JP7263468B2 - 光センサ、システム、およびそれを使用する方法 - Google Patents
光センサ、システム、およびそれを使用する方法 Download PDFInfo
- Publication number
- JP7263468B2 JP7263468B2 JP2021159466A JP2021159466A JP7263468B2 JP 7263468 B2 JP7263468 B2 JP 7263468B2 JP 2021159466 A JP2021159466 A JP 2021159466A JP 2021159466 A JP2021159466 A JP 2021159466A JP 7263468 B2 JP7263468 B2 JP 7263468B2
- Authority
- JP
- Japan
- Prior art keywords
- spr
- signal
- sensor
- sensing surface
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/101—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the tear film
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0025—Operational features thereof characterised by electronic signal processing, e.g. eye models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
- A61B3/145—Arrangements specially adapted for eye photography by video means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/43—Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/16—Ophthalmology
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Ophthalmology & Optometry (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Eye Examination Apparatus (AREA)
Description
[0001]本出願は、2015年9月24日に出願された、米国仮特許出願第62/232320号の出願日の優先権の利益を主張し、この出願の開示は、その全体において、参照により本明細書に組み込まれる。本出願はまた、2015年11月11日に出願された、米国仮特許出願第62/254099号の出願日の優先権の利益を主張し、この出願の開示は、その全体において、参照により本明細書に組み込まれる。
定義
[0099]本明細書で使用される「感知面」という用語は、外部媒体と接触するように構成されたセンサの表面を指す。
センサおよびシステム
[00128]本発明の態様は、たとえば、サンプルの浸透圧を決定するために、主題の方法を実行するように構成されたセンサとシステムとを含む。特定の実施形態では、主題のシステムは、少なくとも1つの感知面を有し、第1の入射角で感知面と相互作用するように第1の光信号を導き、第2の入射角で感知面と相互作用するように第2の光信号を導くように構成された光センサを含む。いくつかの実施形態では、主題のシステムは、光信号生成構成要素と検出構成要素とを含む光学シャーシをさらに含む。これらの構成要素の各々について、ここでさらにより詳細に説明する。
センサ
[00129]上記で要約したように、本発明の態様は、少なくとも1つの感知面を含み、第1の入射角で感知面と相互作用するように第1の光信号を導き、第2の入射角で感知面と相互作用するように第2の光信号を導くように構成されたセンサを含む。2つの異なる入射角で感知面と相互作用するように光信号を導くことによって、主題のセンサは、2つ以上の異なる媒体(たとえば、空気および水)について感知面からデータを生成し、同じ検出構成要素を使用してデータを検出することができる。次いで、媒体の1つまたは複数の特性を決定するために、データの分析が使用され得る。そのように、異なる媒体から得られたデータは、検出構成要素の同じ視野または画像フレーム内にキャプチャされ得、次いで、検出構成要素によって分析され得る。検出構成要素の同じ視野または画像フレーム内の異なる媒体に関する感知面からのデータの包含は、分析において使用され得る(たとえば、センサの較正のためおよび/または未知のサンプルを分析するために使用され得る)データ内の内部基準を提供する。
光学シャーシ
[00169]上記で要約したように、本発明の態様は、光信号生成構成要素と検出構成要素とを備える光学シャーシを含む。いくつかの実施形態では、光学シャーシは、光信号操作構成要素を備えることができる。これらの態様の各々について、以下でより詳細に説明する。
使用方法
[00217]本発明の態様は、たとえば、サンプルの浸透圧を決定するために、主題のセンサシステムを使用してサンプルを分析する方法を含む。図1に示すように、正常な眼における涙の平均浸透圧は、ドライアイにおける涙の平均浸透圧とは異なり、したがって、ドライアイ疾患の診断予測因子として役立つことができる。主題の方法は、主題の方法の1つまたは複数を実行するのに十分な時間の期間の間、センサの感知面をテストされるべき媒体(たとえば、基準媒体、または未知の浸透圧を有するサンプル)と接触させることを伴う。いくつかの実施形態では、主題の方法は、0.5秒、0.4秒、0.3秒、0.2秒、または0.1秒以下など、80秒、70秒、60秒、50秒、40秒、30秒、20秒、10秒、5秒、4秒、3秒、2秒、または1秒以下など、90秒以下である時間期間内に実行され得る。いくつかの実施形態では、主題の方法は、患者の体液(たとえば、患者の涙液膜)に対して診断分析を実行することと、分析の結果に基づいて状態または障害(たとえば、ドライアイ疾患)を有する患者を診断することとを伴う。たとえば、いくつかの実施形態では、患者の涙液膜が特定の範囲内の浸透圧値を有すると決定された場合、患者は、ドライアイ疾患と診断される。
[00225]方法の態様は、検出構成要素から生成された画像のデータ処理を伴う。いくつかの実施形態では、データ処理は、画像に座標系(たとえば、x、y座標系)を適用することを伴う。いくつかの実施形態では、生成された画像内の各ピクセル、またはその一部は、特定のx、y座標値を割り当てられ得る。いくつかの実施形態では、画像内の各ピクセルは、ピクセルにおける光の強度または色に関連する数値を割り当てられ得る。たとえば、いくつかの実施形態では、画像内の各ピクセルは、グレースケール値を割り当てられる。いくつかの実施形態では、画像内の各ピクセルは、カラー値を割り当てられる。いくつかの実施形態では、データ処理は、複数のピクセルに対して数学的演算を実行することを伴う。たとえば、いくつかの実施形態では、データ処理は、複数のピクセルの平均グレースケール値を計算することを伴う。いくつかの実施形態では、データ処理は、画像上の特定のx座標におけるピクセルの列の平均グレースケール値を計算することを伴う。
例
例1:点光源LEDを使用するセンサにおける光学ノイズの低減
[00243]光学ノイズの低減は、光信号生成構成要素として点光源LEDを使用することによってシステムおいて達成された。図3は、それらの対応するSPR画像の右側のチャートの各々においてグラフで示されているように、638nmレーザダイオードが、赤色LED(632nm公称波長)よりも実質的に高い光学ノイズを有することを明確に示している。レーザダイオードの代わりに点光源LEDを使用することは、したがって、システムにおける光学ノイズを低減した。
例2:SPR信号測定の分解能を最適化する
[00244]図4に示すように、より長い波長の光信号は、より狭いSPR線幅を生成する。図5は、光学テーブル上の単純なSPRセットアップを使用して実験的に検証されるように、増加する波長を有するSPR線の狭窄を示す。増加する波長に伴うSPR線幅の減少は、肉眼には容易に明らかである。
例3:微分信号処理
[00247]1.0mOsmまでの涙浸透圧の測定は、約10-5分の1RIUまでの涙液の屈折率の決定に対応する。一般的な工学的経験則は、測定の精度が目標精度を約10倍超えるべきであるということである。したがって、涙浸透圧測定デバイスでは、約10-6分の1RIUの最終屈折率精度を有することが望ましい。
例4:自己較正センサ理論
[00257]SPRベースの分析は、SPRプリズムの外部金表面と接触する媒体(たとえば、気体または液体)の屈折率の変化のきわめて正確な測定を提供することができる。適切に注意して、10-6分の1RIUの範囲内の屈折率の変化が、慎重に制御された研究室条件下で得られ得る(図13参照)。涙浸透圧測定にSPRを使用することの前提は、涙浸透圧および涙屈折率が線形に関連付けられることである。±5.0mOsm~±1mOsmの範囲内にあり、±4 10-6RIUの範囲内の測定精度であるように示されている線形性で、生理食塩水の浸透圧は、SPR線の角度移動に対して全く線形である。いくつかの正確な生理食塩水に関する±1.0mOsmの線形性を示すデータが図17に示されている。
例5:自己較正センサの概念1
[00261]基本的な自己較正SPRセンサの概念は、図22および図23の図から進化した。図22は、光学グレードプラスチックに形成された一体射出成形センサを示す。この一体センサの概念は、各々のすべてのセンサがシステムの光学シャーシに正確で繰返し可能に整列されていることを保証するために、6自由度に制約するために運動学的取り付け機能を使用することを意図していた。図23に示すように、この概念は、光学シャーシへの精密な運動学的機械的インターフェースを提供するベース部分、涙浸透圧を測定するための金(または保護された銀)被覆SPR感知面を有するSPRプリズム部分、および、最後に、SPRプリズム部分とベース部分との間の移行を提供するための「スカート」部分の、3つのセグメントからなるセンサを想定している。プリズム部分は、好ましくは約850nmおよび950nmの2つの別々の波長における、光学臨界角信号遷移と空気SPR線の両方、ならびにSPRプリズムの金被覆センサ表面が涙液によって濡らされたときに現れることになっていた別の別個のSPR線を得るための方法を実施することによって自己較正を提供する。
例6:自己較正センサの分析
[00264]図28は、ZEMAX(登録商標)光学設計ソフトウェアからの出力に基づくセンサ用のレイアウトスケッチのセットを含む。図28のパネルCは、センサの内部表面上に配置された2つの屈折ファセット(丸で囲まれている赤い数字1および7によって示されている)と、被覆されておらず全内部反射によって光を反射する4つの外部ファセット(表面2、3、5、および6として示されている)と、SPR表面である金ストライプで部分的に被覆された第5の表面(表面5または感知面として示されている)とからなるようなセンサチップの拡大図を示す。表面5の金被覆部分は、空気測定と涙浸透圧SPR測定の両方に関するSPR線を提供し、表面5の非被覆部分は、空気の臨界角遷移を提供する。空気の臨界角遷移と空気のSPR線の両方は、表面5が涙液によって濡れる前に得られなければならない。
例7:スネルの法則および臨界角遷移
[00270]正確で精密な臨界角データの取得は、主題のセンサおよびシステムの較正の重要な側面である。図30は、スネルの法則(屈折の法則)および臨界角の幾何学である。図30は、スネルの法則の単純な場合と、単一の界面に関する臨界角とを示す。より複雑な光学薄膜分析は、入射媒体がn1の屈折率であり、出射媒体がn2の屈折率を有する限り、入射媒体と出射媒体との間の平面平行層の数と無関係に、臨界角は、常にθC=Sin-1(n2/n1)によって与えられることを示す。したがって、臨界角は、入射媒体と出射媒体との間の材料に対して不変であり、n1およびn2の値にのみ依存する。結果として、臨界角の位置の測定は、SPR測定のための重要な較正係数を提供する。
例8:自己較正センサの概念2
[00272]図32は、センサ概念2の光学的レイアウトを示す。この概念は、センサ概念1よりもかなり単純であり、ビームスプリッタ(図示せず)と、単一のコリメートレンズと、光学シャーシのための窓を兼ねる単一の円柱レンズと、2つの内部ファセットおよび3つの外部ファセットからなるセンサと、画像検出器とを使用して単一ビームに結合された、1つが855nmで第2のものが950nmの2つのLEDを利用する。855nm LEDまたは950nm LEDからの光は、本質的に同じ光路をたどる。動作中、アクティブな855nm LEDからの光は、コリメートレンズによってコリメートされ、次いで、円柱レンズによってセンサファセット3上の線に集束される。円柱レンズを通過した後、ビームは、センサの中心軸を横切ってファセット5によって屈折され、非被覆ファセット2によって反射される。ファセット2上のビームの入射角は、空気の臨界角遷移がこの表面上で生じるように、約42.0°である。ファセット2からの反射ビームは、集束された光の円錐の中心角の近くに水または涙液に関するSPR最小値を生成するように、約64.4°の入射角で金被覆センサファセット3上に入射する。ファセット3および4上の金の厚さは、約45~50nmである。センサ表面3からの反射の後、ビームは、第4のファセットからの反射時に空気のSPR最小値を生成するように、金被覆ファセット4上に約42°の入射角で入射する。最後に、ビームは、ファセット1を通って反射によってセンサを出て、円柱レンズを通過することによってシステムの光軸と平行に再配列され、その後、先に説明した2593×1944ピクセルAPTINA(登録商標)イメージャ上に入射する。
例9:自己較正センサ概念1の分析
[00275]図34は、センサ概念1のさらなる展開図を示す。図34は、XIMEA(登録商標)による支持チップを用いて回路基板上に取り付けられて提供されるようにLEDとイメージャの両方の物理的サイズを示す。図28における光学的レイアウトと比較して、図34におけるレイアウトは、浸透圧測定を行う医師が眼の涙液膜上にセンサの感知面をより容易に置くことができるように、システムの上部を越えてセンサの先端に、より直接的な視線を提供する目的のために、上下を反転されていることに留意すべきである。
例10:ベンチトップセンサシステム
[00281]図48は、デスクトップシステムまたはベンチトップシステムの図である。図48に示すように、ベンチトップシステムは、2つのLEDコリメータを備え、この例では、一方は、855nmの公称波長で動作し、他方は、950nmの公称波長で動作する。LEDコリメータは、円形シート偏光子と、次いで適切なコリメートレンズとが後に続く点光源LEDから構成される。図示された構成要素は、真鍮ハウジング内に収容される。コリメータの波長は、855nmおよび950nmである必要はないが、センサおよび分析されるテスト媒体に適した波長の任意の対であり得ることに留意されたい。
以下に、出願当初の特許請求の範囲に記載の事項を、そのまま、付記しておく。
[1] 感知面を備えるセンサであって、前記センサが、
第1の入射角で前記感知面と相互作用するように第1の光信号を導き、
第2の入射角で前記感知面と相互作用するように第2の光信号を導くように構成された、センサ。
[2] 前記センサが複数のファセットを備える、[1]に記載のセンサ。
[3] 前記センサが円錐台状の凹形状を有する、[1]に記載のセンサ。
[4] 前記センサが、内部表面上の複数のファセットと、外部表面上の複数のファセットとを備える、[3]に記載のセンサ。
[5] 前記センサが、前記内部表面上の2つのファセットと、前記外部表面上の4つのファセットとを備える、[4]に記載のセンサ。
[6] 前記感知面が前記センサの中央部に配置された、[1]に記載のセンサ。
[7] 前記感知面が、被覆領域と非被覆領域とを備える、[1]に記載のセンサ。
[8] 前記被覆領域が、貴金属を備える半透明膜を備える、[7]に記載のセンサ。
[9] 前記貴金属が、金、銀、アルミニウム、白金、またはパラジウムである、[8]に記載のセンサ。
[10] 前記半透明膜が、約0.5nm~約200nmの範囲の厚さを有する、[8]に記載のセンサ。
[11] 前記半透明膜が、約45nm~約50nmの厚さを有する、[10]に記載のセンサ。
[12] 前記被覆領域が、前記センサと半透明膜との間に配置された接着層を備える、[7]に記載のセンサ。
[13] 前記接着層が、約0.5nm~約200nmの範囲の厚さを有する、[12]に記載のセンサ。
[14] 前記接着層が、約45nm~約50nmの範囲の厚さを有する、[12]に記載のセンサ。
[15] 前記接着層が、クロム、二酸化チタン、一酸化チタン、二酸化ケイ素、および一酸化ケイ素から選択された材料を備える、[12]に記載のセンサ。
[16] 前記接着層が、前記センサの屈折率とは異なる屈折率を有する、[12]に記載のセンサ。
[17] 前記第1の入射角が、約40度~約70度の範囲である、[1]に記載のセンサ。
[18] 前記第1の入射角が、約40度~約45度の範囲である、[17]に記載のセンサ。
[19] 前記第1の入射角が約42度である、[18]に記載のセンサ。
[20] 前記第2の入射角が、約40度~約70度の範囲である、[1]に記載のセンサ。
[21] 前記第2の入射角が、約62度~約67度の範囲である、[20]に記載のセンサ。
[22] 前記第2の入射角が約64度である、[21]に記載のセンサ。
[23] 前記センサが滅菌に適合された、[1]に記載のセンサ。
[24] 光学シャーシをさらに備え、前記光学シャーシが、
光信号生成構成要素と、
検出構成要素と、
プロセッサと、
コントローラと、
コンピュータ可読媒体とを備え、前記コンピュータ可読媒体は、
前記プロセッサによって実行されたとき、前記コントローラに、
第1の臨界角信号を生成するために前記第1の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第1の臨界角信号の画像を生成させ、
前記生成された画像上の前記第1の臨界角信号の最大値のピクセル位置を決定させ、
第2の臨界角信号を生成するために前記第1の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第2の臨界角信号の画像を生成させ、
前記生成された画像上の前記第2の臨界角信号の最大値のピクセル位置を決定させ、
臨界角デルタピクセル値を決定するために前記第1および第2の臨界角信号の最大値の前記ピクセル位置を比較させる命令を備えるものである、[1]から[23]のいずれか1項に記載のセンサ。
[25] 前記感知面が、被覆領域と非被覆領域とを備え、前記第1および第2の臨界角信号が、前記非被覆領域から生成される、[24]に記載のセンサ。
[26] 光学シャーシをさらに備え、前記光学シャーシが、
光信号生成構成要素と、
検出構成要素と、
プロセッサと、
コントローラと、
コンピュータ可読媒体とを備え、前記コンピュータ可読媒体は、
前記プロセッサによって実行されたとき、前記コントローラに、
第1の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第1のSPR信号の画像を生成させ、
前記生成された画像上の前記第1のSPR信号の最小値のピクセル位置を決定させ、
第2の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第2のSPR信号の画像を生成させ、
前記生成された画像上の前記第2のSPR信号の最小値のピクセル位置を決定させ、
第1のSPRデルタピクセル値を決定するために前記第1および第2のSPR信号の前記最小値の前記ピクセル位置を比較させる命令を備えるものである、[1]から[23]のいずれか1項に記載のセンサ。
[27] 前記コンピュータ可読媒体が、前記プロセッサによって実行されたとき、前記コントローラに、
第3の表面プラズモン共鳴(SPR)信号を生成するために前記第2の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第3のSPR信号の画像を生成させ、
前記生成された画像上の前記第3のSPR信号の最小値のピクセル位置を決定させ、
第4のSPR信号を生成するために前記第2の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第4の表面プラズモン共鳴(SPR)信号の画像を生成させ、
前記生成された画像上の前記第4のSPR信号の最小値のピクセル位置を決定させ、
第2のSPRデルタピクセル値を決定するために前記第3および第4のSPR信号の前記最小値の前記ピクセル位置を比較させる命令をさらに備える、[26]に記載のセンサ。
[28] 前記感知面が、被覆領域と非被覆領域とを備え、前記SPR信号が、前記被覆領域から生成される、[26]または[27]に記載のセンサ。
[29] 前記コンピュータ可読媒体が、前記プロセッサによって実行されたとき、前記コントローラに、
第1の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角で前記感知面の被覆領域と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第1のSPR信号の画像を生成させ、
前記生成された画像上の前記第1のSPR信号の最小値のピクセル位置を決定させ、
第2の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第2のSPR信号の画像を生成させ、
前記生成された画像上の前記第2のSPR信号の最小値のピクセル位置を決定させ、
第1のSPRデルタピクセル値を決定するために前記第1および第2のSPR信号の前記最小値の前記ピクセル位置を比較させる命令をさらに備える、[24]に記載のセンサ。
[30] 前記コンピュータ可読媒体が、前記プロセッサによって実行されたとき、前記コントローラに、
第3のSPR信号を生成するために前記第2の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第3のSPR信号の画像を生成させ、
前記生成された画像上の前記第3のSPR信号の最小値のピクセル位置を決定させ、
第4のSPR信号を生成するために前記第2の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第4のSPR信号の画像を生成させ、
前記生成された画像上の前記第4のSPR信号の最小値のピクセル位置を決定させ、
第2のSPRデルタピクセル値を決定するために前記第3および第4のSPR信号の前記最小値の前記ピクセル位置を比較させる命令をさらに備える、[29]に記載のセンサ。
[31] 前記光信号生成構成要素が、レーザまたは発光ダイオード(LED)を備える、[24]から[30]のいずれか1項に記載のセンサ。
[32] 前記レーザまたはLEDが、可視光または赤外光を放射する、[31]に記載のセンサ。
[33] 前記レーザまたはLEDが、約400nm~約1000nmの範囲の波長を有する光を放射する、[32]に記載のセンサ。
[34] 前記レーザまたはLEDが、約855nmの波長を有する光を放射するように構成された、[33]に記載のセンサ。
[35] 前記レーザまたはLEDが、約950nmの波長を有する光を放射するように構成された、[33]に記載のセンサ。
[36] 前記光学シャーシが、1つまたは複数の光信号操作構成要素をさらに備える、[24]から[35]のいずれか1項に記載のセンサ。
[37] 前記検出構成要素が画像センサを備える、[24]から[36]のいずれか1項に記載のセンサ。
[38] 前記画像センサが、電荷結合デバイス(CCD)カメラ、またはサイエンティフィック相補型金属酸化膜半導体(sCMOS)カメラである、[37]に記載のセンサ。
[39] 前記画像センサが、アクティブピクセルセンサ(APS)である、[37]に記載のセンサ。
[40] 前記センサを前記光学シャーシに取り外し可能に結合するように構成された複数の保持取り付け具をさらに備える、[24]から[39]のいずれか1項に記載のセンサ。
[41] 前記センサを前記光学シャーシに整列させるように構成された整列構成要素をさらに備える、[24]から[39]のいずれか1項に記載のセンサ。
[42] 前記整列構成要素が、テーパ付きセンタリング構成要素を備える、[41]に記載のセンサ。
[43] 複数の運動学的取り付け構成要素をさらに備える、[24]から[39]のいずれか1項に記載のセンサ。
[44] (i)非被覆領域を備える感知面を備えるセンサと、ここにおいて、前記センサが、
第1の入射角で前記感知面と相互作用するように第1の光信号を導き、
第2の入射角で前記感知面と相互作用するように第2の光信号を導くように構成されるものであり、
(ii)
光学シャーシであって、
光信号生成構成要素と、
検出構成要素と、
プロセッサと、
コントローラと、
コンピュータ可読媒体と、を備える光学シャーシを備え、
前記コンピュータ可読媒体は、前記プロセッサによって実行されたとき、前記コントローラに、
第1の臨界角信号を生成するために前記第1の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第1の臨界角信号の画像を生成させ、
前記生成された画像上の前記第1の臨界角信号のピクセル位置を決定させ、
第2の臨界角信号を生成するために前記第1の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第2の臨界角信号の画像を生成させ、
前記生成された画像上の前記第2の臨界角信号のピクセル位置を決定させ、
臨界角デルタピクセル値を決定するために前記第1および第2の臨界角信号の前記ピクセル位置を比較させる命令を備えるものである、
システム。
[45] 前記感知面が、被覆領域と非被覆領域とを備え、前記第1および第2の臨界角信号が、前記非被覆領域から生成される、[44]に記載のシステム。
[46] (i)被覆領域を備える感知面を備えるセンサと、ここにおいて、前記センサが、
第1の入射角で前記感知面と相互作用するように第1の光信号を導き、
第2の入射角で前記感知面と相互作用するように第2の光信号を導くように構成されるものであり、
(ii)
光学シャーシであって、
光信号生成構成要素と、
検出構成要素と、
プロセッサと、
コントローラと、
コンピュータ可読媒体と、を備える光学シャーシを備え、
前記コンピュータ可読媒体は、前記プロセッサによって実行されたとき、前記コントローラに、
第1の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第1のSPR信号の画像を生成させ、
前記生成された画像上の前記第1のSPR信号の最小値のピクセル位置を決定させ、
第2の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第2のSPR信号の画像を生成させ、
前記生成された画像上の前記第2のSPR信号の最小値のピクセル位置を決定させ、
SPRデルタピクセル値を決定するために前記第1および第2のSPR信号の前記最小値の前記ピクセル位置を比較させる命令を備えるものである、
システム。
[47] 前記コンピュータ可読媒体が、前記プロセッサによって実行されたとき、前記コントローラに、
第3の表面プラズモン共鳴(SPR)信号を生成するために前記第2の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第3のSPR信号の画像を生成させ、
前記生成された画像上の前記第3のSPR信号の最小値のピクセル位置を決定させ、
第4の表面プラズモン共鳴(SPR)信号を生成するために前記第2の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第4のSPR信号の画像を生成させ、
前記生成された画像上の前記第4のSPR信号の最小値のピクセル位置を決定させ、
第2のSPRデルタピクセル値を決定するために前記第3および第4のSPR信号の前記最小値の前記ピクセル位置を比較させる命令をさらに備える、[46]に記載のシステム。
[48] 前記感知面が、被覆領域と非被覆領域とを備え、前記SPR信号が、前記被覆領域から生成される、[46]または[47]に記載のシステム。
[49] 前記コンピュータ可読媒体が、前記プロセッサによって実行されたとき、前記コントローラに、
第1の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角で前記感知面の前記被覆領域と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第1のSPR信号の画像を生成させ、
前記生成された画像上の前記第1のSPR信号の最小値のピクセル位置を決定させ、
第2の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第2のSPR信号の画像を生成させ、
前記生成された画像上の前記第2のSPR信号の最小値のピクセル位置を決定させ、
第1のSPRデルタピクセル値を決定するために前記生成された画像上の前記第1および第2のSPR信号の前記最小値の前記ピクセル位置を比較させる命令をさらに備える、[45]に記載のシステム。
[50] 前記コンピュータ可読媒体が、前記プロセッサによって実行されたとき、前記コントローラに、
第3のSPR信号を生成するために前記第2の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第3のSPR信号の画像を生成させ、
前記生成された画像上の前記第3のSPR信号の最小値のピクセル位置を決定させ、
第4のSPR信号を生成するために前記第2の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第4のSPR信号の画像を生成させ、
前記生成された画像上の前記第4のSPR信号の最小値のピクセル位置を決定させ、
第2のSPRデルタピクセル値を決定するために前記第3および第4のSPR信号の前記最小値の前記ピクセル位置を比較させる命令をさらに備える、[49]に記載のシステム。
[51] 前記センサが、前記光学シャーシに取り外し可能に結合されるように構成された、[44]から[50]のいずれか1項に記載のシステム。
[52] 前記システムがベンチトップシステムである、[44]から[51]のいずれか1項に記載のシステム。
[53] 前記システムがハンドヘルドシステムである、[44]から[51]のいずれか1項に記載のシステム。
[54] サンプルの浸透圧を決定するための方法であって、前記方法が、
[46]から[53]のいずれか1項に記載のシステムの感知面を基準媒体と接触させることと、
第1の基準表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導くことと、
前記検出構成要素を用いて第1の基準SPR信号の画像を生成することと、
前記生成された画像上の前記第1の基準SPR信号の最小値のピクセル位置を決定することと、
第2の基準SPR信号を生成するために前記第1の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導くことと、
前記検出構成要素を用いて前記第2の基準SPR信号の画像を生成することと、
前記生成された画像上の前記第2の基準SPR信号の最小値のピクセル位置を決定することと、
基準媒体SPRデルタピクセル値を決定するために前記第1および第2の基準SPR信号の前記最小値の前記ピクセル位置を比較することと、
前記感知面を前記サンプルと接触させることと、
第1のテストSPR信号を生成するために前記第2の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導くことと、
前記検出構成要素を用いて前記第1のテストSPR信号の画像を生成することと、
前記生成された画像上の前記第1のテストSPR信号の最小値のピクセル位置を決定することと、
第2のテストSPR信号を生成するために前記第2の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導くことと、
前記生成された画像上の前記第2のテストSPR信号の最小値のピクセル位置を決定することと、
テスト媒体SPRデルタピクセル値を決定するために前記第1および第2のテストSPR信号の前記最小値の前記ピクセル位置を比較することと、
第1の補正デルタピクセル値を生成するために前記基準媒体SPRデルタピクセル値を前記テスト媒体SPRデルタピクセル値と比較することと、
前記サンプルの前記浸透圧を決定するために前記第1の補正デルタピクセル値を較正データセットと比較することと
を備える方法。
[55] 前記感知面を前記基準媒体と接触させることと、
第1の臨界角信号を生成するために前記第1の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導くことと、
前記検出構成要素を用いて前記第1の臨界角信号の画像を生成することと、
前記生成された画像上の前記第1の臨界角信号の最大値のピクセル位置を決定することと、
第2の臨界角信号を生成するために前記第1の入射角で前記感知面と相互作用するように第2の波長を有する光信号を導くことと、
前記検出構成要素を用いて前記第2の臨界角信号の画像を生成することと、
前記生成された画像上の前記第2の臨界角信号の最大値のピクセル位置を決定することと、
臨界角デルタピクセル値を決定するために前記第1および第2の臨界角信号の前記最大値の前記ピクセル位置を比較することと、
第2の補正デルタピクセル値を決定するために前記第1の補正デルタピクセル値を前記臨界角デルタピクセル値と比較することと、
前記サンプルの前記浸透圧を決定するために前記第2の補正デルタピクセル値を較正データセットと比較することと
をさらに備える、[54]に記載の方法。
[56] 前記第1および第2の基準SPR信号ならびに前記第1および第2の臨界角信号の前記画像が、単一の画像フレーム内にキャプチャされる、[55]に記載の方法。
[57] 外部環境補正デルタピクセル値を生成するために前記第1または第2の補正デルタピクセル値を外部環境パラメータと比較することと、
前記サンプルの前記浸透圧を決定するために前記外部環境補正デルタピクセル値を較正データセットと比較することと
をさらに備える、[54]から[56]のいずれか1項に記載の方法。
[58] 前記外部環境パラメータが、温度と、圧力と、湿度とを備えるグループから選択される、[57]に記載の方法。
[59] センサの品質パラメータを検証するための方法であって、方法が、
[46]から[53]のいずれか1項に記載のシステムの感知面を基準媒体と接触させることと、
第1の基準表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導くことと、
前記検出構成要素を用いて第1の基準SPR信号の画像を生成することと、
前記第1の基準SPR信号の1つまたは複数の特性を決定することと、
前記センサの前記品質パラメータを検証するために前記第1の基準SPR信号の前記1つまたは複数の特性を較正データセットと比較することと
を備える方法。
[60] 前記センサの前記品質パラメータが、前記感知面上に配置された半透明膜の厚さと、前記感知面上に配置された接着層の厚さと、前記感知面上に配置された半透明膜中の材料の純度と、前記感知面上に配置された接着層中の材料の純度とを備えるグループから選択される、[59]に記載の方法。
[61] 前記第1の基準SPR信号の前記特性が、前記第1の基準SPR信号のコントラスト値、形状、または寸法を備えるグループから選択される、[59]に記載の方法。
[62] センサの品質パラメータを検証するための方法であって、前記方法が、
[44]、[45]、または[49]から[53]のいずれか1項に記載のシステムの感知面を基準媒体と接触させることと、
第1の基準臨界角信号を生成するために前記第1の入射角で前記感知面と相互作用するように第1の波長を有する光信号を導くことと、
前記検出構成要素を用いて前記第1の基準臨界角信号の画像を生成することと、
前記第1の基準臨界角信号の1つまたは複数の特性を決定することと、
前記センサの前記品質パラメータを検証するために前記第1の基準臨界角信号の前記1つまたは複数の特性を較正データセットと比較することと
を備える方法。
[63] 前記センサの前記品質パラメータが、前記感知面上に配置された半透明膜の厚さと、前記感知面上に配置された接着層の厚さと、前記感知面上に配置された半透明膜中の材料の純度と、前記感知面上に配置された接着層中の材料の純度とを備えるグループから選択される、[62]に記載の方法。
[64] 第1の基準臨界角信号の特性は、前記第1の基準臨界角信号のコントラスト値、形状、または寸法を備えるグループから選択される、[62]に記載の方法。
[65] 前記第1の波長を有する光信号および第2の波長を有する光信号が、同時に前記感知面と相互作用するように導かれる、[54]から[64]のいずれか1項に記載の方法。
[66] 前記第1の波長を有する光信号および前記第2の波長を有する光信号が、ゲーテッド方式で前記感知面と相互作用するように導かれる、[54]から[64]のいずれか1項に記載の方法。
[67] 前記較正データセットが、前記システムのプロセッサの読出し専用メモリ内に記憶される、[54]から[66]のいずれか1項に記載の方法。
[68] 前記基準媒体が空気であり、サンプルが涙液である、[54]から[67]のいずれか1項に記載の方法。
[69] 前記方法が実行されている間、前記涙液が被験者の眼に接触したままである、[68]に記載の方法。
[70] 前記第1の入射角が約40度~約45度の範囲であり、前記第2の入射角が約62度~約67度の範囲である、[54]から[69]のいずれか1項に記載の方法。
[71] 前記第1の入射角が約42度であり、前記第2の入射角が約64度である、[70]に記載の方法。
[72] 前記第1の波長が約855nmであり、前記第2の波長が約950nmである、[54]から[71]のいずれか1項に記載の方法。
Claims (12)
- 感知面を備えるセンサと、光学シャーシとを備えるシステムであって、
(i)前記センサが、複数の反射ファセットを備え、
第1の表面プラズモン共鳴(SPR)信号を生成するために、40度から45度に及ぶ第1の入射角の範囲にわたって前記感知面と相互作用するように第1の光信号を導き、
第2の表面プラズモン共鳴(SPR)信号を生成するために、62度から67度に及ぶ第2の入射角の範囲にわたって前記感知面と相互作用するように第2の光信号を導くように構成されており、
(ii)前記光学シャーシが、
光信号生成構成要素と、
検出構成要素と、
プロセッサと、
コントローラと、
コンピュータ可読媒体と、を備え、
前記コンピュータ可読媒体は、前記プロセッサによって実行されたとき、前記コントローラに、
第1の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角の範囲にわたり前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第1のSPR信号の画像を生成させ、
前記生成された画像上の前記第1のSPR信号の最小値のピクセル位置を決定させ、
第2の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角の範囲にわたり前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第2のSPR信号の画像を生成させ、
前記生成された画像上の前記第2のSPR信号の最小値のピクセル位置を決定させ、
SPRデルタピクセル値を決定するために前記第1および第2のSPR信号の前記最小値の前記ピクセル位置を比較させる、
命令を備える、システム。 - 前記コンピュータ可読媒体が、前記プロセッサによって実行されたとき、前記コントローラに、
第3の表面プラズモン共鳴(SPR)信号を生成するために前記第2の入射角の範囲にわたり前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第3のSPR信号の画像を生成させ、
前記生成された画像上の前記第3のSPR信号の最小値のピクセル位置を決定させ、
第4の表面プラズモン共鳴(SPR)信号を生成するために前記第2の入射角の範囲にわたり前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第4のSPR信号の画像を生成させ、
前記生成された画像上の前記第4のSPR信号の最小値のピクセル位置を決定させ、
第2のSPRデルタピクセル値を決定するために前記第3および第4のSPR信号の前記最小値の前記ピクセル位置を比較させる、
命令をさらに備える、請求項1に記載のシステム。 - 前記感知面が、被覆領域と非被覆領域とを備え、前記SPR信号が、前記被覆領域から生成される、請求項1または2に記載のシステム。
- 前記コンピュータ可読媒体が、前記プロセッサによって実行されたとき、前記コントローラに、
第1の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角の範囲にわたり前記感知面の前記被覆領域と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第1のSPR信号の画像を生成させ、
前記生成された画像上の前記第1のSPR信号の最小値のピクセル位置を決定させ、
第2の表面プラズモン共鳴(SPR)信号を生成するために前記第1の入射角の範囲にわたり前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第2のSPR信号の画像を生成させ、
前記生成された画像上の前記第2のSPR信号の最小値のピクセル位置を決定させ、
第1のSPRデルタピクセル値を決定するために前記生成された画像上の前記第1および第2のSPR信号の前記最小値の前記ピクセル位置を比較させる、
命令をさらに備える、請求項3に記載のシステム。 - 前記コンピュータ可読媒体が、前記プロセッサによって実行されたとき、前記コントローラに、
第3のSPR信号を生成するために前記第2の入射角の範囲にわたり前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第3のSPR信号の画像を生成させ、
前記生成された画像上の前記第3のSPR信号の最小値のピクセル位置を決定させ、
第4のSPR信号を生成するために前記第2の入射角の範囲にわたり前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第4のSPR信号の画像を生成させ、
前記生成された画像上の前記第4のSPR信号の最小値のピクセル位置を決定させ、
第2のSPRデルタピクセル値を決定するために前記第3および第4のSPR信号の前記最小値の前記ピクセル位置を比較させる、
命令をさらに備える、請求項4に記載のシステム。 - 前記コンピュータ可読媒体は、前記プロセッサによって実行されたとき、前記コントローラに、
第1の臨界角信号を生成するために前記第1の入射角の範囲にわたり前記感知面と相互作用するように第1の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第1の臨界角信号の画像を生成させ、
前記生成された画像上の前記第1の臨界角信号のピクセル位置を決定させ、
第2の臨界角信号を生成するために前記第1の入射角の範囲にわたり前記感知面と相互作用するように第2の波長を有する光信号を導かせ、
前記検出構成要素を使用して前記第2の臨界角信号の画像を生成させ、
前記生成された画像上の前記第2の臨界角信号のピクセル位置を決定させ、
臨界角デルタピクセル値を決定するために前記第1および第2の臨界角信号の前記ピクセル位置を比較させる、
命令をさらに備える、請求項1から5のいずれか一項に記載のシステム。 - 前記第1および第2の臨界角信号が、前記感知面の非被覆領域から生成される、請求項6に記載のシステム。
- 前記センサが、前記第1の光信号を、前記感知面と相互作用するべく42度の第1の入射角で導くように構成されている、請求項1に記載のシステム。
- 前記センサが、前記第2の光信号を、前記感知面と相互作用するべく64度の第2の入射角で導くように構成されている、請求項1に記載のシステム。
- 前記センサが、前記光学シャーシに取り外し可能に結合されるように構成されている、請求項1に記載のシステム。
- 前記システムがベンチトップシステムである、請求項1に記載のシステム。
- 前記システムがハンドヘルドシステムである、請求項1に記載のシステム。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562232320P | 2015-09-24 | 2015-09-24 | |
US62/232,320 | 2015-09-24 | ||
US201562254099P | 2015-11-11 | 2015-11-11 | |
US62/254,099 | 2015-11-11 | ||
PCT/US2016/053522 WO2017053853A2 (en) | 2015-09-24 | 2016-09-23 | Optical sensors, systems and methods of using same |
JP2018536068A JP6953411B2 (ja) | 2015-09-24 | 2016-09-23 | 光センサ、システム、およびそれを使用する方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018536068A Division JP6953411B2 (ja) | 2015-09-24 | 2016-09-23 | 光センサ、システム、およびそれを使用する方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022008642A JP2022008642A (ja) | 2022-01-13 |
JP7263468B2 true JP7263468B2 (ja) | 2023-04-24 |
Family
ID=57138122
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018536068A Active JP6953411B2 (ja) | 2015-09-24 | 2016-09-23 | 光センサ、システム、およびそれを使用する方法 |
JP2021159466A Active JP7263468B2 (ja) | 2015-09-24 | 2021-09-29 | 光センサ、システム、およびそれを使用する方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018536068A Active JP6953411B2 (ja) | 2015-09-24 | 2016-09-23 | 光センサ、システム、およびそれを使用する方法 |
Country Status (8)
Country | Link |
---|---|
US (3) | US10682050B2 (ja) |
EP (1) | EP3353531B1 (ja) |
JP (2) | JP6953411B2 (ja) |
KR (1) | KR102652349B1 (ja) |
CN (1) | CN108700513B (ja) |
AU (1) | AU2016325627B2 (ja) |
CA (1) | CA2999173A1 (ja) |
WO (1) | WO2017053853A2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017053853A2 (en) * | 2015-09-24 | 2017-03-30 | Lacriscience, Llc | Optical sensors, systems and methods of using same |
TWI708166B (zh) * | 2017-02-15 | 2020-10-21 | 原相科技股份有限公司 | 可動態學習不同工作表面之材質的光學導航機制 |
FR3063543B1 (fr) * | 2017-03-03 | 2022-01-28 | Commissariat Energie Atomique | Procede de calibration d'un nez electronique. |
US10900850B2 (en) | 2017-07-28 | 2021-01-26 | Corning Incorporated | Methods of improving the measurement of knee stress in ion-exchanged chemically strengthened glasses containing lithium |
US12099009B2 (en) * | 2018-10-04 | 2024-09-24 | Academia Sinica | Method and apparatus for surface plasmon resonance imaging |
CN110836868A (zh) * | 2019-11-27 | 2020-02-25 | 中国石油大学(华东) | 基于贵金属/绝缘体纳米复合材料的局域化表面等离子体共振传感器 |
WO2022081546A1 (en) | 2020-10-12 | 2022-04-21 | Lacrisciences, Llc | Sensors, systems and methods for detecting analytes |
CN113842109A (zh) * | 2021-09-01 | 2021-12-28 | 四川大学华西医院 | 一种干眼检测手持成像装置和干眼检测设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003075334A (ja) | 2001-08-31 | 2003-03-12 | Fuji Photo Film Co Ltd | 全反射減衰を利用したセンサー |
WO2005067651A2 (en) | 2004-01-08 | 2005-07-28 | Cappo Anthony P | Surface plasmon resonance based nanoliter tear osmometer |
JP2009236709A (ja) | 2008-03-27 | 2009-10-15 | Fujifilm Corp | 表面プラズモンセンシング方法および表面プラズモンセンシング装置 |
JP2012181024A (ja) | 2011-02-28 | 2012-09-20 | Konica Minolta Holdings Inc | 光学式検体検出装置 |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5531963A (en) * | 1978-08-30 | 1980-03-06 | Japan Storage Battery Co Ltd | Concentration detector of electrolytic solution for lead battery |
JPH02118247A (ja) | 1988-10-27 | 1990-05-02 | Toyota Motor Corp | 歯車変速装置 |
JPH073318Y2 (ja) * | 1989-03-08 | 1995-01-30 | 聡 河田 | 光励起表面プラズマ振動共鳴を利用したセンサヘッド |
US6415235B1 (en) | 1996-11-06 | 2002-07-02 | Texas Instruments Incorporated | Fixed optic sensor system and distributed sensor network |
EP0863395B1 (en) | 1997-02-07 | 2005-06-15 | Fuji Photo Film Co., Ltd. | Surface plasmon sensor |
JPH10267841A (ja) * | 1997-03-24 | 1998-10-09 | Kokuritsu Shintai Shogaisha Rehabilitation Center Souchiyou | 表面プラズモン共鳴センシングデバイス |
US6139797A (en) | 1997-08-20 | 2000-10-31 | Suzuki Motor Corporation | Immunoassay apparatus |
JPH11183372A (ja) | 1997-12-19 | 1999-07-09 | Toto Ltd | Sprセンサ装置および分析システムとこれを用いた検出方法 |
JP3399836B2 (ja) | 1998-05-21 | 2003-04-21 | 富士写真フイルム株式会社 | 表面プラズモンセンサー |
GB9816441D0 (en) | 1998-07-28 | 1998-09-23 | Hartley Frank R | Analysis of liquids |
US6326612B1 (en) | 1998-10-13 | 2001-12-04 | Texas Instruments Incorporated | System and method for optical sensing utilizing a portable, detachable sensor cartridge |
WO2001088525A1 (en) | 2000-05-12 | 2001-11-22 | University Of Cincinnati | Structurally programmable microfluidic systems |
JP3356213B2 (ja) | 2001-01-24 | 2002-12-16 | 八戸工業高等専門学校長 | Spr測定用試料セルおよびセルホルダ |
US6626544B2 (en) | 2001-03-28 | 2003-09-30 | Reflexite Corporation | Prismatic retroreflector having a multi-plane facet |
JP2002323446A (ja) | 2001-04-26 | 2002-11-08 | Mitsubishi Chemicals Corp | 反射光測定による被検査体の分析方法及び反射光測定による被検査体の分析装置 |
US20030059342A1 (en) | 2001-09-26 | 2003-03-27 | Elkind Jerome L. | Pocket analyser |
CN1218180C (zh) * | 2001-11-23 | 2005-09-07 | 上海数康生物科技有限公司 | 并行检测多个生物学信号的表面等离子体共振生物传感器及其制备方法 |
DE10220593A1 (de) * | 2001-11-28 | 2003-06-12 | Graffinity Pharmaceuticals Ag | SPR-Sensorflächenträger |
US6943887B2 (en) | 2001-12-04 | 2005-09-13 | Texas Instruments Incorporated | Surface plasmon resonance sensor having real-time referencing |
WO2003091713A2 (en) | 2002-04-26 | 2003-11-06 | Board Of Trustees Of The Leland Stanford Junior University | System and method of measuring molecular interactions |
JP2004053372A (ja) | 2002-07-18 | 2004-02-19 | Omron Corp | 表面プラズモン共鳴装置及びその検査用カセット |
US6768550B2 (en) | 2002-07-26 | 2004-07-27 | Proterion Corporation | Beam shifting surface plasmon resonance system and method |
US20040086872A1 (en) | 2002-10-31 | 2004-05-06 | Childers Winthrop D. | Microfluidic system for analysis of nucleic acids |
US6885455B2 (en) * | 2002-11-22 | 2005-04-26 | Dwight U. Bartholomew | Self-calibration of an optical-based sensor using a total internal reflection (TIR) signature |
US7148968B2 (en) | 2003-04-10 | 2006-12-12 | Wisconsin Alumni Research Foundation | Portable surface plasmon resonance imaging instrument |
JP4076962B2 (ja) | 2003-04-23 | 2008-04-16 | 独立行政法人科学技術振興機構 | 差動式表面プラズモン共鳴現象測定装置及びその測定方法 |
JP2005077317A (ja) | 2003-09-02 | 2005-03-24 | Fuji Photo Film Co Ltd | 測定装置 |
EP1512961B1 (en) | 2003-09-02 | 2010-01-13 | FUJIFILM Corporation | Measuring apparatus based on surface plasmon resonance |
JP2005257455A (ja) | 2004-03-11 | 2005-09-22 | Fuji Photo Film Co Ltd | 測定装置および測定ユニット |
JP4455362B2 (ja) | 2004-03-11 | 2010-04-21 | 富士フイルム株式会社 | 全反射減衰を利用した測定装置 |
DE102004033869B3 (de) * | 2004-07-13 | 2006-03-30 | Gesellschaft zur Förderung der Spektrochemie und angewandten Spektroskopie e.V. | Verfahren zur Bestimmung von Oberflächenplasmonenresonanzen an zweidimensionalen Messflächen |
JP4420335B2 (ja) | 2004-09-10 | 2010-02-24 | エヌ・ティ・ティ・アドバンステクノロジ株式会社 | 表面プラズモン測定装置および測定方法 |
US8249682B2 (en) | 2005-01-07 | 2012-08-21 | Lacrisciences, Llc | Device for measuring concentrations of constituents of tear sample |
US8178046B2 (en) | 2005-02-23 | 2012-05-15 | Sierra Sensors Gmbh | Microfluidic devices with SPR sensing capabilities |
US7675624B2 (en) | 2005-04-15 | 2010-03-09 | University Of Washington | Portable and cartridge-based surface plasmon resonance sensing systems |
US20140185051A1 (en) | 2005-11-21 | 2014-07-03 | Plexera, Llc | Surface plasmon resonance spectrometer with an actuator driven angle scanning mechanism |
JP4625405B2 (ja) | 2005-12-19 | 2011-02-02 | 日本電信電話株式会社 | Spr測定機器 |
JP2007225389A (ja) | 2006-02-22 | 2007-09-06 | Moritex Corp | 表面プラズモン共鳴測定装置及び測定方法 |
US20100128269A1 (en) | 2006-06-16 | 2010-05-27 | University Of Washington | Miniaturized surface plasmon resonance imaging system |
JP2007333612A (ja) | 2006-06-16 | 2007-12-27 | Moritex Corp | 表面プラズモン共鳴バイオセンサと、細胞応答測定装置及び測定方法 |
US20080030737A1 (en) | 2006-08-01 | 2008-02-07 | The Texas A&M University System, A Texas State Agency | Multiple pass surface plasmon resonance detector |
CN100543458C (zh) * | 2006-10-23 | 2009-09-23 | 北京金菩嘉医疗科技有限公司 | 微棱镜阵列spr生物传感器组件 |
WO2009081406A2 (en) * | 2007-12-26 | 2009-07-02 | Yissum, Research Development Company Of The Hebrew University Of Jerusalem | Method and apparatus for monitoring processes in living cells |
WO2009090985A1 (ja) | 2008-01-16 | 2009-07-23 | Nippon Telegraph And Telephone Corporation | 流速測定装置、抗原濃度測定装置、フローセル、流速測定方法、抗原濃度測定方法 |
US20090323073A1 (en) | 2008-06-30 | 2009-12-31 | Reichert, Inc. | Analytical Instrument Having Internal Reference Channel |
JP2012523576A (ja) | 2009-04-13 | 2012-10-04 | ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ | 試料中の分析物の存在を検出するための方法および装置 |
WO2010122547A1 (en) | 2009-04-20 | 2010-10-28 | Bio-Rad Laboratories Inc. | Non-scanning surface plasmon resonance ( spr) system |
US8885156B2 (en) * | 2009-08-26 | 2014-11-11 | Reichert, Inc. | Apparatus and method for determination of tear osmolarity |
JP2013512435A (ja) | 2009-11-30 | 2013-04-11 | コーニング インコーポレイテッド | 可変侵入深度のバイオセンサ及び方法 |
CN102735653B (zh) * | 2011-04-14 | 2014-07-16 | 国家纳米科学中心 | 一种利用表面等离子共振生物传感器的生物检测方法 |
CN102253014A (zh) * | 2011-04-15 | 2011-11-23 | 深圳大学 | 表面等离子体共振传感检测系统和方法 |
EP2823287B1 (en) * | 2012-03-05 | 2017-08-23 | Biosurfit, S.A. | Enhanced surface plasmon resonance method |
CN103389284B (zh) * | 2012-05-09 | 2016-03-02 | 深圳大学 | 表面等离子体共振系统和其检测方法 |
CN102692397B (zh) | 2012-06-15 | 2015-02-04 | 重庆绿色智能技术研究院 | 便携式光纤spr食品安全检测仪 |
WO2014052327A1 (en) * | 2012-09-25 | 2014-04-03 | Alfred E. Mann Foundation For Scientific Research | Microchannel plasmon resonance biosensor |
CN102983158B (zh) * | 2012-11-28 | 2015-08-26 | 中国科学院电工研究所 | 一种光学激发产生自旋极化电子和自旋电流的方法 |
CN203132991U (zh) * | 2013-03-21 | 2013-08-14 | 浙江大学 | 无可动部件的多通道角度调制型spr传感器检测系统 |
WO2014189067A1 (ja) | 2013-05-23 | 2014-11-27 | 日本電信電話株式会社 | 血液凝固検査方法 |
EP3066455B1 (en) | 2013-11-04 | 2019-08-14 | Agency For Science, Technology And Research | Optical sensing device for surface plasmon resonance (spr) and optical sensing method using surface plasmon resonance (spr) |
KR101573724B1 (ko) | 2013-11-22 | 2015-12-02 | 한국과학기술연구원 | 나노안테나 배열의 제조 방법, 나노안테나 배열 칩 및 리소그래피용 구조물 |
US9823191B2 (en) | 2014-04-19 | 2017-11-21 | Ecolife Technologies, Llc | Micro-prism test chip |
WO2017053853A2 (en) * | 2015-09-24 | 2017-03-30 | Lacriscience, Llc | Optical sensors, systems and methods of using same |
JP6938492B2 (ja) | 2015-11-10 | 2021-09-22 | ラクリサイエンス・エルエルシー | サンプル浸透圧を決定するためのシステムおよび方法 |
-
2016
- 2016-09-23 WO PCT/US2016/053522 patent/WO2017053853A2/en active Application Filing
- 2016-09-23 CA CA2999173A patent/CA2999173A1/en not_active Abandoned
- 2016-09-23 AU AU2016325627A patent/AU2016325627B2/en active Active
- 2016-09-23 CN CN201680068671.9A patent/CN108700513B/zh active Active
- 2016-09-23 JP JP2018536068A patent/JP6953411B2/ja active Active
- 2016-09-23 US US15/762,057 patent/US10682050B2/en active Active
- 2016-09-23 EP EP16782126.3A patent/EP3353531B1/en active Active
- 2016-09-23 KR KR1020187011344A patent/KR102652349B1/ko active IP Right Grant
-
2020
- 2020-05-15 US US16/875,331 patent/US11406259B2/en active Active
-
2021
- 2021-09-29 JP JP2021159466A patent/JP7263468B2/ja active Active
-
2022
- 2022-06-30 US US17/855,196 patent/US11980418B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003075334A (ja) | 2001-08-31 | 2003-03-12 | Fuji Photo Film Co Ltd | 全反射減衰を利用したセンサー |
WO2005067651A2 (en) | 2004-01-08 | 2005-07-28 | Cappo Anthony P | Surface plasmon resonance based nanoliter tear osmometer |
JP2007527278A (ja) | 2004-01-08 | 2007-09-27 | アンソニー, ピー. カッポ, | 表面プラズモン共鳴型ナノリットル浸透圧計 |
JP2009236709A (ja) | 2008-03-27 | 2009-10-15 | Fujifilm Corp | 表面プラズモンセンシング方法および表面プラズモンセンシング装置 |
JP2012181024A (ja) | 2011-02-28 | 2012-09-20 | Konica Minolta Holdings Inc | 光学式検体検出装置 |
Also Published As
Publication number | Publication date |
---|---|
US10682050B2 (en) | 2020-06-16 |
US11980418B2 (en) | 2024-05-14 |
KR102652349B1 (ko) | 2024-03-27 |
EP3353531B1 (en) | 2024-06-19 |
WO2017053853A3 (en) | 2017-05-11 |
CN108700513A (zh) | 2018-10-23 |
CA2999173A1 (en) | 2017-03-30 |
AU2016325627B2 (en) | 2021-11-25 |
JP2018531397A (ja) | 2018-10-25 |
US20230000340A1 (en) | 2023-01-05 |
US11406259B2 (en) | 2022-08-09 |
US20200383565A1 (en) | 2020-12-10 |
US20180263489A1 (en) | 2018-09-20 |
WO2017053853A2 (en) | 2017-03-30 |
JP6953411B2 (ja) | 2021-10-27 |
EP3353531C0 (en) | 2024-06-19 |
CN108700513B (zh) | 2022-07-05 |
KR20180088636A (ko) | 2018-08-06 |
EP3353531A2 (en) | 2018-08-01 |
AU2016325627A1 (en) | 2018-04-26 |
JP2022008642A (ja) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7342076B2 (ja) | サンプル浸透圧を決定するためのシステムおよび方法 | |
JP7263468B2 (ja) | 光センサ、システム、およびそれを使用する方法 | |
JP2018531397A6 (ja) | 光センサ、システム、およびそれを使用する方法 | |
US7395103B2 (en) | Surface plasmon resonance based nanoliter tear osmometer | |
US8249682B2 (en) | Device for measuring concentrations of constituents of tear sample |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211027 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220809 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230206 |
|
RD12 | Notification of acceptance of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7432 Effective date: 20230206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20230207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230412 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7263468 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |