JP7262912B2 - 金属膜形成用前駆体組成物、これを用いた金属膜形成方法、及び前記金属膜を含む半導体素子 - Google Patents

金属膜形成用前駆体組成物、これを用いた金属膜形成方法、及び前記金属膜を含む半導体素子 Download PDF

Info

Publication number
JP7262912B2
JP7262912B2 JP2021531889A JP2021531889A JP7262912B2 JP 7262912 B2 JP7262912 B2 JP 7262912B2 JP 2021531889 A JP2021531889 A JP 2021531889A JP 2021531889 A JP2021531889 A JP 2021531889A JP 7262912 B2 JP7262912 B2 JP 7262912B2
Authority
JP
Japan
Prior art keywords
nme2
metal film
forming
precursor composition
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021531889A
Other languages
English (en)
Japanese (ja)
Other versions
JP2022511849A (ja
Inventor
チャンソン ホン
ヨンジュ バク
テフン オ
インチョン ファン
サンギョン イ
ドンヒョン ギム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Tri Chem Co Ltd
Original Assignee
SK Tri Chem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190160118A external-priority patent/KR20200072407A/ko
Application filed by SK Tri Chem Co Ltd filed Critical SK Tri Chem Co Ltd
Publication of JP2022511849A publication Critical patent/JP2022511849A/ja
Application granted granted Critical
Publication of JP7262912B2 publication Critical patent/JP7262912B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
JP2021531889A 2018-12-12 2019-12-06 金属膜形成用前駆体組成物、これを用いた金属膜形成方法、及び前記金属膜を含む半導体素子 Active JP7262912B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20180159668 2018-12-12
KR10-2018-0159668 2018-12-12
KR1020190160118A KR20200072407A (ko) 2018-12-12 2019-12-04 금속막 형성용 전구체 조성물, 이를 이용한 금속막 형성 방법 및 상기 금속막을 포함하는 반도체 소자.
KR10-2019-0160118 2019-12-04
PCT/KR2019/017151 WO2020122506A2 (ko) 2018-12-12 2019-12-06 금속막 형성용 전구체 조성물, 이를 이용한 금속막 형성 방법 및 상기 금속막을 포함하는 반도체 소자.

Publications (2)

Publication Number Publication Date
JP2022511849A JP2022511849A (ja) 2022-02-01
JP7262912B2 true JP7262912B2 (ja) 2023-04-24

Family

ID=71077490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021531889A Active JP7262912B2 (ja) 2018-12-12 2019-12-06 金属膜形成用前駆体組成物、これを用いた金属膜形成方法、及び前記金属膜を含む半導体素子

Country Status (2)

Country Link
JP (1) JP7262912B2 (ko)
WO (1) WO2020122506A2 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506378A (ja) 2006-06-02 2010-02-25 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 誘電体フィルムを形成する方法、新規前駆体および半導体製造におけるそれらの使用
US20110183527A1 (en) 2009-08-18 2011-07-28 Youn-Joung Cho Precursor Composition, Methods of Forming a Layer, Methods of Forming a Gate Structure and Methods of Forming a Capacitor
WO2013150920A1 (ja) 2012-04-05 2013-10-10 東京エレクトロン株式会社 半導体デバイスの製造方法及び基板処理システム
JP2014510733A (ja) 2011-03-15 2014-05-01 メカロニックス シーオー. エルティディ. 新規な4b族有機金属化合物及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984591B1 (en) * 2000-04-20 2006-01-10 International Business Machines Corporation Precursor source mixtures
WO2008128141A2 (en) * 2007-04-12 2008-10-23 Advanced Technology Materials, Inc. Zirconium, hafnuim, titanium, and silicon precursors for ald/cvd
KR102215341B1 (ko) * 2012-12-17 2021-02-16 솔브레인 주식회사 금속 전구체 및 이를 이용하여 제조된 금속 함유 박막
KR20160000392A (ko) * 2014-06-24 2016-01-04 솔브레인씨그마알드리치 유한회사 박막 형성용 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506378A (ja) 2006-06-02 2010-02-25 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 誘電体フィルムを形成する方法、新規前駆体および半導体製造におけるそれらの使用
US20110183527A1 (en) 2009-08-18 2011-07-28 Youn-Joung Cho Precursor Composition, Methods of Forming a Layer, Methods of Forming a Gate Structure and Methods of Forming a Capacitor
JP2014510733A (ja) 2011-03-15 2014-05-01 メカロニックス シーオー. エルティディ. 新規な4b族有機金属化合物及びその製造方法
WO2013150920A1 (ja) 2012-04-05 2013-10-10 東京エレクトロン株式会社 半導体デバイスの製造方法及び基板処理システム

Also Published As

Publication number Publication date
WO2020122506A2 (ko) 2020-06-18
WO2020122506A3 (ko) 2020-07-30
JP2022511849A (ja) 2022-02-01

Similar Documents

Publication Publication Date Title
JP7230126B2 (ja) 強誘電体材料としてのケイ素ドープ酸化ハフニウムの堆積のための新規配合物
TWI642803B (zh) 用於沉積一保形的金屬或類金屬氮化矽膜的方法及所形成的膜
CN113423862B (zh) 金属膜形成用前驱体组合物、利用其的金属膜形成方法、半导体元件以及晶体管
US11193206B2 (en) Formulation for deposition of silicon doped hafnium oxide as ferroelectric materials
US9828402B2 (en) Film-forming composition and method for fabricating film by using the same
KR102008445B1 (ko) 지르코늄 함유막 형성용 전구체 조성물 및 이를 이용한 지르코늄 함유막 형성 방법
KR20190108281A (ko) 금속막 형성용 전구체 조성물, 이를 이용한 금속막 형성 방법 및 상기 금속막을 포함하는 반도체 소자.
KR20210155106A (ko) 란탄족 전구체 및 이를 이용한 란탄족 함유 박막 및 상기 박막의 형성 방법 및 상기 란탄족 함유 박막을 포함하는 반도체 소자.
JP7262912B2 (ja) 金属膜形成用前駆体組成物、これを用いた金属膜形成方法、及び前記金属膜を含む半導体素子
KR20210056576A (ko) 박막 형성용 금속 전구체, 이를 포함하는 박막 형성용 조성물 및 박막의 형성 방법
KR102544077B1 (ko) 금속막 형성용 전구체 조성물 및 이를 이용한 박막 형성 방법
US11631580B2 (en) Formulation for deposition of silicon doped hafnium oxide as ferroelectric materials
KR102486128B1 (ko) 유기금속 할로겐화물을 함유하는 금속막 형성용 전구체, 이를 이용한 금속막 형성 방법 및 상기 금속막을 포함하는 반도체 소자.
KR102622013B1 (ko) 금속막 형성용 전구체, 이를 이용한 금속막 형성 방법 및 상기 금속막을 포함하는 반도체 소자.
TWI820730B (zh) 成膜材料、包含其的成膜組合物、使用其的成膜方法、由其製造的薄膜、半導體基板及半導體裝置
KR102550599B1 (ko) 금속 전구체 화합물 및 이를 이용한 금속막 형성방법
KR20230113111A (ko) Cp를 포함하는 금속 전구체 화합물 및 이를 이용한 박막 형성방법
US20220282367A1 (en) Formulation for deposition of silicon doped hafnium oxide
KR20240038417A (ko) 금속 전구체 화합물 및 이를 이용한 박막 형성 방법
KR20210064658A (ko) 실리콘 함유 박막 형성용 전구체, 이를 이용한 실리콘 함유 박막 형성 방법 및 상기 실리콘 함유 박막을 포함하는 반도체 소자.
KR20220136072A (ko) 박막 성장 억제용 화합물 및 이를 이용한 박막 형성방법
KR100656282B1 (ko) 캐패시터 제조 방법
KR20210100804A (ko) 금속 박막 형성용 전구체, 이를 이용한 금속 박막 형성 방법 및 상기 금속 박막을 포함하는 반도체 소자.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220616

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7262912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150