的には、この整流平滑回路4Aは、整流ダイオード41~44を有する整流回路と、出力平滑コンデンサCoutを有する平滑回路と、を含んでいる。すなわち、この整流平滑回路4Aは、整流平滑回路4において、整流回路の構成を変更したものとなっている。
 この変形例1の整流回路は、実施の形態の整流回路(いわゆる「センタタップ型」の整流回路)とは異なり、いわゆる「ブリッジ型」の整流回路となっている。すなわち、整流ダイオード41,43のカソードがそれぞれ、出力ラインLOに接続され、整流ダイオード41のアノードが、接続点P7において、整流ダイオード42のカソードおよび2次側巻線32における前述した第1端に接続されている。また、整流ダイオード42,44のアノードがそれぞれ、接地ラインLGに接続され、整流ダイオード44のカソードが、接続点P8において、整流ダイオード43のアノードおよび2次側巻線32における前述した第2端に接続されている。
 このような構成の整流平滑回路4Aでは、整流平滑回路4と同様に、整流ダイオード41~44を含んで構成される整流回路において、トランス3Aから出力される交流電圧を整流して出力するようになっている。
(作用・効果)
 このような構成からなる変形例1のスイッチング電源装置1Aにおいても、基本的には、実施の形態のスイッチング電源装置1と同様の作用により、同様の効果を得ることが可能である。
 また、特にこの変形例1では、整流平滑回路4Aにおける整流回路を、ブリッジ型の整流回路としたので、例えば実施の形態の場合と比べ、トランス3Aにおける巻線数(2次側巻線の個数)が1つ(2次側巻線32)となって、少なくなる。その結果、トランス3Aの小型化や低損失化を図ることが可能となる。
[変形例2,3]
 変形例2,3に係るスイッチング電源装置(スイッチング電源装置1B,1C)はそれぞれ、これまでに説明した、実施の形態および変形例1において、整流平滑回路4,4A内の整流回路をそれぞれ、以下説明するように、いわゆる同期整流回路としたものとなっている。また、そのような同期整流回路が設けられていることに伴い、これらの変形例2,3のスイッチング電源装置1B,1Cではそれぞれ、実施の形態および変形例1の制御回路7の代わりに、後述する制御回路7B,7Cが設けられている。
(変形例2の構成)
 具体的には、図9は、変形例2に係るスイッチング電源装置1Bの概略構成例を、回路図で表したものである。
 なお、実施の形態および変形例1と同様に、直流入力電源10とこのスイッチング電源装置1Bとを備えたシステムは、本発明における「電力供給システム」の一具体例に対応している。
 この変形例2のスイッチング電源装置1Bは、実施の形態のスイッチング電源装置1において、整流平滑回路4および制御回路7の代わりに、整流平滑回路4Bおよび制御回路7Bをそれぞれ設けたものに対応しており、他の構成は同様となっている。
 この変形例2における同期整流回路(整流平滑回路4B)では、図9に示したように、実施の形態で説明した整流ダイオード41,42がそれぞれ、スイッチング素子としてのMOS-FET(MOSトランジスタM9,M10)により構成されている。そして、この同期整流回路では、各MOSトランジスタM9,M10の寄生ダイオードが導通する期間と同期して、これらのMOSトランジスタM9,M10自身もオン状態となる(同期整流を行う)ように、制御される。具体的には、この変形例2では、後述する制御回路7B内の駆動回路5は、駆動信号SG9,SG10を用いて、各MOSトランジスタM9,M10のオン・オフ動作を制御するようになっている(図9参照)。
 なお、このようなMOSトランジスタM9,M10はそれぞれ、本発明における「同期整流を行うスイッチング素子」の一具体例に対応している。
 また、この変形例2の制御回路7Bは、基本的には、実施の形態および変形例1の制御回路7と同様に、前述した電圧検出部61、遅れ時間設定部62および駆動回路5を有している。ただし、この制御回路7Bは制御回路7とは異なり、以下のようになっている。
 すなわち、まず、制御回路7では、デッドタイムTdの設定対象となる2つのスイッチング素子S2,S1(本発明における「第1および第2のスイッチング素子」に相当)がいずれも、インバータ回路2内に配置されているスイッチング素子であった。これに対して制御回路7Bでは、デッドタイムTdの設定対象となる2つのスイッチング素子(本発明における「第1および第2のスイッチング素子」に相当)のうちの少なくとも一方が、上記した整流平滑回路4B内に配置された、同期整流を行うスイッチング素子(上記したMOSトランジスタM9,M10のうちの少なくとも一方)となっている。
 具体的には、制御回路7Bでは、デッドタイムTdの設定対象となる2つのスイッチング素子が、下記の(a)または(b)で示したようになっている。
(a)スイッチング素子S1,S2のうちの一方と、MOSトランジスタM9,M10のうちの一方とが、デッドタイムTdの設定対象となる2つのスイッチング素子となっている
(b)MOSトランジスタM9,M10がそれぞれ、デッドタイムTdの設定対象となる2つのスイッチング素子となっている
 そして、この制御回路7Bは、これらの2つのスイッチング素子のうちの一方のスイッチング素子(本発明における「第1のスイッチング素子」に相当)における両端間の電圧に基づき、実施の形態および変形例1と同様にして、デッドタイムTdを設定する。具体的には、制御回路7Bは、そのような両端間の電圧値と前述した2種類の閾値電圧Vth1,(-Vth2)との間の比較結果に応じて、スイッチング駆動を行う際のデッドタイムTdの長さを、随時設定する。そして、制御回路7Bは、このようにして随時設定したデッドタイムTdを用いて、上記した2つのスイッチング素子を含む複数のスイッチング素子(スイッチング素子S1,S2およびMOSトランジスタM9,M10)におけるスイッチング動作を、それぞれ制御する。
 なお、このような制御回路7Bは、本発明における「スイッチング制御装置」の一具体例に対応している。また、この変形例2では、上記したスイッチング素子S1、S2およびMOSトランジスタM9,M10がそれぞれ、本発明における「複数のスイッチング素子」の一具体例に対応している。更に、これらのスイッチング素子S1、S2およびMOSトランジスタM9,M10のうちの任意の2つ(上記した2つのスイッチング素子)が、本発明における「第1のスイッチング素子」および「第2のスイッチング素子」の一具体例に対応している。
(変形例3の構成)
 また、図10は、変形例3に係るスイッチング電源装置1Cの概略構成例を、回路図で表したものである。
 なお、実施の形態および変形例1,2と同様に、直流入力電源10とこのスイッチング電源装置1Cとを備えたシステムは、本発明における「電力供給システム」の一具体例に対応している。
 この変形例3のスイッチング電源装置1Cは、変形例1のスイッチング電源装置1Aにおいて、整流平滑回路4Aおよび制御回路7の代わりに、整流平滑回路4Cおよび制御回路7Cをそれぞれ設けたものに対応しており、他の構成は同様となっている。
 この変形例3における同期整流回路(整流平滑回路4C)では、図10に示したように、変形例1で説明した整流ダイオード41~44がそれぞれ、スイッチング素子としてのMOS-FET(MOSトランジスタM11~M14)により構成されている。そして、この変形例3の同期整流回路においても、上記した変形例2の同期整流回路と同様に、各MOSトランジスタM11~M14の寄生ダイオードが導通する期間と同期して、これらのMOSトランジスタM11~M14自身もオン状態となる(同期整流を行う)ように、制御される。具体的には、この変形例3では、後述する制御回路7C内の駆動回路5は、駆動信号SG11~SG14を用いて、各MOSトランジスタM11~M14のオン・オフ動作を制御するようになっている(図10参照)。
 なお、このようなMOSトランジスタM11~M14はそれぞれ、本発明における「同期整流を行うスイッチング素子」の一具体例に対応している。
 また、この変形例3の制御回路7Cは、基本的には、実施の形態および変形例1の制御回路7と同様に、前述した電圧検出部61、遅れ時間設定部62および駆動回路5を有している。ただし、この制御回路7Cは制御回路7とは異なり、変形例2にて説明した制御回路7Bと同様に、以下のようになっている。
 すなわち、制御回路7Cでは、デッドタイムTdの設定対象となる2つのスイッチング素子(本発明における「第1および第2のスイッチング素子」に相当)のうちの少なくとも一方が、上記した整流平滑回路4C内に配置された、同期整流を行うスイッチング素子(上記したMOSトランジスタM11~M14のうちの少なくとも1つ)となっている。
 具体的には、制御回路7Cでは、デッドタイムTdの設定対象となる2つのスイッチング素子が、下記の(c)または(d)で示したようになっている。
(c)スイッチング素子S1,S2のうちの一方と、MOSトランジスタM11~M14のうちの1つとが、デッドタイムTdの設定対象となる2つのスイッチング素子となっている
(d)MOSトランジスタM11~M14のうちの2つがそれぞれ、デッドタイムTdの設定対象となる2つのスイッチング素子となっている
 そして、この制御回路7Cは、これらの2つのスイッチング素子のうちの一方のスイッチング素子(本発明における「第1のスイッチング素子」に相当)における両端間の電圧に基づき、実施の形態および変形例1,2と同様にして、デッドタイムTdを設定する。具体的には、制御回路7Cは、そのような両端間の電圧値と前述した2種類の閾値電圧Vth1,(-Vth2)との間の比較結果に応じて、スイッチング駆動を行う際のデッドタイムTdの長さを、随時設定する。そして、制御回路7Cは、このようにして随時設定したデッドタイムTdを用いて、上記した2つのスイッチング素子を含む複数のスイッチング素子(スイッチング素子S1,S2およびMOSトランジスタM11~M14)におけるスイッチング動作を、それぞれ制御する。
 なお、このような制御回路7Cは、本発明における「スイッチング制御装置」の一具体例に対応している。また、この変形例3では、上記したスイッチング素子S1、S2およびMOSトランジスタM11~M14がそれぞれ、本発明における「複数のスイッチング素子」の一具体例に対応している。更に、これらのスイッチング素子S1、S2およびMOSトランジスタM11~M14のうちの任意の2つ(上記した2つのスイッチング素子)が、本発明における「第1のスイッチング素子」および「第2のスイッチング素子」の一具体例に対応している。
(変形例2,3の作用・効果)
 このような構成からなる変形例2,3のスイッチング電源装置1B,1Cにおいても、基本的には、これまでに説明したスイッチング電源装置1,1Aと同様の作用により、同様の効果を得ることが可能である。
 また、特にこれらの変形例2,3では、整流回路における複数の整流素子(整流ダイオード)がそれぞれ、スイッチング素子によって構成されており、この整流回路が同期整流回路になっているようにしたので、以下のようになる。すなわち、このような同期整流回路によって、整流時の導通損失が低減されることから、整流回路の小型化や低損失化を図ることが可能となる。ちなみに、このようなスイッチング素子としては、上記したMOS-FETの他、例えば、前述したHEMTや、並列にダイオード付加したIGBTまたはバイポーラトランジスタ等が、挙げられる。
<3.その他の変形例>
 以上、実施の形態および変形例を挙げて本発明を説明したが、本発明はこれらの実施の形態等に限定されず、種々の変形が可能である。
 例えば、上記実施の形態等では、インバータ回路の構成を具体的に挙げて説明したが、上記実施の形態等の例には限られず、例えば、インバータ回路として他の構成のものを用いるようにしてもよい。具体的には、例えば、互いに直列接続されている、共振インダクタLr、共振コンデンサCrおよび1次側巻線31の配置関係については、実施の形態等で説明した配置関係には限られず、これら3つの配置位置が互いに順不同となっていてもよい。また、上記実施の形態等では、いわゆる「ハーフブリッジ型」のインバータ回路の例について説明したが、この例には限られず、例えば、いわゆる「フルブリッジ型」のインバータ回路などであってもよい。
 また、上記実施の形態等では、トランス(1次側巻線および2次側巻線)の構成を具体的に挙げて説明したが、上記実施の形態等の例には限られず、例えば、トランス(1次側巻線および2次側巻線)として他の構成のものを用いるようにしてもよい。
 更に、上記実施の形態等では、整流平滑回路(整流回路および平滑回路)の構成を、具体的に挙げて説明したが、上記実施の形態等の例には限られず、例えば、整流平滑回路(整流回路および平滑回路)として他の構成のものを用いるようにしてもよい。
 加えて、上記実施の形態等では、駆動回路による各スイッチング素子の動作制御(スイッチング駆動)の手法を、具体的に挙げて説明したが、上記実施の形態等の例には限られず、スイッチング駆動の手法として、他の手法を用いるようにしてもよい。
 また、上記実施の形態等では、本発明に係るスイッチング電源装置の一例として、DC-DCコンバータを挙げて説明したが、本発明は、例えばAC-DCコンバータなどの、他の種類のスイッチング電源装置にも適用することが可能である。
 更に、これまでに説明した各構成例等を、任意の組み合わせで適用してもよい。

Claims (11)

  1.  1次側巻線および2次側巻線を有するトランスと、入力電圧が入力される入力端子対と前記1次側巻線との間に配置されたインバータ回路と、出力電圧が出力される出力端子対と前記2次側巻線との間に配置された整流平滑回路と、を備えたスイッチング電源装置に適用される制御装置であって、
     前記インバータ回路および前記整流平滑回路の少なくとも一方に含まれる複数のスイッチング素子のうちの、第1のスイッチング素子におけるオフ状態からオン状態への切り替わり時点での両端間の電圧を検出する電圧検出部と、
     前記複数のスイッチング素子のうちの第2のスイッチング素子がオン状態からオフ状態へと切り替わった時点から、前記第1のスイッチング素子がオフ状態からオン状態へと切り替わる時点までの遅れ時間を、前記第1のスイッチング素子における前記両端間の電圧の値と、互いに異なる2種類の閾値電圧である第1閾値電圧および第2閾値電圧との間の比較結果に応じて、随時設定する遅れ時間設定部と、
     前記遅れ時間設定部において設定した前記遅れ時間を用いて、前記第1および第2のスイッチング素子を含む前記複数のスイッチング素子におけるスイッチング動作を、それぞれ制御する駆動回路と
     を備えたスイッチング制御装置。
  2.  前記遅れ時間設定部は、前記遅れ時間の終了タイミングが、第1のスイッチング素子の前記両端間の電圧におけるゼロクロス点に収束するように、前記遅れ時間を設定する
     請求項1に記載のスイッチング制御装置。
  3.  前記遅れ時間設定部は、
     前記第1のスイッチング素子における前記両端間の電圧の値が、前記第1閾値電圧よりも小さい前記第2閾値電圧未満である場合には、前記遅れ時間を短縮させ、
     前記第1のスイッチング素子における前記両端間の電圧の値が、前記第1閾値電圧超過である場合には、前記遅れ時間を延長させ、
     前記第1のスイッチング素子における前記両端間の電圧の値が、前記第2閾値電圧以上かつ前記第1閾値電圧以下である場合には、前記遅れ時間を維持する
     請求項2に記載のスイッチング制御装置。
  4.  前記第1閾値電圧が、所定の正電圧であると共に、
     前記第2閾値電圧が、所定の負電圧である
     請求項1ないし請求項3のいずれか1項に記載のスイッチング制御装置。
  5.  前記遅れ時間として設定可能な最大値である最大遅れ時間と、
     前記遅れ時間として設定可能な最小値である最小遅れ時間と
     がそれぞれ、前記スイッチング電源装置の動作状態に応じて、変更されるようになっている
     請求項1ないし請求項4のいずれか1項に記載のスイッチング制御装置。
  6.  前記スイッチング電源装置の動作状態としての出力電流の値が、相対的に小さくなった場合には、前記最大遅れ時間および前記最小遅れ時間の値がそれぞれ、相対的に大きくなるように変更されると共に、
     前記出力電流の値が、相対的に大きくなった場合には、前記最大遅れ時間および前記最小遅れ時間の値がそれぞれ、相対的に小さくなるように変更され、
     前記スイッチング電源装置の動作状態としての、前記入力電圧または前記出力電圧の値が、相対的に小さくなった場合には、前記最大遅れ時間および前記最小遅れ時間の値がそれぞれ、相対的に小さくなるように変更されると共に、
     前記入力電圧または前記出力電圧の値が、相対的に大きくなった場合には、前記最大遅れ時間および前記最小遅れ時間の値がそれぞれ、相対的に大きくなるように変更される
     請求項5に記載のスイッチング制御装置。
  7.  前記入力電圧の値、または、前記スイッチング電源装置の出力電流の値が、急変した場合には、
     前記遅れ時間として設定可能な最小値である最小遅れ時間の値が、相対的に大きくなるように変更される
     請求項1ないし請求項6のいずれか1項に記載のスイッチング制御装置。
  8.  前記第1および第2のスイッチング素子がいずれも、前記インバータ回路内に配置されているスイッチング素子である
     請求項1ないし請求項7のいずれか1項に記載のスイッチング制御装置。
  9.  前記第1および第2のスイッチング素子のうちの少なくとも一方が、前記整流平滑回路内に配置されており、同期整流を行うスイッチング素子である
     請求項1ないし請求項7のいずれか1項に記載のスイッチング制御装置。
  10.  請求項1ないし請求項9のいずれか1項に記載のスイッチング制御装置と、
     前記入力端子対と、前記出力端子対と、前記トランスと、前記インバータ回路と、前記整流平滑回路と、
     を備えたスイッチング電源装置。
  11.  請求項10に記載のスイッチング電源装置と、
     前記入力端子対に対して前記入力電圧を供給する電源と
     を備えた電力供給システム。

                                                                                   
PCT/JP2021/034389 2021-09-17 2021-09-17 スイッチング制御装置、スイッチング電源装置および電力供給システム WO2023042393A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/034389 WO2023042393A1 (ja) 2021-09-17 2021-09-17 スイッチング制御装置、スイッチング電源装置および電力供給システム
JP2023548076A JPWO2023042393A1 (ja) 2021-09-17 2021-09-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/034389 WO2023042393A1 (ja) 2021-09-17 2021-09-17 スイッチング制御装置、スイッチング電源装置および電力供給システム

Publications (1)

Publication Number Publication Date
WO2023042393A1 true WO2023042393A1 (ja) 2023-03-23

Family

ID=85602639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034389 WO2023042393A1 (ja) 2021-09-17 2021-09-17 スイッチング制御装置、スイッチング電源装置および電力供給システム

Country Status (2)

Country Link
JP (1) JPWO2023042393A1 (ja)
WO (1) WO2023042393A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021758A (ja) * 2011-07-07 2013-01-31 Fuji Electric Co Ltd スイッチング電源装置およびその制御装置
JP2013153620A (ja) * 2012-01-26 2013-08-08 Fuji Electric Co Ltd スイッチング電源装置
WO2018146877A1 (ja) * 2017-02-13 2018-08-16 住友電気工業株式会社 電源装置及び電源装置の制御方法
JP2020127145A (ja) * 2019-02-05 2020-08-20 ローム株式会社 ブリッジ出力回路、電源装置及び半導体装置
WO2020202967A1 (ja) * 2019-04-02 2020-10-08 株式会社オートネットワーク技術研究所 車載用電圧変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021758A (ja) * 2011-07-07 2013-01-31 Fuji Electric Co Ltd スイッチング電源装置およびその制御装置
JP2013153620A (ja) * 2012-01-26 2013-08-08 Fuji Electric Co Ltd スイッチング電源装置
WO2018146877A1 (ja) * 2017-02-13 2018-08-16 住友電気工業株式会社 電源装置及び電源装置の制御方法
JP2020127145A (ja) * 2019-02-05 2020-08-20 ローム株式会社 ブリッジ出力回路、電源装置及び半導体装置
WO2020202967A1 (ja) * 2019-04-02 2020-10-08 株式会社オートネットワーク技術研究所 車載用電圧変換装置

Also Published As

Publication number Publication date
JPWO2023042393A1 (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
US10116222B2 (en) Soft switching flyback converter with primary control
US10637363B2 (en) Converters with hold-up operation
US9787200B2 (en) Resonant converters with synchronous rectifier feedback
US9812977B2 (en) Resonant converters with an improved voltage regulation range
US7023186B2 (en) Two stage boost converter topology
US8520414B2 (en) Controller for a power converter
US7324355B2 (en) Dc-DC converter
US20100220500A1 (en) Power converter and method for controlling power converter
US9991799B2 (en) Switch mode power supplies including primary side clamping circuits controlled based on secondary side signals
US10903748B2 (en) Frequency modulation control for phase-shift full bridge converters
JP7439671B2 (ja) スイッチング電源装置および電力供給システム
US10361624B2 (en) Multi-cell power converter with improved start-up routine
JP7306316B2 (ja) スイッチング電源装置および電力供給システム
US8284573B2 (en) Synchronous rectifier circuit capable of preventing flow-through current
US11075582B2 (en) Switching converter
US10447141B2 (en) Waveform shaping circuit, semiconductor device, and switching power supply device
WO2023042393A1 (ja) スイッチング制御装置、スイッチング電源装置および電力供給システム
WO2023042392A1 (ja) スイッチング制御装置、スイッチング電源装置および電力供給システム
JP7325059B2 (ja) 力率改善回路
WO2023100318A1 (ja) スイッチング制御装置、スイッチング電源装置および電力供給システム
WO2022190162A1 (ja) スイッチング電源装置および電力供給システム
WO2022185404A1 (ja) スイッチング電源装置および電力供給システム
JP2024054576A (ja) スイッチング制御装置、電力変換装置および電力供給システム
JPH07337034A (ja) 零電圧スイッチング電源装置
JP2021132477A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548076

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE