JP7288399B2 - 吸水性樹脂、土壌保水材、及び農園芸材料 - Google Patents

吸水性樹脂、土壌保水材、及び農園芸材料 Download PDF

Info

Publication number
JP7288399B2
JP7288399B2 JP2019503141A JP2019503141A JP7288399B2 JP 7288399 B2 JP7288399 B2 JP 7288399B2 JP 2019503141 A JP2019503141 A JP 2019503141A JP 2019503141 A JP2019503141 A JP 2019503141A JP 7288399 B2 JP7288399 B2 JP 7288399B2
Authority
JP
Japan
Prior art keywords
water
absorbent resin
resin
cross
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019503141A
Other languages
English (en)
Other versions
JPWO2018159801A1 (ja
Inventor
実季人 千葉
裕一 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Publication of JPWO2018159801A1 publication Critical patent/JPWO2018159801A1/ja
Application granted granted Critical
Publication of JP7288399B2 publication Critical patent/JP7288399B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/30Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds
    • A01G24/35Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds containing water-absorbing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/02Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of acids, salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/04Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/18Prepolymers; Macromolecular compounds
    • C09K17/20Vinyl polymers
    • C09K17/22Polyacrylates; Polymethacrylates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Description

本発明は、吸水性樹脂に関し、より詳しくは、土壌保水材、及び農園芸材料に好適に用いられる吸水性樹脂、当該吸水性樹脂を用いた土壌保水材、並びに農園芸材料に関する。
近年、吸水性樹脂は、紙オムツ、生理用ナプキン、失禁用パッド等の衛生材料の分野、止水剤や結露防止剤等の工業資材の分野などで広く使用されている。
このような吸水性樹脂としては、アクリル酸部分中和物重合体の架橋物が、優れた吸水性能を有するとともに、その原料であるアクリル酸の工業的な入手が容易であるため、品質が一定で且つ安価に製造でき、しかも腐敗や劣化がおこりにくい等の数々の利点を有することから、好ましい吸水性樹脂であるとされている(例えば特許文献1参照)。
また、農園芸材料の分野においても、このような吸水性樹脂の吸水・保水性を利用して、吸水性樹脂を土壌などと混合し、植物の生育や活着、発芽などを助長させる植物栽培方法が提案されている(例えば特許文献2参照)。
しかしながら、吸水性樹脂は高い液保持性能を有する一方、吸水した水の吐き出し量が少ないため、植物に十分な水分を供給することができない場合がある。
特開平3-227301号公報 特開昭62-273283号公報
本発明は、高い吸水性と高い水の吐き出し性能とを兼ね備えた吸水性樹脂を提供することを主な目的とする。
本発明者らは、上記課題を解決するために鋭意検討した。その結果、水溶性エチレン性不飽和単量体の重合体により構成された吸水性樹脂であって、X線コンピューター断層撮影法によって、吸水性樹脂の断面画像を観察した場合に、下記式(I)によって算出される、断面画像における空洞部分の面積の割合(空洞面積率)が、5%以上である吸水性樹脂は、高い吸水性と高い水の吐き出し性能とを兼ね備えていることを見出した。
空洞面積率[%]={吸水性樹脂の空洞部分の総断面積(B)/(吸水性樹脂の樹脂部分の総断面積(A)+吸水性樹脂の空洞部分の総断面積(B))}×100・・・(I)
本発明は、このような知見に基づき、さらに鋭意検討を重ねて完成した発明である。
すなわち、本願は、下記の構成を備える発明を提供する。
項1. 水溶性エチレン性不飽和単量体の重合体により構成された吸水性樹脂であって、
X線コンピューター断層撮影法によって、前記吸水性樹脂の断面画像を観察した場合に、下記式(I)によって算出される、前記断面画像における空洞部分の面積の割合(空洞面積率)が、5%以上である、吸水性樹脂。
空洞面積率[%]={吸水性樹脂の空洞部分の総断面積(B)/(吸水性樹脂の樹脂部分の総断面積(A)+吸水性樹脂の空洞部分の総断面積(B))}×100・・・(I)
項2. 前記吸水性樹脂の水の荷重下保持率が、75%以下である、項1に記載の吸水性樹脂。
項3. 前記吸水性樹脂の形状が、顆粒状、略球状、または略球状の粒子が凝集した形状である、項1または2に記載の吸水性樹脂。
項4. 前記吸水性樹脂の空洞面積率が5~50%である、項1~3のいずれかに記載の吸水性樹脂。
項5. 項1~4のいずれかに記載の吸水性樹脂を含む、土壌保水材。
項6. 項1~4のいずれかに記載の吸水性樹脂を含む、農園芸材料。
本発明によれば、高い吸水性と高い水の吐き出し性能とを兼ね備えた吸水性樹脂を提供することができる。当該吸水性樹脂は、例えば、土壌などに混合すると、植物に好適に水分を供給することができる。さらに、本発明によれば、当該吸水性樹脂を用いた土壌保水材、農園芸材料、及び植物栽培方法を提供することもできる。
X線コンピューター断層撮影法によって、吸水性樹脂の空洞面積率を測定する方法を説明するための模式図である。 図2(a)は、X線コンピューター断層撮影法によって測定した吸水性樹脂の断面画像の模式図である。図2(b)は、図2(a)の空洞部分を埋めた模式図である。
1.吸水性樹脂
本発明の吸水性樹脂は、水溶性エチレン性不飽和単量体の重合体により構成された吸水性樹脂であって、X線コンピューター断層撮影法によって、吸水性樹脂の断面画像を観察した場合に、下記式(I)によって算出される、断面画像における空洞部分の面積の割合(空洞面積率)が、5%以上であることを特徴とする。
空洞面積率[%]={吸水性樹脂の空洞部分の総断面積(B)/(吸水性樹脂の樹脂部分の総断面積(A)+吸水性樹脂の空洞部分の総断面積(B))}×100・・・(I)
このような構成を備える本発明の吸水性樹脂は、高い吸水性と高い水の吐き出し性能とを兼ね備えており、例えば、当該吸水性樹脂を土壌などに混合すると、植物に好適に水分を供給して、植物の育成を促進し得る。以下、本発明の吸水性樹脂について、詳述する。
なお、本発明において、「吸水性樹脂の樹脂部分の総断面積」とは、例えば図2(a)の模式図に示されるように、吸水性樹脂の断面画像において、吸水性樹脂が存在している部分(着色された部分)の総断面積を意味する。また、「吸水性樹脂の空洞部分の総断面積」とは、例えば、図2(a)の模式図に示されるように、吸水性樹脂の断面画像において、吸水性樹脂中の空洞部分になっている部分(吸水性樹脂中の着色されていない部分)の総面積を意味する。
本発明の吸水性樹脂の形状としては、例えば、顆粒状、略球状、略球状の粒子が凝集した形状、不定形破砕状、不定形破砕状の粒子が凝集した形状、板状等が挙げられる。吸水性樹脂が逆相懸濁重合法や噴霧液滴重合法によって製造される場合、顆粒状や、球状や楕円球状等の略球状の粒子形状や、略球状の粒子が凝集した形状を有する吸水性樹脂が得られる。また、吸水性樹脂が水溶液重合法により製造される場合、不定形破砕状や、不定形破砕状の粒子が凝集した形状を有する吸水性樹脂が得られる。空洞面積率を制御する観点からは、吸水性樹脂の形状としては、顆粒状、略球状、または略球状の粒子が凝集した形状が好ましい。
また、X線コンピューター断層撮影法によって、吸水性樹脂の断面画像を観察した場合に、上記式(I)によって算出される、断面画像における空洞部分の面積の割合(空洞面積率)が、5%以上である。高い吸水性と高い水の吐き出し性能とを両立する観点からは、当該空洞面積率としては、好ましくは5~50%、より好ましくは5~35%、さらに好ましくは6~32%が挙げられる。
本発明の吸水性樹脂においては、当該空洞面積率が5%以上に設定されているため、吸水性樹脂の空洞部分(隙間部分)に保持される液体の量が多く、当該空洞部分に保持された液体を好適に吐き出すことができる。また、吸水性樹脂自体(空洞部分以外)については、高い吸水性を備えている。このような理由により、本発明の吸水性樹脂においては、高い吸水性と高い水の吐き出し性能とが両立されているものと考えられる。前述の通り、従来の吸水性樹脂を用いた土壌保水材などでは、吸水性樹脂が有する高い吸水性能により、土壌中に水分を保持できるものの、吸水性樹脂からの植物への水分供給性能に劣るため、例えば水分を多く必要とする植物に対する水分供給手段としては十分ではなかった。これに対して、本発明の吸水性樹脂においては、高い吸水性と高い水の吐き出し性能とを兼ね備えているため、例えば土壌中において高い保水性を発揮しつつ、植物に対して好適に水分を供給することができる。このため、本発明の吸水性樹脂は、土壌保水材、農園芸材料などとして好適に使用することができる。
本発明において、X線コンピューター断層撮影法による空洞面積率の測定は、以下のようにして行ったものである。
<X線コンピューター断層撮影法による空洞面積率の測定>
予め、JIS標準篩を用いて吸水性樹脂の粒子を分級し目開き600μmの篩を通過する目開き180μmの篩上の吸水性樹脂の粒子からランダムに4粒選択し、樹脂サンプルとする。樹脂サンプルをX線コンピューター断層撮影装置の試料台上に設置し、X線コンピューター断層撮影により断面画像データを取得する。次に、画像解析ソフトを用いて、樹脂サンプルの任意の角度の有姿や水平方向及び垂直方向の任意の断面を観察する。
このとき、試料台の設置面に対して水平方向(x方向、y方向)及び垂直方向(z方向)の任意の断面から樹脂サンプルの輪郭線上の任意の2点間の距離が最大となる水平方向又は垂直方向の断面画像を選定する。すなわち、図1の模式図に示すように、互いに直交するx方向、y方向、z方向の3方向のそれぞれについて、まず、試料台10上の樹脂サンプル11の断面画像を取得する。そして、それぞれの方向において、樹脂サンプルの粒子長w(図1,2参照)の最も長くなる断面画像(すなわち樹脂サンプルの粒子長の最も長い位置の断面画像)を1つずつ選択する。さらに、これら3つの断面画像の中から、樹脂サンプルの粒子長wの最も長かった断面画像を選択する。
次に、この断面画像を用いて空洞面積率を算出する。汎用画像処理ソフトにより、樹脂サンプルの断面積(吸水性樹脂の樹脂部分の総断面積(A))(図2(a)の模式図では、着色された部分の面積)と樹脂サンプルの断面の空洞を穴埋めした断面積(図2(b)の模式図では、着色された部分の面積)を測定する。得られた樹脂サンプルの空洞を穴埋めした断面積から、樹脂サンプルの断面積を減ずることで、樹脂サンプルの空洞部分の断面積(吸水性樹脂の空洞部分の総断面積(B))を算出し、下記式(I)により、樹脂サンプルの空洞面積率を算出する。この方法により、樹脂サンプルの空洞面積率を、4個の樹脂サンプルについて測定し、その平均値を吸水性樹脂の空洞面積率とする。
空洞面積率[%]={吸水性樹脂の空洞部分の総断面積(B)/(吸水性樹脂の樹脂部分の総断面積(A)+吸水性樹脂の空洞部分の総断面積(B))}×100・・・(I)
X線コンピューター断層撮影法による空洞面積率の測定方法のより具体的な方法は、実施例に記載のとおりである。
本発明の吸水性樹脂は、中位粒子径が200~600μmであることが好ましく、250~500μmであることがより好ましく、300~450μmであることがさらに好ましく、350~450μmであることがよりさらに好ましい。
吸水性樹脂の中位粒子径は、JIS標準篩を用いて測定することができ、具体的には、実施例に記載の方法により測定した値である。
また、高い吸水性と高い水の吐き出し性能とを両立させる観点からは、本発明の吸水性樹脂の水の荷重下保持率としては、上限は、好ましくは80%以下、より好ましくは76%以下、さらに好ましくは74%以下が挙げられ、下限は、好ましくは55%以上、より好ましくは57%以上、さらに好ましくは59%以上が挙げられる。また、当該水の荷重下保持率の範囲としては、好ましくは、55~80%、55~76%、55~74%、57~80%、57~76%、57~74%、59~80%、59~76%、59~74%が挙げられる。
吸水性樹脂の水の荷重下保持率は、水を吸水させた吸水性樹脂に21g/cm2の荷重をかけて測定されたものであり、具体的には、実施例に記載の方法により測定した値である。
本発明の吸水性樹脂は、目的に応じた添加剤を含んでいてもよい。このような添加剤としては、無機粉末、界面活性剤、酸化剤、還元剤、金属キレート剤、ラジカル連鎖禁止剤、酸化防止剤、抗菌剤、消臭剤等が挙げられる。例えば、吸水性樹脂100質量部に対し、無機粉末として0.05~5質量部の非晶質シリカを添加することで、吸水性樹脂の流動性を向上させることができる。
2.吸水性樹脂の製造方法
本発明の吸水性樹脂は、水溶性エチレン性不飽和単量体を重合させることによって製造することができる。
水溶性エチレン性不飽和単量体の重合方法は、代表的な重合法である水溶液重合法、噴霧液滴重合法、乳化重合法、逆相懸濁重合法等が用いられる。水溶液重合法では、水溶性エチレン性不飽和単量体水溶液を、必要に応じて攪拌しながら、加熱することにより重合が行われ、水溶液重合法における空洞面積率を制御する方法としては、水溶性エチレン性不飽和単量体に発泡剤等を添加する方法や水溶液重合により得られた吸水性樹脂の粒子を凝集させる方法等が挙げられる。また、逆相懸濁重合法では、水溶性エチレン性不飽和単量体を、炭化水素分散媒中、攪拌下で加熱することにより重合が行われ、逆相懸濁重合法における空洞面積率を制御する方法としては、第1段目の水溶性エチレン性不飽和単量体に発泡剤等を添加する方法や第1段目の逆相懸濁重合により得られる一次粒子の中位粒子径を制御する方法、1段目重合後の含水ゲルを更に加温する方法等が挙げられる。本発明においては、精密な重合反応制御と広範な粒子径の制御が可能な観点から逆相懸濁重合法が好ましい。
本発明の吸水性樹脂に関して、その製造方法の一例を、以下に説明する。
吸水性樹脂の製造方法としては、水溶性エチレン性不飽和単量体を炭化水素分散媒中で逆相懸濁重合させて吸水性樹脂を製造する方法において、ラジカル重合開始剤の存在下において重合を行う工程と、重合で得られた含水ゲル状物に後架橋剤の存在下に後架橋する工程とを有する製造方法が挙げられる。
なお、本発明の吸水性樹脂の製造方法においては、必要に応じて水溶性エチレン性不飽和単量体に内部架橋剤を添加して内部架橋構造を有する含水ゲル状物としてもよい。
<重合工程>
[水溶性エチレン性不飽和単量体]
水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸(本明細書においては、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。以下同様)及びその塩;2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体及びその4級化物等が挙げられる。これらの水溶性エチレン性不飽和単量体の中でも、工業的に入手が容易であること等の観点から、(メタ)アクリル酸又はその塩、(メタ)アクリルアミド、N,N-ジメチルアクリルアミドが好ましく、(メタ)アクリル酸及びその塩がより好ましい。なお、これらの水溶性エチレン性不飽和単量体は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
これらの中でも、アクリル酸及びその塩が吸水性樹脂の原材料として広く用いられており、これらアクリル酸及び/又はその塩に、前述の他の水溶性エチレン性不飽和単量体を共重合させて用いる場合もある。この場合、アクリル酸及び/又はその塩は、主となる水溶性エチレン性不飽和単量体として、総水溶性エチレン性不飽和単量体に対して70~100モル%用いられることが好ましい。
水溶性エチレン性不飽和単量体は、水溶液の状態で炭化水素分散媒中に分散されて、逆相懸濁重合に供されるのが好ましい。水溶性エチレン性不飽和単量体は、水溶液とすることにより、炭化水素分散媒中での分散効率を上昇させることができる。この水溶液における水溶性エチレン性不飽和単量体の濃度としては、20質量%~飽和濃度の範囲であることが好ましい。また、水溶性エチレン性不飽和単量体の濃度としては、55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、45質量%以下であることがよりさらに好ましい。一方、水溶性エチレン性不飽和単量体の濃度としては25質量%以上であることがより好ましく、28質量%以上であることがさらに好ましく、30質量%以上であることがよりさらに好ましい。
水溶性エチレン性不飽和単量体が、(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のように酸基を有する場合、必要に応じてその酸基が予めアルカリ性中和剤により中和されたものを用いてもよい。このようなアルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニア等が挙げられる。また、これらのアルカリ性中和剤は、中和操作を簡便にするために水溶液の状態にして用いてもよい。なお、上述したアルカリ性中和剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
アルカリ性中和剤による水溶性エチレン性不飽和単量体の中和度としては、水溶性エチレン性不飽和単量体が有する全ての酸基に対する中和度として、10~100モル%であることが好ましく、30~90モル%であることがより好ましく、40~85モル%であることがさらに好ましく、50~80モル%であることがよりさらに好ましい。
[ラジカル重合開始剤]
当該重合工程に添加されるラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物類、並びに、2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス〔2-(N-フェニルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス〔2-(N-アリルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス{2-〔1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル〕プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-〔1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル〕プロピオンアミド}、2,2’-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物等を挙げることができる。これらのラジカル重合開始剤の中でも、入手が容易で取り扱いやすいという観点から、好ましくは、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム及び2,2-アゾビス(2-アミジノプロパン)2塩酸塩が挙げられる。これらラジカル重合開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
また、前記ラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、及びL-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。
ラジカル重合開始剤の使用量としては、特に制限されないが、例えば、水溶性エチレン性不飽和単量体1モルに対して0.00005~0.01モルが挙げられる。このような使用量を充足することにより、急激な重合反応が起こるのを回避し、且つ重合反応を適切な時間で完了させることができる。
[内部架橋剤]
内部架橋剤としては、使用する水溶性エチレン性不飽和単量体の重合体を架橋できるものが挙げられ、例えば、(ポリ)エチレングリコール〔「(ポリ)」とは「ポリ」の接頭語がある場合とない場合を意味する。以下同様〕、(ポリ)プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、(ポリ)グリセリン等のジオール、トリオール等のポリオール類と(メタ)アクリル酸、マレイン酸、フマル酸等の不飽和酸とを反応させて得られる不飽和ポリエステル類;N,N-メチレンビスアクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ(メタ)アクリル酸エステル類又はトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N’’-トリアリルイソシアネート、ジビニルベンゼン等の重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジル化合物、トリグリシジル化合物等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物等が挙げられる。これらの内部架橋剤の中でも、ポリグリシジル化合物を用いることが好ましく、ジグリシジルエーテル化合物を用いることがより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテルを用いることが好ましい。これらの内部架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
内部架橋剤の使用量としては、水溶性エチレン性不飽和単量体1モルに対して、0.000001~0.02モルであることが好ましく、0.00001~0.01モルであることがより好ましく、0.00001~0.005モルであることがさらに好ましく、0.00001~0.002モルであることがよりさらに好ましい。
[炭化水素分散媒]
炭化水素分散媒としては、例えば、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の炭素数6~8の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらの炭化水素分散媒の中でも、特に、工業的に入手が容易であり、品質が安定しており且つ安価である点で、n-ヘキサン、n-ヘプタン、シクロヘキサンが好適に用いられる。これらの炭化水素分散媒は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。なお、炭化水素分散媒の混合物の例としては、エクソールヘプタン(エクソンモービル社製:ヘプタン及びその異性体の炭化水素75~85質量%含有)等の市販品が挙げられる。このような混合物を用いても好適な結果を得ることができる。
炭化水素分散媒の使用量としては、水溶性エチレン性不飽和単量体を均一に分散し、重合温度の制御を容易にする観点から、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、100~1500質量部であることが好ましく、200~1400質量部であることがより好ましい。なお、後述するが、逆相懸濁重合は、1段(単段)もしくは2段以上の多段で行われ、上述した第1段目の重合とは、単段重合もしくは多段重合における1段目の重合反応を意味する(以下も同様)。
[分散安定剤]
(界面活性剤)
逆相懸濁重合では、水溶性エチレン性不飽和単量体の炭化水素分散媒中での分散安定性を向上させるために、分散安定剤を用いることもできる。その分散安定剤としては、界面活性剤を用いることができる。
界面活性剤としては、例えば、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N-アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテルのリン酸エステル、ポリオキシエチレンアルキルアリルエーテルのリン酸エステル等を用いることができる。これらの界面活性剤の中でも、特に、単量体の分散安定性の面から、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステルを用いることが好ましい。これらの界面活性剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
界面活性剤の使用量としては、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、好ましくは0.1~30質量部であることが好ましく、0.3~20質量部であることがより好ましい。
(高分子系分散剤)
また、逆相懸濁重合で用いられる分散安定剤としては、上述した界面活性剤と共に、高分子系分散剤を併せて用いてもよい。
高分子系分散剤としては、例えば、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。これらの高分子系分散剤の中でも、特に、単量体の分散安定性の面から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体を用いることが好ましい。これらの高分子系分散剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
高分子系分散剤の使用量としては、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、0.1~30質量部であることが好ましく、0.3~20質量部であることがより好ましい。
[その他の成分]
吸水性樹脂の製造方法において、所望によりその他の成分を、水溶性エチレン性不飽和単量体を含む水溶液に添加して逆相懸濁重合を行うようにしてもよい。その他の成分としては、増粘剤、発泡剤、連鎖移動剤等の各種の添加剤を添加することができる。
(増粘剤)
一例として、水溶性エチレン性不飽和単量体を含む水溶液に対して増粘剤を添加して逆相懸濁重合を行うことができる。このように増粘剤を添加して水溶液粘度を調製することによって、逆相懸濁重合において得られる中位粒子径を制御することが可能である。
増粘剤としては、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸、ポリアクリル酸(部分)中和物、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等を用いることができる。なお、重合時の攪拌速度が同じであれば、水溶性エチレン性不飽和単量体水溶液の粘度が高いほど得られる粒子の一次粒子及び/又は二次粒子の中位粒子径は大きくなる傾向にある。
(発泡剤)
一例として、水溶性エチレン性不飽和単量体を含む水溶液に対して発泡剤を添加して逆相懸濁重合を行うことができる。このように発泡剤を添加して水溶液に気泡を含有させることによって、逆相懸濁重合において得られる粒子の空洞面積率を制御することが可能である。発泡剤としては、例えば、炭酸塩、炭酸水素塩等の各種発泡剤等を用いることができる。
[逆相懸濁重合]
逆相懸濁重合を行うにあたっては、例えば、分散安定剤の存在下に、水溶性エチレン性不飽和単量体を含む単量体水溶液を、炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、分散安定剤(界面活性剤や高分子系分散剤)の添加時期は、単量体水溶液を炭化水素分散媒に分散させる前後どちらであってもよい。
その中でも、得られる吸水性樹脂に残存する炭化水素分散媒量を低減しやすいという観点から、高分子系分散剤を分散させた炭化水素分散媒に、単量体水溶液を分散させた後に、さらに界面活性剤を分散させてから重合を行うことが好ましい。
このような逆相懸濁重合を、1段もしくは2段以上の多段で行うことが可能である。また、生産性を高める観点から2~3段で行うことが好ましい。
2段以上の多段で逆相懸濁重合を行う場合には、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物に水溶性エチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、水溶性エチレン性不飽和単量体の他に、ラジカル重合開始剤を、2段目以降の各段における逆相懸濁重合の際に添加する水溶性エチレン性不飽和単量体の量を基準として、上述した水溶性エチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。なお、2段目以降の重合においても、必要に応じて、水溶性エチレン性不飽和単量体に内部架橋剤を添加してもよい。
重合反応の反応温度としては、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めるとともに、容易に重合熱を除去して円滑に反応を行わせる観点から、20~110℃であることが好ましく、40~90℃であることがより好ましい。
本発明の吸水性樹脂の製造方法では、必要に応じて、第1段目の逆相懸濁重合後の炭化水素分散媒中に含水ゲルが分散している系内を熱等のエネルギーを外部から加えることにより加温及び/又は含水ゲルを脱水してもよい。系内を加温する場合の加温温度としては、50~100℃であることが好ましく、60~90℃であることがより好ましい。また、加温時間としては、0.1~3時間であることが好ましい。
また、含水ゲルから脱水を行なう場合、炭化水素分散媒と水との共沸蒸留により炭化水素分散媒を系内に還流しながら、系内の水を系外に留去する。留去後の含水ゲルの水分率としては、水溶性エチレン性不飽和単量体100質量部に対して、1~200質量部の範囲であることが好ましく、10~180質量部の範囲がより好ましく、30~160質量部の範囲がさらに好ましく、60~140質量部の範囲がよりさらに好ましい。脱水を行なう場合の加温温度としては、70~180℃であることが好ましく、80~160℃であることがより好ましく、90~140℃であることがさらに好ましく、100~130℃であることがよりさらに好ましい。
また、単量体水溶液の攪拌操作においては、周知の各種攪拌翼を用いて行うことができる。具体的に、攪拌翼としては、例えば、プロペラ翼、パドル翼、アンカー翼、タービン翼、ファウドラー翼、リボン翼、フルゾーン翼(神鋼パンテック株式会社製)、マックスブレンド翼(住友重機械工業株式会社製)、スーパーミックス翼(サタケ化学機械工業株式会社製)等を使用することができる。第1段目の逆相懸濁重合時の攪拌速度を調整することによって、1段目の重合において得られる一次粒子の中位粒子径を制御することができる。攪拌速度は、例えば、攪拌回転数を調整することで調整可能である。
本発明の吸水性樹脂の製造方法において、前述の空洞面積率は、例えば、逆相懸濁重合時の水溶性エチレン性不飽和単量体中に添加するラジカル重合開始剤量及び内部架橋剤量の調整、第1段目重合時の一次粒子の中位粒子径を制御、第1段目の重合後の含水ゲルの加温及び/又は脱水などにより制御でき、5%以上とすることが可能である。なお、これらの操作は、単独又は複数組み合わせて行なってもよい。
<後架橋工程>
本発明の吸水性樹脂は、水溶性エチレン性不飽和単量体を重合して得られた内部架橋構造を有する含水ゲル状物に対して、後架橋剤で後架橋すること(後架橋反応)で得てもよい。この後架橋反応は、水溶性エチレン性不飽和単量体の重合後以降に後架橋剤の存在下に行うことが好ましい。このように、重合後以降に、内部架橋構造を有する含水ゲル状物に対して後架橋反応を施すことによって、吸水性樹脂の表面近傍の架橋密度を高めて、荷重下吸水能等の諸性能を高めた吸水性樹脂を得ることができる。
後架橋剤としては、反応性官能基を2個以上有する化合物を挙げることができる。例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。これらの後架橋剤の中でも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物が好ましい。これらの後架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
後架橋剤の使用量としては、重合に使用した水溶性エチレン性不飽和単量体1モルに対して、0.00001~0.01モルであることが好ましく、0.00005~0.005モルであることがより好ましく、0.0001~0.002モルであることがさらに好ましい。なお、2段以上の多段で逆相懸濁重合を行う場合、後架橋剤の使用量の基準となる水溶性エチレン性不飽和単量体の量は、各段で使用した水溶性エチレン性不飽和単量体の総量である。
後架橋剤の添加方法としては、後架橋剤をそのまま添加しても、水溶液として添加してもよいが、必要に応じて、溶媒として親水性有機溶媒を用いた溶液として添加してもよい。親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等の低級アルコール類;アセトン、メチルエチルケトン等のケトン類;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類等が挙げられる。これら親水性有機溶媒は、単独で用いてもよく、2種類以上を組み合わせて、又は水との混合溶媒として用いてもよい。
後架橋剤の添加時期としては、水溶性エチレン性不飽和単量体の重合反応がほぼすべて終了した後であればよい。後架橋剤は、水溶性エチレン性不飽和単量体100質量部に対して、1~400質量部の範囲の水分存在下に添加することが好ましく、5~200質量部の範囲の水分存在下に添加することがより好ましく、10~100質量部の範囲の水分存在下に添加することがさらに好ましく、20~60質量部の範囲の水分存在下に添加することがよりさらに好ましい。なお、水分の量は、反応系に含まれる水分と後架橋剤を添加する際に必要に応じて用いられる水分との合計量を意味する。
後架橋反応における反応温度としては、50~250℃であることが好ましく、60~180℃であることがより好ましく、60~140℃であることがさらに好ましく、70~120℃であることがよりさらに好ましい。また、後架橋反応の反応時間としては、1~300分間であることが好ましく、5~200分間であることがより好ましい。
<乾燥工程>
本発明の吸水性樹脂の製造方法は、上述した逆相懸濁重合を行った後、系に熱等のエネルギーを外部から加えることで、水、炭化水素分散媒等を蒸留により系から除去する乾燥工程を含んでいてもよい。逆相懸濁重合後の含水ゲルから脱水を行う場合、炭化水素分散媒中に含水ゲルが分散している系を加熱することで、水と炭化水素分散媒を共沸蒸留により系外に一旦留去する。このとき、留去した炭化水素分散媒のみを系内へ返送すると、連続的な共沸蒸留が可能となる。その場合、乾燥中の系内の温度が、炭化水素分散媒との共沸温度以下に維持されるため、樹脂が劣化しにくい。引き続き、水及び炭化水素分散媒を留去することにより、吸水性樹脂の粒子が得られる。この重合後における乾燥工程の処理条件を制御して脱水量を調整することにより、得られる吸水性樹脂の諸性能を制御することが可能である。
乾燥工程では乾燥処理を常圧下で行ってもよく、減圧下で行ってもよい。また、乾燥効率を高める観点から、窒素等の気流下で行ってもよい。乾燥処理を常圧下で行う場合においては、乾燥温度としては、70~250℃であることが好ましく、80~180℃であることがより好ましく、80~140℃であることがさらに好ましく、90~130℃であることがよりさらに好ましい。また、乾燥処理を減圧下で行う場合においては、乾燥温度としては、40~160℃であることが好ましく、50~110℃であることがより好ましい。
なお、逆相懸濁重合により単量体の重合を行った後に後架橋剤による後架橋工程を行った場合には、その後架橋工程の終了後に、上述した乾燥工程を行うことが好ましい。
また、必要に応じて、吸水性樹脂に対し、重合後、乾燥中又は乾燥後に、キレート剤、還元剤、酸化剤、抗菌剤、消臭剤のような種々の添加剤を添加してもよい。
3.土壌保水材、農園芸材料
本発明の吸水性樹脂は、高い吸水性と高い水の吐き出し性能とを兼ね備えているため、例えば、土壌保水材、農園芸材料などとして好適に使用することができる。
本発明の吸水性樹脂を土壌保水材として用いる場合の具体的な使用態様としては、特に制限されないが、例えば、本発明の吸水性樹脂を土や肥料などと混合することによって土壌保水能を高めた園芸用土などの農園芸材料としてもよい。当該農園芸材料は、本発明の吸水性樹脂を含んでおり、例えば本発明の吸水性樹脂によって保水性が高められた園芸用土として用いてもよいし、当該農園芸材料を土壌保水材として用いてもよい。農園芸材料中における本発明の吸水性樹脂の含有量としては、特に制限されず、栽培する植物の種類や、植物の栽培環境などに応じて適宜設定すればよい。
また、植物を栽培する土地や鉢などに本発明の吸水性樹脂を直接混合して土壌保水能を高めることもできる。このような使用態様においては、本発明の吸水性樹脂を土壌保水材とし、植物を栽培する土地や鉢などに本発明の吸水性樹脂を混合して用いる。このような使用態様においても、本発明の吸水性樹脂の使用量としては、特に制限されず、栽培する植物の種類や、植物の栽培環境などに応じて適宜設定すればよい。
以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。
なお、下記の実施例及び比較例で得られた吸水性樹脂は、以下の各種試験で評価した。以下、各評価試験方法について説明する。
<X線コンピューター断層撮影法による空洞面積率の測定>
予め、JIS標準篩を用いて吸水性樹脂の粒子を分級し目開き600μmの篩を通過する目開き180μmの篩上の吸水性樹脂の粒子からランダムに4粒選択し、樹脂サンプルとした。樹脂サンプルをX線コンピューター断層撮影装置(Xradia社製、MicroXCT-400)の試料台上に設置し、X線コンピューター断層撮影により断面画像データを取得した。次に、画像解析ソフト(Volume Graphics社製、myVGL)を用いて、樹脂サンプルの任意の角度の有姿や水平方向及び垂直方向の任意の断面を観察した。
このとき、試料台の設置面に対して水平方向(x方向、y方向)及び垂直方向(z方向)の任意の断面から樹脂サンプルの輪郭線上の任意の2点間の距離が最大となる水平方向又は垂直方向の断面画像を選定した。すなわち、図1の模式図に示すように、互いに直交するx方向、y方向、z方向の3方向のそれぞれについて、まず、試料台10上の樹脂サンプル11の断面画像を取得した。そして、それぞれの方向において、樹脂サンプルの粒子長w(図1,2参照)の最も長くなる断面画像(すなわち樹脂サンプルの粒子長の最も長い位置の断面画像)を1つずつ選択した。さらに、これら3つの断面画像の中から、樹脂サンプルの粒子長wの最も長かった断面画像を選択した。
さらに詳細に説明すると、まず、試料台の設置面に対して、y方向からyの位置をシフトさせることにより、樹脂サンプルのスライス断面(z-x断面)を観察していき、樹脂サンプルの粒子長w(図1,2参照)が最も長くなるz-x断面を取得した。同様の方法で、x方向、z方向からの樹脂サンプルの粒子長が最も長くなる断面(z-y断面、x-y断面)を取得した。そして、これらの3つの断面の中から、樹脂サンプルの粒子長wが最も長かった断面を選択した。
次に、この断面画像を用いて空洞面積率を算出した。汎用画像処理ソフト(ナノシステム株式会社、NanoHunter NS2K-Pro/Lt)により、樹脂サンプルの断面積(吸水性樹脂の樹脂部分の総断面積(A))(図2(a)の模式図では、着色された部分の面積)と樹脂サンプルの断面の空洞を穴埋めした断面積(図2(b)の模式図では、着色された部分の面積)を測定した。得られた樹脂サンプルの空洞を穴埋めした断面積から、樹脂サンプルの断面積を減ずることで、樹脂サンプルの空洞部分の断面積(吸水性樹脂の空洞部分の総断面積(B))を算出し、下記式(I)により、樹脂サンプルの空洞面積率を算出した。この方法により、樹脂サンプルの空洞面積率を、4個の樹脂サンプルについて測定し、その平均値を吸水性樹脂の空洞面積率とした。
空洞面積率[%]={吸水性樹脂の空洞部分の総断面積(B)/(吸水性樹脂の樹脂部分の総断面積(A)+吸水性樹脂の空洞部分の総断面積(B))}×100・・・(I)
以下は、X線コンピューター断層撮影の条件である。
装置:MicroXCT-400(Xradia社)
X線管電圧:80kV
X線管電流:122μA
光学レンズ:10倍
照射時間:0.8sec
ピクセルサイズ:2.149μm
X線源-試料間距離:29.1533mm
検出器-試料間距離:7.3723mm
撮影範囲:-90°~90°
画像解析装置:myVGL2.2(Volume Graphics社)
<中位粒子径>
JIS標準篩を上から、目開き850μmの篩、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き150μmの篩、及び受け皿の順に組み合わせた。
組み合わせた最上の篩に、吸水性樹脂50gを入れ、ロータップ式振とう器を用いて20分間振とうさせて分級した。分級後、各篩上に残った吸水性樹脂の質量を全量に対する質量百分率として算出し、粒度分布を求めた。この粒度分布に基づき目開きの大きい方から順に篩上に残った吸水性樹脂の質量百分率を積算することにより、篩の目開きと篩上に残った吸水性樹脂の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。
<生理食塩水保水能>
500ml容のビーカーに、0.9質量%塩化ナトリウム水溶液(生理食塩水)500gを量り取り、マグネチックスターラーバー(8mmφ×30mmのリングなし)で攪拌回転数600rpmにて撹拌しながら、吸水性樹脂2.0±0.001gを、ママコが発生しないように分散させた。撹拌した状態で30分間放置し、吸水性樹脂を十分に膨潤させた。その後、綿袋(メンブロード60番、横100mm×縦200mm)中に注ぎ込み、綿袋の上部を輪ゴムで縛り、遠心力が167Gとなるよう設定した脱水機(国産遠心機株式会社製、品番:H-122)を用いて綿袋を1分間脱水し、脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定した。吸水性樹脂を添加せずに同様の操作を行ない、綿袋の湿潤時の空質量Wb(g)を測定し、以下の式から吸水性樹脂の生理食塩水保水能を算出した。
生理食塩水保水能(g/g)=[Wa-Wb](g)/吸水性樹脂の質量(g)
<水の荷重下保持率の測定>
水の荷重下保持率の測定は、25℃±1℃に調節した室内で行った。恒温水槽にて25℃の温度に調整した水200g(蒸留水、ADVANTEC社製RFD343HA使用)を200ml容のビーカーに入れ、マグネチックスターラーバー(8mmφ×30mmのリングなし)で攪拌回転数600rpmにて攪拌しながら、吸水性樹脂0.05±0.001gを、ママコが発生しないように分散させた。撹拌した状態で60分間放置し、吸水性樹脂を十分に膨潤させた。
次に、400メッシュのステンレスメッシュを底部に張り付けた内径60mm、高さ70mmの円筒の質量(W0)を測定し、前記ビーカー内容物の全量をその円筒に流し入れ、太さ1mm、網目1.5mmの金網上で1分間水きりを行ない、1分間水きり後の円筒(水きりを行った吸水性樹脂を含む)の質量(W1)を測定した。そして、W0およびW1から、次式に従い1分間水きり後の吸水倍率を算出した。
1分間水きり後の吸水倍率(g/g)={[W1-(W0+吸水性樹脂の質量)]/吸水性樹脂の質量}×100
次に、水切りを行なった後の吸水性樹脂に21g/cm2の荷重を均一に加えることのできる重りをのせ、再度、金網上で15分間水きりを行ない、荷重下水きり後の円筒(荷重下水きり後の吸水性樹脂を含む)の質量(W2)を測定した。そして、W2およびW0から、次式に従い吸水性樹脂の15分間荷重下水きり後の吸水倍率を算出した。
15分間荷重下水きり後の吸水倍率(g/g)={[W2-(W0+吸水性樹脂の質量)]/吸水性樹脂の質量}×100
これら、1分間水きり後の吸水倍率および15分間荷重下水きり後の吸水倍率から水の荷重下保持率を算出した。
水の荷重下保持率(%)={(15分間荷重下水きり後の吸水倍率)/(1分間水きり後の吸水倍率)}×100
<植物の生育試験>
回転子入り1000mlビーカーに、水500gを加え、マグネチックスターラーで攪拌しながら、吸水性樹脂0.3gを渦中に投入し、1時間攪拌した。攪拌後の吸水性樹脂を100メッシュのステンレス篩で濾過し、10分間水切りを行なった。水切り後の吸水性樹脂50gと市販の家庭菜園用土壌(自然応用科学株式会社製ACE(エース)花と野菜の培養土)50gを混合し、内径95mm、高さ15mmのシャーレに入れ、その上に市販の種子(カネコ種苗株式会社製スプラウトかいわれ大根)を10粒散布した。このシャーレを25℃の恒温室に7日間放置し、各種子の生育状態を観察した。そして、各種子の生育した苗の生育長さの最も長い苗2本と最も短い苗2本を除いた6本の苗の生育長さの平均を、苗の平均生育長さ(cm)とした。
<吸水性樹脂の製造>
(実施例1)
還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径50mmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径110mm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン300gをとり、界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.74g、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.74gを添加し、攪拌しつつ80℃まで昇温して界面活性剤を溶解した後、50℃まで冷却した。
一方、500mL容の三角フラスコに80質量%のアクリル酸水溶液92g(1.02モル)をとり、外部より冷却しつつ、21質量%の水酸化ナトリウム水溶液146.0gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.11g(0.00041モル)および内部架橋剤としてエチレングリコールジグリシジルエーテル0.0064g(0.000037モル)を加えて溶解し、モノマー水溶液を調製した。
そして、攪拌機の回転数を600rpmとして、上述のように調製したモノマー水溶液をセパラブルフラスコに添加して、系内を窒素で十分に置換した後、前記フラスコを70℃の水浴に浸して昇温し、重合を開始させた。次いで、系内の温度が重合のピーク温度(80~90℃)に達した時点で、前記撹拌の回転数を1000rpmに変更し、125℃の油浴で前記フラスコを加熱し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを還流しながら23gの水を系外へ抜き出し、第1段目の重合スラリー液を得た。
一方、別の500mL容の三角フラスコに80質量%のアクリル酸水溶液128.8g(1.43モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.11g(0.00041モル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.000067モル)を加えて溶解し、第2段目のモノマー水溶液を調製した。
そして、上述のセパラブルフラスコ系内を冷却した後、第2段目のモノマー水溶液の全量を、第1段目の重合スラリー液に添加して27℃とした系内を窒素で十分に置換した後、再度、前記フラスコを70℃の水浴に浸漬して昇温し、第2段目の重合を30分間行った。
第2段目の重合後、前記フラスコを125℃の油浴に浸して第2段目の重合スラリー液を加熱し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを系内に還流しながら227gの水を系外へ抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテルの2質量%水溶液4.42g(0.51ミリモル)を添加し、80℃で120分間保持した。その後、n-ヘプタンを蒸発させて乾燥することにより、樹脂粉末を得た。この樹脂粉末を目開き850μmのふるいに通過させ、球状粒子が凝集した中位粒子径380μmの吸水性樹脂236.0gを得た。
(実施例2)
還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径50mmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径110mm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン300gをとり、界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.74g、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.74gを添加し、攪拌しつつ80℃まで昇温して界面活性剤を溶解した後、50℃まで冷却した。
一方、500mL容の三角フラスコに80質量%のアクリル酸水溶液92g(1.02モル)をとり、外部より冷却しつつ、21質量%の水酸化ナトリウム水溶液146.0gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.11g(0.00041モル)および内部架橋剤としてエチレングリコールジグリシジルエーテル0.0064g(0.000037モル)を加えて溶解し、モノマー水溶液を調製した。
そして、攪拌機の回転数を500rpmとして、上述のように調製したモノマー水溶液をセパラブルフラスコに添加して、系内を窒素で十分に置換した後、前記フラスコを70℃の水浴に浸して昇温し、重合を開始させた。次いで、系内の温度が重合のピーク温度(80~90℃)に達した時点で、前記撹拌の回転数を1000rpmに変更し、125℃の油浴で前記フラスコを加熱し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを系内に還流しながら92gの水を系外へ抜き出し、第1段目の重合スラリー液を得た。
一方、別の500mL容の三角フラスコに80質量%のアクリル酸水溶液128.8g(1.43モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.11g(0.00041モル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.000067モル)を加えて溶解し、第2段目のモノマー水溶液を調製した。
そして、上述のセパラブルフラスコ系内を冷却した後、第2段目のモノマー水溶液の全量を、第1段目の重合スラリー液に添加して27℃とした系内を窒素で十分に置換した後、再度、前記フラスコを70℃の水浴に浸漬して昇温し、第2段目の重合を30分間行った。
第2段目の重合後、前記フラスコを125℃の油浴に浸して第2段目の重合スラリー液を加熱し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを系内に還流しながら144gの水を系外へ抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテルの2質量%水溶液4.42g(0.51ミリモル)を添加し、80℃で120分間保持した。その後、n-ヘプタンを蒸発させて乾燥することにより、樹脂粉末を得た。この樹脂粉末を目開き850μmのふるいに通過させ、球状粒子が凝集した中位粒子径380μmの吸水性樹脂240.0gを得た。
(実施例3)
還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径50mmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径110mm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン300gをとり、界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.74g、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.74gを添加し、攪拌しつつ80℃まで昇温して界面活性剤を溶解した後、50℃まで冷却した。
一方、500mL容の三角フラスコに80質量%のアクリル酸水溶液92g(1.02モル)をとり、外部より冷却しつつ、21質量%の水酸化ナトリウム水溶液146.0gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.11g(0.00041モル)および内部架橋剤としてエチレングリコールジグリシジルエーテル0.0064g(0.000037モル)を加えて溶解し、モノマー水溶液を調製した。
そして、攪拌機の回転数を600rpmとして、上述のように調製したモノマー水溶液をセパラブルフラスコに添加して、系内を窒素で十分に置換した後、前記フラスコを70℃の水浴に浸して昇温し、重合を開始させた。次いで、系内の温度が重合のピーク温度(80~90℃)に達した時点から、水浴の設定を80℃とし、60分間加温することにより第1段目の重合スラリー液を得た。
一方、別の500mL容の三角フラスコに80質量%のアクリル酸水溶液128.8g(1.43モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.129g(0.475ミリモル)、および内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を加えて溶解し、第2段目のモノマー水溶液を調製した。
前記撹拌機の回転数を1000rpmに変更した後、上述のセパラブルフラスコ系内を冷却し、第2段目のモノマー水溶液の全量を第1段目の重合スラリー液に添加して27℃とした系内を窒素で十分に置換した後、再度、前記フラスコを70℃の水浴に浸漬して昇温し、第2段目の重合を30分間行った。第2段目の重合後、前記フラスコを125℃の油浴に浸して第2段目の重合スラリー液を加熱し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを系内に還流しながら224gの水を系外へ抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテルの2質量%水溶液4.42g(0.51ミリモル)を添加し、80℃で120分間保持した。その後、n-ヘプタンを蒸発させて乾燥することにより、樹脂粉末を得た。この樹脂粉末を目開き850μmのふるいに通過させ、球状粒子が凝集した中位粒子径390μmの吸水性樹脂239.0gを得た。
(実施例4)
還流冷却器、滴下ロート、窒素ガス導入管、撹拌機として翼径50mmの4枚傾斜パドル翼を2段で有する撹拌翼(フッ素樹脂を表面にコートしたもの)を備えた内径100mmの丸底円筒型セパラブルフラスコを準備した。このフラスコにn-ヘプタン479gをとり、界面活性剤としてのHLB9.6のヘキサグリセリンジエステル(阪本薬品工業株式会社、SYグリスターSS-5S)1.10gを添加し、50℃まで昇温して界面活性剤を溶解したのち、40℃まで冷却した。
一方、500mLの三角フラスコに80.5質量%のアクリル酸水溶液92g(1.03モル)を入れ、これを氷冷しながら20.9質量%水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行なったのち、過硫酸カリウム0.10g(0.00037モル)を加えて溶解し、モノマー水溶液を調製した。撹拌機の回転数を900rpmとして、前記モノマー水溶液を前記セパラブルフラスコに添加して、系内を窒素で十分に置換した後、70℃の水浴に浸漬して昇温し、重合反応を1時間行うことにより、重合スラリー液を得た。
次いで、前記攪拌の回転数を1000rpmに変更した後、前記フラスコを125℃の油浴で前記フラスコを加熱し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを系内に還流しながら90gの水を系外へ抜き出した後、後架橋剤として2質量%のエチレングリコールジグリシジルエーテル4.14g(0.00048モル)を添加し、80℃で120分間保持した。その後、n-へプタンを蒸発させて乾燥することにより、樹脂粉末を得た。この樹脂粉末を目開き850μmのふるいに通過させ、顆粒状の吸水性樹脂を90.7g得た。得られた吸水性樹脂の中位粒子径は360μmであった。
(比較例1)
還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径50mmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径110mm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン300gをとり、界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.74g、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.74gを添加し、攪拌しつつ80℃まで昇温して界面活性剤を溶解した後、50℃まで冷却した。
一方、500mL容の三角フラスコに80質量%のアクリル酸水溶液92g(1.02モル)をとり、外部より冷却しつつ、21質量%の水酸化ナトリウム水溶液146.0gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.11g(0.00041モル)および内部架橋剤としてエチレングリコールジグリシジルエーテル0.0064g(0.000037モル)を加えて溶解し、モノマー水溶液を調製した。
そして、攪拌機の回転数を500rpmとして、上述のように調製したモノマー水溶液をセパラブルフラスコに添加して、系内を窒素で十分に置換した後、前記フラスコを70℃の水浴に浸して昇温し、重合を開始させた。次いで、系内の温度が重合のピーク温度(80~90℃)に達した時点から、水浴の設定を80℃とし、60分間加温することにより第1段目の重合スラリー液を得た。
一方、別の500mL容の三角フラスコに80質量%のアクリル酸水溶液128.8g(1.43モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.129g(0.475ミリモル)、および内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を加えて溶解し、第2段目のモノマー水溶液を調製した。
前記撹拌の回転数を1000rpmに変更した後、上述のセパラブルフラスコ系内を冷却し、第2段目のモノマー水溶液の全量を、第1段目の重合スラリー液に添加して27℃とした系内を窒素で十分に置換した後、再度、前記フラスコを70℃の水浴に浸漬して昇温し、第2段目の重合を30分間行った。第2段目の重合後、前記フラスコを125℃の油浴に浸して第2段目の重合スラリー液を加熱し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを還流しながら239gの水を系外へ抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテルの2質量%水溶液4.42g(0.51ミリモル)を添加し、80℃で120分間保持した。その後、n-ヘプタンを蒸発させて乾燥することにより、樹脂粉末を得た。この樹脂粉末を目開き850μmのふるいに通過させ、球状粒子が凝集した中位粒子径400μmの吸水性樹脂244.0gを得た。
(比較例2)
還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径50mmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径110mm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン300gをとり、界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.74g、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.74gを添加し、攪拌しつつ80℃まで昇温して界面活性剤を溶解した後、50℃まで冷却した。
一方、500mL容の三角フラスコに80質量%のアクリル酸水溶液92g(1.02モル)をとり、外部より冷却しつつ、21質量%の水酸化ナトリウム水溶液146.0gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.11g(0.00041モル)および内部架橋剤としてエチレングリコールジグリシジルエーテル0.0064g(0.000037モル)を加えて溶解し、モノマー水溶液を調製した。
そして、攪拌機の回転数を500rpmとして、上述のように調製したモノマー水溶液をセパラブルフラスコに添加して、系内を窒素で十分に置換した後、前記フラスコを70℃の水浴に浸して昇温し、重合を開始させた。次いで、系内の温度が重合のピーク温度(80~90℃)に達した時点で、前記撹拌の回転数を1000rpmに変更し、125℃の油浴で前記フラスコを加熱し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを系内に還流しながら46gの水を系外へ抜き出し、第1段目の重合スラリー液を得た。
一方、別の500mL容の三角フラスコに80質量%のアクリル酸水溶液128.8g(1.43モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.11g(0.00041モル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.000067モル)を加えて溶解し、第2段目のモノマー水溶液を調製した。
そして、上述のセパラブルフラスコ系内を冷却した後、第2段目のモノマー水溶液の全量を、第1段目の重合スラリー液に添加して27℃とした系内を窒素で十分に置換した後、再度、前記フラスコを70℃の水浴に浸漬して昇温し、第2段目の重合を30分間行った。
第2段目の重合後、前記フラスコを125℃の油浴に浸して第2段目の重合スラリー液を加熱し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを系内に還流しながら213gの水を系外へ抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテルの2質量%水溶液4.42g(0.51ミリモル)を添加し、80℃で120分間保持した。その後、n-ヘプタンを蒸発させて乾燥することにより、樹脂粉末を得た。この樹脂粉末を目開き850μmのふるいに通過させ、球状粒子が凝集した中位粒子径360μmの吸水性樹脂238.0gを得た。
実施例及び比較例で製造した吸水性樹脂とそれらを用いた吸収性物品を上述の各評価試験方法により評価した結果を表1に示す。
Figure 0007288399000001
表1に示される結果から明らかな通り、前述の式(I)によって算出される空洞部分の面積の割合(空洞面積率)が5%以上である、実施例1-4の吸水性樹脂は、高い吸水性を備えているが、水の荷重下保持が高すぎず、高い水の吐き出し性能を備えており、土壌に配合されることによって、植物を好適に生育させることが分かる。
10 試料台
11 吸水性樹脂
w 粒子長

Claims (4)

  1. 水溶性エチレン性不飽和単量体の重合体により構成された吸水性樹脂であって、
    前記吸収性樹脂のJIS標準篩によって測定される中位粒子径は、200~600μmであり、
    X線コンピューター断層撮影法によって、前記吸水性樹脂の断面画像を観察した場合に、下記式(I)によって算出される(但し、JIS標準篩を用いて前記吸水性樹脂の粒子を分級し目開き600μmの篩を通過する目開き180μmの篩上の吸水性樹脂の粒子からランダムに4粒選択することで樹脂サンプルを選択し、前記樹脂サンプルの粒子長wの最も長くなる断面画像を1つずつ選択し、これら3つの断面画像の中から、前記樹脂サンプルの粒子長wの最も長かった断面画像を選択し、この断面画像を用いて前記空洞面積率を算出する。)、前記断面画像における空洞部分の面積の割合(空洞面積率)が、11~32%であり、
    前記吸水性樹脂が、顆粒状若しくは略球状である吸水性樹脂粒子の非凝集体、または略球状の吸水性樹脂粒子の凝集体である、吸水性樹脂。
    空洞面積率[%]={吸水性樹脂の空洞部分の総断面積(B)/(吸水性樹脂の樹脂部分の総断面積(A)+吸水性樹脂の空洞部分の総断面積(B))}×100・・・(I)
  2. 前記吸水性樹脂の水の荷重下保持率が、75%以下である、請求項1に記載の吸水性樹脂。
  3. 請求項1又は2に記載の吸水性樹脂を含む、土壌保水材。
  4. 請求項1又は2に記載の吸水性樹脂を含む、農園芸材料。
JP2019503141A 2017-03-02 2018-03-02 吸水性樹脂、土壌保水材、及び農園芸材料 Active JP7288399B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017038980 2017-03-02
JP2017038980 2017-03-02
PCT/JP2018/007960 WO2018159801A1 (ja) 2017-03-02 2018-03-02 吸水性樹脂、土壌保水材、及び農園芸材料

Publications (2)

Publication Number Publication Date
JPWO2018159801A1 JPWO2018159801A1 (ja) 2019-12-19
JP7288399B2 true JP7288399B2 (ja) 2023-06-07

Family

ID=63370823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019503141A Active JP7288399B2 (ja) 2017-03-02 2018-03-02 吸水性樹脂、土壌保水材、及び農園芸材料

Country Status (6)

Country Link
US (1) US20200115476A1 (ja)
EP (1) EP3590978B1 (ja)
JP (1) JP7288399B2 (ja)
KR (1) KR20190120219A (ja)
CN (1) CN110325558A (ja)
WO (1) WO2018159801A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3590979B1 (en) * 2017-03-02 2023-06-21 Sumitomo Seika Chemicals Co., Ltd. Water-absorbent resin and absorbent article
CN113166437A (zh) * 2018-12-12 2021-07-23 住友精化株式会社 吸水性树脂颗粒
WO2020184389A1 (ja) * 2019-03-08 2020-09-17 住友精化株式会社 吸水性樹脂粒子
EP3960792A4 (en) * 2019-04-23 2023-01-04 Sumitomo Seika Chemicals Co., Ltd. ABSORBENT RESIN PARTICLES

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201811A (ja) 2007-02-16 2008-09-04 Nippon Shokubai Co Ltd 吸水剤及びその製造方法
WO2012002455A1 (ja) 2010-06-30 2012-01-05 株式会社日本触媒 ポリアクリル酸系吸水性樹脂及びその製造方法
JP2012012482A (ja) 2010-06-30 2012-01-19 Nippon Shokubai Co Ltd ポリアクリル酸アンモニウム塩系吸水性樹脂およびその製造方法
JP2013199444A (ja) 2012-03-23 2013-10-03 Sumitomo Seika Chem Co Ltd スプレー噴霧用水性組成物
JP2014098172A (ja) 2009-12-24 2014-05-29 Nippon Shokubai Co Ltd ポリアクリル酸系吸水性樹脂粉末及びその製造方法
WO2018159800A1 (ja) 2017-03-02 2018-09-07 住友精化株式会社 吸水性樹脂及び吸収性物品

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742086A (en) 1985-11-02 1988-05-03 Lion Corporation Process for manufacturing porous polymer
JPS62273283A (ja) 1986-05-20 1987-11-27 Wako Pure Chem Ind Ltd 園芸用保水剤
JP2938920B2 (ja) 1990-01-31 1999-08-25 住友精化株式会社 吸水性樹脂の製造方法
EP0761191B1 (en) 1991-09-11 2001-04-04 Kimberly-Clark Worldwide, Inc. Absorbent composites and absorbent articles containing same
MY110150A (en) 1992-04-17 1998-02-28 Kao Corp Highly absorbent polymer
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
CN100398158C (zh) * 2002-02-04 2008-07-02 株式会社日本触媒 吸收体及使用了该吸收体的吸收性物品
JP2005036035A (ja) * 2003-07-16 2005-02-10 Sanyo Chem Ind Ltd 着色された吸水性樹脂
JP4624247B2 (ja) * 2005-12-02 2011-02-02 小林製薬株式会社 体液吸収性シート
ATE523527T1 (de) * 2006-04-24 2011-09-15 Sumitomo Seika Chemicals Herstellungsverfahren für wasserabsorbierende partikel und mit dem verfahren hergestellte wasserabsorbierende partikel
JP2013540164A (ja) * 2010-07-05 2013-10-31 レルシオ, インコーポレイテッド 分解性の超吸収性ポリマー
KR101832549B1 (ko) * 2011-08-03 2018-02-26 스미토모 세이카 가부시키가이샤 흡수성 수지 입자, 흡수성 수지 입자를 제조하는 방법, 흡수체, 흡수성 물품 및 지수재
US10265226B2 (en) * 2012-09-10 2019-04-23 Sumitomo Seika Chemicals Co., Ltd. Water-absorbent resin, water-absorbent material, and water-absorbent article
JP5689204B1 (ja) 2014-07-11 2015-03-25 住友精化株式会社 吸水性樹脂の製造方法、吸水性樹脂、吸水剤、吸収性物品
JP5766344B1 (ja) * 2014-07-11 2015-08-19 住友精化株式会社 吸水性樹脂及び吸収性物品
CN104448660B (zh) * 2014-12-25 2017-05-10 安徽帝元生物科技有限公司 一种高吸水性树脂及其制备方法与用途
WO2016111223A1 (ja) * 2015-01-07 2016-07-14 株式会社日本触媒 吸水剤及びその製造方法、並びに評価方法及び測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201811A (ja) 2007-02-16 2008-09-04 Nippon Shokubai Co Ltd 吸水剤及びその製造方法
JP2014098172A (ja) 2009-12-24 2014-05-29 Nippon Shokubai Co Ltd ポリアクリル酸系吸水性樹脂粉末及びその製造方法
WO2012002455A1 (ja) 2010-06-30 2012-01-05 株式会社日本触媒 ポリアクリル酸系吸水性樹脂及びその製造方法
JP2012012482A (ja) 2010-06-30 2012-01-19 Nippon Shokubai Co Ltd ポリアクリル酸アンモニウム塩系吸水性樹脂およびその製造方法
JP2013199444A (ja) 2012-03-23 2013-10-03 Sumitomo Seika Chem Co Ltd スプレー噴霧用水性組成物
WO2018159800A1 (ja) 2017-03-02 2018-09-07 住友精化株式会社 吸水性樹脂及び吸収性物品

Also Published As

Publication number Publication date
US20200115476A1 (en) 2020-04-16
EP3590978A4 (en) 2020-11-25
WO2018159801A1 (ja) 2018-09-07
CN110325558A (zh) 2019-10-11
EP3590978A1 (en) 2020-01-08
EP3590978B1 (en) 2023-08-30
KR20190120219A (ko) 2019-10-23
JPWO2018159801A1 (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
JP7288399B2 (ja) 吸水性樹脂、土壌保水材、及び農園芸材料
JP5027414B2 (ja) 吸水性樹脂粒子の製造方法
JP6567503B2 (ja) 吸水性樹脂粒子の製造方法
JP7194101B2 (ja) 吸水性樹脂
US11084020B2 (en) Water-absorbent resin and absorbent article
WO2018159802A1 (ja) 吸水性樹脂及び吸収性物品
JP5927289B2 (ja) 吸水性樹脂粒子の製造方法
JP6473555B2 (ja) 吸水性樹脂粒子の製造方法
JPWO2019142872A1 (ja) 吸水性樹脂
WO2018159803A1 (ja) 吸水性樹脂及び土嚢
JP7105586B2 (ja) 吸水性樹脂の製造方法
JP6063440B2 (ja) 吸水性樹脂粒子の製造方法
JP2019072653A (ja) 吸水剤の製造方法及び吸水剤
KR20210148159A (ko) 흡수성 수지 및 지수재
WO2023190492A1 (ja) 吸水性樹脂組成物の製造方法
WO2024071258A1 (ja) 吸水性樹脂粒子の製造方法
WO2020095811A1 (ja) 吸水性樹脂
WO2021049493A1 (ja) 吸水性樹脂粒子を製造する方法
KR20210148125A (ko) 흡수성 수지 및 지수재

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230526

R150 Certificate of patent or registration of utility model

Ref document number: 7288399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150