JP7240524B2 - 電気泳動装置及び異物の検知方法 - Google Patents

電気泳動装置及び異物の検知方法 Download PDF

Info

Publication number
JP7240524B2
JP7240524B2 JP2021555624A JP2021555624A JP7240524B2 JP 7240524 B2 JP7240524 B2 JP 7240524B2 JP 2021555624 A JP2021555624 A JP 2021555624A JP 2021555624 A JP2021555624 A JP 2021555624A JP 7240524 B2 JP7240524 B2 JP 7240524B2
Authority
JP
Japan
Prior art keywords
image
electrophoresis
flow path
foreign matter
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021555624A
Other languages
English (en)
Other versions
JPWO2021095082A1 (ja
Inventor
柾至 富吉
真佐志 渡辺
剛 大浦
基博 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of JPWO2021095082A1 publication Critical patent/JPWO2021095082A1/ja
Application granted granted Critical
Publication of JP7240524B2 publication Critical patent/JP7240524B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は電気泳動装置に係り、特に流路中の異物検知に関する。
キャピラリ電気泳動装置は、単数もしくは複数本のキャピラリにより構成されるキャピラリアレイと、キャピラリにポリマを注入するためのポンプ機構を有し、ポンプ機構には流路(以下、ポンプ流路とする)が設けられている。また、陰極側緩衝液中の電極と高圧電源の間に流れる電流と、陰極側緩衝液中の電極とグランド間の陽極側電極に流れる電流を検出できる電流計をそれぞれ設けている。ポンプ流路やキャピラリには、気泡やごみ等の異物が混入する可能性がある。特に、ポンプ機構と接続されるキャピラリやポリマ容器の交換の際には、高い頻度で気泡がポンプ流路内やキャピラリ内に混入してしまう。電気泳動時には、ポンプ流路及びキャピラリに高電圧が印加されており、ポンプ流路やキャピラリ内の異物が大きな抵抗として働く場合がある。これにより部分放電が起こり、キャピラリ等の構成部品や装置本体の破損を招く恐れがある。
特許文献1では、ポンプ流路やキャピラリへの気泡混入等の異常を検知するため、ポンプ流路やキャピラリ等を含む通電路の電流値を検出し、検出された電流値に基づいて通電路の状態を判断する方法が開示されている。ポンプ流路やキャピラリ等の異常を電流値の変化により検知し、構成部品や装置本体の破損を防ぐことが可能である。
特開2003-344356号公報
特許文献1は、電流値により通電路の異常を検知した場合には、異常の原因を特定するため、ポンプ流路内に気泡やごみ等の異物の混入がないか目視で確認を行っていた。しかし、ポンプ流路内の気泡や異物は見えにくく、ポンプ流路内の気泡や異物の特定は困難であった。
本発明は、上記課題を鑑み、流路内の異物の有無を検知する電気泳動装置を提供することを目的とする。
上記課題を解決するため、本発明の電気泳動装置は、内部に泳動媒体が充填される流路と、泳動媒体を収容する泳動媒体容器と、前記流路に泳動媒体を送液する送液機構と、前記流路を撮影する撮影機器と、前記撮影機器で撮影した前記流路の画像を解析する制御部とを有し、前記制御部は、前記流路の画像に基づいて、前記流路内の異物の有無を判定することを特徴とする。
本発明の電気泳動装置は、流路内の異物の有無を検知することが可能である。
電気泳動装置の一構成を示す概略図。 ポンプ機構の概略図。 電圧制御機構を示す高圧電源回路図。 画像検知による異物検知のフローチャート。 画像検知による流路内の異物除去の流れを示す図。 電流検知による異常検知のフローチャート。 電流変化と電流変動検出の概略説明図。 電流検知及び画像検知で異常検出された場合の対応方法を示すフローチャート。
図1は、本実施例にかかる電気泳動装置の概略図である。以下、図1を参照して、本装置の構成について説明する。
本実施例の電気泳動装置101は、単数もしくは複数本のキャピラリ103により構成されるキャピラリアレイ105と、ポリマ107を収容するポリマ容器109と、キャピラリ103とポリマ容器109を接続するポンプ流路111が形成され、ポリマ容器109内のポリマ107をキャピラリ103に送液するポンプ機構113と、ポンプ流路111を撮影する撮影機器115を有する。電気泳動装置101は、コンピュータ117と接続され、詳細は後述するが、コンピュータ117は、撮影機器115で撮影したポンプ流路111の画像の解析を行い、ポンプ流路111内の異物の有無を判定する。
電気泳動装置101の構成について詳細を説明する。
キャピラリアレイ105は、単数もしくは複数本のキャピラリ103を含む交換部材である。測定手法を変更する場合、キャピラリアレイ105を交換し、キャピラリ103の長さを調節する。また、キャピラリ103に破損や品質の劣化が見られたとき、新品のキャピラリアレイ105に交換する。
キャピラリアレイ105は、キャピラリ103のほかに、検出部121、ロードヘッダ123及びキャピラリヘッド125を含む。
キャピラリ103は、内径数十~数百ミクロン,外形数百ミクロンのガラス管で構成され、強度を向上させるためにガラス管の表面をポリイミドでコーティングしている。ただし、励起光が照射されるキャピラリ103の光照射位置は、内部の発光が外部に漏れやすいように、ポリイミド被膜が除去されている。キャピラリ103の内部は、電気泳動時に、泳動速度差を与えるための分離媒体が充填される。分離媒体は、流動性と非流動性の双方が存在するが、本実施例では流動性のポリマ107を用いる。
検出部121は、キャピラリ103の光照射位置の近傍を、光学フラット平面に高さ数ミクロンの精度で配列固定している。電気泳動時、光源127より励起光が照射され、全てのキャピラリ103の光照射位置を連続して透過する。この励起光により、試料から情報光(試料に依存した波長を有する蛍光)が生じ、光照射位置からキャピラリ103の外部に放出される。この情報光を光学検出器129により検出して、試料を分析する。
ロードヘッダ123は、キャピラリ陰極端131に設けられている。キャピラリ陰極端131は、それぞれ金属製の中空電極133を通して固定されており、中空電極133からキャピラリ103の先端が0.5mm程度突き出た状態になっている。また、キャピラリ103毎に固定された中空電極133は、ロードヘッダ123に装着され、中空電極133とロードヘッダ123は一体となる。中空電極133は、高圧電源135と導通している。そのため、電気泳動や試料導入など電圧を印加する必要がある際に、中空電極133は陰極電極として機能する。また、電気泳動装置101には、電流を検出するための第1電流計173と第2電流計175が設けられている。
キャピラリヘッド125は、ポンプ機構113と耐圧機密で着脱する部材である。キャピラリヘッド125は、キャピラリ103が複数の場合に、キャピラリ陽極端137を一つに束ねる。
図2を参照してポンプ機構113について詳述する。ポンプ機構113は、ポンプ流路111が形成されたブロック301と、ポンプ流路111内を稼動するプランジャ303と、プランジャ303を駆動するための駆動部305とから主に構成される。ブロック301は、キャピラリアレイ105、陽極バッファー容器139(図1参照)及びポリマ容器109(図1参照)をそれぞれ連通させるための接続部であり、ブロック301にそれぞれを連結させるためのポンプ流路111が形成されている。ポンプ流路111において、キャピラリヘッド125が接続されたキャピラリ接続部からプランジャ303までの流路をポンプ流路111A、ポンプ流路111Aと陽極バッファー容器139を連結させるための流路をポンプ流路111B、ポンプ流路111Aとポリマ容器109を連結させるための流路をポンプ流路111Cとする。そして、ポンプ流路111内をプランジャ303が駆動することにより、ポリマ107はブロック301を経由し、キャピラリ陽極端137からキャピラリ103内に充填される。キャピラリ103内のポリマ107の詰め替えは、測定の性能を向上するために測定ごとに実施される。
プランジャ303は、ポンプ流路111C内を動く。駆動部305がプランジャ303を下降させることで、ポンプ流路111C内のポリマ107を排出し、ポンプ流路111Aを介してキャピラリ103にポリマ107を送液する。また、駆動部305がプランジャ303を上昇させることで、ポンプ流路111C内に、ポリマ容器109内のポリマ107を吸引することができる。
再び図1を参照しながら説明する。ポリマ容器109とブロック301の間に、逆止弁141が設けられている。逆止弁141は、ポリマ容器109からブロック301に流れるポリマ107を許容し、ブロック301からポリマ容器109へのポリマ107の流出を遮断する機能を有している。したがって、キャピラリ103へポリマ107を注入する際に、ポリマ容器109にポリマ107が逆流することを防止する。また、ブロック301に、陽極バッファー容器139とブロック301をつなぐ連結管143が接続されている。連結管143は、電動バルブ145が設けられている。電動バルブ145は、ブロック301と陽極バッファー容器139の間の流路を開閉するものであり、少なくともキャピラリ103へのポリマ107の注入の際はブロック301と陽極バッファー容器139の間の流路を閉鎖し、陽極バッファー容器139へのポリマ107の流出を防止する。また、電気泳動など電流を流す際には、流路を開きブロック301と陽極バッファー容器139を接続する。また、陽極バッファー容器139内のバッファー147に浸るように、陽極バッファー容器139に電極(GND)149が挿入されている。
コンピュータ117は、通信ケーブル119で接続された状態で使用される。コンピュータ117は、電気泳動装置101の保有する機能の制御し、電気泳動装置101で検出されたデータを授受できる。
さらに電気泳動装置101は、キャピラリ103を恒温に保つための恒温槽153と、キャピラリ陰極端131に様々な容器を搬送するための搬送機155を有する。
キャピラリ103は恒温槽153内に配置され、恒温槽153により所定の温度に温められる。
搬送機155は、陰極バッファー容器157、洗浄容器159,廃液容器161及び試料容器163を必要に応じて、キャピラリ陰極端131まで搬送する。図示していないが、搬送機155は、3つの電動モータとリニアアクチュエータを備えており、搬送機155に設けられた移動ステージ165を、上下、左右および奥行き方向の3軸方向に移動可能である。また、移動ステージ165は、少なくとも1つ以上の容器を載せることができる。さらに移動ステージ165は電動のグリップ167が備えられており、各容器を掴むことや放すことができる。尚、不必要な容器は、装置101内の所定収容箇所に保管されている。
図3は、本装置101の電圧制御機構を示す高圧電源回路図である。以下、図3を参照して電圧制御機構を説明する。
電圧制御機構は、マイコン169,コントローラ171,高圧電源135,第1電流計173、及び第2電流計175を含む。高圧電源135は、コントローラ171の制御に基づいて、通電路に電圧を印加する。通電路は、中空電極133、陰極バッファー容器157に満たされたバッファー148,電気泳動路,陽極バッファー容器139に満たされたバッファー147,電極(GND)149である。電気泳動路は、キャピラリ103,ポンプ流路111,連結管143に充填されたポリマ107である。
高圧電源135は、第1電流計173を介して中空電極133と、第2電流計175を介して電極(GND)149と導通している。図1では省略したが第2電流計207はマイコン169と接続されている。数十キロボルトの電圧を印加すると、中空電極133から電極(GND)149の方向に電界が生じる。この電界により、負に帯電した核酸等の試料は、キャピラリ陰極端131からキャピラリ陽極端137へ移動する。
第1電流計173は、高圧電源135から中空電極133に流れる電流を検出し、その電流値をマイコン169に送信する。第2電流計175は、電極(GND)149からGNDに流れる電流を検出し、その電流値をマイコン169に送信する。後述する電流値および電流値の変動のチェックには、通常、第2電流計175を使用する。電気泳動路を流れる電流値をより直接的に反映している為である。第1電流計173と第2電流計175の間はバッファー147(148)やポリマ107など金属に比べて比較的抵抗の大きい媒体が介在している。さらに、第1電流計173と第2電流計175の間は、ブロック301やキャピラリアレイ105などの接続部が多く存在する。従って、図2の回路の中では、第1電流計173と第2電流計175の間は、測定される電流値にノイズが発生しやすい部分であるといえる。一方で、第2電流計175が示す数値はノイズが含まれにくい。第2電流計175では、電気泳動路を流れる正味の電流量が検出される。
マイコン169は、第1電流計173及び第2電流計175から電流値を読み込み、演算を行う。そして、コントローラ171に命令し、高圧電源135を高電圧印加,低電圧印加,電圧強制遮断等の各状態に制御する。また、装置本体101の外部に配置されたコンピュータ117と相互に通信できる。
<構成の説明>
本実施例の異常検知について説明する。
ポンプ機構113と接続されるキャピラリ103やポリマ容器109の交換の際、高い頻度でポンプ流路111内に気泡やごみ等の異物が混入する。
従来、電流検知で異常が検知された場合には、オペレータがポンプ流路111内の異物の有無を目視で確認を行い、確認された異常の原因に応じて所定の対応行っていた。ポンプ流路111内に異物が確認された場合は、ポンプ機構113によりポンプ流路111内のポリマ107を循環させることで異物除去を行っていた。
しかし、ポンプ流路111内の異物は見えにくく、異物の有無の特定は困難であり、非常に手間であった。特に、微小な異物は目視では捕えにくい。また、目視による確認では前記問題に加えて、ひとが目視により異物の有無を判断するため、異物の検知に個人差が生じるという問題がある。
キャピラリ103やポンプ流路111を含む流路内に異物が混入したまま電気泳動を続けると、異物が大きな抵抗として働く場合があり、導通不良による分析精度の低下や、部分放電による構成部品の破損等を招く恐れがある。微小な気泡であっても、電気泳動中のジュール熱により膨張し、流路を閉塞して放電を起こす可能性もある。また、電気泳動時に異物が流路内に混入していると、異物がピークとして検出されてしまうことがあり、異物が検出されてしまうと、検出精度が低下する可能性がある。これらの問題を排除するために異物の自動検知が求められている。
そこで、これらの問題を解消するため、ポンプ流路111を撮像するための撮影機器115を設けた。撮影機器115で取得したポンプ流路111の画像により、ポンプ流路111内の異物を検知する。ブロック301は透明であり内部のポンプ流路111を視認できることが望ましい。
撮影機器115により取得したポンプ流路111の画像を、コンピュータ117で画像解析を行い、ポンプ流路111内の異物の有無を検知することが可能となる。これにより、電気泳動装置101の操作性が向上し、また一定精度で異物を検知することが可能となる。
<動作の説明>
続いて図4および図5を用いて、画像を用いた異物検知のフローを詳述する。
図4は泳動開始前から泳動終了までの、ポンプ流路111内の異物を画像検知により検出するフローチャートである。図5は図4のフローチャートのステップ401~410のポンプ流路111内の異物を除去する流れの一例を図示したものである。
最初に、装置101を初めに使用する際の事前準備について説明する。事前にポンプ流路111を含むようにポンプ機構113の画像を取得する(401)。
コンピュータ117に、ポンプ流路111を判別するためのリファレンス画像が予め保存されている。リファレンス画像とは、装置製造後に装置毎に取得したポンプ機構113の画像である。
リファレンス画像と、ステップ401で取得したポンプ機構113の画像を比較することにより、ポンプ流路111Aおよび111Bを特定する(402)。
詳細は後述するが、異物の画像検知は、所定のタイミングで撮影した2枚の画像を比較し異物の検知を行う。所定のタイミングとは、フローの順番や時間の間隔を示す。
ポンプ機構113はプランジャ303等が駆動するため、プランジャ303はポンプ流路111Cの画像の類似度を変化させる要因となる。そのためポンプ流路111Aおよび111Bを特定し、異物以外の影響による類似度の変化を無視できるようにする。また、撮影機器115は装置に固定するため、一度固定したら取得する画像は同じものとなる。
しかし、製造工程で撮影機器115を固定する際、固定位置が装置毎にわずかに異なる可能性がある。それが検出誤差となりうるため、リファレンス画像を用いて前記401および402の工程を事前に行うことでより正確な異常検知が可能となる。
ステップ401及びステップ402を行った装置をユーザーに提供しても、装置を提供後にユーザーがステップ401及び402を行っても良い。
次に、泳動開始前のポンプ流路111の異物検知の流れについて説明する。泳動開始前の異物の検知は、ポンプ流路111にポリマ107を送液し、ポンプ流路111内のポリマ107を移動させる。ポリマ107の移動前後に取得したポンプ流路111の画像を比較することで、異物の有無を判定する。
はじめに、駆動部305によりプランジャ303を動かすことで、ポンプ流路111およびキャピラリ103に、ポリマ容器109に格納されているポリマ107を充填する(403)。
ポリマ107が充填されたポンプ流路111Aおよび111Bを撮影機器115で撮影し、ポンプ流路111Aおよび111Bを含んだ画像を取得する(404)。
画像による異物検知は、ポリマ107充填による異物の移動により異物の有無を確認する。そのため、再度ポリマ107を送液し、ポンプ流路111内のポリマ107を移動させる(405)。
ポンプ流路111Aおよび111Bを撮影機器115で撮影し、ポンプ流路111Aおよび111Bを含んだ画像を取得する(406)。
続いて、ステップ404およびステップ406で取得したポンプ流路111Aおよび111Bを含んだ画像の比較を行う。ス
テップ404及びステップ406で取得した画像を用いて、ステップ402で特定したポンプ流路111Aおよび111B部分の類似度(例として0~100)を算出する(407)。
ステップ407で求めた類似度と閾値を比較し異物の有無を判断する(408)。
特許文献1のような電流値に基づいた異常検知では、使用するキャピラリ103の長さや本数、ポリマ107の種類等により電流値が変化するため、キャピラリ103の本数や長さ、ポリマ107の種類等多くのパラメータの組み合わせ毎に実験的に事前に調査を行ったうえで閾値を設定する必要がある。画像による異物の検知は、実験条件により閾値を変更する必要がなく、閾値を固定値とすることが可能であり、設定が容易である。
類似度が所定の閾値(類似度)より小さいとポンプ流路111Aおよび111B内に異物が混入していると判断され、類似度が閾値より大きいとポンプ流路111Aおよび111B内に異物がないと判断される。例えば図5では、異物の有無を判断するための閾値は90と設定されているのに対し、ステップ404とステップ406により取得した画像から求めた類似度は80である。そのため、求めた類似度は閾値より小さく、異物が混入したと判断される。
異物が混入と判断された場合には、再度ステップ403~408を行いポンプ流路111A及び111B内の異物の有無を判断する。図5では、再度ステップ403~408を繰り返し行ったところ類似度は98となった。繰り返しステップ403~408を行った場合は最新の2枚の画像以外は破棄しても良く、つまり前回行ったステップ403~408で取得した画像は破棄してよい。
ステップ408で異物がないと判断された場合には、電気泳動に進む。
電気泳動中にも撮影機器115を用いた異物検知を行う場合には、電気泳動を行う前に、ステップ406で取得した最新の画像をコンピュータ117に保存する(409)。
コンピュータ117に保存された画像は、泳動時に画像による異物検知を行う際の、最初の比較画像となる。つづいて、試料をキャピラリ103内に注入し、電気泳動を開始する(410)。
泳動開始前の異物検知では、ポリマ107の送液による異物の移動を検出した。一方で電気泳動中は、異物の時間変化を検知する。電気泳動中は、試料の電気泳動を行うため、ポンプ流路111やキャピラリ103等の流路に電圧が印加される。泳動前の異物検知では検知されない非常に微小な気泡等が、電圧印加により発生したジュール熱により膨張し、流路を閉塞する可能性がある。そのため、電気泳動中にも異常を検知することが好ましい。
電気泳動中も電気泳動前と同様に、所定の間隔でポンプ流路111Aおよび111Bを含んだ画像を取得する。そして、最新の2枚の画像を比較し類似度を算出することで、異物の膨張等の異物の変化を検知し、異物の有無を判別する。
電気泳動中の異物検知について詳細を説明する。
ポンプ流路111Aおよび111Bを撮影機器115で撮影し、ポンプ流路111A及び111Bを含んだ画像を取得する(411)。
その後コンピュータ117に保存されているステップ406で取得した画像とステップ411で取得した画像を比較し、ステップ406で取得した画像とステップ411で取得した画像のポンプ流路111Aおよび111B部分の類似度(例として0~100)を算出する(412)。
類似度と所定の閾値とを比較することにより異物の有無を確認する(413)。
コンピュータ117により、異物がないと判定された場合には試料の電気泳動を継続して行い、異物があると判定された場合には、ポンプ流路111にポリマ107を送液し異物を除去するために、ステップ403に戻る。このように、異物が検知された場合にはステップ403に戻り、自動で異物の除去を行うことが可能である。
類似度が閾値より大きいと判断されると異物が検知されていないため、試料の電気泳動を継続し、ポンプ流路111Aおよび111Bを撮影機器126で再度撮像する(414)。
最新の2枚の画像であるステップ412で取得した画像と、ステップ414で取得した画像とを比較し、2枚の画像のポンプ流路111Aおよび111B部分の類似度(例として0~100)を算出する(415)。
ステップ415で算出した類似度と所定の閾値を比較することで異物の有無を確認する(416)。
前述したステップ414~416のループを泳動終了まで繰り返す(418)。
ステップ412で、ステップ406で取得した画像とステップ411で取得した画像におけるポンプ流路111A及び111B部分の類似度が閾値より小さいと(413)、ポンプ流路111Aまたは11B内に異物混入していると判定される(417)。
異物の混入が検知された場合には、流路への電圧印加を停止し、電気泳動を停止させる。そして、電気泳動前のステップ403に戻り、再度ポリマ107の充填から行うことで流路内の異物除去を行い、試料の電気泳動を再開する。
ステップ401からステップ402は、装置を初めて使用する場合のみ行えばよく、1度ステップ401およびステップ402を行った装置ではステップ403から行う。ステップ401およびステップ402は装置間の誤差を補正するために行うため、1度行えばそれ以降の画像からポンプ流路111Aおよび111Bのみの比較が可能となる。また、ステップ403のポリマ充填は、測定毎のポリマ107の詰め替えや、異物が検出された際に異物除去のためのポリマ107の送液である。一方でステップ405のポリマ充填は、異物が流路111内にあった場合に、異物を動かすことを目的としている。そのため、ステップ405ではステップ403と比べて少量のポリマ107の送液で良い。
本実施例の電気泳動装置101では、キャピラリ103はポリイミドでコーティングされているため、キャピラリ103内部の画像を取得することが困難であり、キャピラリ103内の異物の確認に画像検知を用いることは難しい。そのため、上述した画像によるポンプ流路111内の異物検知と併せて、電流値に基づいて通電路の状態を判断し異常検知を行うことが好適である。電流値による通電路状態確認では、異物の有無は特定できないものの、バッファー147(148)の液量不足、ポンプ流路111やキャピラリ103を含む流路内の気泡の残留や異物の混入等の異常事態を確認できる。電流検知により異常を検知することで、異常状態のまま高電圧を印加し、流路内に放電を生じさせる危険を回避できる。
また電流検知に画像検知を併用することで、異常原因が、ポンプ流路111内の異物かその他の原因かの特定が可能となる。従来の電流のみによる異常検知では、電流値により異常と判断された場合には、オペレータが気泡や異物の混入がないか目視で確認を行い、確認されたエラー原因に応じて、所定の対応を行っていた。しかし、本実施例では、異常発生箇所がポンプ流路111かその他の原因のエラーか等特定することが可能となり、エラー表示だけでなく対応手段を提示することが可能となる。また、ポンプ流路111内に異物が検知された場合には、自動でポリマ充填を行い、異物を除くことが可能となる。これにより、エラーの原因がポンプ流路111Aまたは111Bの異物の場合は、オペレータに対応を要求することなく、自動でエラーを解消することが可能であり、オペレータの手間を削減することが可能となる。夜間等長時間オペレータが介入できない場合も、ポンプ流路111Aまたは111B内の異物によるエラーの場合には、自動でエラーを解消し、分析を継続することが可能である。
電流値による異常の検知方法について説明する。
電気泳動の前の異常の検知では、電気泳動を行う際の電圧より低い電圧を印加する。電圧の大きさは、バッファー147(148)の液量不足、電気泳動路内の気泡の残留、ゴミの混入等の異常事態が生じても放電しない程度である。本実施例では、1キロボルトの電圧を加えて、さらに3秒後に電流値を確認することにしている。それは、電流の立ち上がり時間を考慮して、電圧に見合う正確な電流値を把握するためである。待ち時間は数秒もあれば十分である。また、このときに検出される数値は陽極側である第2電流計175から読み込まれる値である。
次に電流チェックを行う。前述した電圧印加にて検出された電流値を閾値と比較する。閾値は、キャピラリ103の長さ,本数,使用するポリマ107の種類等の電流値に影響を及ぼすパラメータを考慮して決定される。また、電気泳動前の異常検知と後述する電気泳動中では、印加する電圧の大きさが異なるため、それぞれに適切な閾値を決定するのがよい。電流値は正常なときは安定な値をとり、経時的に変動することはあってもその度合いはなだらかである。一方、異物等により電気泳動路が閉塞すると電流値は急激に変動する。従って、電流値の変動の度合い、具体的には電流値の勾配を監視することにより電圧印加中に発生する電気泳動路内の異常を瞬時に検出できる。ここでは、単位時間あたりの電流値の減少量が閾値を超えた場合に、通電路に異常が発生したと判断する。
実際は、それぞれに使用条件で得られる電流値を実験的に事前に調査し、その半分から三分の一程度の値を閾値として用いることもできる。そして、電流値が閾値より低い場合、正常とは違う状態、例えば前述したようなバッファー147(148)の液量不足、電気泳動路内の異物の残留など電流を阻害するような要因が推定されるため、電気泳動路内に異常がある(エラー)と判定する。
図6は、電気泳動開始後の電気泳動路内異常検知フローを示す図である。以下、電流値変動監視による電気泳動路内異常発生の検出方法について、図6を参照して説明する。
まず、電圧印加を開始し、予備泳動、試料導入または電気泳動を始める(601)。
続いて、異常電流測定を開始し(602)、第2電流計175から電流値を取得する(603)。
過去に取得した電流値があれば、現在値と過去の値を比較して通電路の状態を判断する(604)。
電流値は正常なときは安定な値をとり、経時的に変動することはあってもその度合いはなだらかである。一方、気泡等により電気泳動路が閉塞すると電流値は急激に変動する。従って、電流値の変動の度合い、具体的には電流値の勾配を監視することにより電圧印加中に発生する電気泳動路内の異常を瞬時に検出できる。ここでは、単位時間あたりの電流値の減少量が閾値を超えた場合に、通電路に異常が発生したと判断する。異常が発生した場合の対応方法は後述する。ステップ604で異常が見られなければ、引き続き電圧を加えつづけるか確認する(505)。
引き続き電圧を加えつづけるときは、ステップ603から605までを繰り返す(605)。
電圧を切るときは電流値変動監視を停止して電圧をオフする(606)。
図7は、電流変化と電流変動検出の概略説明図であり、測定開始から異常検出までの関数変化を示す。以下、図7を参照して、実際の電流値(I)及び電流値の変動(ΔI)の変化推移を説明する。図7上図は、横軸が経過時間、縦軸が電流値を示している。また、この図はある地点で電圧を印加してから一旦は安定状態になり、流路内の温度の上昇と共に気泡が膨張して、ある地点でその気泡が流路を閉塞してしまうときの電流変化を示している。また、図7下図は、横軸が同様に経過時間、縦軸が図8で説明した方式で求められる電流値の変動を示している。また、この図は電流値が安定状態になってから気泡が流路を閉塞してしまうまでの電流値の変動を示している。
図7の上図のように、電圧を印加するとそれに見合う電流が発生する。実際は、電圧印加から電流値(I)が立ち上がるまでに若干の時間を要するが、電気泳動路に異常がなければすぐに安定な値をとる。また、流路を閉塞するには至らない微小な気泡が電気泳動路に混入していたとしても電流値(I)は一定になる。やがて電流による発熱等により、電気泳動路を遮断してしまう程に成長した気泡が発生すると、その気泡が大きな抵抗成分となるため、電流値(I)は大きく減少する。また、高圧電源の短絡,絶縁物による電気泳動路の遮断などの偶発的な事故によっても前述したような電流値の激減が発生する。
この電流変化に対応した電流値の変動(ΔI)は同下図のようになる。電流値(I)が一定の間、電流値の変動(ΔI)はほぼゼロに近い値をとりつづける。しかし、気泡が発生し電流値(I)が減少すると電流値の変動(ΔI)は増大し、やがて設定した閾値に達したところで電流値の異常変動が検出される。
正常時の電流が数百マイクロアンペア程度流れるような系で、数マイクロアンペアの閾値に設定していれば、これまで述べてきた方法により気泡の発生など電気泳動路異常を検出できる。また本実施例では、マイコンにより電流値の変動をチェックしているが、制御用コンピュータ117によりチェックしてもよく、装置外にチェックするためのサーバーを設けてもよい。
画像検知と電流検知を併用した異常検知でエラーが検知された際の対応について、説明する。画像検知および電流検知どちらもエラーが発生していないと、正常な状態と判断できるため、電気泳動前の異常検知では電気泳動を開始し、電気泳動中の異常検知ではそのまま泳動を継続する。
画像検知と電流検知を併用した時のエラーのパターンは、画像検知のみでエラー、電流検知のみでエラー、画像検知および電流検知でエラーの3つが考えられる。
画像検知のみでエラーを検知している場合には、ポンプ流路111Aまたは111Bに異物があると判断できる。この場合は、ステップ405に戻り再度ポリマの充填を行い、異物の除去を行う。電流検知ではポンプ流路111およびキャピラリ103を含む通電路全体の異常を検知しているため、通常この状態は起こらない。異物の有無を判断する閾値付近、例えば、閾値を90とした場合の画像の類似度が88~89や91~92であった場合、異常検知の正確性に欠ける。画像検知により異物が検知されたが、電流検知では異常が検知されない場合は、電流検知の閾値が適切ではない可能性がある。それゆえ、例えば閾値を2~3程度下げる等閾値を調整し、再度電流検知を行うのが好適である。このように閾値を調整することで、より最適な閾値を設定することが可能となり、より精度の高い異常検知が可能となる。また、閾値を変更しても電流検知により異常が検知されない場合には、第2電流計175の故障が疑われるため、オペレータに第2電流計175の確認を要求するアラームを出す。
電流検知のみでエラーを検知している場合には、ポンプ流路111内の異物以外の異常が発生していると判断できる。この場合にはキャピラリ103内の異物混入以外にも、バッファー147(148)不足やキャピラリ103の折損等、原因は多岐に渡る。そのため、この場合はオペレータに対応を要求するアラームを出す。オペレータは、異物混入およびキャピラリ103の折損においてはキャピラリアレイ105の交換、バッファー147(148)不足においてはバッファー147(148)の補充の対応をそれぞれ実施する。エラーの原因がキャピラリ103内の異物の可能性もあるため、ステップ405に戻り再度ポリマ107の充填を行った後、電流検知のエラーが解消されない場合に、オペレータに対応を要求しても良い。また、画像検知の閾値が適切でない可能性もあるため、画像検知の閾値を調整し、再度画像検知による異常の有無を判断するのも好適である。閾値を調整することで、より精度の高い異常検知が可能となる。
画像検知および電流検知でエラーを検知している場合には、ポンプ流路111の異物が発生、またはポンプ流路111及びキャピラリ103側の両方で異常が発生していることが考えられる。そのため、画像検知のみでのエラーを検知している場合と同様にステップ405に戻り再度ポリマ充填を行い、はじめに画像検知のエラーを解消する。その後、電流検知のみでエラーを検知した場合には、上述した電流検知のみでエラーが出た際の対応を行い、エラーが出なかった場合には、電気泳動を開始する。
一例として、図8のフローチャートを用いて、電気泳動中に、電流検知および画像検知でエラーが発生した時の対応方法を説明する。
電気泳動中に、画像検知および電流検知により異常が検知される(801)。
まず、装置故障防止のため泳動を停止する(802)。
画像検知および電流検知の両方でエラーを検知している場合には、ポンプ流路111内に異物が発生、またはポンプ流路111内の異物及びポンプ流路111内の異物以外の異常の両方の異常が発生していることが考えられる。そのため、画像検知により確認されたポンプ流路111Aまたは111B内の異物を除去するため、図4のフローチャートのステップ403のポリマ充填からステップ407を行い、さらに電気泳動時よりも低い電圧を印加し電流値の計測を行う(803)。
再度電流検知および画像検知により異常が検知されるか確認する(804)。
画像検知及び電流検知で異常が検知されなければ、ポンプ流路111及びキャピラリ103を含む流路に異物が発生していないと判断できるため泳動を再開する(905)。
また、ステップ801から805までのフローは全自動で行われる。これにより、ひとを介さずに異物検知をすることができ、個人差が生じず、一定の精度で異物検知を行うことが可能となる。
画像検知により異常を検知した場合には、再度ステップ803に戻り、ポリマ107を充填し、異物の除去を行う(806)。
画像検知で異物が確認されず、電流検知で異常が検知された場合は、ポンプ流路111内の異物以外の異常が発生していると判断できる(807)。
ポンプ流路111内の異物以外の異常は、キャピラリ103内の異物混入のみならず、バッファー147(148)不足やキャピラリ103の折れ等による破損など多岐にわたるため、アラームを出し(808)、オペレータに対策を要求する(809)。
オペレータによりよる対策完了後、泳動を再開する(805)。
本フローでは、ステップ809でオペレータによる対策を行った後すぐに泳動を再開しているが、ステップ809の対策完了後、再度電流検知を行い異常が解消されたか確認してもよい。
本実施例では、撮影機器115で画像を取得することを想定し詳述したが、動画で流路を撮影し、取得した動画中の時間変化を見ることでも異物の検知は可能である。また、撮影機器115として赤外線カメラを使用した場合は、ポンプ流路111は透明でなくても異物の有無を判定可能となる。画像解析は上述した方法以外の、広く一般的な画像解析でも良い。また、ポンプ流路111内の異物の有無が判定可能であれば、ポンプ流路は透明でなくても良い。
実施例2では、ポリマ107の送液方法の一例を示す。
実施例1では、ポンプ流路111のポリマ充填と、キャピラリ103のポリマ充填を区別せず、あわせてポリマ充填としている。実施例1の電流検知及び画像検知を併用した異常検知では、異常がポンプ流路111内の異物か、キャピラリの破損等のそれ以外の異常か特定することが可能である。そのため、異物が検知された際に再度行うステップ403のポリマ充填は、異物の発生箇所のみのポリマ充填のみ行えばよい。具体的には、画像に基づき異物が検知された場合には、ポンプ機構113により、ポリマ容器109から流路111A、111Bを通って緩衝液容器139に泳動媒体を送液し、ポンプ流路111内の異物を除去する。一方、電流値に基づき異物が検知された場合は、ポンプ機構113により、流路111Cから流路111Aを通ってキャピラリ103にポリマ107を送液する。電流検知及び画像検知の併用で異常の発生箇所の特定が行えるため、部分的なポリマ充填を行うことが可能となる。これにより、気泡等の異物除去に用いるポリマ107の消費量を削減可能である。
実施例1では、キャピラリ103はガラス管をポリイミドで覆う構成であり、キャピラリ103の内部は確認できない。そのためキャピラリ103内の異物を検知するために画像検知を用いることができず、流路内部の状態が確認できるポンプ流路111内の異物検知にのみ画像検知を用いている。しかし、流路内部が視認可能なマイクロ流路で電気泳動を行う場合は、試料の電気泳動を行うマイクロ流路で画像検知を用いた状態異常箇所の特定が有効に機能する。また、実施例1では、キャピラリ103の強度を向上させるためガラス管をポリイミドでコーティングしているが、コーティング材が透明で視認できる場合やコーティングが不要で内部が視認可能な材料でキャピラリ103が作成された場合は、キャピラリ103内の異物を画像検知で確認することが可能である。
前記実施例において流動性のポリマ107を分離媒体として用いているが、流動性のある分離媒体であれば前記画像検知を用いたマイクロ流路内の状態異常箇所の特定が有効に機能する。
実施例1において、図4のフローにより電気泳動中に、画像検知と電流検知を並行して行い、ポンプ流路111及びキャピラリ103を含む流路内の監視を行っている。実施例4は、電気泳動中は電流検知のみ用いて流路内の監視を行う。試料の電気泳動中に電流検知によるエラーが発生したときのみ、ポンプ流路111を撮影し画像を取得して、異物の有無を確認する。
これにより、常時画像検知と電流検知を併用して検知するときのような検出精度の向上は行えないが、電流検知で目視により行っていた異物の確認を自動で行うことができる。エラーがポンプ流路111内の異物かその他の原因か等特定することが可能となり、エラー表示だけでなく対応手段を提示することが可能となる。ポンプ流路111内に異物が検知された場合には、自動でポリマ107の充填を行い、異物を除くことが可能となる。エラーの原因がポンプ流路111の異物の場合は、オペレータに対応を要求することなく、自動でエラーを解消することが可能となり、オペレータの手間を削減することが可能となる。また、継続して画像を取得して処理を行う必要がないため、実施例1よりも制御部に処理能力を要求せずに使用することが可能である。
101:電気泳動装置、103:キャピラリ、105:キャピラリアレイ、107:ポリマ、109:ポリマ容器、111:ポンプ流路、113:ポンプ機構、115:撮影機器、117:コンピュータ、119:通信ケーブル、121:検出部、123:ロードヘッダ、125:キャピラリヘッド、127:光源、129:光学検出器、131:キャピラリ陰極端、133:中空電極、135:高圧電源、137:キャピラリ陽極端、139:陽極バッファー容器、141:逆止弁、143:連結管、145:電動バルブ、147・148:バッファー、149:電極(GND)、151:光学検出器、153:恒温槽、155:搬送機、157:陰極バッファー容器、159:洗浄容器、161:廃液容器、163:試料容器、165:移動ステージ、167:グリップ、169:マイコン、171:コントローラ、173:第1電流計、175:第2電流計、301:ブロック、303:プランジャ、305:駆動部

Claims (16)

  1. 内部に泳動媒体が充填される流路と、
    泳動媒体を収容する泳動媒体容器と、
    前記流路に泳動媒体を送液する送液機構と、
    を有する電気泳動装置において、
    前記流路を撮影する撮影機器と、
    前記撮影機器で撮影した前記流路の画像を解析する制御部と、
    を有し、
    前記撮影機器は、所定のタイミングで前記流路を撮影することで、前記流路の第1画像と、前記流路の第2画像とを取得し、
    前記制御部は、前記第1画像と、前記第2画像とを比較することで異物の有無を判定する
    ことを特徴とする電気泳動装置。
  2. 請求項の電気泳動装置において、
    前記制御部は、前記第1画像と前記第2画像の前記流路を特定し、
    前記第1画像の前記流路内と、前記第2画像の前記流路内とを比較することで異物の有無を判定することを特徴とする電気泳動装置。
  3. 請求項の電気泳動装置において、
    前記制御部は、前記流路を判別するためのリファレンス画像を有し、前記リファレンス画像により、前記第1画像及び前記第2画像から前記流路の位置を特定することを特徴とする電気泳動装置。
  4. 請求項1~3のいずれか一項の電気泳動装置において、
    前記撮影機器が前記第1画像を取得してから前記第2画像を取得するまでの間に、
    前記送液機構は、前記流路に泳動媒体を送液し、前記流路内の泳動媒体を移動させることを特徴とする電気泳動装置。
  5. 請求項1~3のいずれか一項の電気泳動装置において、
    前記流路を含む通電路に電圧を印加する電源を有し、
    前記撮影機器が第1画像を取得してから第2画像を取得するまでの間に、
    前記流路に、電圧が印加されることを特徴とすることを特徴とする電気泳動装置。
  6. 請求項1~5のいずれか一項の電気泳動装置において、
    前記制御部により異物が検知された場合は、前記送液機構は前記流路に泳動媒体を送液することを特徴とする電気泳動装置。
  7. 請求項1~6のいずれか一項の電気泳動装置において、
    前記流路を含む通電路を流れる電流を検出する電流計とを有し、
    前記制御部は、前記電流値に基づいて、前記通電路の異常の有無を判断することを特徴とする電気泳動装置。
  8. 請求項の電気泳動装置において、
    前記第1画像と前記第2画像の類似度と、所定の第1閾値とを比較し、第1閾値を基準に異物の有無を判断し、
    前記電流値による異常検知は、前記電流値と第2閾値とを比較し、前記第2閾値を基準に異常の有無を判断することを特徴とする電気泳動装置。
  9. 請求項の電気泳動装置において、
    前記画像による異物検知で異物が検知され、かつ前記電流値による異常検知では異常が検知されなかった場合は、
    第2閾値を調整することを特徴とする電気泳動装置。
  10. 請求項の電気泳動装置において、
    前記電流値による異常検知で異常が検知され、かつ前記画像による異物検知では異物が検知されなかった場合は、第1閾値を調整することを特徴とする電気泳動装置。
  11. 請求項の電気泳動装置において、
    前記制御部により、前記画像に基づき異物が検知され、電流値に基づき異常が検知されない場合は、前記電流計の故障を報知することを特徴とする電気泳動装置。
  12. 請求項の電気泳動装置において、
    前記制御部により、前記画像に基づき異物が検知されず、電流値に基づき異常が検知された場合は、
    異常を報知することを特徴とする電気泳動装置。
  13. 請求項の電気泳動装置において、
    内部で試料の電気泳動を行うキャピラリと、
    前記キャピラリに電圧を印加するための緩衝液を収容する緩衝液容器とを有し、
    前記流路は、前記キャピラリと前記泳動媒体容器、かつ前記キャピラリと前記緩衝液容器を接続しており、
    前記制御部により、前記画像に基づき異物が検知された場合には、前記送液機構は前記泳動媒体容器から前記緩衝液容器に泳動媒体を送液し、
    前記電流値に基づき異物が検知された場合は、前記送液機構は前記泳動媒体容器から前記キャピラリに泳動媒体を送液することを特徴とする電気泳動装置。
  14. 請求項の電気泳動装置において、
    前記電流値に基づいて異常が検知された場合に、前記撮影機器は前記画像を取得することを特徴とする電気泳動装置。
  15. 内部に泳動媒体が充填される流路内の異物検知方法において、
    所定のタイミングで撮影した流路の第1画像と、流路の第2画像とを比較し、流路内の異物を検知することを特徴とする異物検知方法。
  16. 請求項15の異物検知方法において、
    前記第1画像と前記第2画像の流路を特定し、
    前記第1画像の前記流路内と、前記第2画像の前記流路内とを比較することで異物の有無を判定することを特徴とする異物検知方法。
JP2021555624A 2019-11-11 2019-11-11 電気泳動装置及び異物の検知方法 Active JP7240524B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044062 WO2021095082A1 (ja) 2019-11-11 2019-11-11 電気泳動装置及び異物の検知方法

Publications (2)

Publication Number Publication Date
JPWO2021095082A1 JPWO2021095082A1 (ja) 2021-05-20
JP7240524B2 true JP7240524B2 (ja) 2023-03-15

Family

ID=75911520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021555624A Active JP7240524B2 (ja) 2019-11-11 2019-11-11 電気泳動装置及び異物の検知方法

Country Status (3)

Country Link
US (1) US20220365025A1 (ja)
JP (1) JP7240524B2 (ja)
WO (1) WO2021095082A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047702A1 (ja) * 2022-08-29 2024-03-07 株式会社日立ハイテク キャピラリ電気泳動装置およびその光学性能診断方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247980A (ja) 2002-02-26 2003-09-05 Olympus Optical Co Ltd フリーフロー電気泳動法により可逆的複合体を構成する構成成分を分離する方法、フリーフロー電気泳動法により可逆的複合体を構成する構成成分間の相互作用を決定する方法および装置
JP2004020224A (ja) 2002-06-12 2004-01-22 Olympus Corp フリーフロー電気泳動装置
JP2006119158A (ja) 2006-01-30 2006-05-11 Hitachi High-Technologies Corp 電気泳動装置、及び電気泳動方法
JP2008122169A (ja) 2006-11-10 2008-05-29 Hitachi High-Technologies Corp 電気泳動装置、及び電気泳動分析方法
JP2010145215A (ja) 2008-12-18 2010-07-01 Shimadzu Corp 導入状況監視システム及び導入状況監視方法
JP2012177599A (ja) 2011-02-25 2012-09-13 Arkray Inc 再生可能なマイクロチップ、それを用いる測定装置、およびマイクロチップの再生方法
JP2017215217A (ja) 2016-05-31 2017-12-07 シスメックス株式会社 分析方法、分析装置および分析システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247980A (ja) 2002-02-26 2003-09-05 Olympus Optical Co Ltd フリーフロー電気泳動法により可逆的複合体を構成する構成成分を分離する方法、フリーフロー電気泳動法により可逆的複合体を構成する構成成分間の相互作用を決定する方法および装置
JP2004020224A (ja) 2002-06-12 2004-01-22 Olympus Corp フリーフロー電気泳動装置
JP2006119158A (ja) 2006-01-30 2006-05-11 Hitachi High-Technologies Corp 電気泳動装置、及び電気泳動方法
JP2008122169A (ja) 2006-11-10 2008-05-29 Hitachi High-Technologies Corp 電気泳動装置、及び電気泳動分析方法
JP2010145215A (ja) 2008-12-18 2010-07-01 Shimadzu Corp 導入状況監視システム及び導入状況監視方法
JP2012177599A (ja) 2011-02-25 2012-09-13 Arkray Inc 再生可能なマイクロチップ、それを用いる測定装置、およびマイクロチップの再生方法
JP2017215217A (ja) 2016-05-31 2017-12-07 シスメックス株式会社 分析方法、分析装置および分析システム

Also Published As

Publication number Publication date
US20220365025A1 (en) 2022-11-17
JPWO2021095082A1 (ja) 2021-05-20
WO2021095082A1 (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
JP3780226B2 (ja) 電気泳動装置、及び電気泳動方法
US6364516B1 (en) Electrophoretic sample excitation light assembly
US7540949B2 (en) Capillary array electrophoresis apparatus and method of separating and analyzing specimen
US5885430A (en) Capillary tube holder for an electrophoretic apparatus
JP7240524B2 (ja) 電気泳動装置及び異物の検知方法
JP4991252B2 (ja) 電気泳動装置、及び電気泳動分析方法
JP2006119158A (ja) 電気泳動装置、及び電気泳動方法
JPH0827278B2 (ja) 血液サンプルのヘマトクリツト値を測定する方法及び装置
CN111693591B (zh) 电泳装置
US20090183990A1 (en) Capillary array unit and capillary electrophoresis apparatus
US20030127328A1 (en) Multi-capillary electrophoresis apparatus
US20220113271A1 (en) Gas concentration detection method, gas concentration detection device, and gas generation system
JP7341308B2 (ja) 電気泳動装置
JP4121698B2 (ja) 自動化平行キャピラリー電気泳動システム
US6660148B2 (en) Electrophoretic method and electrophoretic instrument therefor
JP4377764B2 (ja) 電気泳動装置及び分析方法
JPH11108889A (ja) キャピラリー電気泳動装置
JP3996219B2 (ja) 光ファイバの融着接続方法およびその装置
JPWO2021166210A5 (ja)
EP0576361A2 (en) Electrophoretic electrode, method of/and system for capillary electrophoresis using the electrophoretic electrode and fraction collector assembled into the capillary electrophoresis system
JP2007064774A (ja) 電気泳動装置
WO2023026366A1 (ja) 電気泳動支援方法
JP4994250B2 (ja) キャピラリ電気泳動装置及び電気泳動媒体のリーク検査方法
WO2024047702A1 (ja) キャピラリ電気泳動装置およびその光学性能診断方法
JP4102697B2 (ja) 光ファイバ融着接続機における放電電極の劣化検出法および光ファイバ融着接続機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230303

R150 Certificate of patent or registration of utility model

Ref document number: 7240524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150