JP7200138B2 - アルブミン結合ドメイン融合タンパク質 - Google Patents

アルブミン結合ドメイン融合タンパク質 Download PDF

Info

Publication number
JP7200138B2
JP7200138B2 JP2019566563A JP2019566563A JP7200138B2 JP 7200138 B2 JP7200138 B2 JP 7200138B2 JP 2019566563 A JP2019566563 A JP 2019566563A JP 2019566563 A JP2019566563 A JP 2019566563A JP 7200138 B2 JP7200138 B2 JP 7200138B2
Authority
JP
Japan
Prior art keywords
abd
fusion protein
scfv
linker
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019566563A
Other languages
English (en)
Other versions
JP2022511135A (ja
Inventor
サイニ,ジョン,ケー.
フアン,ハオミン
Original Assignee
ソネット バイオセラピューティクス,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソネット バイオセラピューティクス,インコーポレイテッド filed Critical ソネット バイオセラピューティクス,インコーポレイテッド
Publication of JP2022511135A publication Critical patent/JP2022511135A/ja
Priority to JP2022203856A priority Critical patent/JP7447232B2/ja
Application granted granted Critical
Publication of JP7200138B2 publication Critical patent/JP7200138B2/ja
Priority to JP2024029068A priority patent/JP2024051123A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001136Cytokines
    • A61K39/001138Tumor necrosis factors [TNF] or CD70
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001136Cytokines
    • A61K39/00114Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7155Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6081Albumin; Keyhole limpet haemocyanin [KLH]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Endocrinology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

生物製剤は、癌を含む多くの疾患の治療に有用であるが、そのような分子の短い循環半減期は大きな障害となっている。
生物製剤は、様々な方法で癌の治療に有用である。サイトカイン系治療は、癌細胞の増殖および繁殖を妨げることによって、癌細胞に直接作用し得る。サイトカインは、キラーT細胞、および癌細胞を攻撃する他の細胞の増殖を促進することによって、免疫系を刺激することもあり得る。さらに、サイトカインは癌細胞を促進して、免疫系細胞を引き付ける化学物質を送り出し得る。例えば、Dranoff、Nature Reviews Cancer 4:11-22(2004)、およびZhang et al.,Proc Natl Acad Sci USA 106(18):7513-7518(2009)を参照されたい。抗体は、特異性と高親和性の両方で標的を認識する能力があるため、治療薬として望ましい。T細胞の活性化を制限する腫瘍表面抗原および阻害信号を標的とするものを含むモノクローナル抗体系治療は、20年以上にわたり癌治療法の標準的な構成要素であった。例えば、Weiner、Nat Rev Cancer 15(6):361-370(2015)を参照されたい。
循環半減期が短いことは、多くの生物製剤にとって大きな障害となっている。例えば、Perdreau et al.,European Cytokine Network 21:297-307(2010)を参照されたい。そのような短時間作用型治療薬には、特に慢性疾患の場合、クリニックへの適用性を低減させ得る頻繁な投与プロファイルが必要である。治療上適切な血清濃度を達成するための分子の繰り返しの注射の必要性を低減させるため、長い血清半減期が望ましい。治療用タンパク質の半減期の延長方法には、PEG化、ヒト血清アルブミン(HSA)への融合、ヒト免疫グロブリンIgGの定常断片(Fc)への融合、XTENなどの非構造化ポリペプチドへの融合が含まれる。例えば、Stohl、BioDrugs 29(4):215-239(2015)を参照されたい。半減期延長技術によって、頻繁な投薬の費用および負担を軽減する新規な改善された生物学的治療が可能になる。したがって、タンパク質およびペプチド系治療薬の半減期を延長するのに有用な新規試薬および方法が引き続き必要とされている。
アルブミン結合ドメイン(ABD)を含む組成物が本明細書で提供される。本明細書に記載されるように、主題のアルブミン結合ドメイン(すなわち、アルブミン結合ドメイン融合タンパク質)を含む生物製剤は、有利なことに、ABDなしの生物製剤と比較して、延長された半減期およびより良好なインビボ薬物動態を示す。
一態様では、アルブミン結合ドメイン(ABD)を含む組成物が、本明細書で提供される。ABDには、a)図2に示される可変重鎖のうちのいずれか1つのvhCDR1、vhCDR2、およびvhCDR3を含む可変重鎖と、b)図2に示される可変軽鎖のうちのいずれか1つのvlCDR1、vlCDR2、およびvlCDR3を含む可変軽鎖と、が含まれる。
いくつかの実施形態では、図2に示されるvhCDR1配列、vhCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vhCDR1にはvhCDR1配列が含まれ、vhCDR2にはvhCDR2配列が含まれ、vhCDR3にはvhCDR3配列が含まれる。一実施形態では、可変重鎖には、図2に示される可変重鎖のうちのいずれか1つの配列が含まれる。いくつかの実施形態では、図2に示されるvlCDR1配列、vlCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vlCDR1にはvlCDR1配列が含まれ、vlCDR2にはvlCDR2配列が含まれ、vlCDR3にはvlCDR3配列が含まれる。一実施形態では、可変軽鎖には、図2に示される可変軽鎖のうちのいずれか1つの配列が含まれる。例示的な実施形態では、アルブミン結合ドメインは、A10m3の前記可変重鎖および可変軽鎖(図2D)を含む。
別の態様では、多様体IL-15を含む組成物が、本明細書で提供される。多様体IL-15には、親IL-15と比較して、K86A、K86R、N112A、N112S、N112Q、K86A/N112A、K86R/N112A、K86A/N112S、K86R/N112S、K86A/N112Q、K86R/N112Q、K86A/N112A/N79A、K86R/N112A/N79A、K86A/N112A/N79D、K86R/N112A/N79D、K86A/N112A/N79Q、K86R/N112A/N79Q、K86A/N112A/N71D、K86R/N112A/N71D、K86A/N112A/N71Q、K86R/N112A/N71Q、K86A/N112A/N71D/N79A、K86A/N112A/N71D/N79D、K86A/N112A/N71Q/N79A、K86A/N112A/N71Q/N79D、K86R/N112A/N71D/N79A、K86R/N112A/N71D/N79D、K86R/N112A/N71D/N79Q、K86R/N112A/N71Q/N79A、K86R/N112A/N71Q/N79D、およびK86R/N112A/N71Q/N79Qからなる群から選択される1つ以上のアミノ酸置換が含まれる。
いくつかの実施形態では、多様体IL-15には、図3に示される多様体IL-15のうちのいずれか1つのアミノ酸配列が含まれる。特定の実施形態では、多様体IL-15には、前記IL-15に結合したIL-15受容体α(IL-15Rα)がさらに含まれる。
一態様では、融合パートナーに結合したABDを含むアルブミン結合ドメイン(ABD)融合タンパク質が、本明細書で提供される。ABDには、図2に示される可変重鎖のうちのいずれか1つのvhCDR1、vhCDR2、およびvhCDR3を含む可変重鎖と、図2に示される可変軽鎖のうちのいずれか1つのvlCDR1、vlCDR2、およびvlCDR3を含む可変軽鎖と、が含まれる。
いくつかの実施形態では、図2に示されるvhCDR1配列、vhCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vhCDR1にはvhCDR1配列が含まれ、vhCDR2にはvhCDR2配列が含まれ、vhCDR3にはvhCDR3配列が含まれる。いくつかの実施形態では、可変重鎖には、図2に示される可変重鎖配列のうちのいずれか1つの配列が含まれる。
特定の実施形態では、図2に示されるvlCDR1配列、vlCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vlCDR1にはvlCDR1配列が含まれ、vlCDR2にはvlCDR2配列が含まれ、vlCDR3にはvlCDR3配列が含まれる。特定の実施形態では、可変軽鎖には、図2に示される可変軽鎖配列のうちのいずれか1つの配列が含まれる。
例示的な実施形態では、可変重鎖および可変軽鎖には、それぞれA10m3の可変重鎖および可変軽鎖(図2D)が含まれる。
いくつかの実施形態では、融合パートナーはサイトカインである。特定の実施形態では、サイトカインは、IL-2、IL-7、IL-12、IL-15、IL-18、IL-21、GM-CSF、およびIFN-αから選択される。
特定の実施形態では、融合パートナーは結合部分である。いくつかの実施形態では、結合部分は、scFv可変重鎖およびscFv可変軽鎖を含むscFvである。いくつかの実施形態では、scFvは、抗TGFβ scFv、抗PD-L1 scFv、および抗TNF scFvから選択される。いくつかの実施形態では、scFvは抗インターロイキンscFvである。例示的な実施形態では、scFvは、抗IL-1、IL-6、IL-8、IL-17(A-F)、またはIL-23 scFvである。
いくつかの実施形態では、ABDは、リンカーによって前記融合パートナーに結合している。例示的な実施形態では、リンカーは(GGGGS)であり、式中、xは1~10の整数である。
別の態様では、式(IL-15)-L-(ABD)によるIL15-アルブミン結合ドメイン(ABD)融合タンパク質が、本明細書で提供される。ABDには、図2に示される可変重鎖のうちのいずれか1つのvhCDR1、vhCDR2、およびvhCDR3を含む可変重鎖と、図2に示される可変軽鎖のうちのいずれか1つのvlCDR1、vlCDR2、およびvlCDR3を含む可変軽鎖と、が含まれ、Lはリンカーである。
いくつかの実施形態では、図2に示されるvhCDR1配列、vhCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vhCDR1にはvhCDR1配列が含まれ、vhCDR2にはvhCDR2配列が含まれ、vhCDR3にはvhCDR3配列が含まれる。いくつかの実施形態では、可変重鎖には、図2に示される可変重鎖配列のうちのいずれか1つの配列が含まれる。
特定の実施形態では、図2に示されるvlCDR1配列、vlCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vlCDR1にはvlCDR1配列が含まれ、vlCDR2にはvlCDR2配列が含まれ、vlCDR3にはvlCDR3配列が含まれる。特定の実施形態では、可変軽鎖には、図2に示される可変軽鎖配列のうちのいずれか1つの配列が含まれる。
例示的な実施形態では、可変重鎖および可変軽鎖には、それぞれA10m3の可変重鎖および可変軽鎖(図2D)が含まれる。
28.前記IL-15が、親IL-15と比較して、K86A、K86R、N112A、N112S、N112Q、K86A/N112A、K86R/N112A、K86A/N112S、K86R/N112S、K86A/N112Q、K86R/N112Q、K86A/N112A/N79A、K86R/N112A/N79A、K86A/N112A/N79D、K86R/N112A/N79D、K86A/N112A/N79Q、K86R/N112A/N79Q、K86A/N112A/N71D、K86R/N112A/N71D、K86A/N112A/N71Q、K86R/N112A/N71Q、K86A/N112A/N71D/N79A、K86A/N112A/N71D/N79D、K86A/N112A/N71Q/N79A、K86A/N112A/N71Q/N79D、K86R/N112A/N71D/N79A、K86R/N112A/N71D/N79D、K86R/N112A/N71D/N79Q、K86R/N112A/N71Q/N79A、K86R/N112A/N71Q/N79D、およびK86R/N112A/N71Q/N79Qからなる群から選択される1つ以上のアミノ酸置換を含む多様体IL-15である、請求項22~27のいずれか一項に記載のIL15-ABD融合タンパク質。いくつかの実施形態では、多様体IL-15には、図3に示される多様体IL-15のうちのいずれか1つのアミノ酸配列が含まれる。例示的な実施形態では、多様体IL-15には、IL15 K86R/N112Aのアミノ酸配列が含まれる。
特定の実施形態では、IL-15は野生型IL-15である。いくつかの実施形態では、IL-15は、IL-15受容体α(IL-15Rα)に結合した野生型IL-15を含む。
特定の実施形態では、リンカーは、図48に示されるリンカーのうちのいずれかから選択される。いくつかの実施形態では、リンカーは(GGGGS)であり、式中、xは1~10の整数である。
一実施形態では、IL15-ABD融合タンパク質は、図4に示されるアミノ酸配列のうちのいずれか1つによるアミノ酸配列を有する。
別の態様では、式(IL-12)-L-(ABD)によるIL12-アルブミン結合ドメイン(ABD)融合タンパク質が、本明細書で提供される。ABDには、図2に示される可変重鎖のうちのいずれか1つのvhCDR1、vhCDR2、およびvhCDR3を含む可変重鎖と、図2に示される可変軽鎖のうちのいずれか1つのvlCDR1、vlCDR2、およびvlCDR3を含む可変軽鎖と、が含まれ、Lはリンカーである。
いくつかの実施形態では、図2に示されるvhCDR1配列、vhCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vhCDR1にはvhCDR1配列が含まれ、vhCDR2にはvhCDR2配列が含まれ、vhCDR3にはvhCDR3配列が含まれる。いくつかの実施形態では、可変重鎖には、図2に示される可変重鎖配列のうちのいずれか1つの配列が含まれる。
特定の実施形態では、図2に示されるvlCDR1配列、vlCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vlCDR1にはvlCDR1配列が含まれ、vlCDR2にはvlCDR2配列が含まれ、vlCDR3にはvlCDR3配列が含まれる。特定の実施形態では、可変軽鎖には、図2に示される可変軽鎖配列のうちのいずれか1つの配列が含まれる。
例示的な実施形態では、可変重鎖および可変軽鎖には、それぞれA10m3の可変重鎖および可変軽鎖(図2D)が含まれる。
一実施形態では、IL-12は、p35サブユニット、p40サブユニット、およびIL-12リンカーを含む単鎖IL-12であり、IL-12リンカーは、p35サブユニットをp40サブユニットに共有結合させる。特定の実施形態では、リンカーは、図48に示されるリンカーのうちのいずれかから選択される。例示的な実施形態では、リンカーは(GGGGS)であり、xは1~10の整数である。
例示的な実施形態では、IL12-ABD融合タンパク質には、図20のアミノ酸配列のうちのいずれか1つによるアミノ酸配列が含まれる。
別の態様では、N末端からC末端へ、a)(IL-12)-L1-(ABD)-L2-(IL-15)、およびb)(IL-15)-L1-(ABD)-L2-(IL-12)から選択される式を有するnアルブミン結合ドメイン(ABD)融合タンパク質が、本明細書で提供される。ABDには、図2に示される可変重鎖のうちのいずれか1つのvhCDR1、vhCDR2、およびvhCDR3を含む可変重鎖と、図2に示される可変軽鎖のうちのいずれか1つのvlCDR1、vlCDR2、およびvlCDR3を含む可変軽鎖と、が含まれ、L1およびL2は、それぞれ第1および第2のリンカーである。
いくつかの実施形態では、図2に示されるvhCDR1配列、vhCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vhCDR1にはvhCDR1配列が含まれ、vhCDR2にはvhCDR2配列が含まれ、vhCDR3にはvhCDR3配列が含まれる。いくつかの実施形態では、可変重鎖には、図2に示される可変重鎖配列のうちのいずれか1つの配列が含まれる。
特定の実施形態では、図2に示されるvlCDR1配列、vlCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vlCDR1にはvlCDR1配列が含まれ、vlCDR2にはvlCDR2配列が含まれ、vlCDR3にはvlCDR3配列が含まれる。特定の実施形態では、可変軽鎖には、図2に示される可変軽鎖配列のうちのいずれか1つの配列が含まれる。
例示的な実施形態では、可変重鎖および可変軽鎖には、それぞれA10m3の可変重鎖および可変軽鎖(図2D)が含まれる。
いくつかの実施形態では、IL-15には、野生型IL-15ポリペプチドが含まれる。特定の実施形態では、野生型IL-15は、IL-15受容体α(IL-15Rα)に結合している。
一実施形態では、IL-15は、親IL-15と比較して、K86A、K86R、N112A、N112S、N112Q、K86A/N112A、K86R/N112A、K86A/N112S、K86R/N112S、K86A/N112Q、K86R/N112Q、K86A/N112A/N79A、K86R/N112A/N79A、K86A/N112A/N79D、K86R/N112A/N79D、K86A/N112A/N79Q、K86R/N112A/N79Q、K86A/N112A/N71D、K86R/N112A/N71D、K86A/N112A/N71Q、K86R/N112A/N71Q、K86A/N112A/N71D/N79A、K86A/N112A/N71D/N79D、K86A/N112A/N71Q/N79A、K86A/N112A/N71Q/N79D、K86R/N112A/N71D/N79A、K86R/N112A/N71D/N79D、K86R/N112A/N71D/N79Q、K86R/N112A/N71Q/N79A、K86R/N112A/N71Q/N79D、およびK86R/N112A/N71Q/N79Qから選択される1つ以上のアミノ酸置換が含まれる多様体IL-15である。一実施形態では、IL-15には、図3に示されるアミノ酸配列のうちのいずれかによるアミノ酸配列が含まれる。
特定の実施形態では、IL-12は、p35サブユニット、p40サブユニット、およびIL-12リンカーを含む単鎖IL-12であり、IL-12リンカーは、p35サブユニットをp40サブユニットに結合させる。
いくつかの実施形態では、第1のリンカーおよび第2のリンカーは、それぞれ独立して、図48に示されるリンカーのうちのいずれかから選択される。例示的な実施形態では、リンカーは(GGGGS)であり、xは1~10の整数である。
別の態様では、式(サイトカイン)-L-(ABD)による、アルブミン結合ドメイン(ABD)、サイトカイン、およびリンカー(L)を含むABD融合タンパク質が、本明細書で提供される。ABDには、図2に示される可変重鎖のうちのいずれか1つのvhCDR1、vhCDR2、およびvhCDR3を含む可変重鎖と、図2に示される可変軽鎖のうちのいずれか1つのvlCDR1、vlCDR2、およびvlCDR3を含む可変軽鎖と、が含まれ、Lはリンカーである。サイトカインは、IL-2、IL-7、IL-12、IL-15、IL-18、IL-21、GM-CSF、およびIFN-αから選択される。
いくつかの実施形態では、図2に示されるvhCDR1配列、vhCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vhCDR1にはvhCDR1配列が含まれ、vhCDR2にはvhCDR2配列が含まれ、vhCDR3にはvhCDR3配列が含まれる。いくつかの実施形態では、可変重鎖には、図2に示される可変重鎖配列のうちのいずれか1つの配列が含まれる。
特定の実施形態では、図2に示されるvlCDR1配列、vlCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vlCDR1にはvlCDR1配列が含まれ、vlCDR2にはvlCDR2配列が含まれ、vlCDR3にはvlCDR3配列が含まれる。特定の実施形態では、可変軽鎖には、図2に示される可変軽鎖配列のうちのいずれか1つの配列が含まれる。
例示的な実施形態では、可変重鎖および可変軽鎖には、それぞれA10m3の可変重鎖および可変軽鎖(図2D)が含まれる。
いくつかの実施形態では、リンカーは、図48に示されるリンカーのうちのいずれかから選択される。例示的な実施形態では、リンカーは(GGGGS)であり、xは1~10の整数である。
別の態様では、式(FP1)-L1-(ABD)-L2-(FP2)によるABD融合タンパク質が、本明細書で提供され、式中、ABDは、可変重鎖および可変軽鎖を含むアルブミン結合ドメインであり、FP1およびFP2は、それぞれ第1の融合タンパク質および第2の融合タンパク質であり、L1およびL2は、それぞれ第1および第2のリンカーである。ABDには、図2に示される可変重鎖のうちのいずれか1つのvhCDR1、vhCDR2、およびvhCDR3を含む可変重鎖と、図2に示される可変軽鎖のうちのいずれか1つのvlCDR1、vlCDR2、およびvlCDR3を含む可変軽鎖と、が含まれる。
いくつかの実施形態では、図2に示されるvhCDR1配列、vhCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vhCDR1にはvhCDR1配列が含まれ、vhCDR2にはvhCDR2配列が含まれ、vhCDR3にはvhCDR3配列が含まれる。いくつかの実施形態では、可変重鎖には、図2に示される可変重鎖配列のうちのいずれか1つの配列が含まれる。
特定の実施形態では、図2に示されるvlCDR1配列、vlCDR2配列、およびvhCDR3配列のうちのいずれかに従って、vlCDR1にはvlCDR1配列が含まれ、vlCDR2にはvlCDR2配列が含まれ、vlCDR3にはvlCDR3配列が含まれる。特定の実施形態では、可変軽鎖には、図2に示される可変軽鎖配列のうちのいずれか1つの配列が含まれる。
例示的な実施形態では、可変重鎖および可変軽鎖には、それぞれA10m3の可変重鎖および可変軽鎖(図2D)が含まれる。
いくつかの実施形態では、FP1およびFP2は、それぞれ第1のサイトカインおよび第2のサイトカインである。例示的な実施形態では、第1のサイトカインおよび前記第2のサイトカインは、IL-2およびIL-12、IL-7およびIL-15、IL-15およびIL-12、IL-18およびGM-CSF、IL-21およびIL-15、GM-CSFおよびIL-12、GM-CSFおよびIL-21、ならびにIFN-αおよびIL-15から選択される。
いくつかの実施形態では、第1および第2の融合パートナーは、抗PD-L1 scFvおよびIL-12、抗PD-L1 scFvおよびIL-15、抗PD-L1 scFvおよび抗TGFβ scFv、第1の抗PD-L1 scFvおよび第2のPD-L1 scFv、抗TGFβ scFvおよびIL-12、抗TGFβ scFvおよびIL-15、抗TGFβ scFvおよびPD-L1 scFv、ならびに、第1の抗TGFβ scFvおよび第2の抗TGFβ scFvから選択される。
FP1およびFP2が、それぞれ第1の結合部分および第2の結合部分である、請求項68に記載のABD融合タンパク質。特定の実施形態では、第1の結合部分および前記第2の結合部分は、それぞれscFvである。例示的な実施形態では、第1の結合部分および第2の結合部分は、TNF scFvおよびIL-1 scFv、TNF scFvおよびIL-6 scFv、TNF scFvおよびIL-8 scFv、TNF scFvおよびIL-17(アイソフォームA~F)scFv、TNF scFvおよびIL-23 scFv、ならびに第1のTNF scFvおよび第2のTNF scFvから選択される。
いくつかの実施形態では、第1のリンカーおよび第2のリンカーは、それぞれ独立して、図48に示されるリンカーのうちのいずれかから選択される。一実施形態では、第1のリンカーおよび第2のリンカーは、それぞれ独立して、(GGGGS)であり、xは1~10の整数である。
別の態様では、TGFβ結合ドメインおよびアルブミン結合ドメインを含むアルブミン結合ドメイン(ABD)融合タンパク質が、本明細書で提供される。アルブミン結合ドメインには、図2の可変重鎖および可変軽鎖のうちのいずれかのアミノ酸配列を有するABD可変重鎖およびABD可変軽鎖が含まれる。
例示的な実施形態では、ABD可変重鎖および前記ABD可変軽鎖は、A10m3の可変重鎖および可変軽鎖のアミノ酸配列を含む。
一実施形態では、TGFβ結合ドメインは、4D9の可変重鎖および可変軽鎖を含むscFv(図40B)である。いくつかの実施形態では、ABDには、IL-12、IL-15、PD-L1結合ドメイン、または第2のTGFβ結合ドメインがさらに含まれる。
別の態様では、PD-L1結合ドメインおよびアルブミン結合ドメインを含むアルブミン結合ドメイン(ABD)融合タンパク質が、本明細書で提供される。アルブミン結合ドメインには、図2の可変重鎖および可変軽鎖のうちのいずれかのアミノ酸配列を有するABD可変重鎖およびABD可変軽鎖が含まれる。
いくつかの実施形態では、ABD可変重鎖および前記ABD可変軽鎖は、A10m3の可変重鎖および可変軽鎖のアミノ酸配列(図2D)を含む。特定の実施形態では、PD-L1結合ドメインは、10D12の可変重鎖および可変軽鎖を含むscFv(図50)である。
いくつかの実施形態では、ABDには、IL-12、IL-15、TGFβ結合ドメイン、または第2のPD-L1結合ドメインがさらに含まれる。
別の態様では、本明細書に記載される、アルブミン結合ドメイン、多様体IL-15、またはABD融合タンパク質のいずれかをコードする核酸、任意のそのような核酸を含む宿主細胞、およびそのようなABD、多様体IL-15、またはABD融合タンパク質の作製方法が、本明細書で提供される。
さらに別の態様では、それを必要とする対象の腫瘍の抑制または軽減方法が、本明細書で提供され、この方法には、ABD融合タンパク質を対象に投与することが含まれる。
本明細書に開示されるいくつかの例示的なアルブミン結合ドメイン融合タンパク質を示す図であり、それらは、アルブミン結合ドメインが、サイトカイン(例えば、IL-12またはIL-15)に結合している融合タンパク質、ならびにアルブミン結合ドメインが、1)2つのサイトカイン、2)2つの結合部分(例えば、scFv)、3)結合部分およびサイトカインに結合している融合タンパク質を含む。 本明細書に記載される主題のアルブミン結合ドメイン融合タンパク質の特定の実施形態に含まれる、例示的なアルブミン結合ドメインの配列を示す図である。可変重ドメイン配列、および可変軽ドメイン配列、ならびに特定のvhCDR1~3およびvlCDR1~3配列が、これらの図に含まれる。 本明細書に記載される例示的なIL-15多様体の配列を示す図である。 本明細書に記載されるIL-15-ABD融合タンパク質の例示的な実施形態を示す図である。図4に示されるIL-15-ABD融合タンパク質には、A10m3 ABDが含まれる。 HEK293T細胞における転写が、IL-15-A10m3の低発現を説明していないことを示す研究結果を示す図である。トランスフェクト細胞におけるIL15-A10m3 mRNAの検証。A)HEK293におけるIL15-A10m3の発現は、いずれかの抗Hisタグ抗体を使用したウェスタンブロッティング(左)、またはMSAに結合している機能的ELISA(右)では検出できない。M:マーカー、CK:対照としての非トランスフェクト培地、1~3:3つの独立したトランスフェクト細胞培養からの培養培地(100、200、および250はそれぞれ、100、200、250ug/mlゼオシンである)。IL15-A10m3を産生する10ug/mlの大腸菌は、陽性対照として機能した。B)mRNAが、4つの独立したIL15-A10m3トランスフェクト細胞から調製され、RT-PCRが行われて、ハウスキーピング遺伝子GAPDHのmRNAレベルと比較して、IL15-A10m3 mRNAのmRNAレベルを定量化した。レーン1)非トランスフェクト細胞対照、2-5)IL15-A10m3 mRNAの転写は、全てのトランスフェクト細胞において正常に見える、6)GAPDH mRNAの陽性対照。 IL-15に結合しているIL-15受容体α(IL-15Rα)によって推定的に保護される潜在的なIL-15ユビキチン化部位の同定を示す図である。(A)赤のK86は、推定ユビキチン化部位であり、IL-15Rα結合部位(星印)の隣にあり、(B)K86は、オンラインユビキチン化部位データベース(www.ubpred.org)であるUbPredからのユビキチン化のヒットである。 本明細書に記載される安定性が改善された様々なIL-15-ABD融合タンパク質の概略図を提供する図であり、それには、IL-15Ra/IL15「スシドメイン」融合パートナーを有するIL-15-ABD(A)、および推定ユビキチン化部位K86にアミノ酸置換を有するIL-15多様体融合パートナーを含むIL-15-ABD融合タンパク質(B)が含まれる。 HEK293細胞産生IL-15-ABD K86R、およびK86A多様体、およびIL-15Rα/IL-15-ABDの、発現レベル(図8A)およびマウス血清アルブミン(図8A)およびIL-15Rα(図8B)への結合能力を評価する研究を示すグラフである。A)12個のWT IL15-A10m3クローン(WT)、12個のIL-15Rα/IL-15-A10m3クローン(IL15Ra)、6個のIL-15 K86A-A10m3変異体クローン(K86A)、および6個のIL-15 K86R-A10m3変異体クローン(K86R)のマウス血清アルブミン(MSA)に結合しているIL15-ABDのELISA読み出し。24個のウェルプレートの各試料ウェルの培養培地が、MSAでコーティングされたELISAプレートに加えられた。B)プレートにコーティングされたIL-15受容体α(IL-15Rα)へのIL-15の結合に関するELISAが使用され、K86A(クローンA3、黄色の星)およびK86R(クローンR6、緑色の星)変異体は、IL-15のIL-15Rαへの結合活性への影響はなかったことを確認した。IL-15Rα-IL-15-A10m3における内部IL-15Rα(クローンα1、赤色の星)は、内部IL15に結合し、したがってプレートにコーティングされたIL-15Rαへの結合を遮断し得る。10ug/mlの大腸菌産生WT IL-15-A10m3は、陽性対照として使用された。 IL15K86R-A10m3クローン#6のスケールアップ産生を示す図である。A)サイズ排除カラムによるIL15K86R-A10m3のクロマトグラフ、B)14~42までのSEC分画のSDS-PAGE分析、C)最終産物(1:IL15K86R-A10m3、2:IL15Ra-IL15-A10m3)は、SDS-PAGE(左)および抗Hisタグ抗体を用いたウェスタンブロッティング(右)によって最終確認された。 インビトロ結合アッセイの結果を示す図であり、IL-15 K86R-A10m3のマウス血清アルブミン(MSA)への結合能力を確認する。 CTLL2増殖アッセイの結果を示すグラフであり、HEK293T細胞から産生されるIL-15 K86R-A10m3ポリペプチドは、大腸菌から産生される野生型IL-15およびIL-15-A10m3と比較して、生物活性が低減していることを示す。 IL-15 K86R-A10m3を産生するHEK細胞の生物活性の低減は、少なくとも部分的にはそのグリコシル化に起因することを示す研究結果を示す図である。 IL15 K86R-A10m3に導入されるN112A変異体が、CTLL2増殖アッセイにおいて脱グリコシル化されたIL-15R-A10m3に匹敵するIL-15生物活性を回復させ得ることを示す研究結果を提供するグラフである(A)。(B)IL-15アミノ酸置換N112A、N112Q、およびN112Sを有するIL-15R-A10m3融合タンパク質が、置換側鎖のサイズに反比例的に生物活性の増加を示したことをさらに示す。 B16-F10マウス黒色腫モデルにおける腫瘍増殖に対するIL-15およびIL-15-ABDのインビボ効果を評価するための研究の実験セットアップを示す図である。 IL-15-ABD融合タンパク質で治療したC57BL/6マウスにおける、治療後11日目のB16-F10腫瘍増殖阻害量を示すグラフである。 腫瘍浸潤リンパ球集団に対するIL-15-ABD治療の効果を示すFACS分析を提供する図である。 脾臓および腫瘍におけるリンパ球集団に対するIL-15-ABD治療の効果の概要を提供する図である。 対照のIL-15 WTと比較して、マウスモデル(A)およびヒト血清(B)における主題のIL-15-ABDの安定性を示す研究結果を提供するグラフである。 本明細書に記載される例示的なIL-12-ABDの配列である、mIL-12sc-A10m3およびヒトIL-12sc-A10m3を示す図である。 HEK293T細胞から産生される主題のIL-12-ABDが、インビトロアッセイおよび細胞系アッセイにおいて生物学的に活性であることを示す研究の図である。 B16-F10マウス黒色腫モデルにおける腫瘍増殖に対するIL-12およびIL-12-ABDのインビボ効果を評価するための研究の実験セットアップを示す図である。同様のモル濃度のIL-12およびIL-12が、3つの異なる濃度で使用された。例えば、IL-12の3μgは、IL-12-ABDの4.5μgと同じモル濃度であり、IL-12の10μgは、IL-12-ABDの15μgと同じモル濃度であり、IL-12の20μgは、IL-12-ABDの30μgと同じモル濃度である。IL-12の分子量は70kDであり、IL-12-ABDの分子量は107kDである。 IL-12-ABD/IL-12のインビボ研究における様々な群の腫瘍増殖速度論を示すグラフである。図24Aは、IL-12およびIL-12-ABD群における腫瘍サイズ評価の結果を示し、図24Bは、IL-12治療群を個別に示し、図24Cは、IL-12-ABD治療群を個別に示す。 IL-12-ABD/IL-12のインビボ研究の様々な群のそれぞれにおける個々の動物の腫瘍増殖速度論を示すグラフである。 IL-12-ABD/IL-12のインビボ研究における様々な群の、治療後10日目の腫瘍体積を示すグラフである。 IL-12またはIL-12-ABDを用いた治療後の様々な時点での、B16-F10腫瘍保有マウスにおける縦体重(左)および体重%(右)の測定値を示すグラフである。 IL-12-ABD/IL-12のインビボ研究における様々な群のカルパン-マイヤー疑似生存曲線を提供するグラフである。 B16-F10腫瘍保有マウスに対するIL-12-ABD対IL-12の単回投与の、5日目の薬力学的効果を比較した研究の概要を示すグラフである。腫瘍重量、脾臓重量、血清IFN-γ、および体重の比較が示される。 IL-12-ABD(1.3μg)、IL-12(30μg)、またはプラセボのいずれかを注射した10日目のB16-F10腫瘍保有マウスの腫瘍体積を比較した研究結果を示すグラフである。この研究において、IL-12-ABDは、IL-12よりも約30倍低いモル用量で投与される。 3日目と7日目の図32に示される研究からのマウスにおけるIL-12-ABDおよびIL-12の造血作用をさらに示すグラフである。 B16-F10腫瘍保有マウスにおける腫瘍増殖に対するIL-12-ABDまたはIL-12と抗PD-1抗体を使用した、単回投与併用治療の効果を示す研究を示すグラフである。 IL-12 WTに対するIL12-ABDについてのPKの増加を示す、血清分析の結果を示すグラフである。 本明細書に記載される例示的な主題のIL-15-ABD-IL-12の配列、1)hIL-15(K86R/N112A)-A10m3-mIL-12sc、2)mIL-12sc-A10m3-hIL-15(K86R)、および3)mIL-12sc-A10m3-hIL-15(K86R/N112A)を示す図である。 hIL-15(K86R)-A10m3-mIL-12scおよびmIL-12sc-A10m3-hIL-15(K86R)両方の、MSA(A)、IL-15受容体αおよびIL-12受容体β2(B)への、ELISAによって確認された結合活性を示すグラフである。 本明細書に記載される追加の例示的な主題のIL-15-ABD-IL-12の配列、1)hIL-15(K86R)-A10m3-hIL-12sc、2)hIL-12sc-A10m3-hIL-15(K86R)、および3)hIL-12sc-A10m3-hIL-15(K86R/N112A)を示す図である。 本明細書に記載されるIL-15-ABD-IL-12が、IL-12(図39)およびIL-15(図40)活性の両方を示すことを示す実験結果を示す図である。 本明細書に記載されるIL-15-ABD-IL-12が、IL-12-ABD単独と比較して、優れた活性を示したことを示す研究結果を示すグラフである。 可変重鎖配列、可変軽鎖配列、およびscFvフォーマット配列を含む、本明細書に記載される2つの例示的なTGFβ結合ドメインの配列である4H7および4D9を示す図である。 本明細書に記載されるTGFβ scFvが、TGFβ1誘導Treg(CD4+Foxp3+)の増殖を遮断し得ることを示す研究結果を示す図である。 TGF-β遮断が、TGF-β1誘導の上皮から間葉への移行(図44)および移動(図45)を逆転させることを示す図である。(図42A)EMT中のE-カドヘリンの損失およびビメンチンの誘導発現の図式表現である。(図44B)マウス4T1細胞は、TGF-β1単独、または1D11(パネル3)、または抗TGF-β1 scFv(パネル4)が補充された増殖培地中で培養され、次いで固定され、E-カドヘリン抗体(緑色)およびビメンチン抗体(紫)で染色された。核はDAPI(青)で対比染色された。TGF-β1を用いる治療によって、細胞間接合部からのE-カドヘリンの損失が誘導され、ビメンチンの発現が増加した。この効果は、本明細書に記載される1D11または主題の抗TGF-β1 scFvの添加によって逆転する。図43はさらに、本明細書に記載される主題の抗TGF-β1 scFvが、TGF-β1媒介癌細胞移動を遮断することを示す。 本明細書に記載される主題の抗TGF-β1 scFvが、ヒト細胞(A)およびマウス細胞(B)中のTGF-β媒介Smad2リン酸化を阻害し得ることを示す研究の概要を提供する図である。A中では、主題の抗TGF-β1 scFvは、用量依存的にヒト細胞におけるヒトTGF-β1媒介Smad2リン酸化を阻害し得た。B中では、主題の抗TGF-β1 scFvは、マウス細胞におけるマウスTGF-β1、-β2、および-β3媒介Smad2リン酸化を阻害し得た。 例示的なTGF-β1 scFv-ABD構築物(4D9M-A6mおよび4H7-A6m)の配列を示す図である。 抗TGFβ-1-ABDが、抗TGFβ-1 scFvを延長することを示す研究の概要を提供するグラフである。 大腸菌または哺乳動物(HEK)細胞において産生される様々な抗TGF-β1scFv-ABD(TGF-β1の二価)が、マウス血清アルブミンに結合し得ることを示す研究の概要を提供するグラフである。 T細胞増殖のTGFβ-1媒介阻害が、例示的なTGF-β1 scFv-ABD構築物(4D9M-A6mおよび4H7-A6m)によって逆転した(すなわち、T細胞増殖の増加)ことを示す研究の概要を提供する図である。 主題の融合タンパク質で使用され得る例示的なリンカーを示す図である。そのようなリンカーは、ABD可変重鎖および可変軽鎖のscFvリンカーとして使用され得る。そのようなリンカーはまた使用されて、本明細書に記載されるアルブミン結合ドメインを、IL-12およびIL-15融合パートナーに結合させ得る、またはIL-12融合パートナー(p35およびp40)もしくはIL-15融合パートナー(IL-15およびIL-15Rα)の構成要素を互いに接続し得る。 本明細書に記載されるABD融合タンパク質に含まれ得る例示的なサイトカインのアミノ酸配列を提供する図である。ABDがA10m3である例示的なサイトカイン-ABD融合タンパク質もまた、図49A~Gに示される。そのようなサイトカイン-ABD融合タンパク質は、A10m3 ABDで示されるが、本明細書に記載されるABDを含む任意のABDは、サイトカイン-ABD融合タンパク質に含まれ得る。 本明細書に記載されるABD融合タンパク質と共に使用され得る例示的な抗PD-L1結合ドメイン、10D12のアミノ配列を提供する図である。10D12は低pHでhPD-L1に結合し、mPD-L1と交差反応する。10D12はhPD-L2またはmPD-L2に結合しない。さらに、10D12はPD-1/PD-L1相互作用、およびB71/PD-L1相互作用を遮断する。 いくつかの有用なサイトカイン-ABD-サイトカイン(A)および結合部分-ABD-サイトカイン/結合部分(B)の組み合わせを示す図である。各組み合わせの「A」と「B」は、反対の方向に切り替えることができる。サイトカイン-ABD-サイトカインおよび結合部分-ABD-サイトカイン/結合部分の組み合わせに含まれ得るリンカー-A10m3-リンカー骨格もまた、これらの図に示される。A10m3 ABDが示されているが、本明細書に示されるもののいずれか(例えば、図2)を含む任意のABDは、そのような構築物において使用され得る。
A.概要
サイトカインおよび抗体系治療薬を含む生物製剤は、癌の治療に有用である。
現在および潜在的なサイトカイン系治療薬には、IL-2、IL-7、IL-12、IL-15、IL-18、IL-21 GM-CSF、およびIFN-αを利用する治療薬が含まれる。
IL-12は、炎症誘発性の内因性抗腫瘍免疫応答の強化に適合する様式で、免疫エフェクター機能を媒介することができる。(例えば、Boggio et al.,J Exp Med 188:589-96(1998)、Cavallo et al.,Cancer Res 59:414-21(1999)、Yu et al.,Int Immunol 8:855-65(1996)、Nastala et al.,J Immunol 153:1697:706(1994)、Brunda et al.,J Exp Med 178:1223-30(1993)を参照されたい。)IL-12は、炎症性Th1 CD4+T細胞応答を誘導し、CD8+T細胞の細胞毒性を強化することが知られている。研究はまた、IL-12により媒介されるIFNγのT細胞分泌が、T細胞アネルギーを逆転させ得、エフェクターT細胞耐性を免疫抑制性調節性T細胞に付与し得ることも示している。IL-12は、適応免疫系および自然免疫系を活性化する能力だけでなく、免疫に敵対する腫瘍微小環境をさらに調節する能力により、IL-12は腫瘍免疫療法の理想的な候補になる。
IL-15は、腫瘍内部のT細胞増殖を刺激することができ(例えば、Miecnik et al.,Sci Transl Med 6(228):228ra37(2014)を参照されたい)、エフェクターメモリーCD8+T細胞の生存性を延長し、NK細胞の発生にとって重要である。したがって、IL-15は、チェックポイント阻害剤およびT細胞を利用して癌細胞を攻撃する他の免疫療法の効力を高め得ると考えられている。しかし、IL-15モノマーのインビボにおける半減期は短く、40分未満である。IL-15モノマーの修飾は、癌の治療におけるインビボの薬物動態を改善し得る。これらの修飾は、一般的に、IL-15受容体のαサブユニットであるIL-15Rαを用いるIL-15のトランス提示の改善に集中している。そのような修飾には、1)IL-15:IL-15Rα-Fc複合体を形成するための、IL-15とその可溶性受容体a-サブユニット-Fc融合体との事前会合(例えば、Rubinstein et al.,Proc Natl Acad Sci USA.103:9166-71(2006)を参照されたい。)、2)ハイパーアゴニストIL-15-sIL-15Rα-スシタンパク質の発現(例えば、Bessard et al.,Molecular cancer therapeutics 8:2736-45(2009)を参照されたい)、および3)ヒトIL-15変異体IL-15N72DとIL-15Rα-Fcスシ-Fc融合複合体との事前会合(例えば、Zhu et al.,Journal of Immunology 183:3598-6007(2009)を参照されたい)が含まれる。
T細胞の活性化を制限する腫瘍表面抗原と阻害信号を標的とするものを含むモノクローナル抗体系治療は、20年以上にわたり癌治療法の標準的な構成要素であった。例えば、Weiner、Nat Rev Cancer 15(6):361-370(2015)を参照されたい。
短い循環半減期は、サイトカインおよび抗体系治療薬を含む多くの生物製剤にとって大きな障害となる。例えば、Herrington-Symes et al.,Advances in Bioscience and Biotechnology 4:689-698(2013)、およびPerdreau et al.,European Cytokine Network 21:297-307(2010)を参照されたい。そのような短時間作用型治療薬には、特に慢性疾患の場合、クリニックへの適用性を低減させ得る頻繁な投与プロファイルが必要である。治療上適切な血清濃度を達成するための分子の繰り返しの注射の必要性を低減させるため、長い血清半減期が望ましい。治療用タンパク質の半減期の延長方法には、PEG化、ヒト血清アルブミン(HSA)への融合、ヒト免疫グロブリンIgGの定常断片(Fc)への融合、XTENなどの非構造化融合タンパク質への融合が含まれる。例えば、Stohl、BioDrugs 29(4):215-239(2015)を参照されたい。半減期延長技術によって、頻繁な投薬の費用および負担を軽減する改善されたまたは新規な生物学的治療が可能になる。したがって、タンパク質およびペプチド系治療薬の半減期を延長し得る新規試薬および方法が引き続き必要とされている。
生物製剤(例えば、インターロイキンおよび抗体)の半減期を延長するのに有用な新規アルブミン結合ドメイン(ABD)融合タンパク質が、本明細書で提供される。血清アルブミンは、新生児Fc受容体(FcRn)を介した再利用によって、2~4週間の範囲の長い半減期を有する。アルブミンは、マクロピノサイトーシスを介して内皮細胞によって取り込まれ、初期エンドソームの酸性環境内でpH依存的にFcRnに結合する。アルブミン-FcRn結合は、リソソーム区画内で分解からアルブミン分子をそらし、アルブミン分子を形質膜に向け直し、そこで中性pHによって血漿に戻される。
本明細書に記載されるアルブミン結合ドメイン(ABD)は、アルブミン結合に関してFcRNと競合せず、アルブミンに結合したときに、ABDがFcRn駆動エンドソームアルブミン再利用を受けることも可能にするpH範囲でアルブミンに結合する。したがって、主題のアルブミン結合ドメイン(ABD)を含む生物製剤は、アルブミン-FcRn経路を使用してリソソーム分解を回避することができ、その結果、ABDを欠く対応物よりも長い血清半減期を示す。
さらに、そのようなABD含有治療薬は、有利なことに、高レベルの血清アルブミンを含有することが知られている腫瘍に局在化する。したがって、そのようなABD含有治療薬は、癌の治療に特に有用である。
B.アルブミン結合ドメイン
一態様では、アルブミン結合ドメインを含む組成物が、本明細書で提供される。本明細書で使用される「血清アルブミン」とは、血液中のステロイド、脂肪酸、および甲状腺ホルモンの担体タンパク質として主に機能する、肝臓によって産生される球状タンパク質のファミリーのメンバーを指す。血清アルブミンはまた、血漿の膠質浸透圧に寄与することにより細胞外液量の安定化にも主要な役割を果たし、ヒト血清アルブミン(HSA、Genbank受託番号:NM_000477およびNP_000468)、およびマウス血清アルブミン(MSA、Genbank 受託番号:NM_009654およびNP_0033784)が含まれるが、これらに限定されない。アルブミンの構造は、いくつかの長いαヘリックスによって特徴付けられ、疎水性化合物の11個の異なる結合ドメインを含有している。ヒトにおいては、血清アルブミンはALB遺伝子によってコードされている。
主題のアルブミン結合ドメイン(ABD)を含む融合タンパク質は、血清アルブミン(SA)に結合することができ、これによりマクロピノサイトーシスによって細胞に融合タンパク質を取り込むことができる。特定の実施形態では、本明細書に記載されるABDは、約pH5.5~約pH7.2のpH範囲で結合する。初期エンドソームにおいて、そのようなSA結合ABD融合タンパク質は、酸性pH(例えば、pH5.5)でSAを介してFcRnに結合し、次に、これにより、細胞のリソソーム区画からSA結合ABD融合タンパク質をそらし、形質膜に戻る。形質膜で、SAは、中性pH(例えば、pH7.1~7.5)によりFcRnから解離し、SAおよびABD融合タンパク質が放出されて血流に戻る。主題のABDを含む治療薬は、約pH5.5~約pH7.2のpH範囲でアルブミンに結合することができるので、そのような治療薬は、有利なことに、FcRn駆動エンドソームアルブミン再利用も受け、したがって、リソソーム分解を回避する。したがって、そのようなABDを含む治療薬は、有利なことに、ABDを欠く対応物よりも長い血清半減期を示す。そのような治療薬は、高レベルの血清アルブミンを含有することが知られている癌の治療に特に有用である。
いくつかの実施形態では、アルブミン結合ドメインは、新生児のFc受容体(FcRn)へのSAの結合を妨げない部位でアルブミンに結合する。本明細書で使用される「FcRn」または「新生児Fc受容体」とは、IgG抗体のFc領域に連結し、少なくとも部分的にFcRn遺伝子によってコードされるタンパク質を意味する。FcRnは、ヒト、マウス、ラット、ウサギ、およびサルを含むが、これらに限定されない任意の生物由来であり得る。当該技術分野において既知のように、機能的FcRnタンパク質は、しばしば重鎖および軽鎖と呼ばれる2つの融合タンパク質を含む。軽鎖はβ-2-ミクログロブリンであり、重鎖はFcRn遺伝子によってコードされている。本明細書において別段の記載がない限り、FcRnまたはFcRnタンパク質は、FcRn重鎖とβ-2-ミクログロブリンとの複合体を指す。
いくつかの実施形態において、本明細書に記載または例示されるアルブミン結合ドメインは、好ましくは、血清アルブミン分子とFcRnとの相互作用に関与しない血清アルブミン分子上のエピトープで血清アルブミン(例えば、HSA)に特異的に結合する。したがって、血清アルブミン分子へのSA結合部分の結合は、好ましくは、血清アルブミン分子(例えば、HSA)とFcRnとの結合を実質的に妨害、阻害、防止、さもなければ低減させない。好ましくは、アルブミン結合ドメインは、血清アルブミン分子への結合についてFcRnと競合しない。好ましくは、アルブミン結合ドメインは、血清アルブミンのFcRnへの結合を立体的に阻害しない。好ましくは、SA結合部分は、アルブミンがFcRnと相互作用できないように血清アルブミン分子の立体配座を変化させない。
いくつかの実施形態では、アルブミン結合ドメインは、5.0±0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、または3.0のpHでSA(例えばHSA)に結合する。いくつかの実施形態では、アルブミン結合ドメインは、約pH5.5~約pH7.2のpH範囲でSAに結合する。いくつかの実施形態では、SA結合部分は、5.5のpHでSAに結合する。
特定の実施形態では、アルブミン結合ドメインは、ヒト血清アルブミン(HSA)結合ドメインである。HSA結合ドメインには、HSA分子全体またはHSAの断片などのHSA分子に結合できるアルブミン結合ドメインが含まれるが、これらに限定されない。いくつかの態様では、HSA結合ドメインはまた、マウス血清アルブミンにも結合する。いくつかの態様では、HSA結合ドメインはまた、カニクイザルアルブミンにも結合する。特定の実施形態では、HSA結合ドメインは、ウシ血清アルブミン(BSA)に結合しない。
本明細書で提供されるアルブミン結合ドメインには、可変重鎖単独、または可変軽鎖と共同した可変重鎖が含まれ得る。いくつかの実施形態では、アルブミン結合ドメインには、可変重鎖が含まれる。特定の実施形態では、可変重鎖には、vhCDR1、vhCDR2、およびvhCDR3(可変重鎖相補性決定領域1~3)が含まれる。特定の実施形態では、抗原結合ドメインには、可変軽鎖も含まれる。特定の実施形態では、可変軽鎖には、vlCDR1、vlCDR2、およびvlCDR3(可変軽鎖相補性決定領域1~3)が含まれる。
いくつかの実施形態では、アルブミン結合ドメインには、図2に示される可変重鎖のいずれかのvhCDR1、vhCDR2、およびvhCDR3を含む可変重鎖が含まれる。いくつかの実施形態では、アルブミン結合ドメインには、図2Dに示されるようなA10m3可変重鎖のvhCDR1、vhCDR2、およびvhCDR3が含まれる。特定の実施形態において、アルブミン結合ドメインには、図2Dに示されるようなA10m3のvhCDR1、vhCDR2、およびvhCDR3が含まれる。
特定の実施形態では、アルブミン結合ドメインには、可変軽鎖も含まれる。例示的な実施形態では、アルブミン結合ドメインには、図2に示される可変軽鎖のいずれかのvlCDR1、vlCDR2、およびvlCDR3を含む可変軽鎖が含まれる。いくつかの実施形態において、アルブミン結合ドメインには、図2Dに示されるようなA10m3可変軽鎖のvlCDR1、vlCDR2、およびvlCDR3が含まれる。特定の実施形態において、アルブミン結合ドメインには、図2Dに示されるようなA10m3のvlCDR1、vlCDR2、およびvlCDR3が含まれる。
特定の実施形態では、アルブミン結合ドメイン(例えば、HSA結合ドメイン)は、抗体または抗体断片である。いくつかの実施形態では、アルブミン結合ドメイン(例えば、HSA結合ドメイン)は、scFvである。
ABDが、可変重鎖および可変軽鎖の両方を含むいくつかの実施形態では、可変重鎖および可変軽鎖は、リンカー(例えば、scFvリンカー)によって互いに結合している。特定の実施形態では、リンカーは、そのC末端で可変重鎖に結合し、そのN末端で可変軽鎖に結合している。好適なリンカーは、本明細書および図48に記載される。いくつかの実施形態では、リンカーは(Gly4Ser)リンカーであり、xは1、2、3、4、5、6、7、または8である。特定の実施形態では、リンカーは(Gly4Ser)リンカーである。
特定の実施形態では、アルブミン結合ドメインには、A10m3のvhCDR1、vhCDR2、およびvhCDR3を含む可変重鎖、ならびにA10m3のvlCDR1、vlCDR2、およびvlCDR3を含む可変軽鎖も含まれる(図2D)。一実施形態では、アルブミン結合ドメインには、図2Dに示されるA10m3 ABDの可変重配列および可変軽配列が含まれる。
C.インターロイキン-15多様体
別の態様では、野生型IL-15と比較して、改善されたインビボ安定性および/または生物活性を有する多様体IL-15を含む組成物が、本明細書で提供される。
本明細書で使用される「インターロイキン15」、「IL-15」、および「IL15」は全て、IL-15特異的受容体α鎖、IL-2/IL-15受容体β鎖(CD122)、および一般的なγ鎖(γC、CD132)からなる複合体に結合し、それを介して信号を出すインターロイキンを指す(Genbank受託番号:NM_00000585およびNP_000576(ヒト)、ならびにNM_001254747およびNP_001241676(マウス))。
IL-15は、腫瘍内部のT細胞増殖を刺激することが示されている(例えば、Miecnik et al.,Sci Transl Med 6(228):228ra37(2014)を参照されたい)。IL-15はまた、エフェクターメモリーCD8+T細胞の生存性を延長することもでき、NK細胞の発生にとって重要である。IL-15は、チェックポイント阻害剤およびT細胞を利用して癌細胞を攻撃する他の免疫療法の効力を高め得ると考えられている。したがって、特定の動作理論に拘束されることなく、本明細書に記載されるIL-15は、癌の治療に有用であると考えられている。
しかし、IL-15モノマーのインビボにおける半減期は短く、40分未満である。IL-15モノマーの修飾は、癌の治療におけるインビボの薬物動態を改善し得る。これらの修飾は、一般的に、IL-15受容体のαサブユニットであるIL-15Rαを用いるIL-15のトランス提示の改善に集中している。そのような修飾には、1)IL-15:IL-15Rα-Fc複合体を形成するための、IL-15とその可溶性受容体a-サブユニット-Fc融合体との事前会合(例えば、Rubinstein et al.,Proc Natl Acad Sci USA.103:9166-71(2006)を参照されたい。)、2)ハイパーアゴニストIL-15-sIL-15Rα-スシタンパク質の発現(例えば、Bessard et al.,Molecular cancer therapeutics 8:2736-45(2009)を参照されたい)、および3)ヒトIL-15変異体IL-15N72DとIL-15Rα-Fcスシ-Fc融合複合体との事前会合(例えば、Zhu et al.,Journal of Immunology 183:3598-6007(2009)を参照されたい)が含まれる。
いくつかの態様では、IL-15は、野生型IL-15と比較して、安定性が向上した親IL-15の多様体である。特定の実施形態では、多様体IL-15は、野生型ヒトIL-15の多様体である。例示的な実施形態では、多様体IL-15には、図3に示される親IL-15の位置K86にアミノ酸置換が含まれる。本明細書に記載されるように、K86は、特定の細胞型(例えば、HEK293 T細胞)を使用して作製される場合、ユビキチン依存性分解の推定部位である(実施例2を参照されたい)。したがって、特定の動作理論に拘束されることなく、アミノ酸置換によるK86ユビキチン化部位の除去によって、IL-15の安定性が改善されると考えられている(実施例2および3を参照されたい)。
特定の実施形態では、IL-15は、位置N112にアミノ酸置換を有する多様体IL-15である。特にIL-15がABDに結合している場合、適切なIL-15/IL-15受容体γ相互作用にとって重要であるため、アミノ酸位置N112はIL-15生物活性の重要な部位である。したがって、特定の動作理論に拘束されることなく、位置N112の変異体は、腫瘍環境におけるT細胞増殖の促進、CD8+T細胞の生存性の強化、およびNK細胞の発生の促進を含むが、これらに限定されないIL-15の1つ以上の機能を強化できると考えられている。
IL-15のインビボ安定性および/または生物活性を改善することができる特定のアミノ酸置換には、K86A、K86R、N112A、N112S、N112Q、K86A/N112A、K86R/N112A、K86A/N112S、K86R/N112S、K86A/N112Q、K86R/N112Q、K86A/N112A/N79A、K86R/N112A/N79A、K86A/N112A/N79D、K86R/N112A/N79D、K86A/N112A/N79Q、K86R/N112A/N79Q、K86A/N112A/N71D、K86R/N112A/N71D、K86A/N112A/N71Q、K86R/N112A/N71Q、K86A/N112A/N71D/N79A、K86A/N112A/N71D/N79D、K86A/N112A/N71Q/N79A、K86A/N112A/N71Q/N79D、K86R/N112A/N71D/N79A、K86R/N112A/N71D/N79D、K86R/N112A/N71D/N79Q、K86R/N112A/N71Q/N79A、K86R/N112A/N71Q/N79D、およびK86R/N112A/N71Q/N79Qが含まれるが、これらに限定されない。そのようなアミノ酸置換のうちの1つ以上を含む例示的な多様体IL-15が図3に示される。例示的な実施形態では、多様体IL-15には、アミノ酸置換K86AおよびN112Aが含まれる。
一実施形態では、本明細書に記載されるIL-15(野生型および多様体IL-15)は、IL-15Rαに結合している。その受容体とトランスで提示されるそのようなIL-15は、ネイティブIL-15単独と比較して、延長された半減期およびより高い効力を有することが示されている。例えば、Wu、J Mol Genet Med 7、85(2013)を参照されたい。
D.IL-12
別の態様では、IL-12を含む組成物が、本明細書で提供される。本明細書で使用される「インターロイキン12」、「IL-12」、および「IL12」は全て、IL-12AおよびIL-12B遺伝子によってコードされるヘテロダイマーサイトカインであるインターロイキンを指す(Genbank受託番号:NM_000882(IL-12A)およびNM_002187(IL-12B))。IL-12は、4つのαヘリックスのバンドルから構成され、ネイティブT細胞のTH1細胞への分化に関与している。IL-12は、IL-12受容体に結合し、IL-12受容体は、IL-12R-β1およびIL-12R-β2によって形成されるヘテロ二量体受容体である。IL-12は、T細胞の増殖と機能を刺激できるT細胞刺激因子として知られている。具体的には、IL-12は、T細胞およびナチュラルキラー(NK)細胞からのインターフェロンγ(IFN-γ)および腫瘍壊死因子α(TNF-α)の産生を刺激することができ、IL-4媒介によるIFN-γの抑制を低減させる。IL-12は、NK細胞およびCD8+細胞傷害性Tリンパ球の細胞傷害活性の強化をさらに媒介し得る。さらに、IL-12は、インターフェロンγの産生を増加させることにより抗血管新生活性を有することもでき、次に、これにより、ケモカイン誘導性タンパク質-10(IP-10またはCXCL10)の産生を増加させる。次いで、IP-10は、この抗血管新生効果を媒介する。特定の動作理論に拘束されることなく、免疫応答を誘導する能力および抗血管新生活性を介したIL-12が使用されて、癌を治療することができると考えられている。
いくつかの実施形態では、IL-12はマウスIL-12である。他の実施形態では、IL-12はヒトIL-12である。
特定の実施形態では、IL-12は、IL-12 p40サブユニットに結合したIL-12 p35サブユニットを含む単鎖IL-12ポリペプチドである。そのようなIL-12単鎖ポリペプチドは、有利なことに、野生型IL-12の生物活性の1つ以上を保持する。いくつかの実施形態において、本明細書に記載される単鎖IL-12ポリペプチドは、N末端からC末端へ、式(p40)-(L)-(p35)によるものであり、式中、「p40」はIL-12 p40サブユニットであり、「p35」はIL-12 p35サブユニットであり、Lはリンカーである。他の実施形態では、単鎖IL-12は、N末端からC末端へ、式(p35)-(L)-(p40)によるものである。任意の好適なリンカーは、本明細書に記載され、図49Cに開示されるものを含む単鎖IL-12ポリペプチド内で使用され得る。好適なリンカーには、例えば、アミノ酸配列(GGGGS)を有し、式中、xが1~10の整数であるリンカーが含まれ得る。他の好適なリンカーには、例えば、アミノ酸配列GGGGGGSが含まれる。主題の単鎖IL-12ポリペプチドと共に使用され得る例示的な単鎖IL-12リンカーは、Lieschke et al.,Nature Biotechnology 15:35-40(1997)にも記載されており、それは、特に、IL-12ポリペプチドリンカーの教示について、参照によりその全体が本明細書に組み込まれる。
例示的な実施形態では、単鎖IL-12ポリペプチドは、単鎖ヒトIL-12ポリペプチド(すなわち、ヒトp35およびp40 IL-12サブユニットを含む)である。特定の実施形態では、単鎖IL-12ポリペプチドは、単鎖マウスIL-12ポリペプチドである。例示的な単鎖ヒトおよびマウスIL-12は、図20(ABDとの融合ペプチドとして示される)および49Cに示される。
E.ABD融合タンパク質
一態様では、リンカーを介して1つ以上の融合パートナー(例えば、第1の融合パートナー、第2の融合パートナーなど)に結合したアルブミン結合ドメインを含むABD組成物が、本明細書で提供される。本明細書で議論されるように、主題のABD融合タンパク質は、FcRn媒介エンドソーム再利用の下で、したがって有利なことに、そのようなABDを含まない対応物と比較して、延長された半減期を示し得る。
そのようなABD融合タンパク質に有用なABDには、本明細書に記載されるものが含まれるが、これらに限定されない。vhCDR1~3、vlCDR1~3、可変重鎖、および可変軽鎖配列を含む、そのようなABDのアミノ酸配列は、例えば図2に開示される。いくつかの実施形態では、ABD融合タンパク質には、図2のABD可変重鎖のいずれかのvhCDR1、vhCDR2、およびvhCDR3を含む可変重鎖、ならびに図2のABD可変軽鎖のいずれかのvlCDR1、v1CDR2、およびvCDR3を含む可変軽鎖が含まれる。特定の実施形態では、ABDには、図2に開示されるABDのvhCDR1、vhCDR2、およびvhCDR3を有する可変重鎖、ならびに図2に開示されるABDのvhCDR1、vhCDR2、およびvhCDR3を有する可変軽鎖が含まれる。いくつかの実施形態では、ABD融合タンパク質には、図2に開示されるABDの可変重鎖および可変軽鎖が含まれる。
例示的な実施形態では、ABD融合タンパク質には、A10m3可変重鎖のvhCDR1、vhCDR2、およびvhCDR3を含む可変重鎖、ならびにA10m3可変軽鎖のvlCDR1、vlCDR2、およびvCDR3を含む可変軽鎖(図2D)が含まれる。特定の実施形態では、ABDには、A10m3のvhCDR1、vhCDR2、およびvhCDR3を有する可変重鎖、ならびにA10m3のvhCDR1、vhCDR2、およびvhCDR3を有する可変軽鎖(図2D)が含まれる。いくつかの実施形態では、ABD融合タンパク質には、A10m3の可変重鎖および可変軽鎖(図2D)が含まれる。
本明細書に記載されるABD融合タンパク質には、融合パートナーが含まれる。いくつかの実施形態では、融合パートナーには、2つの融合パートナー(第1の融合パートナー(FP1)および第2の融合パートナー(FP2))が含まれる。2つの融合パートナーを含む実施形態では、融合パートナーは、いくつかの方向でABDに結合することができる。いくつかの実施形態では、ABD融合タンパク質は、N末端からC末端へ、式FP1-ABD-FP2、FP1-PF2-ABDまたはABD-FP1-FP2によるものであり、式中、FP1は第1の融合パートナーであり、FP2は第2の融合パートナーである。
融合パートナーの半減期の延長が望まれる任意の好適な融合パートナーは、主題のABD融合タンパク質に含まれ得る。融合パートナーには、例えば、サイトカイン(例えば、インターフェロンおよびインターロイキン)、増殖因子、ポリペプチド、タンパク質、およびホルモン(例えば、増殖ホルモン、副甲状腺ホルモン)を含まれ得る。
特定の実施形態では、融合パートナーは、可変重鎖および可変軽鎖を含む抗体系結合部分である。そのような結合部分は、例えば、腫瘍特異的標的またはサイトカインを含む関心のある任意の標的に結合し得る。例示的な実施形態では、融合パートナーは単鎖可変断片(scFv)である。抗体系融合パートナーには、ds-scFv、単一ドメイン抗体(sdAb)、ダイアボディ、dsFv、ds-scFv、Fab、および全長抗体も含まれるが、これらに限定されない。抗体系融合パートナーには、多重特異性(例えば、二重特異性)抗体および断片も含まれる。
本明細書に記載される主題のABD融合タンパク質は、構成要素間(ABDおよび融合パートナー)および構成要素内のリンカーを利用する。例えば、scFv融合パートナーは、一般にグリシンとセリンに基づく標準的なペプチドリンカーを利用して、変異型重鎖と軽鎖を結合させて、scFvを形成する。さらに、標準的なペプチドリンカーが利用されて、ABDを融合パートナー(例えば、サイトカイン融合パートナー)に結合させる。さらに、リンカーが使用されて、特定の部分の構成要素、例えばIL-12およびIL-15のp35およびp40サブユニットをIL-15Rαに結合させる。いくつかの実施形態では、リンカーは(Gly4Ser)リンカーであり、xは1、2、3、4、6、7、または8である。特定の実施形態では、ABDは、(Gly4Ser)リンカーによって融合パートナーに接続される。
本明細書に示されるように、組換え技術によって生成される従来のペプチド結合を含めて、使用され得る好適なリンカーは、ある数存在する。リンカーペプチドは、主に、以下のアミノ酸残基:Gly、Ser、Ala、またはThrを含み得る。リンカーペプチドは、それらが所望の活性を保持するように互いに対して正しい立体配座をとるような方法で2つの分子を結合させるのに十分な長さを有するべきである。一実施形態では、リンカーは、約1~50アミノ酸長、好ましくは約1~30アミノ酸長である。一実施形態では、1~20アミノ酸長のリンカーが使用されてもよく、いくつかの実施形態では、約5~約10アミノ酸が有用である。有用なリンカーには、例えば、(GS)n、(GSGGS)n、(GGGGS)n、および(GGGS)n(nは少なくとも1(および一般に3~4)の整数である)を含むグリシン-セリンポリマー、グリシン-アラニンポリマー、アラニン-セリンポリマー、ならびに他の可動性リンカーが含まれる。代替的に、ポリエチレングリコール(PEG)、ポリプロピレングリコール、ポリオキシアルキレン、またはポリエチレングリコールとポリプロピレングリコールとのコポリマーを含むがこれらに限定されない様々な非タンパク質性ポリマーが、リンカーとして有用であり得、すなわちリンカーとして有用であり得る。
他のリンカー配列は、任意の長さのCL/CH1ドメインの任意の配列を含むが、CL/CH1ドメインの全ての残基を含まない場合があり、例えば、CL/CH1ドメインの最初の5~12アミノ酸残基である。リンカーは、免疫グロブリン軽鎖、例えば、CκまたはCλに由来し得る。リンカーは、例えば、Cγ1、Cγ2、Cγ3、Cγ4、Cα1、Cα2、Cδ、Cε、およびCμを含む任意のアイソタイプの免疫グロブリン重鎖に由来し得る。リンカー配列はまた、Ig様タンパク質(例えば、TCR、FcR、KIR)、ヒンジ領域由来配列、および他のタンパク質由来の他の天然配列などの他のタンパク質に由来してもよい。
多くの場合、リンカーは、細胞外環境に対して実質的に敏感ではない。本明細書で使用される、リンカーの文脈における「細胞外環境に実質的に敏感ではない」とは、約20%以下、15%以下、10%以下、5%以下、3%以下、または約1%以下の抗体薬物コンジュゲート化合物の試料中のリンカーは、抗体-薬物コンジュゲート化合物が細胞外環境(例えば、血漿中)に存在すると切断されることを意味する。
リンカーが細胞外環境に対して実質的に敏感ではないかどうかは、例えば、所定の時間(例えば、2、4、8、16、または24時間)抗体-薬物コンジュゲート化合物を血漿と共にインキュベートして、次いで、血漿中に存在する遊離薬物の量を定量することにより決定することができる。
他の、相互に排他的でない実施形態では、リンカーは細胞内在化を促進する。特定の実施形態では、リンカーは、治療薬にコンジュゲートした場合(すなわち、本明細書に記載されるような抗体-薬物コンジュゲート化合物のリンカー治療薬部分の環境において)、細胞内在化を促進する。さらに他の実施形態では、リンカーは、オーリスタチン化合物と本発明のABD融合タンパク質の両方にコンジュゲートした場合、細胞内在化を促進する。
本組成物および方法で使用され得る様々な例示的なリンカーは、国際特許出願第2004/010957号、米国特許公開第2006/0074008号、米国特許公開第2005/0238649号、および米国特許公開第2006/0024317号(これらのそれぞれは、全ての目的のために、参照によりその全体が本明細書に組み込まれる)に記載されている。
ドメインリンカー、scFvリンカー、ならびに特定の融合パートナーの結合構成要素として、主題のABDと共に利用され得る例示的なリンカーが、さらに図48に示される。
いくつかの実施形態では、リンカーとは、本明細書に概説されるような任意の2つのドメイン(例えば、サイトカイン融合パートナー(例えば、インターロイキン)およびABD)を共に結合するために使用される「ドメインリンカー」である。任意の適切なリンカーを使用することができるが、多くの実施形態は、例えば、nが少なくとも1(および一般に3~4~5)である、(GS)n、(GSGGS)n、(GGGGS)n、および(GGGS)nを含むグリシン-セリンポリマー、ならびに各ドメインがその生物学的機能を保持できるように十分な長さおよび柔軟性を有する2つのドメインの組換え結合を可能にする任意のペプチド配列を利用する。
いくつかの実施形態では、融合パートナーは、可変重鎖および可変軽鎖を含むscFvである。そのような実施形態では、ABD可変重鎖は、scFvリンカーを用いて可変軽鎖に結合している。
例示的なABD融合タンパク質は、以下でさらに議論される。
1.サイトカイン-ABD融合タンパク質
いくつかの実施形態では、ABD融合タンパク質には、サイトカイン融合パートナー、すなわち、サイトカイン-アルブミン結合ドメイン(サイトカイン-ABD)融合タンパク質(図1)が含まれる。いくつかの実施形態では、サイトカイン-ABD融合タンパク質には、IL-2、IL-7、IL-12、IL-15、IL-18、IL-21、IL-27、GM-CSFまたはIFN-αが含まれる。主題のサイトカイン-ABD融合タンパク質は、そのような免疫調節効果が必要な対象における免疫調節効果に有用である(例えば、癌または自己免疫疾患の治療)。さらに、主題のサイトカイン-ABDは、インターロイキン治療薬単独と比較して、より長い半減期と改善された薬物動態特性を示す。
本明細書に記載される主題のサイトカイン-ABD融合タンパク質と共に、任意のABDが使用され得る。いくつかの実施形態では、ABDには、ABD可変重鎖が含まれる。特定の実施形態では、ABDには、ABD可変軽鎖が含まれる。例示的な実施形態では、ABDは、リンカー(例えば、本明細書および図48に開示されるリンカーのうちのいずれか)によって可変軽鎖に結合した可変重鎖を含むscFvである。
特定の実施形態では、可変重鎖には、図2に示されるこれらのABD可変重鎖を含む、本明細書に記載されるABD可変重鎖のうちのいずれかのvhCDR1~3が含まれる。特定の実施形態では、ABD可変重鎖には、A10m3可変重鎖のvhCDR1~3(図2D)が含まれる。いくつかの実施形態では、ABD可変重鎖には、図2Dに示されるようなA10m3 vhCDR1~3が含まれる。例示的な実施形態では、ABD可変重鎖は、A10m3可変重鎖のアミノ酸配列を有する。
特定の実施形態では、ABDには、ABD可変軽鎖が含まれる。いくつかの実施形態では、ABD可変軽鎖には、図2に示されるこれらのABD可変軽鎖を含む、本明細書に記載されるABD可変軽鎖のうちのいずれかのvlCDR1~3が含まれる。特定の実施形態では、ABD可変軽鎖には、A10m3可変軽鎖のvlCDR1~3(図2D)が含まれる。いくつかの実施形態では、ABD可変軽鎖には、図2Dに示されるようなA10m3 vlCDR1~3が含まれる。例示的な実施形態では、ABD可変軽鎖は、A10m3可変軽鎖の配列を有する。
主題のサイトカイン-ABD融合体中で使用され得る例示的なサイトカインのアミノ酸配列、ならびにABDがA10m3である例示的なサイトカイン-ABD融合タンパク質は、図49A~Gに示される。
いくつかの実施形態では、IL-ABDは、N末端からC末端へ、式サイトカイン-L-ABDまたはABD-L-サイトカインによるものであり、式中、LはサイトカインをABDに結合させるリンカー(例えば、ペプチドリンカー)である。特定の実施形態では、サイトカイン-ABDは、可変重鎖を含み、サイトカインは、ABD可変重鎖のN末端に結合している。いくつかの実施形態では、サイトカインは、ABD可変重鎖のC末端に結合している。例示的な実施形態では、インターロイキン-ABDには、可変軽鎖(例えば、ABD scFv)も含むABDが含まれる。いくつかの実施形態では、サイトカインは、可変軽鎖のC末端に結合している。特定の実施形態では、サイトカインのN末端は、ABDに結合している。他の実施形態では、サイトカインのC末端は、ABDに結合している。
特定の実施形態では、サイトカインは、IL-2、IL-7、IL-12、IL-15、IL-18、IL-21、IL-27、GM-CSF、およびIFN-αから選択されるサイトカインである。サイトカイン分子には、例えば、全長サイトカイン、およびサイトカイン断片、例えば、特定のサイトカインの機能に重要な部分(例えば、その受容体に結合するインターロイキンの部分)が含まれる。
いくつかの実施形態では、サイトカイン-ABDには、IL-2分子またはその断片が含まれる。本明細書で使用される「インターロイキン2」、「IL-2」、および「IL2」とは、4個のαヘリックスバンドルを有するサイトカインのメンバーを指し、IL-2受容体を介して信号を出す(Genbank受託番号:NM_000586およびNP_000577(ヒト)、ならびにNM_008366およびNP_032392(マウス))。IL-2は、主にT細胞への直接的な影響を介して、免疫系の機能、耐性、免疫に重要な役割を果たす。胸腺において、IL-2は、特定の未熟なT細胞の調節性T細胞への分化を促進することによって、自己免疫疾患を防止し、それは、体内で通常の健康な細胞を攻撃するために準備されている他のT細胞を殺す。IL-2は、癌(悪性黒色腫、腎細胞癌)の治療に大量の断続的投与で使用されており、連続投与で広く使用されている。例示的なIL-2-ABDが、図49Aに示される。
いくつかの態様では、サイトカイン-ABD融合タンパク質には、IL-7分子またはその断片が含まれる。本明細書で使用される「インターロイキン7」、「IL-7」、および「IL7」(Genbank受託番号:NM_000880およびNP_000871(ヒト)、ならびにNM_008371およびNP_032397(マウス))は全て、骨髄および胸腺の間質細胞によって分泌され、IL-7受容体に結合する造血増殖因子であるサイトカインのメンバーを指す。インターロイキン-7(IL-7)は、適応免疫系において中心的な役割を果たす非造血細胞由来のサイトカインである。それは、末梢におけるナイーブおよびメモリーT細胞の恒常性の生存を維持する胸腺において、リンパ球の発生を促進する。さらに、リンパ節(LN)の器官形成、および二次リンパ器官(SLO)に補充される活性化T細胞の維持にとって重要である。IL-7は、末梢T細胞の増殖を促進することによって、免疫抑制された癌患者の免疫再構成に理想的な解決策である。動物モデルにおいて、IL-7は、腫瘍保有宿主の生存を延長することが証明されている。例示的なIL-7-ABDが、図49Bに示される。
特定の実施形態では、サイトカイン-ABDには、IL-12分子またはその断片が含まれる。いくつかの実施形態では、IL-12は、本明細書に記載されるような、図20(ABDとの融合ペプチドとして示される)および49Cに示されるような単鎖IL-12である。
特定の実施形態では、サイトカイン-ABDには、IL-15分子またはその断片が含まれる。いくつかの実施形態では、IL-15-ABDには、本明細書ならびに図3および4に記載されるような多様体IL-15が含まれる。いくつかの実施形態において、IL-15は、図3に示されるような野生型IL-15(例えば、「親IL-15」)である。特定の実施形態では、野生型IL-15は、IL-15受容体α(IL-15Rα)に結合している。
特定の実施形態では、サイトカイン-ABDには、IL-21分子またはその断片が含まれる。本明細書で使用される「インターロイキン21」、「IL-21」、および「IL21」(Genbank受託番号:NM_001207006およびNP_001193935(ヒト)、ならびにNM_0001291041およびNP_001277970(マウス))は全て、IL-21受容体に結合し、ナチュラルキラー(NK)細胞および細胞傷害性細胞を含む免疫系の細胞に強力な調節性効果を有し、ウイルス感染細胞または癌細胞を破壊し得るIL-21受容体に結合するサイトカインのメンバーを指す。したがって、特定の動作理論に拘束されることなく、IL-21を有する主題のサイトカイン-ABDは、様々な癌の治療に有用であると考えられている。例示的なIL-21-ABDが、図49Eに示される。
主題のサイトカイン-ABDに含まれ得る他の有用なサイトカインには、IL-27、IFN-α、およびGM-CSFが含まれるが、これらに限定されない。特定の実施形態では、インターロイキン-ABDポリペプチドには、インターフェロン-α、インターフェロン-β、またはGM-CSF分子も含まれる。そのような分子は、腫瘍への送達および毒性の低減に有用である。
いくつかの実施形態では、サイトカイン-ABDには、以下、IL-2およびIL-12、IL-7およびIL-15、IL-15およびIL-12、IL-18およびGMC SF、IL-21およびIL-15、GMC-SFおよびIL-12、GMC-SFおよびIL-21、ならびにIFN-αおよびIL-15から選択されるABDに結合した2つのサイトカインが含まれる。図1は、2つのサイトカインがABDに結合し得るいくつかの例示的な方向を示す。任意のABDは、そのような融合タンパク質に使用でき、それには、図2に示されるABD可変重ドメインおよび可変軽ドメインのうちのいずれかを含むものが含まれる。いくつかの実施形態では、ABDはA10m3である。
任意のリンカーが使用されて、各サイトカインをABDに結合することができ、それは、図48に示される任意のリンカーを含む。そのような融合タンパク質において使用するための例示的な骨格リンカー-A10m3-リンカー配列が、図50に示される。使用され得る例示的なリンカーには、(GGGGS)リンカーが含まれ、式中、Xは1~10である。特定の実施形態では、(GGGGS)が使用されて、サイトカインをABDに結合させる。
いくつかの実施形態では、サイトカイン-ABDは、以下から選択される式、(N末端からC末端へ)サイトカイン1-L1-ABD-L2-サイトカイン2、サイトカイン1-L1-サイトカイン2-L2-ABD、およびABD-L1-サイトカイン1-L2-サイトカイン2によるものであり、式中、L1およびL2は、サイトカインとABD構成要素を接続するリンカーであり、サイトカイン1およびサイトカイン2は、以下のサイトカインペア、IL-2およびIL-12、IL-7およびIL-15、IL-15およびIL-12、IL-18およびGM-CSF、IL-21およびIL-15、GM-CSFおよびIL-12、GM-CSFおよびIL-21、ならびにIFN-αおよびIL-15から選択される。いくつかの実施形態では、ABDは、A10m3(図2D)である。
そのようなサイトカイン-ABDにおいて、いずれかのサイトカインが「サイトカイン1」であり、他方のサイトカインが「サイトカイン2」であり得る。例えば、IL-2およびIL-12サイトカインペアの一実施形態では、IL-2は「サイトカイン1」であり、IL-12は「サイトカイン2」である。IL-2およびIL-12サイトカインペアの別の実施形態では、IL-12は「サイトカイン1」であり、IL-2は「サイトカイン2」である。
いくつかの実施形態では、サイトカイン-ABDには、2つの同じインターロイキンが含まれる。他の実施形態では、インターロイキン-ABDポリペプチドには、上記に記載されているように、2つの異なるインターロイキン(例えば、IL-12およびIL-15)が含まれる。特定のサイトカインの組み合わせを含むABD融合タンパク質は、図51に開示される。異なるサイトカインの組み合わせを含む例示的なサイトカイン-ABD融合タンパク質は、以下でさらに詳細に議論される。
a.IL-12およびIL-15
特定の実施形態では、サイトカイン-ABD融合タンパク質には、IL-12およびIL-15が含まれる。そのような実施形態に含まれ得る例示的なIL-12およびIL-15配列が、図3および49Cに示される。IL-12およびIL-15融合パートナーの両方を含むサイトカイン-ABDは、両方のインターロイキンの抗腫瘍効果を示すと考えられている。IL-12とIL-15の組み合わせが示されて、サイトカイン単独と比較して、強化された抗腫瘍活性を誘導した。そのような強化された抗腫瘍活性は、IFN-γの相乗的誘導を介した各サイトカインの受容体の相互アップレギュレーションと相関していた。IL-12とIL-15の組み合わせは、一酸化窒素の合成を介して腹膜マクロファージにおける抗腫瘍活性を促進することがさらに示された。特定の動作理論に拘束されることなく、IL-12およびIL-15融合パートナーの両方を有するポリペプチドは、自然応答を迅速に活性化し(IL-12)、T細胞の増殖を強力に刺激し、メモリーCD8+T細胞を維持する(IL-15)ことができると考えられている。動物研究は、IL-12およびIL-15発現細胞の連続送達により、確立された腫瘍の治療環境でマウスも治癒したことを示す。CD8+細胞の枯渇により、この治療の保護が排除され、腫瘍CTLのクローンの増殖を示唆する。例えば、Croce et al.,Clin Cancer Res 11(2 Pt 1):735-742(2005)を参照されたい。
いくつかの実施形態では、サイトカイン-ABDは、N末端からC末端へ、以下の式によるものである。
a)(IL-12)-L1-(ABD)-L2-(IL-15)、または
b)(IL-15)-L1-(ABD)-L2-(IL-12)。
例えば、図2にリスト化されるABD可変重鎖のうちのいずれかのvhCDR1~3を含むABD可変重鎖を有するABDを含む、任意の好適なABDが使用され得る。例示的な実施形態では、可変重鎖には、A10m3可変重鎖のvhCDR1~3(図2D)が含まれる。特定の実施形態では、ABDには、A10m3可変軽鎖のvlCDR1~3を含むABD可変軽鎖が含まれる。例示的な実施形態では、ABDは、A10m3 scFvである。
任意の好適なIL-12およびIL-15が使用され得る。いくつかの実施形態では、IL-15は、本明細書に記載されるような多様体IL-15である(例えば、図3を参照されたい)。IL-15はまた、野生型IL-15またはIL-15Rαに結合している野生型IL-15であり得る。一実施形態では、IL-15は、図3に示されるものから選択される多様体IL-15である。例示的な実施形態では、Il-15は、アミノ酸置換K86RおよびN112Aを有する多様体IL-15である。
使用され得るIL-12には、p35およびp40ドメインを有するこれらのIL-12が含まれる。いくつかの実施形態では、IL-12は、本明細書に記載されるような単鎖IL-12である(例えば、IL-12-ABD融合ポリペプチドの一部として示される図20、および図49Cを参照されたい)。
そのような実施形態では、L1およびL2は、それぞれ第1および第2のリンカーであり、L1およびL2は、IL-15およびIL-12ドメインをABDドメインに結合させるのに好適な任意のリンカーであり得る(例えば、図48にリスト化されるリンカー)。使用され得る例示的なリンカーには、(GGGGS)リンカーが含まれ、式中、Xは1~10である。特定の実施形態では、L1およびL2は、それぞれ(GGGGS)である。
IL-12およびIL-15を含む例示的なABDポリペプチドの配列が、図34および36に示される。
b.IL-2およびIL-12
特定の実施形態では、サイトカイン-ABDには、IL-2およびIL-12が含まれる。
IL-2およびIL-12は、相互の受容体を相互にアップレギュレートし、別個に信号伝達経路を使用して、異なるが相補性生物学的効果を誘導する。IL-2とIL-12は両方とも、マイトジェンまたはCD3活性化T細胞を刺激して、IFN-γを増殖および産生し得る。さらに、研究は、IL-2およびIL-12遺伝子の両方の、B16黒色腫を有するマウスへの送達が、腫瘍組織量の有意な低減および全生存の強化を誘発したことを示す(例えば、Dietrich et al.,Arch Surg 387(34):177-182(2002)を参照されたい)。したがって、IL-2およびIL-の両方を有するサイトカイン-ABD融合タンパク質は、腫瘍の低減および癌の治療に有用であると考えられている。
c.IL-2およびIL-15
特定の実施形態では、サイトカイン-ABD融合タンパク質には、IL-2およびIL-15が含まれる。IL-2とIL-15の両方は、NK細胞および活性化T細胞の増殖を刺激することができ、エフェクターT細胞の増殖をサポートする。IL-2およびIL-15の両方を含むサイトカイン-ABD融合タンパク質は、腫瘍の縮小および癌の治療に有用であると考えられている。
d.IL-7およびIL-12
特定の実施形態では、サイトカイン-ABD融合タンパク質には、IL-7およびIL-12融合パートナーが含まれる。
インターロイキン-7(IL-7)は、適応免疫系において中心的な役割を果たす非造血細胞由来のサイトカインである。それは、末梢におけるナイーブおよびメモリーT細胞の恒常性の生存を維持する胸腺において、リンパ球の発生を促進する。さらに、リンパ節(LN)の器官形成、および二次リンパ器官(SLO)に補充される活性化T細胞の維持にとって重要である。癌患者の免疫力は抑制され、T細胞数の減少、エフェクター免疫細胞の浸潤の減少、消耗したエフェクター細胞のレベルの増加、および形質転換増殖因子β(TGF-β)などの免疫抑制性サイトカインのレベルの増加が特徴である。IL-7は、末梢T細胞の増殖を促進することによって、免疫抑制された癌患者の免疫再構成に理想的な解決策である。動物モデルにおいて、IL-7は、腫瘍保有宿主の生存を延長することが証明されている。Gao et al.,Int.J.Mol.Sci.16:10267-10280(2015)を参照されたい。
IL-12は、CD8+T細胞に直接作用して、IL-7媒介増殖を強化する。IL-7およびIL-12結合ドメインを含むサイトカイン-ABD融合タンパク質は、有利なことに、CD8+T細胞の増殖を促進し、腫瘍に対する細胞溶解活性を強化すると考えられている。
e.IL-7およびIL-15
特定の実施形態では、サイトカイン-ABD融合タンパク質には、IL-7およびIL-15が含まれる。上記のように、インターロイキン7および15は、腫瘍形成を低減する能力を有する強力な炎症誘発性サイトカインと考えられる。IL-7およびIL-15の両方を含むサイトカインABD融合タンパク質は、腫瘍の縮小および癌の治療に有用であると考えられている。
f.IL-12およびIL-21
特定の実施形態では、サイトカイン-ABDには、IL-12およびIL-21が含まれる。
上記のように、IL-12は、NK細胞および活性化T細胞の増殖を刺激することができ、エフェクターT細胞の増殖をサポートする。IL-21は、自然免疫系と適応免疫系を橋渡しするNKおよびT細胞機能の制御因子である。IL-21は、骨髄前駆細胞からのNK細胞の成熟を促進し、ヒト末梢NK細胞を活性化し、NKの増殖と成熟を促進し、CD8+T細胞媒介エフェクター機能を強化する。
IL-12およびIL-21の両方を含むサイトカイン-ABD融合タンパク質は、腫瘍の縮小および癌の治療に有用であると考えられている。
g.IL-12およびIL-18
特定の実施形態では、サイトカイン-ABDには、IL-12およびIL-18が含まれる。
IL-18は、IFN-γ産生を誘導し、Th1細胞の発生およびNK活性化を促進することが知られている。IL-12は、IFN-γ依存的にIL-18受容体のアップレギュレーションを誘導することが知られている。IL-18とIL-12を共発現するSCKマウス乳癌細胞をマウスに投与すると、腫瘍組織量が低減し、血管新生が阻害された(例えば、Coughlin et al.,J Clin Invest 101(6):1441-1452(1998)を参照されたい)。IL-18を腫瘍保有マウスにIL-12と組み合わせて使用すると、IFN-γの延長した血清レベルが相乗的に誘導され、一方では、IL-18またはIL-12単独で治療した腫瘍保有マウスは、急速に減衰する最小限の血清IFN-γを誘導した(例えば、Subleski et al.,Cancer Res 66(22):11005-11012(2006)参照されたい)。例示的なIL-18-ABDが、図37に示される。
IL-12およびIL-18融合パートナーの両方を含むサイトカイン-ABD融合タンパク質は、腫瘍の縮小および癌の治療に有用であると考えられている。
h.GM-CSFおよびIL-12
特定の実施形態では、サイトカイン-ABDには、GM-CSFおよびIL-18が含まれる。GM-CSFは、造血前駆細胞の分化と増殖を調節する。GM-CSFはまた、APCが抗原を処理および提示する能力を強化し、次に、これにより、細胞傷害性T細胞の活性化、IFN-γ産生の増加、および最終的には腫瘍退縮をもたらす。GM-CSFとIL-12の両方は、肝臓腫瘍モデルおよび肺腫瘍モデルを含むいくつかの異なる前臨床腫瘍モデルにおいて有意な抗腫瘍応答を誘発することができる。(例えば、Kilinc et al.,J Immunol 177(10):6962-6973(2006)を参照されたい)。
GM-CSFおよびIL-12融合パートナーの両方を含むサイトカイン-ABD融合タンパク質は、腫瘍の縮小および癌の治療に有用であると考えられている。
i.IFNαおよびIL-12
これら2つのサイトカインの協同の性質は、単なる類似の生物学的効果を超えて広がる。例えば、IFN-γ産生を誘導することがよく知られているIL-12は、IFN-α信号伝達を強化する追加の可溶性因子の産生をもたらし得る。インターフェロンαを含むインターフェロンは、悪性細胞内でアポトーシスを誘導することが知られている。例えば、Thyrell,L. et al.,Oncogene 21,1251-1262(2002)を参照されたい。
IFNαおよびIL-12の両方を含むサイトカイン-ABD融合タンパク質は、腫瘍の縮小および癌の治療に有用であると考えられている。
主題のサイトカイン-ABD融合タンパク質に含まれ得る追加のサイトカイン-サイトカインの組み合わせが、図51Aに示される。
2.結合部分-ABD融合タンパク質
いくつかの実施形態では、ABD融合タンパク質には、結合部分(例えば、scFv)融合パートナー、すなわちBM-ABD融合タンパク質が含まれる。いくつかの実施形態では、BM-ABDには、1つの結合部分が含まれる。特定の実施形態では、BM-ABDには、2つの結合部分(例えば、scFv)が含まれる。他の実施形態では、BM-ABDには、サイトカインおよび結合部分が含まれる(図1B)。図1は、結合部分または結合部分-サイトカイン/結合部分-結合部分の組み合わせがABDに結合し得るいくつかの例示的な方向を示す。
抗体可変重ドメインおよび可変軽ドメインに基づく主要なBM-ABD結合部分を用いた実行に有用な結合部分。いくつかの実施形態では、結合部分には、可変重ドメインおよび可変軽ドメインが含まれる。いくつかの実施形態では、結合部分は、単鎖可変断片(scFv)である。
任意のABDは、そのような融合タンパク質に使用することができ、それには、図2に示されるABD可変重ドメインおよび可変軽ドメインのうちのいずれかを含むものが含まれる。特定の実施形態では、ABDには、A10m3の可変重ドメインおよび軽ドメインが含まれる。いくつかの実施形態では、ABDは、A10m3 scFvである。
任意のリンカーが使用されて、サイトカインおよび/または結合部分をABDに結合することができ、それは、図48に示される任意のリンカーを含む。例示的な実施形態では、リンカーは(GGGGS)である。そのような融合タンパク質において使用するための例示的な骨格リンカー-A10m3-リンカー配列が、図48に示される。
2つの結合部分(例えば、scFv)、またはサイトカインと結合部分の例示的な組み合わせ(そのようなABD融合タンパク質であり得る)が、図51Bに示される。
いくつかの実施形態では、BM-ABDには、抗TGFβ結合ドメイン(例えば、抗TGFβ scFv)が含まれる。例示的な抗TGFβ scFv配列が、図45に示される。いくつかの実施形態では、抗TGFβ scFvには、4D9抗TGFβ scFvの可変重ドメインおよび可変軽ドメインが含まれる。いくつかの実施形態では、ABD融合タンパク質には、抗TGFβ scFvおよびサイトカインまたは追加の結合部分が含まれ、サイトカインまたは追加の結合部分は、第2の抗TGFβ scFv、IL-15、IL-12、または抗PD-L1結合ドメイン(10D12)である。図51Bを参照されたい。
いくつかの実施形態では、BM-ABDには、抗PD-L1結合ドメイン(例えば、抗T PD-L1 scFv)が含まれる。いくつかの態様において、抗PD-L1 scFvには、4D9抗PD-L1 10D12 scFvの可変重ドメインおよび可変軽ドメインが含まれる。いくつかの実施形態では、ABD融合タンパク質には、抗PD-L1 scFvおよびサイトカインまたは追加の結合部分が含まれ、サイトカインまたは追加の結合部分は、第2の抗抗PD-L1 scFv、IL-15、IL-12、または抗TGFβ結合ドメイン(4D9)である。図51Bを参照されたい。
a.TGF-β結合部分
特定の実施形態では、本明細書で提供されるBM-ABDには、TGF-β結合部分が含まれる。本明細書で使用される「TGF-β」、「TGFβ」、「TGFb」、および「形質転換増殖因子β」は全て、ほとんどの細胞の増殖、細胞分化、および他の機能を制御することに関与し、少なくとも3つのアイソフォーム、TGFβ1(Genbank受託番号:NM_000660およびNP_000651(ヒト)、ならびにNM_011577およびNP_035707(マウス))、TGFβ2(Genbank受託番号NM_001135599およびNP_001129071(ヒト)、ならびにNM_009367およびNP_33393(マウス))、およびTGFβ3(Genbank受託番号:NM_003239)、中に存在するサイトカインのファミリーのメンバーを指す。TGFβファミリーのメンバーは、細胞からの分泌に必要な20~30のアミノ酸のN末端信号ペプチド、プロ領域、およびその放出型に従う成熟TGFβ分子になる112~113のアミノ酸のC末端領域、タンパク質分解によるプロ領域を有する。特定の実施形態では、成熟TGFβタンパク質は二量体化して、多くの保存された構造モチーフを有する25kDaの活性分子を産生し、9つのシステイン残基を含み、そのうち8つがTGFβ分子内でジスルフィド結合を形成して、システインノット構造を作成することができる。9番目に保存されたシステインは、別のTGFβの9番目のシステインと結合を形成して、二量体を産生する。
特定の動作理論に拘束されることなく、TGFβに結合する主題のBM-ABDは、癌(例えば、末期癌)を有する対象の治療に使用され得ると考えられている。特定の実施形態では、BM-ABDには、TGFβ1結合部分が含まれる。特定の実施形態では、BM-ABDには、TGFβ2結合部分が含まれる。特定の実施形態では、BM-ABDには、TGFβ3結合部分が含まれる。いくつかの実施形態では、多価結合ポリペプチドには、TGFβ1、TGFβ2、および/またはTGFβ3、またはそれらの任意の組み合わせに結合できる結合部分が含まれる(例えば、TGFβ1とTGFβ2との結合、TGFβ2とTGFβ3との結合、TGFβ1とTGFβ3との結合、またはTGFβ1と、TGFβ2と、TGFβ3との結合)。いくつかの実施形態では、TGFβ結合部分は、TGFβ1、TGFβ2、およびTGFβ3に結合する。いくつかの実施形態では、図40のTGFβ結合部分の可変重ドメインおよび可変軽ドメインを含むTGFβ結合部分。一実施形態では、TGFβ結合部分には、TGFβ結合部分4D9の可変重ドメインおよび可変軽ドメイン(図40B)が含まれる。特定の実施形態では、TGFβ結合部分は、4D9 scFvである。4D9は、CD4FoxP3調節性T細胞の増殖を防止し、Smadの活性化(例えば、Smad2のリン酸化)を防止し、細胞の上皮から間葉への移行および/または癌細胞の移動を防止することが示されている。
いくつかの実施形態では、TGFβ結合部分-ABD融合タンパク質は、別の結合部分またはサイトカインにさらに結合している。特定の実施形態では、他の結合部分は、PD-L1結合部分または別のTGFβ結合部分である。いくつかの実施形態では、サイトカインは、IL-15またはIL-12である(図51Bを参照されたい)。
b.PD-L1結合部分
特定の実施形態では、本明細書で提供されるBM-ABDには、プログラム細胞死1リガンド1(PD-L1)結合部分が含まれる。本明細書で使用される「プログラム細胞死1リガンド1」、「プログラム死リガンド1」、「PDL1」、および「PD-L1」(Genbank受託番号NM_001267706およびNP_001254635(ヒト)、ならびにNM_021893およびNP_068693(マウス))は全て、活性化または阻害を調節するために、活性化T細胞、B細胞、および骨髄細胞に見られるPd1受容体に結合している40kDa 1型膜貫通タンパク質のメンバーを指す。PD-L1のアップレギュレーションにより、癌は免疫系を回避できる。例えば、Hamanishi et al.,Proc Natl Acad Sci USA 104(9):3360-5(2007)を参照されたい。したがって、PD-L1結合部分を含む主題のBM-ABDは、癌の治療おいて有用であり得ると考えられている。
一実施形態では、PD-L1結合部分には、PD-L1結合部分10D12の可変重ドメインおよび可変軽ドメイン(図50)が含まれる。特定の実施形態では、PD-L1結合部分は、10D12 scFv(図50)である。10D12は低pHでhPD-L1に結合し、mPD-L1と交差反応する。10D12はhPD-L2またはmPD-L2に結合しない。さらに、10D12はPD-1/PD-L1相互作用、ならびにB71/PD-L1相互作用を遮断する。
いくつかの実施形態では、PD-L1結合部分-ABD融合タンパク質は、別の結合部分またはサイトカインにさらに結合している。特定の実施形態では、他の結合部分は、TGFβ結合部分または別のPD-L1結合部分である。いくつかの実施形態では、サイトカインは、IL-15またはIL-12である(図51Bを参照されたい)。
c.TNFおよびその他の結合部分
一実施形態では、本明細書で提供されるABD融合タンパク質には、腫瘍壊死因子(TNF)結合部分が含まれる。特定の動作理論に縛られることなく、そのようなABD融合タンパク質は、抗炎症および/または癌治療薬として有用であると考えられている。いくつかの実施形態では、TNF結合部分はscFvである。特定の実施形態では、TNF結合部分-ABD融合タンパク質は、結合部分または阻害剤ペプチドである別の融合パートナーにさらに結合している。特定の実施形態では、第2の結合部分は、第2のTNF結合部分、IL-1結合部分、IL-6結合部分、IL-8結合部分、IL-17(アイソフォームA~F)結合部分、またはIL-23結合部分である。
別の実施形態では、ABD融合タンパク質には、IL-1、IL-6、IL-8、IL-17(A~F)、およびIL-23結合部分から選択される結合部分が含まれる。
いくつかの実施形態では、そのようなTNFおよびインターロイキン結合部分-ABDは、関節リウマチ、クローン病、乾癬性関節炎、強直性脊椎炎、潰瘍性大腸炎、慢性プラーク乾癬、およびTNF系疾患などの疾患の治療に有用である。
F.診断的使用
別の態様では、腫瘍を画像化および/または検出する方法が、本明細書で提供される。いくつかの態様において、方法は、腫瘍細胞、腫瘍細胞培養物、腫瘍血管細胞、腫瘍血管細胞培養物、腫瘍組織、ならびに他の組織および細胞を、標識された本発明の主題のABD融合タンパク質と接触させることを含む。
ABD融合タンパク質はまた、本明細書のABD融合タンパク質の抗原結合パートナーに関連する腫瘍または自己免疫疾患状態のインビボまたはインビトロ画像化にも有用である。いくつかの実施形態では、本明細書に記載の融合タンパク質は、診断と治療との両方、または診断のみに使用される。いくつかの実施形態では、主題のABD融合タンパク質は標識されている。
診断は、以下に記載のように全身画像診断を可能にする診断用タンパク質の投与によってインビボで、あるいは患者から取り出した試料においてインビトロで行うことができる。本文脈における「試料」は、体液(血液、尿、血清、リンパ液、唾液、肛門および膣分泌物、汗、ならびに精液を含むがこれらに限定されない)、ならびに関連組織の生検から得られるもの等の組織試料を含むがこれらに限定されない、任意の数のものを含む。
本明細書における「標識される」とは、本明細書に開示のABD融合タンパク質に、スクリーンまたは診断手順における検出を可能にするために1つ以上の元素、同位体、または化学的化合物を結合させることを意味する。一般に、標識は、いくつかのクラスに分けられる:a)抗体によって認識される融合パートナーとして組み込まれるエピトープであり得る、免疫標識、b)放射性または重同位体であり得る、同位体標識、c)蛍光および比色色素、または他の標識方法を可能にするビオチン等の分子を含み得る、小分子標識、ならびにd)粒子(超音波標識用のバブルを含む)または身体撮像を可能にする常磁性標識等の標識。標識は、当該技術分野において既知のように、いずれの位置で(例えば、本明細書に記載されるリンカーのうちの1つ以上を介して)タンパク質に組み込まれてもよく、タンパク質発現中にインビトロまたはインビボで組み込まれてもよい。特定の標識には、発色団、蛍光体、および蛍光色素分子が含まれるが、これらに限定されない光学色素を含み、後者は多くの場合に特異的である。蛍光色素分子は、「小分子」蛍光体またはタンパク質性蛍光体のいずれかであり得る。
「蛍光標識」とは、その固有の蛍光特性を介して検出され得る分子を意味する。好適な蛍光標識には、フルオレセイン、ローダミン、テトラメチルローダミン、エオシン、エリスロシン、クマリン、メチルクマリン、ピレン、マラカイトグリーン、スチルベン、ルシファーイエロー、カスケードブルーJ、テキサスレッド、IAEDANS、EDANS、BODIPY FL、LCレッド640、Cy5、Cy5.5、LCレッド705、オレゴングリーン、Alexa-Fluor色素(Alexa Fluor 350、Alexa Fluor 430、Alexa Fluor 488、Alexa Fluor 546、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 633 、Alexa Fluor 660、Alexa Fluor 680)、カスケードブルー、カスケードイエロー、およびR-フィコエリスリン(PE)(Molecular Probes、Eugene、オレゴン)、FITC、ローダミン、およびテキサスレッド(Pierce、Rockford、Ill)、Cy5、Cy5.5、Cy7(Amersham Life Science、ピッツバーグ、Pa)が含まれるが、これらに限定されない。蛍光色素分子を含む好適な光学色素は、参照により完全に組み込まれるRichard P.HauglandによるMolecular Probes Handbookに記載されている。
好適なタンパク質性蛍光標識には、GFPのウミシイタケ、Ptilosarcus、またはAequorea種(Chalfie et al.,Science 263:802-805(1994))を含む緑色蛍光タンパク質、EGFP(Clontech Laboratories,Inc.、Genbank受託番号U55762)、青色蛍光タンパク質(BFP、Quantum Biotechnologies,Inc.1801 de Maisonneuve Blvd.West,8th Floor,Montreal,Quebec,Canada H3H 1J9;Stauber,1998、Biotechniques 24:462-471、Heim et al.,1996,Curr.Biol.6:178-182)、強化された黄色蛍光タンパク質(EYFP、Clontech Laboratories,Inc.)、ルシフェラーゼ(Ichiki et al.,J.Immunol.150:5408-5417(1993))、βガラクトシダーゼ(NolanProc.Natl.Acad.Sci.USA 85:2603-2607(1998))およびウミシイタケ(WO92/15673、WO95/07463、WO98/14605、WO98/26277、WO99/49019、米国特許第5,292,658号、米国特許第5,418,155号、米国特許第5,683,888号、米国特許第5,741,668号、米国特許第5,777,079号、米国特許第5,804,387号、米国特許第5874304号、米国特許第5876995号、米国特許第5925558号)が含まれる。本項において、上記引用文献の全ては、参照により本明細書に明示的に組み込まれる。
G.アルブミン結合ドメインおよび融合タンパク質の産生
当業者には理解されるように、標準プロトコルが使用されて、主題のABDを作製する。抗体分子生物学、発現、精製、およびスクリーニングの一般的な方法については、Antibody Engineering、Kontermann&Dubel編、Springer、Heidelberg、2001;およびHayhurst&Georgiou、Curr Opin Chem Biol 5:683-689(2001)、Maynard&Georgiou、Annu Rev Biomed Eng 2:339-76(2000)に記載されている。
本明細書に開示される一実施形態では、ABD融合タンパク質をコードする核酸が作成され、次いで、核酸は、必要に応じて宿主細胞にクローニングされ、発現およびアッセイされ得る。したがって、各タンパク質配列をコードする核酸、特にDNAが、作製され得る。これらの実行は、よく知られた手順を使用して行われる。例えば、抗体の産生と同様に、ABD融合タンパク質の生成に有用であり得る様々な方法が、本明細書に開示され、Molecular Cloning-A Laboratory Manual、第3版。(Maniatis、Cold Spring Harbor Laboratory Press、New York、2001)、およびCurrent Protocols in Molecular Biology(John Wiley&Sons)に記載されており、両方とも参照により完全に組み込まれる。本明細書に開示されるABDをコードするDNAを効率的に生成するために使用され得る様々な技術が存在する。そのような方法には、遺伝子アセンブリ方法、PCR系の方法およびPCRの変形を使用する方法、リガーゼ連鎖反応系の方法、合成シャッフリングで使用されるものなどのプールオリゴ方法、エラーを起こしやすい増幅方法、ランダム変異体を伴うオリゴを使用する方法、古典的な部位指向変異誘発方法、カセット変異誘発、および他の増幅および遺伝子合成方法が含まれるが、これらに限定されない。当該技術分野において既知のように、遺伝子アセンブリ、変異誘発、ベクターサブクローニングなどのための様々な市販のキットおよび方法が存在し、そのような市販品は、ABD融合タンパク質をコードする核酸を生成するのに有用である。
本明細書に開示されるABDは、タンパク質の発現を誘導または引き起こす適切な条件下で、ABD融合タンパク質をコードする核酸を含有する核酸、例えば発現ベクターを用いて形質転換された宿主細胞を培養することにより産生され得る。発現に適した条件は、発現ベクターおよび宿主細胞の選択によって異なり、日常的な実験を介して当業者によって容易に確認される。哺乳動物細胞、細菌、昆虫細胞、酵母、および植物細胞を含むが、これらに限定されない、多種多様な適切な宿主細胞が使用され得る。例えば、本明細書に開示されるABD融合タンパク質の生成に有用であり得る様々な細胞株は、American Type Culture Collectionから入手可能なATCC(登録商標)細胞株カタログに記載されている。
一実施形態では、ABDは、発現構築物が、レトロウイルスまたはアデノウイルスなどのウイルスを使用して哺乳動物細胞に導入される系を含む哺乳動物細胞発現系において発現される。任意の哺乳動物細胞、例えば、ヒト、マウス、ラット、ハムスター、霊長類の細胞が使用され得る。好適な細胞には、ジャーカットT細胞、NIH3T3、CHO、BHK、COS、HEK293、PER C.6、HeLa、Sp2/0、NS0細胞、およびそれらの多様体が含まれるが、これらに限定されない既知の研究細胞も含まれる。代替の実施形態では、ライブラリータンパク質は、細菌細胞において発現される。細菌発現系は、当該技術分野において周知であり、大腸菌(大腸菌)、枯草菌、クレモリス連鎖球菌、およびリビダン連鎖球菌が含まれる。別の実施形態では、ABD融合タンパク質は、昆虫細胞(例えば、Sf21/Sf9、イラクサギンウワバBti-Tn5b1-4)または酵母細胞(例えば、出芽酵母、ピキアなど)内で産生される。代替の実施形態において、ABDポリペプチドは、無細胞翻訳系を使用してインビトロで発現される。原核細胞(大腸菌など)および真核細胞(小麦胚芽、ウサギ網状赤血球)の両方から誘導されるインビトロ翻訳系が利用可能であり、目的のタンパク質の発現レベルと機能特性に基づいて選択され得る。例えば、当業者には理解されるように、いくつかのディスプレイ技術、例えばリボソームディスプレイにはインビトロ翻訳が必要である。加えて、ABD融合タンパク質は、化学合成法によって産生され得る。また、動物(例えば、牛乳、羊乳、または山羊乳、ふ化鶏卵、昆虫全体の幼虫など)および植物(例えば、トウモロコシ、タバコ、ウキクサなど)の両方の遺伝子導入発現系。
本明細書に開示されるABD融合タンパク質をコードする核酸は、タンパク質を発現させるために発現ベクターに組み込まれ得る。タンパク質発現には、様々な発現ベクターが利用され得る。発現ベクターは、自己複製染色体外ベクターまたは宿主ゲノムに統合されるベクターを含み得る。発現ベクターは、宿主細胞タイプと互換性があるように構築される。したがって、本明細書に開示される抗体の生成に有用である発現ベクターには、哺乳動物細胞、細菌、昆虫細胞、酵母、およびインビトロ系においてタンパク質発現を可能にするものが含まれるが、これらに限定されない。当該技術分野において既知のように、本明細書中に開示される抗体を発現するために有用であり得る種々の発現ベクターが、商業的にまたは他の方法で入手可能である。
開示されたABD融合タンパク質は、複数の核酸分子によってコードされ得る。例えば、可変重鎖および可変軽鎖は、独立して宿主細胞に導入され得る。別個の核酸に存在するが、それらの発現は、単一のポリペプチドを産生する。
発現ベクターは、典型的には、制御配列または調節性配列、選択可能なマーカー、任意の融合パートナー、および/または追加の要素と操作可能に結合したタンパク質を含む。本明細書において「操作可能に結合した」とは、核酸が別の核酸配列と機能的な関係にあることを意味する。一般に、これらの発現ベクターには、多価ABD融合タンパク質をコードする核酸に操作可能に結合した転写および翻訳調節性核酸が含まれ、典型的にはタンパク質の発現に使用される宿主細胞に適している。一般に、転写および翻訳調節性配列には、プロモーター配列、リボソーム結合部位、転写開始および停止配列、翻訳開始および停止配列、およびエンハンサーまたはアクティベーター配列が含まれ得る。当該技術分野において既知のように、発現ベクターは、典型的には、発現ベクターを含有する形質転換された宿主細胞の選択を可能にする選択遺伝子またはマーカーを含有する。選択遺伝子は当技術分野で周知であり、使用される宿主細胞によって異なる。
一実施形態では、ABDは、発現後に精製または単離される。ABDおよびABD融合タンパク質は、当業者に既知の様々な方法で単離または精製され得る。本明細書に記載されるように、ホモ二量体重鎖種からヘテロ二量体重鎖種を分離するのに、精製が特に有用であり得る。標準的な精製方法には、FPLCやHPLCなどの系を使用して大気圧または高圧で行われる、イオン交換、疎水性相互作用、アフィニティ、サイジングまたはゲルろ過、および逆相を含むクロマトグラフィー技術が含まれる。精製方法には、電気泳動、等電点電気泳動、免疫学、沈殿、透析、およびクロマトフォーカシング技術も含まれる。限外ろ過およびダイアフィルトレーション技術も、タンパク質濃度と組み合わせて、有用である。融合が使用され、Hisタグが使用される場合はNi+2アフィニティクロマトグラフィーが、フラグタグが使用される場合は固定化された抗フラグ抗体が使用される。好適な精製技術の一般的なガイダンスについては、例えば、参照により完全に組み込まれる、Protein Purification、Principles and Practice、第3版、Scopes、Springer-Verlag、NY、1994、参照により完全に組み込まれる、を参照されたい。必要な精製の程度は、抗体のスクリーニングまたは用途によって異なる。場合によっては精製は不要である。
H.アルブミン結合ドメインおよびABD融合タンパク質の治療用途
主題のABDおよびABD融合タンパク質は、本明細書に記載されるように、様々な治療用途において有用である。
一態様では、本明細書に記載される主題のアルブミン結合ドメイン(ABD)融合タンパク質に投与することによって、それを必要とする対象の腫瘍増殖を阻害する方法が、本明細書で提供される。有用なABD融合タンパク質には、図4、20、34、36、40、45、50~51に開示されるものが含まれるが、これらに限定されない。
いくつかの実施形態では、ABD融合タンパク質には、IL-12またはIL-15(例えば、IL-12-ABDまたはIL-15-ABD融合タンパク質)が含まれる。本明細書に記載されるように、IL-15 ABD融合タンパク質は、用量依存的に腫瘍増殖を阻害することができる。そのようなIL-15媒介腫瘍増殖阻害は、細胞傷害性Tリンパ球(CTL)および活性化ナチュラルキラー(NK)細胞を含む腫瘍浸潤リンパ球の増加を伴う。特定の実施形態では、ABD融合タンパク質には、IL-12分子が含まれる。いくつかの態様では、ABD融合タンパク質には、IL-15が含まれる。さらに他の特定の実施形態では、サイトカイン-ABDには、IL-12およびIL-15が含まれる。いくつかの実施形態では、IL-15-ABDには、本明細書に記載されるような多様体IL-15が含まれる(例えば、図3を参照されたい)。
主題のアルブミン結合ドメイン(ABD)融合タンパク質を投与することによって、癌を有する対象を治療する方法もまた、本明細書で提供される。いくつかの実施形態では、ABD融合タンパク質には、IL-12またはIL-15(例えば、IL-12-ABDまたはIL-15-ABD融合タンパク質)が含まれる。IL-12およびIL-15は、CD8+T細胞の生存性を増殖および延長する能力によって、腫瘍微小環境の免疫調節のためのサイトカインである。他の有用なABD融合タンパク質には、図4、20、34、36、40、45、50~51に開示されるものが含まれるが、これらに限定されない。
本明細書で治療される癌の例としては、癌腫、芽細胞腫、肉腫、特定の白血病またはリンパ性悪性腫瘍が挙げられるが、これらに限定されない。そのような癌のより具体的な例としては、扁平上皮癌(例えば、上皮扁平上皮癌)、小細胞肺癌、非小細胞肺癌を含む肺癌、肺腺癌および肺扁平上皮癌、腹膜癌、肝細胞癌、胃腸癌を含む胃癌(gastric cancer)または胃癌(stomach cancer)、膵臓癌、膠芽腫、子宮頸癌、卵巣癌、肝臓癌、膀胱癌、肝癌、乳癌、大腸癌、直腸癌、結腸直腸癌、子宮内膜または子宮癌、唾液腺癌、腎臓癌または腎癌、前立腺癌、外陰癌、甲状腺癌、肝癌、肛門癌、陰茎癌、皮膚癌/黒色腫、ならびに原発腫瘍のいずれかに関連する頭頸部癌および転移が挙げられる。
本明細書で提供される別の態様では、CD8+T細胞の増殖および/または生存性を高める方法である。特定の実施形態では、この方法は、細胞を、IL-12および/またはIL-15を含むアルブミン結合ドメイン融合タンパク質(例えば、IL-12-ABDまたはIL-15-ABD融合タンパク質)と接触させることを含む。特定の実施形態では、ABD融合タンパク質には、IL-12分子が含まれる。いくつかの実施形態では、ABD融合タンパク質には、IL-15分子が含まれる。さらに他の実施形態では、融合タンパク質ABD融合タンパク質には、IL-12およびIL-15が含まれる。
I.医薬製剤、投与および投薬
別の態様では、任意の主題のアルブミン結合ドメイン(ABD)ポリペプチドおよび担体を含む治療用組成物が、本明細書で提供される。前述の方法の実行に使用される主題の治療用組成物は、所望の送達方法に好適な担体を含む薬学的組成物に製剤化され得る。好適な担体には、治療用組成物と組み合わせたときに、その治療用組成物の抗腫瘍機能を保持し、かつ一般に患者の免疫系と反応性ではない任意の物質が含まれる。例としては、いくつかの標準的な薬学的担体、例えば、無菌リン酸緩衝生理食塩水、静菌水等のうちの任意のものが挙げられるが、これらに限定されない(一般には、Remington´s Pharmaceutical Sciences 16th Edition, A.Osal., Ed., 1980)。
1.インビボ投与のための組成物
本発明によって使用されるアルブミン結合ドメイン(ABD)融合タンパク質の製剤は、所望の純度を有するABD融合タンパク質を、任意の薬学的に許容される担体、賦形剤、または安定化剤(Remington´s Pharmaceutical Sciences 16th edition,Osol,A.Ed.[1980])と混合することによって、凍結乾燥製剤または水溶液の形態で保存用に調製される。許容される担体、賦形剤、または安定剤は、使用される投薬量および濃度において、レシピエントに対して非毒性でありリン酸、クエン酸、および他の有機酸などの緩衝液;アスコルビン酸およびメチオニンを含む抗酸化剤;防腐剤(塩化オクタデシルジメチルベンジルアンモニウム;塩化ヘキサメトニウム;塩化ベンザルコニウム、塩化ベンゼトニウム;フェノール、ブチル、またはベンジルアルコール;メチルまたはプロピルパラベンなどのアルキルパラベン;カテコール;レゾルシノール;シクロヘキサノール;3-ペンタノール;およびm-クレゾール);低分子量(約10残基未満)融合タンパク質;血清アルブミン、ゼラチン、または免疫グロブリンなどのタンパク質;ポリビニルピロリドンなどの親水性ポリマー;グリシン、グルタミン、アスパラギン、ヒスチジン、アルギニン、リジンなどのアミノ酸;単糖類、二糖類、およびグルコース、マンノース、またはデキストリンを含む他の炭水化物;EDTAまたはDPTAなどのキレート剤;スクロース、マンニトール、トレハロースまたはソルビトールなどの糖類;ナトリウムなどの塩形成対イオン;金属錯体(例えば、Zn-タンパク質錯体);および/または様々な分子量のTWEEN(商標)、PLURONICS(商標)またはポリエチレングリコール(PEG)などの非イオン性界面活性剤を含む。
本明細書の製剤はまた、治療される特定の適応症に必要な2つ以上の活性化合物、好ましくは互いに悪影響を及ぼさない相補的活性を有するものも含有し得る。例えば、ABD融合タンパク質に他の特異性を与えることが望ましい場合がある。あるいは、またはさらに、組成物は、細胞傷害剤、サイトカイン、増殖阻害剤、および/または小分子アンタゴニストを含み得る。かかる分子は、意図する目的に有効な量で組み合わせて存在するのが好適である。
有効成分は、例えば、コアセルベーション技術または界面重合により調製されるマイクロカプセル中、例えば、ヒドロキシメチルセルロースまたはゼラチンマイクロカプセル、およびポリ-(メチルメタクリレート)マイクロカプセルそれぞれの中、コロイド薬物送達系(例えば、リポソーム、アルブミンミクロスフェア、マイクロエマルジョン、ナノ粒子、およびナノカプセル)中、またはマクロエマルジョン中に捕捉されてもよい。そのような技術は、Remington´s Pharmaceutical Sciences 第16版、Osol、A.Ed(1980)に開示されている。
インビボ投与に使用される製剤は、無菌またはほぼ無菌でなければならない。これは、滅菌ろ過膜を介するろ過によって容易に達成される。
徐放性調合剤が調製され得る。徐放性調剤の好適な例としては、抗体を含有する固体疎水性ポリマーの半透性マトリックスが挙げられ、このマトリックスは、成形品、例えばフィルム、またはマイクロカプセルの形態である。徐放性マトリックスの例としては、ポリエステル、ヒドロゲル(例えば、ポリ(2-ヒドロキシエチルメタクリレート)、またはポリ(ビニルアルコール))、ポリラクチド(米国特許第3,773,919号)、L-グルタミン酸とγエチル-L-グルタミン酸のコポリマー、非分解性エチレン-酢酸ビニルコポリマー、分解性乳酸-グリコール酸コポリマー、例えばLUPRON DEPOT(商標)(乳酸-グリコール酸コポリマーおよび酢酸リュープロリドからなる注射可能なミクロスフェア)、およびポリ-D-(-)-3-ヒドロキシ酪酸が挙げられる。エチレン-酢酸ビニル、および乳酸-グリコール酸などのポリマーは100日間以上分子の放出を可能にするが、特定のヒドロゲルはより短い期間タンパク質を放出する。
カプセル化されたアルブミン結合ドメイン融合タンパク質が長時間体内に残る場合、37℃で湿気にさらされた結果、変性または凝集する可能性があり、生物活性が失われ、免疫原性が変化する可能性がある。関与するメカニズムに応じて、安定化のための合理的な戦略が考案され得る。例えば、凝集メカニズムがチオジスルフィド交換を介する分子間S-S結合形成であることが判明した場合、スルフヒドリル残基の変性、酸性溶液からの凍結乾燥、水分含有量の制御、適切な添加剤の使用、および特定のポリマーマトリックス組成物の開発によって、安定化が達成され得る。
2.行政モダリティ
主題のアルブミン結合ドメイン融合タンパク質および治療薬は、既知の方法に従って、例えば、ボーラスとしての静脈内投与または一定期間にわたる連続注入、筋肉内、腹腔内、脳脊髄内、皮下、関節内、滑液嚢内、くも膜下腔内、経口、局所、または吸入経路によって、対象に投与される。抗体の静脈内または皮下投与が好ましい。
3.治療法
本明細書で提供される方法において、治療は、疾患または病状に関して肯定的な治療応答を提供するために使用される。「肯定的な治療応答」は、疾患もしくは病状の改善、および/または疾患または病状に関連する症状の改善を意図する。例えば、肯定的な治療応答は、疾患における以下の改善のうちの1つ以上を指し得る:(1)新生物細胞の数の減少、(2)新生物細胞死の増加、(3)新生物細胞の生存の阻害、(5)腫瘍増殖の阻害(すなわち、ある程度の減速、好ましくは停止)、(6)患者生存率の増加、および(7)疾患または病状に関連する1つ以上の症状からのいくらかの解放。
任意の所与の疾患または病状における肯定的な治療応答は、その疾患または病状に特有の標準化された応答基準によって決定され得る。腫瘍応答は、磁気共鳴画像(MRI)スキャン、X線撮影、コンピューター断層撮影(CT)スキャン、骨スキャン撮影、内視鏡検査、ならびに骨髄穿刺(BMA)および循環中の腫瘍細胞の計数を含む腫瘍生検サンプリングなどのスクリーニング技法を使用して、腫瘍形態(すなわち、全身腫瘍組織量、腫瘍サイズなど)の変化について評価され得る。
これらの肯定的な治療応答に加えて、治療を受けている対象は、疾患に関連する症状の改善の有益な効果を経験し得る。
したがって、例えば、B細胞腫瘍の場合、対象はいわゆるB症状、すなわち寝汗、発熱、体重減少、および/または蕁麻疹の軽減を経験する可能性がある。前悪性状態の場合、多価治療薬を用いる治療は、関連する悪性状態の発症、例えば、意義不明のモノクローナル免疫グロブリン血症(MGUS)に罹患している対象における多発性骨髄腫の発症までの時間を遮断および/または延長する可能性がある。
病気の改善は完全奏効として特徴付けられる可能性がある。「完全奏効」とは、骨髄腫の場合、任意の以前の異常な放射線検査、骨髄、および脳脊髄液(CSF)または異常なモノクローナルタンパク質の正常化を伴う臨床的に検出可能な疾患がないこと意味する。
そのような奏効は、主題の方法による以下の治療後、少なくとも4~8週間、または時には6~8週間持続する場合がある。あるいは、疾患の改善は、部分奏効として分類される場合がある。「部分奏功」とは、新規な病変がない場合、測定可能な全ての腫瘍組織量(すなわち、対象に存在する悪性細胞の数、または腫瘍塊の測定されたバルク、または異常なモノクローナルタンパク質の量)の少なくとも約50%の減少を意味し、4~8週間、または6~8週間持続する可能性する場合がある。
治療には、使用される薬剤の「治療有効量」が含まれる。「治療有効量」は、所望の治療結果を達成するために、必要な投薬量および期間で有効な量をいう。
治療有効量は、個体の疾患状態、年齢、性別、および体重、ならびに個体において所望の応答を誘発する薬剤の能力などの因子によって異なり得る。治療有効量はまた、抗体または抗体部分のいずれの毒性または有害な効果よりも治療上有益な効果が勝る量である。
腫瘍療法のための「治療有効量」は、疾患の進行を安定化する能力によっても測定することができる。癌を阻害する化合物の能力は、ヒト腫瘍における有効性を予測する動物モデル系において評価してもよい。
あるいは、組成物のこの特性は、当業者に知られているインビトロアッセイによって、化合物が細胞増殖を阻害するか、またはアポトーシスを誘導する能力を検査することによって評価してもよい。治療有効量の治療用化合物は、腫瘍サイズを減少させるか、さもなければ対象の症状を軽減し得る。当業者であれば、対象のサイズ、対象の症状の重症度、および選択される特定の組成物または投与経路などの因子に基づいて、そのような量を決定することができるであろう。
実施例1:ヒト血清アルブミン結合ドメインのスクリーニングおよび同定
ファージのscFvアルブミン結合ドメイン(ABD)を同定するために、固相パニングおよび溶液パニングの方法を行った。続いて、ヒト血清アルブミン結合ドメインの一次スクリーニングから選択されたアルブミン結合ドメインを、標準ELISA技術を使用してマウス血清アルブミンに対する交差反応性についてスクリーニングした。スクリーニング法を使用して得られた一次アルブミン結合ドメイン候補を配列決定し、続いて、標的濃度依存的結合、pH安定性、FcRn結合干渉、および動力学的結合についてアッセイした。特に、低pH(pH5.5)および中性pH(pH7.7)で、ヒト血清アルブミン(kD約20~60nM)、マウス血清アルブミン(kD約10~30nM)、およびカニクイザル血清アルブミン(kD20~60nM)を結合する能力のために、候補ABDを選択した。候補ABDをアッセイして、血清アルブミンへのFcRn結合と競合しないことを確認した。本明細書で説明されるように、そのようなpHで結合し、FcRn結合と競合しなかったABDは、FcRn媒介エンドソーム再利用が可能である。したがって、そのようなABDを含む生物製剤(例えば、サイトカインおよび抗体系生物製剤)はまた、そのようなFcRn媒介再利用も可能であり、したがって、そのようなABDを含まない対応物と比較してより長い半減期を示す。
これらの基準に基づいて、5つのアルブミン結合クローン、A9、A10、A6、2B4、2H10が選択された。これらの5つのクローンのうち、A10が高発現レベルと最高の活性プロファイルに基づいて選択された。次いで、A10を変異させて、免疫原性を推定的に引き起こす可能性のある領域を排除した。これらのA10多様体から、血清アルブミンに対する高い親和性に基づいて、A10m3がリードとして選択された。
例示的なヒト血清アルブミン結合ドメインの配列を、A10m3(図2D)を含む図2に示す。
実施例2:多様体IL-15およびIL-15-ABD
IL15-A10m3タンパク質の発現は、HEK293T細胞によって非常に乏しく、転写では説明できない。
IL-15-ABD(IL-15-A10m3)構築物を、独立してトランスフェクトされた3つの細胞培養物内のHEK293細胞内で産生し、抗Hisタグ抗体(図5A、左)またはマウス血清への機能的ELISA結合(図5A、右)のいずれかを使用したウェスタンブロッティングによって評価した。図5Aに示されるように、IL-15-A10m3の発現を、これらの方法のいずれでも評価できなかった。HEK293細胞内のIL-15-A10m3発現の欠如が、低転写レベルによるものかどうかを評価するために、4つの独立したIL-15-A10m3トランスフェクト細胞からmRNAを調製し、RT-PCRを行って、ハウスキーピング遺伝子のGAPDH(図5B、レーン6)と比較して、IL15-A10m3 mRNA(図5B、レーン2~5)のmRNAレベルを定量した。図5Bに示されるように、IL15-A10m3 mRNAを、その対照GAPDHに対して、トランスフェクト細胞からかなりの量で検出した、このことは、HEK293細胞内で産生されるIL-15-A10m3の低発現レベルは、転写によるものではなく、おそらく翻訳プロセスまたは翻訳後プロセスに関連付けられる。
IL15受容体α結合部位に隣接しているIL15内の推定ユビキチン化部位の同定
研究は、IL15タンパク質が細胞内で発現したが、非常に不安定で半減期が短いことを示した。同じ細胞内でIL15RαとIL15を共発現させると、細胞表面のIL15RαとIL15の量が大幅に増加した。さらなる研究により、IL15Rαは、IL15のシャペロンとして作用し、IL15を細胞内で結合して、分泌前にIL15を保護および安定化することが確認された。これらの発見は、翻訳が、IL15の低い産生性を説明し得ないことを示唆している。むしろ、翻訳後修飾(PTM)は、IL15細胞内不安定性に関与する可能性があり、IL15の細胞内不安定性は、IL15Rαが特定のまだ知られていない翻訳後修飾を遮断することによって克服され得る。ユビキチン化は、細胞が分解のために細胞内タンパク質をマークできるようにする、十分に実証されたメカニズムである。
IL15は非常に強力な炎症誘発性サイトカインであり、その発現は細胞によって厳密に制御されていると仮定すると、細胞がユビキチン化を利用して、IL15タンパク質レベルを活発に制御することが可能である。IL-15Rαへの結合により推定的に保護されるIL-15上の潜在的なユビキチン化部位が特定された(図6)。特に、アミノ酸K86は、IL-15/IL-15Rα結合部位の隣にある推定ユビキチン化部位であり(図6A)、IL15RαのIL15への結合が、ユビキチンリガーゼ(例えば、E3)のIL15タンパク質上のK86へのアクセシビリティを遮断する可能性を示唆している。K86は、オンラインユビキチン化部位データベース(www.ubpred.org)であるUbPred(図6B)を使用して、ユビキチン化部位としてさらに確認された。
IL15上のK86の変異は、HEK293T細胞によるIL15-A10m3タンパク質の発現を回復させる。
K86でのユビキチン化が、IL-15の細胞内安定性に影響するかどうかを評価するために、K86AおよびK86Rを含むK86でのアミノ酸置換を含有するIL-15多様体を作製した。これらのIL-15多様体のいくつかの配列を図3に示す。特定の動作理論に拘束されることなく、これらの特定のユビキチン化部位でのアミノ酸置換は、野生型IL-15よりも高い安定性を示すユビキチン化耐性IL-15をもたらすと考えられている。このようなIL-15多様体は、半減期をさらに延長するためにABD(A10m3)に結合された(図4)。図7は、そのようなIL-15-ABD融合タンパク質の概略図を提供し、それは、IL-15Rα/IL15「スシドメイン」を有するIL-15-ABD(A)、およびユビキチン化部位K86にアミノ酸置換を有するIL-15多様体を含むIL-15-ABD融合タンパク質(B)を含む。
HEK293細胞産生IL-15-ABD K86R、およびK86A多様体、ならびにIL-15Rα/IL15-ABDを、マウス血清アルブミン(MSA)およびIL-15Rαに結合する能力について評価した。図8Aに示されるように、HEK293で産生されるIL-15-ABD K86RおよびK86A多様体(12クローン)、ならびにIL-15Rα/IL15-ABD(12クローン)は、HEK-293で産生された野生型IL-15-ABD(12クローン)と比較して、より高い発現を示した。そのような構築物は、MSAに結合することもできた。さらに、図8Bに示されるように、K86R(クローンR6、緑色の星)およびK86A(クローンA3、黄色の星)の置換は、IL-15Rαに結合する多様体の能力を妨げなかった。興味深いことに、IL15Rα融合IL15-A10m3は、IL15Rαへの結合を示さず、内部IL15Rαスシドメインが分子内でIL15に結合し、したがってプレート上にコーティングされた外部IL15Rαへの結合を遮断したことを示唆した。これは、IL15のIL15Rαスシドメインへの結合が、IL15発現を増加させるという我々および他者の発見と一致している(図7B)。
アミノ酸置換K86R(IL-15 K86R-A10m3)を含有する1つの特定の多様体HEK293細胞産生IL-15-ABDのスケールアップ産生を行い、IL-15 K86R-A10m3構築物をインビトロ血清アルブミン結合について評価した。図9に示されるように、K86変異を有するIL-15-ABD(IL-15 K86R-A10m3)およびIL-15Rα/IL15-ABD(IL-15Rα/IL15-A10m3)は、HEK 293細胞内でスケールアップした数量で、SDS-PAGE(図9C、左)および抗Hisタグ抗体を用いたウェスタンブロッティング(右)で確認されるように、産生することができた。さらに、図10に示されるように、K86R-A10m3は、マウス血清アルブミン(MSA)への結合を示した。
HEK293T細胞から産生されるIL15 K86R-A10m3の生物活性は損なわれるが、それは、脱グリコシル化により救われ得る。
CTLL2増殖アッセイを使用して、様々なIL-15-ABDの生物活性を試験した。試験したIL-15-ABDには、野生型IL-15-A10m3、およびHEK293T細胞内で産生される3つの異なるIL-15 K86R-A10m3が含まれる。両方とも大腸菌を使用して作製される市販のIL-15および社内産生されるIL-15-ABDを対照として使用した。図11に示されるように、HEK293Tから産生されるIL-15 K86R-A10m3は、市販の野生型IL-15(R&D)および社内産生されるIL-15-A10m3を含む、大腸菌内で産生される対照と比較して、CTLL2増殖を促進する能力が著しく低減したことを示した。HEK293TからのIL15 K86R-A10m3と大腸菌からのIL15-A10m3の間のCTLL2増殖アッセイの違いを考えると、大腸菌から産生されるIL15-A10m3は、哺乳動物細胞のように基本的なN-グリコシル化を受けないという仮説が立てられ、HEK293 T細胞内でのIL15 K86R-A10m3のグリコシル化は、IL15 K86R-A10m3とその受容体の相互作用を妨害する可能性がある。
HEK細胞産生IL-15 K86R-A10m3の生物活性の低減がグリコシル化によるものかどうかを評価するために、IL-15 K86R-A10m3をPNGaseを使用して脱グリコシル化し、CTLL2増殖アッセイを行って、脱グリコシル化されたIL15 K86R-A10m3の生物活性を評価した。IL-15 K86R-A10m3をネイティブ条件下でPNGase混合処理した後、グリカンを完全に除去し、SDS-PAGEで、続いてグリカン染色(図12A、左)とクマシーブルー染色(図12A、右)で視覚化した。1)IL-15R-A10m3+5ul PNGase混合、2)タンパク質+10ul PNGase混合、3)酵素制御なし。図12Bに示されるように、IL-15 K86R-A10m3(青)の脱グリコシル化は、未処理の試料(紫、黄色)と比較して、CTLL2増殖アッセイにおいてほぼ完全に活性を救った。R&DシステムズからのWT IL-15(赤)、および社内での大腸菌産生IL15-A10m3(黒)を陽性対照として使用した。
IL-15 K86R-A10m3のN112は、CTLL2増殖を促進するためのその生物活性にとって重要である。
IL-15 K86R-A10m3のアミノ酸位置N112は、IL-15とIL15受容体γ間の相互作用を適切に確立するために重要であるため、特にIL-15-ABDとの関連でIL-15生物活性にとって重要な部位である。多様体IL-15 K86RをN112Aでさらに変異させ、この部位の変異が脱グリコシル化されたIL-15と同様に、IL-15の生物活性を回復させ得るかどうかを判定した。特に、IL15 K86R-A10m3を変異させて、N112Q、N112A、またはN112S IL-15アミノ酸置換をさらに含め、生物活性を試験するためにCTTLL2増殖アッセイを行った。図13Aに示されるように、アミノ酸置換N112AをIL-15 K86R-A10m3(青色)に導入すると、CTLL2増殖アッセイにおいて、脱グリコシル化されたIL-15 K86R-A10m3(緑色)に匹敵する生物活性が回復したが、N112Q変異(赤色)は、脱グリコシル化なしの親IL-15R-A10m3(黄色)と比較して、生物活性に影響はない。R&DシステムズからのWT IL-15(黒)が陽性対照として機能した。
N112で異なる側鎖を有する変異を試験して、生物活性に対するサイズ影響をさらに実証した。図13Bに示されるように、N112Q(大きい、赤)、N112S(中くらい、緑)、およびN112A(小さい、青)は、側鎖のサイズに反比例して増加した生物活性を示した。さらに、IL-15のN112およびIL15受容体γのY103によって確立された推奨される水素結合は、N112Aがそのような結合を形成できないため、この活性にとって重要ではないようだ。R&DシステムズからのWT IL-15(黒)、および社内での大腸菌産生IL15-A10m3(紫)を陽性対照として使用し、脱グリコシル化なしの親IL15 K86R-A10m3(黄色)を陰性対照として使用した。
実施例3:多様体IL-15およびIL-15-ABDのインビボ活性
IL-15およびIL-15-ABDの腫瘍増殖を阻害する能力を、B16-F10マウス黒色腫モデルを使用して評価した。図14に要約されているように、マウスを、48時間間隔で4つの異なる時点でIV注射によりIL-15、PBSプラセボまたは様々な用量のIL-15-ABDで治療した。図16に示されるように、IL-15-ABDは、用量依存的に腫瘍の増殖を阻害する。
これらの研究からのIL-15-ABD治療マウスにおける腫瘍浸潤リンパ球集団のプロファイルをさらに評価するために、FACS分析を行った。図16に示されるように、IL-15-ABD処理マウスにおいて腫瘍は、NK細胞集団の増加を示した。このデータは、上記に記載されているように、IL-15-ABD治療マウスにおける腫瘍蓄積および保持の増加の観察と相まって、ABDが腫瘍内のIL-15の炎症誘発効果を強化することを示唆している。脾臓および腫瘍のリンパ球集団に対するIL-15-ABD治療の効果を図17および18にまとめている。図17および18に示されるように、リンパ球集団のFACS分析は、IL-15 ABD治療マウスの腫瘍における腫瘍浸潤CTLおよびNK細胞集団の3~6倍の増加を示している。脾臓に有意差は認められなかった。全体として、これらの研究の結果は、インビボでのIL-15-ABDの腫瘍免疫調節能力を示している。
ABD融合タンパク質のIL-15の半減期を延長する能力を評価するために、C57Bマウスに5μgのIL-15-ABDまたはIL-15単独を静脈内注射し、続いてIL-15-ABDおよびIL-15の血清濃度を評価した。図20Aに示されるように、IL-15-ABDは、IL-15 WTと比較して、より高いPKを示した。IL-15 T 1/2β=0.6時間、公共の領域で報告されたもの(約0.5時間)と同様である。研究結果は、ABDが、IL-15 T 1/2βを約7.0時間まで延長することを示しており、これは約10倍の増加である。IL-15-ABDを、細胞系アッセイを使用して、ヒト血清の安定性についてもアッセイした。図19Bに示されるように、IL-15-ABDは、ABDなしの市販のIL-15対照と比較して、ヒト血清中でより安定であった。
例4:IL-12-ABD
マウスIL-12単鎖-ABD構築物をHEK293T細胞内で作製し、サイズ排除クロマトグラフによって精製した。HEK293T細胞から産生されるIL-12-A10m3は、インビトロアッセイおよび細胞系アッセイの両方において完全に活性である。図21Aに示されるように、IL12-A10m3は、マウス血清アルブミンに結合することができ、平衡解離定数(KD)は2.1nMである。HEK293Tから産生されるIL12-A10m3は、社内で産生されるマウスIL12および市販のマウスIL-12(R&D)に匹敵する、ヒトPBMC増殖を刺激することもできた(図21B)。さらに、HEK293Tから産生されるIL12-A10m3は、社内で産生されるマウスIL-12および市販のマウスIL-12(R&D)の分泌に匹敵する、ヒトPBMCからのインターフェロンγの分泌を刺激した(図22)。
IL-12-ABDを用いる治療は、インビボでの腫瘍体積を低減させる。
IL-12およびIL-12-ABDの腫瘍増殖を阻害する能力を、B16-F10マウス黒色腫モデルを使用して評価した。図23に要約されるように、腫瘍接種(0日目)後7日目に腫瘍体積が100mmに達したときに、IV注射により3つの同様の用量でIL-12-ABDまたはIL-12のいずれかを用いてマウスを治療した。腫瘍の増殖を、治療後10日間、2日ごとに監視した。PBSプラセボは、対照として機能した。図24~26および28に示されるように、IL-12およびIL-12-ABDの両方は、用量依存的に腫瘍増殖を低減させることができた。さらに、IL-12-ABDは、同様の濃度でIL-12単独と比較して、腫瘍体積をより効果的に低減させることができた(例えば、図26の10日目、および図28の50%の腫瘍が2000mmに達するまでの中央値日数を参照されたい)。これらの研究で得られたマウスの縦方向の体重測定では、全てのIL-12-ABD治療群で体重のわずかな変化が示されている(図27)。観察された体重の有意な変化の欠如は、治療後12日間にわたる治療群におけるIL-12-ABD毒性の欠如を示唆している。
5日後のB16-F10腫瘍保有マウスにおけるIL-12-ABDの単回投与(4.5μgIL-12-ABD、3μgIL-12対照と同じモル用量)の薬力学的効果のさらなる特性評価により、IL-12-ABDが、IL-12対照の同様のモル用量と比較して、腫瘍増殖の同様の大きな抑制を示したことが実証された。IL-12-ABD治療マウスは、脾臓重量およびIFN-γの増加によって示されるように、対照と比較して、マウスの体重に影響を与えることなく、免疫活性化の対応する増加も示した(図29)。
図30は、IL-12-ABD(1.3μg)、IL-12(30μg)、またはプラセボのいずれかを注射した10日目のB16-F10腫瘍保有マウスの腫瘍体積を比較した研究結果をさらに示す。IL-12(1μg)およびIL-12-ABD(1.3μg)はモル当量であり、インビトロで同じ生物活性を有しているが、IL-12-ABDは、インビボでIL-12よりも約30倍強力である(図30の10日目の結果を比較する、1.3μgのIL-12-ABD≧30μgのIL-12)。図31は、3日目と7日目の図30に示される研究からのマウスにおけるIL-12-ABDおよびIL-12の造血作用をさらに示す。図31に示されるように、IL-12-ABDで治療したマウスは、IL-12治療マウスおよびプラセボ対照と比較して、3日目にWBC、好中球、およびリンパ球の一時的な低下を示した。しかし、そのような細胞集団は7日目までに正常に戻った。さらに、IL-12-ABDで治療したマウスのIFN-γレベルは、IL-12および対照で治療したマウスと比較して、3日目および7日目で高かった。
インビボでの抗PD-1抗体と組み合わせたIL-12-ABDまたはIL-12の抗腫瘍効果の評価。
IL-12-ABDまたはIL-12、および抗PD-1抗体を使用した単回併用治療の効果を、8日目にB16-F10腫瘍保有マウスで評価した(図32)。
B16-F10腫瘍細胞接種(2x10細胞/マウス)の10日後に、動物(7~10週齢)を8群(1群あたり8動物)に割り当てた。動物を腫瘍体積に基づいて割り当てた。割り当ての時点で、群当たりの平均腫瘍体積は、100mmであった。0日目(腫瘍が100mmに達したとき)に、各群にPBS(プラセボ)、IL12-ABD(1.5ug、5ug、15ug)、またはIL15-ABD-IL12(1.7ug、6ug、17ug)のいずれかのI.V.単回投与を行った。
群を、体重、腫瘍体積、および擬似生存性について検査した。腫瘍接種前および腫瘍測定時に体重を測定した。腫瘍サイズを、ノギスを使用して2日ごとに2次元で測定し、体積を、式V=0.5×a×bを使用して、mm表した、式中、aおよびbは、腫瘍の長径と短径である。この研究を疑似生存として実施した。腫瘍が2000mm3に達したとき、または瀕死であると判断したときに、各マウスを安楽死させた。
図33に示されるように、IL-12-ABDは、抗PD-1またはモル当量の組換えIL-12のいずれかによる治療よりも効果的であった。さらに、IL-12-ABDは、組換えIL-12と抗PD-1治療の組み合わせと同じくらい効果的であった。興味深いことに、組換えIL-12に抗PD-1 Abを添加すると、いずれかの治療単独の有効性が改善されたが、抗PD-1治療はIL-12-ABDにそれ以上の利益をもたらさなかった。
ABD融合タンパク質のIL-12の半減期を延長する能力を評価するために、C57Bマウスに5μgのIL-12-ABDまたはIL-12単独を静脈注射し、IL-12-ABDおよびIL-12の血清濃度を評価した。図33に示されるように、IL-12-ABDは、IL-12 WTよりも高いPKを示した。IL-12 T 1/2β=2.5時間、公共の領域で報告されたもの(約3.5時間)と同様である。研究結果は、ABDが、IL-12 T 1/2βを約9.5時間まで延長することを示しており、これは約4倍の増加である。
例5:二重特異性IL-15-ABD-IL-12
IL-15-ABD-IL-12、hIL15(K86R/N112A)-A10m3-mIL-12scおよびmIL-12sc-A10m3-hIL15(K86R/N112A)構築物をHEK293T細胞内で作成し、サイズ排除クロマトグラフで精製した。これらの構築物の配列を図34に示す。hIL15(K86R/N112A)-A10m3-mIL-12scおよびmIL-12sc-A10m3-hIL15(K86R/N112A)構築物が、MSA、IL12受容体β2、およびIL-15受容体αに結合する能力をELISAで評価した。図35に示されるように、両方のIL-15-ABD-IL-12構築物を、細胞培養培地中で用量依存的にMSAに結合させることができた。さらに、両方の二重特異性構築物を、細胞培養培地中で用量依存的にIL12受容体β2およびIL15受容体αに結合させることができた。図35に示されるように、N末端からC末端へ、IL-15-ABD-IL-12の方向を有するIL-12/IL-15-ABDは、IL-12-ABD-IL-15と比較して、より良好な抗原結合を示した。IL-15およびIL-12を含む追加の二重特異性を図36に開示する。
IL-12およびIL-15活性に関するIL-15-ABD-IL-12の評価
IL-15-ABD-IL-12のIL-12およびIL-15活性をさらに評価した(図37および38)。
IL-12活性を評価するために、PBMCからのリンパ球は、4日間PHA-Pで治療し、3日目にrhIL-2で治療することによって芽球形成を引き起こされた。次いで、リンパ芽球が、IL-15-ABD-IL-12またはIL-12対照のいずれかを用いて2日間処理され、リンパ芽球増殖およびIFN-γ分泌に基づいて、IL-12活性を評価した(図37A)。IL-15活性を、CTLL-2細胞傷害性Tリンパ球増殖アッセイを使用して評価した(図38A)。
図37に示されるように、IL-15-ABD-IL-12は、リンパ芽球の増殖(図37B)およびIFN-γの分泌(図37C)によって評価されるIL-12活性を示した。さらに、IL-15-ABD-IL-12は、CTLL-2増殖アッセイにおいてIL-15を示した(図38B)。したがって、主題のIL-15-ABD-IL-12は、IL-12とIL-15の両方の生物活性を示した。
B16-F10マウス黒色腫モデルにおけるIL-15-ABD-IL-12の抗腫瘍効果
特定の動作理論に縛られることなく、IL-15/IL-12 ABDは、相乗的な生物活性を提供すると考えられている。特に、IL-12はIL-15α受容体、IFN-γを増加させる。NK/T細胞、およびTH1免疫、一方Treg細胞のダウンレギュレーション。IL-15は、IL-12β1受容体およびNK細胞を増加させ、一方でCD8細胞の記憶喪失を低減させる。
IL12-ABDのIL15-ABD-IL12への抗腫瘍効果と疑似生存性を、B16-F10マウス黒色腫モデルを使用して評価した(図39)。
B16-F10腫瘍細胞接種(2x10細胞/マウス)後の10日目に、動物(7~10週齢)を8群(1群あたり8動物)に割り当てた。動物を腫瘍体積に基づいて割り当てた。割り当ての時点で、群当たりの平均腫瘍体積は、100mmであった。0日目(腫瘍が100mmに達したとき)に、各群にPBS(プラセボ)のI.V.単回投与、またはIL12-ABD(1.5ug、5ug、15ug)、またはIL15-ABD-IL12(1.7ug、6ug、17ug)のモル当量投与を行った。
図39に示されるように、IL-15-ABD-IL-12は、等モル濃度でB16-F10マウスモデル内のIL-12-ABDと比較して、抗腫瘍活性が優れていた。他の同様のインビボ研究では、I-15(1ug)と組み合わせた遊離IL-12(5ug)は、IL-15-ABD-IL-12(6ug)の50%未満の効力があることが示されている(データは示していない)。
例6:抗TGFβ-ABD
表面プラズモン共鳴技術を使用してバイオパニングおよびスクリーニングを行った後、抗hTGFβ1結合ドメインを同定した:1A10、1F11、2H6、4B9、4C10、4D9、4G3、4G6、4H4、4H7、および6H11。これらのクローンは、hTGFβ2、3、およびmTGFβ1に対して交差反応性を示し、hTGFβ1のその受容体IIへの結合を潜在的に阻害した。続いて、クローンをscFvとしての精製およびさらなる特性評価のために選択した。
標準的なELISA技術を使用して、scFvをマウスおよびヒトTGFβ-1に対する交差反応性についてスクリーニングした。結合ELISAは、2H6、4G3、4H7、4B9、4D9、および6H11が、mTGFβ-1およびhTGFβ-1の両方に対して良好な交差反応性を有することを示している。
抗TGFβ-1scFvがTGFβ-1に結合し、TGFβR-IIとの相互作用を遮断できるかどうかを判定するために、結合および遮断ELISAを行った。2H6、4G3、4H7、4B9、および4D9は全て、mTGFβおよびmTGFβR-II相互作用の良好な遮断効果と阻害を示す。
これらの抗TGFβ-1 scFvのいくつかを、TGFβ-1の生物活性に干渉する能力について試験した。抗TGFβ-1 scFv 4H7および4D9の配列を、図40AおよびBに示す。
CD4Foxp3調節性T細胞のTGFβ1誘導増殖の遮断
調節性T細胞(Treg)は、免疫系の恒常性に影響を与えることができる。欠陥が重度の自己免疫疾患をもたらす可能性があるため、そのようなTregは自己寛容を維持するために不可欠である。癌において、腫瘍細胞は、免疫系の恒常性に影響を及ぼすサイトカインを分泌できる。特に、腫瘍細胞は、TGFβを分泌する可能性があり、これが循環するTregの数に影響を与える可能性がある。TGFβ1への暴露は、CD4Foxp3TからのCD4Foxp3Tregサブセットの増殖をもたらすことが以前に実証されている。これらの誘導されたTregは、腫瘍抗原特異的細胞傷害性CD8T細胞の活性化を阻害することにより、T細胞のアネルギー応答の誘導に寄与することができる。
図41に示されるように、組換えTGFβ1は、健康なヒトドナーPBMCから単離された混合T細胞集団からのCD4Foxp3Tregsの増殖を刺激することができる。しかし、抗TGFβ1D11抗体またはTGF-β1 scFv 2H6、4H7、および4D9を用いるTGFβの遮断は、いずれも用量依存的にCD4Foxp3TregsのTGFβ誘導増殖を有意に阻害する。したがって、そのようなTGFβ1 scFvは、癌におけるTReg増殖を低減させるのに有用である。
TGFβ1誘導上皮から間葉への移行(EMT)の遮断
TGFβへの曝露は、上皮から間葉への移行を誘導することが既知である。このプロセス中に、上皮細胞は、丸石形態を有する組織化され、極性化され、密接に接続された細胞の上皮シートから、形態が間葉性に見える非組織化および運動性細胞に分化転換する。EMT中に、細胞の侵襲能力が活性化され、それにより細胞の腫瘍形成能力が強化される。E-カドヘリンは、上皮細胞の一般的に使用されるマーカーであり、上皮細胞間の接着接合に局在している。E-カドヘリンの損失は、分化転換プロセスを示すEMTの強力なマーカーである。(図42A)さらに、ビメンチンは運動性の高い細胞に関連している。したがって、細胞におけるビメンチン発現の誘導はまた、運動性の増加およびインビボでの局所的浸潤の増加を示す。
図42および43に示されるように、抗TGFβ1D11抗体またはTGF-β1 scFvによるTGF-βの遮断は、TGF-β1誘導上皮から間葉への移行(図42)および移動(図43)を逆転させる。マウス4T1細胞を、TGF-β1(パネル2)、TGF-β1および1D11(パネル3)、またはTGF-β1および抗TGF-β1 scFv(パネル4)が補充された増殖培地中で培養し、次いで固定し、E-カドヘリン抗体(緑色)およびビメンチン抗体(紫)で染色した。核をDAPI(青)で対比染色した。TGF-β1による治療によって、細胞間接合部からのE-カドヘリンの損失が誘導され、ビメンチンの発現が増加した。この効果は、本明細書に記載される1D11または主題の抗TGF-β1 scFvの添加によって逆転する(図42パネル3および4)。さらに、本明細書に記載される抗TGF-β1 scFvは、TGF-β1媒介癌細胞移動を遮断することができる(図43)。
TGFβ1誘導Smad活性化の中和
TGFβスーパーファミリーは、細胞増殖、分化、移動、細胞生存、血管新生、創傷治癒、および免疫監視を含む様々な生物学的プロセスを調節する多面性サイトカインからなる。ヒトにおいては、主要なアイソフォームはTGFβ1であり、それは、様々な組織型で発現している。TGFβは、ほとんどの正常な上皮細胞の増殖を阻害する。さらに、上皮起源の癌の初期段階では、TGFβは、細胞増殖阻害剤として機能する。したがって、癌の開始時に、TGFβは、腫瘍抑制因子として機能する。しかし、癌の進行の後期には、腫瘍細胞は、TGFβの増殖阻害効果に抵抗性になり、TGFβは、腫瘍プロモーターの役割を果たす。実際、TGFβ1は、様々な腫瘍において過剰発現することが示されている。TGFβ経路の活性化は、TGFβリガンドのII型TGFβ受容体(TβRII)への結合を介して起こり、次いで、それは、TβRIIとTβRIとの間の結合とオリゴマー化を誘導する。このオリゴマーが形成されると、Smad2およびSmad3は、TβRIによって補充され、リン酸化される。次いで、リン酸化されたSmad2またはSmad3は、細胞質内のSmad4に結合し、この複合体は核に移動し、そこでプロモーター領域と相互作用して標的遺伝子の転写を活性化する。したがって、TGFβの血清不足の細胞への添加後のSmad2の急速なリン酸化によって、TGFβ経路の活性化が測定可能となる。しかし、TGFβの効果的な遮断は、Smad2のリン酸化を阻害する。ここで、Smad2リン酸化の不在は、主題の抗TGFβscFv構築物によるTGFβの効果的な遮断の尺度として使用され得る。
血清不足状態のヒト細胞(図44A)またはマウス細胞(図44B)を使用して、ヒト組換えTGFβ1(図44A)またはマウスTGF-β1、-β2、および-β3(図44B)の添加がSmad2のリン酸化を誘導することが判断された。そのようなリン酸化は、TGFβが、対照の抗TGFβ1D11抗体またはTGF-β1 scFv構築物2H6、4H7、および4D9とプレインキュベートされると、用量依存的に低減する。これらのデータは、2H6、4H7、および4D9 scFv構築物がTGFβ1を隔離し、TβRII/TβRIとの相互作用を阻害し得ることにより、末期期癌の間のTGFβ活性化カスケードを阻害し得ることを示唆している。
4D9抗TGFβ-1-ABD
例示的なTGF-β1 scFv-ABD構築物の配列(4D9M-A6mおよび4H7-A6m)を図45Aに示す。図45Bに示されるように、抗TGFβ-1-ABDは、抗TGFβ-1 scFv T 1/2βを106分から10.6時間に延長した。
大腸菌およびHEK細胞内で産生される抗TGF-β1 scFv-ABD(TGF-β1の二価)を、マウス血清アルブミンへの結合について評価した(図47)。構築物の3つの異なる方向を評価した。ABDのN末端に結合した2つの抗TGF-β1 scFv(「Bi N末端」)、ABDのC末端に結合した2つの抗TGF-β1 scFv(「Bi C末端」)、または、ABDのN末端およびC末端のそれぞれに結合した1つの抗TGF-β1 scFv(「Bi Mid」)。図46に示されるように、全ての構築物は,マウス血清アルブミンへの結合を示した。大腸菌内で産生される構築物に関して、Bi MidはN末端方向よりもMSAへの良好な結合を示した。HEK細胞内で産生される構築物に関して、Bi N末端方向は、Bi MidまたはBi C末端方向よりもMSAへの良好な結合を示した。
図47に示されるように、T細胞増殖のTGFβ-1媒介阻害は、そのような構築物によって逆転した(すなわち、T細胞増殖が増加する)(図46B)。さらに、4D9M-ABDは、ヒトTGFβ-1および同族受容体と結合するヒトTGFβ-3を遮断することが示されている(データは示していない)。
全ての引用文献は、本明細書にそれらの全体が参照により明示的に組み込まれる。
本発明の特定の実施形態を例示の目的で上述のように説明してきたが、添付の特許請求の範囲に記載の本発明から逸脱することなく詳細の多数の変形をなし得ることが当業者には理解されよう。

Claims (24)

  1. 1又は複数の融合パートナーに結合したアルブミン結合ドメイン(ABD)を含むABD融合タンパク質であって、
    前記ABDが、vhCDR1、vhCDR2、及びvhCDR3を含む、配列番号25を有する可変重鎖と、vlCDR1、vlCDR2、及びvlCDR3を含む、配列番号29を有する可変軽鎖と、を含む、
    ABD融合タンパク質。
  2. 前記可変重鎖及び前記可変軽鎖が、それぞれ、配列番号25及び29の可変重鎖及び可変軽鎖を含む、請求項1に記載のABD融合タンパク質。
  3. 前記1又は複数の融合パートナーのそれぞれが、IL-2、IL-7、IL-12、IL-15、IL-18、IL-21、GM-CSF、及びIFN-αからなる群から選択される、請求項1又は2に記載のABD融合タンパク質。
  4. 前記1又は複数の融合パートナーのそれぞれが、抗TGFβ scFv、抗PD-L1 scFv、及び抗TNF scFvからなる群から選択される、請求項1又は2に記載のABD融合タンパク質。
  5. 前記1又は複数の融合パートナーのそれぞれが、抗IL-1 scFv、抗IL-6 scFv、抗IL-8 scFv、抗IL-17(A-F)scFv、及び抗IL-23 scFvからなる群から選択される、請求項1又は2に記載のABD融合タンパク質。
  6. 前記1又は複数の融合パートナーが、IL-12及びIL-15、IL-18及びIL-12、IL-18及びGM-CSF、GM-CSF及びIL-12、IL12及びIL12、並びにIL及びIL15からなる群から選択される2つの融合パートナーである、請求項1からのいずれか1項に記載のABD融合タンパク質。
  7. 前記1又は複数の融合パートナーが、リンカーによって、前記ABDに共有結合している、請求項1からのいずれか1項に記載のABD融合タンパク質。
  8. 前記1又は複数の融合パートナーが、IL-18及びIL-12を含む、請求項に記載のABD融合タンパク質。
  9. N末端からC末端へ、(IL-18)-L1-(ABD)-L2-(IL-12)の式を有し、
    L1が第1のリンカーであり、L2が第2のリンカーである、
    請求項に記載のABD融合タンパク質。
  10. 前記1又は複数の融合パートナーが、IL-18及びGM-CSFを含む、請求項に記載のABD融合タンパク質。
  11. N末端からC末端へ、(IL-18)-L1-(ABD)-L2-(GM-CSF)の式を有し、
    L1が第1のリンカーであり、L2が第2のリンカーである、
    請求項10に記載のABD融合タンパク質。
  12. 前記1又は複数の融合パートナーが、GM-CSF及びIL-12を含む、請求項に記載のABD融合タンパク質。
  13. N末端からC末端へ、(GM-CSF)-L1-(ABD)-L2-(IL-12)の式を有し、
    L1が第1のリンカーであり、L2が第2のリンカーである、
    請求項12に記載のABD融合タンパク質。
  14. 前記1又は複数の融合パートナーが、IL-12及びIL-15を含む、請求項に記載のABD融合タンパク質。
  15. N末端からC末端へ、(IL-12)-L1-(ABD)-L2-(IL-15)の式を有し、
    L1が第1のリンカーであり、L2が第2のリンカーである、
    請求項14に記載のABD融合タンパク質。
  16. 前記1又は複数の融合パートナーが、IL-12を含む、請求項に記載のABD融合タンパク質。
  17. N末端からC末端へ、(IL-12)-L1-(ABD)-L2-(IL-12)の式を有し、
    L1が第1のリンカーであり、L2が第2のリンカーである、
    請求項16に記載のABD融合タンパク質。
  18. 前記1又は複数の融合パートナーが、IL7及びIL15を含む、請求項に記載のABD融合タンパク質。
  19. N末端からC末端へ、(IL-7)-L1-(ABD)-L2-(IL-15)の式を有し、
    L1が第1のリンカーであり、L2が第2のリンカーである、
    請求項18に記載のABD融合タンパク質。
  20. 前記IL-15が、親IL-15と比較して、K86A、K86R、N112A、N112S、N112Q、K86A/N112A、K86R/N112A、K86A/N112S、K86R/N112S、K86A/N112Q、K86R/N112Q、K86A/N112A/N79A、K86R/N112A/N79A、K86A/N112A/N79D、K86R/N112A/N79D、K86A/N112A/N79Q、K86R/N112A/N79Q、K86A/N112A/N71D、K86R/N112A/N71D、K86A/N112A/N71Q、K86R/N112A/N71Q、K86A/N112A/N71D/N79A、K86A/N112A/N71D/N79D、K86A/N112A/N71Q/N79A、K86A/N112A/N71Q/N79D、K86R/N112A/N71D/N79A、K86R/N112A/N71D/N79D、K86R/N112A/N71D/N79Q、K86R/N112A/N71Q/N79A、K86R/N112A/N71Q/N79D、及びK86R/N112A/N71Q/N79Qからなる群から選択される1つ以上のアミノ酸置換を含む変異IL-15である、請求項3又は6に記載のABD融合タンパク質。
  21. 前記IL-15が、IL-15受容体α(IL-15Rα)に結合した野生型IL-15を含む、請求項3又は6に記載のABD融合タンパク質。
  22. 請求項1から21のいずれか1項に記載のABD融合タンパク質をコードする核酸。
  23. 請求項22に記載の前記核酸を含む宿主細胞。
  24. 請求項1から21のいずれか1項に記載のABD融合タンパク質の作製方法であって、前記ABD融合タンパク質が産生される条件下で請求項23に記載の前記宿主細胞を培養することと、前記ABD融合タンパク質を回収することと、を含む、ABD融合タンパク質の作製方法。
JP2019566563A 2017-02-16 2018-02-20 アルブミン結合ドメイン融合タンパク質 Active JP7200138B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022203856A JP7447232B2 (ja) 2017-02-16 2022-12-21 アルブミン結合ドメイン融合タンパク質
JP2024029068A JP2024051123A (ja) 2017-02-16 2024-02-28 アルブミン結合ドメイン融合タンパク質

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762459981P 2017-02-16 2017-02-16
US201762459975P 2017-02-16 2017-02-16
US62/459,981 2017-02-16
US62/459,975 2017-02-16
PCT/US2018/000085 WO2018151868A2 (en) 2017-02-16 2018-02-20 Albumin binding domain fusion proteins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022203856A Division JP7447232B2 (ja) 2017-02-16 2022-12-21 アルブミン結合ドメイン融合タンパク質

Publications (2)

Publication Number Publication Date
JP2022511135A JP2022511135A (ja) 2022-01-31
JP7200138B2 true JP7200138B2 (ja) 2023-01-06

Family

ID=61622675

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019566563A Active JP7200138B2 (ja) 2017-02-16 2018-02-20 アルブミン結合ドメイン融合タンパク質
JP2022203856A Active JP7447232B2 (ja) 2017-02-16 2022-12-21 アルブミン結合ドメイン融合タンパク質
JP2024029068A Pending JP2024051123A (ja) 2017-02-16 2024-02-28 アルブミン結合ドメイン融合タンパク質

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022203856A Active JP7447232B2 (ja) 2017-02-16 2022-12-21 アルブミン結合ドメイン融合タンパク質
JP2024029068A Pending JP2024051123A (ja) 2017-02-16 2024-02-28 アルブミン結合ドメイン融合タンパク質

Country Status (9)

Country Link
US (1) US11028166B2 (ja)
EP (1) EP3583125A2 (ja)
JP (3) JP7200138B2 (ja)
CN (1) CN110461871B (ja)
AU (1) AU2018220516A1 (ja)
BR (1) BR112019017001A2 (ja)
CA (1) CA3053906A1 (ja)
NZ (1) NZ756674A (ja)
WO (1) WO2018151868A2 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018234810B2 (en) 2017-03-15 2023-05-11 Pandion Operations, Inc. Targeted immunotolerance
SG11201909949XA (en) 2017-05-24 2019-11-28 Pandion Therapeutics Inc Targeted immunotolerance
US10174092B1 (en) 2017-12-06 2019-01-08 Pandion Therapeutics, Inc. IL-2 muteins
US10946068B2 (en) 2017-12-06 2021-03-16 Pandion Operations, Inc. IL-2 muteins and uses thereof
JP2021529516A (ja) * 2018-06-18 2021-11-04 アンウィタ バイオサイエンシス, インク. サイトカイン融合タンパク質及びその使用
TW202110885A (zh) 2019-05-20 2021-03-16 美商潘迪恩治療公司 靶向MAdCAM之免疫耐受性
CA3136241A1 (en) 2019-05-20 2020-11-26 Ulrich Moebius Il-2/il-15r.beta.y agonist dosing regimens for treating cancer or infectious diseases
WO2020249757A1 (en) * 2019-06-14 2020-12-17 Philogen S.P.A Immunoconjugates comprising a single chain diabody and interleukin-15 or interleukin-15 and a sushi domain of interleukin-15 receptor alpha
TW202120560A (zh) * 2019-08-16 2021-06-01 國立陽明大學 重組多肽及其用途
US11692020B2 (en) 2019-11-20 2023-07-04 Anwita Biosciences, Inc. Cytokine fusion proteins, and their pharmaceutical compositions and therapeutic applications
EP4107187A1 (en) 2020-02-21 2022-12-28 Pandion Operations, Inc. Tissue targeted immunotolerance with a cd39 effector
CN115867568A (zh) * 2020-04-01 2023-03-28 西里欧发展公司 掩蔽的il-15细胞因子和其切割产物
US11897930B2 (en) 2020-04-28 2024-02-13 Anwita Biosciences, Inc. Interleukin-2 polypeptides and fusion proteins thereof, and their pharmaceutical compositions and therapeutic applications
WO2021239999A1 (en) * 2020-05-28 2021-12-02 Universität Zürich Il-12 pd-l1 ligand fusion protein
US20230390361A1 (en) 2020-10-26 2023-12-07 Cytune Pharma Il-2/il-15r-beta-gamma agonist for treating squamous cell carcinoma
IL302313A (en) 2020-10-26 2023-06-01 Cytune Pharma IL-2/IL-15RBY agonist for the treatment of non-melanoma skin cancer
CN114478800B (zh) * 2021-02-05 2022-10-11 华南理工大学 基于血清白蛋白的融合蛋白、纳米组装体及其制备方法和应用
AU2022299404A1 (en) 2021-06-23 2023-12-07 Cytune Pharma Interleukin 15 variants
KR20240043797A (ko) 2021-08-13 2024-04-03 싸이튠 파마 암 치료용 IL-2/IL-15Rβγ 작용제와 항체-약물 접합체 조합
WO2023046116A1 (zh) * 2021-09-24 2023-03-30 广东菲鹏制药股份有限公司 一种白介素15及其受体的多肽复合物
WO2023230620A1 (en) * 2022-05-27 2023-11-30 Sonnet BioTherapeutics, Inc. Il-12-albumin-binding domain fusion protein formulations and methods of use thereof
WO2024040132A2 (en) * 2022-08-16 2024-02-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic Synergistic interactions for improved cancer treatment
WO2024039238A1 (ko) * 2022-08-19 2024-02-22 주식회사 프로앱텍 단일쇄 가변 단편의 변이 단백질
WO2024097767A1 (en) * 2022-11-02 2024-05-10 Sonnet BioTherapeutics, Inc. Recombinant il-12 albumin binding domain fusion proteins for use in methods for the treatment of cancer
CN115838748B (zh) * 2022-11-07 2023-09-12 吉林大学 shIL-27毕赤酵母高效表达基因及表达生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875675A (zh) 2012-04-26 2013-01-16 拜明(苏州)生物技术有限公司 抗人血清白蛋白单链抗体及其氮端连接多肽药物的方法
JP2014534978A (ja) 2011-11-11 2014-12-25 ユセベ ファルマ ソシエテ アノニム アルブミン結合抗体及びその結合断片

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US5683888A (en) 1989-07-22 1997-11-04 University Of Wales College Of Medicine Modified bioluminescent proteins and their use
US5292658A (en) 1989-12-29 1994-03-08 University Of Georgia Research Foundation, Inc. Boyd Graduate Studies Research Center Cloning and expressions of Renilla luciferase
JP3126980B2 (ja) 1991-03-11 2001-01-22 ザ・ユニバーシテイ・オブ・ジヨージア・リサーチ・フアウンデーシヨン・インコーポレーテツド レニラ(renilla)ルシフェラーゼのクローニング及び発現
KR960705209A (ko) 1993-09-10 1996-10-09 잭 엠. 그랜노위츠 녹색 형광 단백의 용도
WO1995021191A1 (en) 1994-02-04 1995-08-10 William Ward Bioluminescent indicator based upon the expression of a gene for a modified green-fluorescent protein
US5777079A (en) 1994-11-10 1998-07-07 The Regents Of The University Of California Modified green fluorescent proteins
US5874304A (en) 1996-01-18 1999-02-23 University Of Florida Research Foundation, Inc. Humanized green fluorescent protein genes and methods
US5804387A (en) 1996-02-01 1998-09-08 The Board Of Trustees Of The Leland Stanford Junior University FACS-optimized mutants of the green fluorescent protein (GFP)
US5876995A (en) 1996-02-06 1999-03-02 Bryan; Bruce Bioluminescent novelty items
US5925558A (en) 1996-07-16 1999-07-20 The Regents Of The University Of California Assays for protein kinases using fluorescent protein substrates
US5976796A (en) 1996-10-04 1999-11-02 Loma Linda University Construction and expression of renilla luciferase and green fluorescent protein fusion genes
US6458547B1 (en) 1996-12-12 2002-10-01 Prolume, Ltd. Apparatus and method for detecting and identifying infectious agents
DE69938293T2 (de) 1998-03-27 2009-03-12 Bruce J. Beverly Hills Bryan Luciferase, gfp fluoreszenzproteine, kodierende nukleinsaüre und ihre verwendung in der diagnose
US9321832B2 (en) 2002-06-28 2016-04-26 Domantis Limited Ligand
DK1545613T3 (da) 2002-07-31 2011-11-14 Seattle Genetics Inc Auristatinkonjugater og deres anvendelse til behandling af cancer, en autoimmun sygdom eller en infektiøs sygdom
DK1725249T3 (en) 2003-11-06 2014-03-17 Seattle Genetics Inc Monomethylvaline compounds capable of conjugating to ligands.
RU2402548C2 (ru) 2004-05-19 2010-10-27 Медарекс, Инк. Химические линкеры и их конъюгаты
WO2005118642A2 (en) 2004-06-01 2005-12-15 Domantis Limited Bispecific fusion antibodies with enhanced serum half-life
GB2416122A (en) 2004-07-12 2006-01-18 Ipsen Ltd Botulinum neurotoxin composition
WO2006122787A1 (en) 2005-05-18 2006-11-23 Ablynx Nv Serum albumin binding proteins
CN102405232B (zh) 2009-02-19 2015-08-19 葛兰素集团有限公司 改良的抗血清清蛋白结合变体
CA2768462A1 (en) 2009-07-16 2011-01-20 Glaxo Group Ltd. Improved anti-serum albumin binding single variable domains
JP2013538566A (ja) 2010-08-13 2013-10-17 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッド 改良された抗血清アルブミン結合変異体
EP2752426A1 (en) 2013-01-03 2014-07-09 Covagen AG Human serum albumin binding compounds and fusion proteins thereof
AU2014205086B2 (en) * 2013-01-14 2019-04-18 Xencor, Inc. Novel heterodimeric proteins
CN103115445B (zh) 2013-02-05 2014-09-24 中盈长江国际新能源投资有限公司 太阳能自动均热聚热管、槽式组件、热发电系统和工艺
AP2016009475A0 (en) * 2014-03-28 2016-09-30 Xencor Inc Bispecific antibodies that bind to cd38 and cd3
MX2017006918A (es) * 2014-11-26 2018-01-25 Xencor Inc Anticuerpos heterodimericos que se unen a cd3 y cd38.
JP7101621B2 (ja) 2016-05-20 2022-07-15 ハープーン セラピューティクス,インク. 単一ドメイン血清アルブミン結合タンパク質

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534978A (ja) 2011-11-11 2014-12-25 ユセベ ファルマ ソシエテ アノニム アルブミン結合抗体及びその結合断片
CN102875675A (zh) 2012-04-26 2013-01-16 拜明(苏州)生物技术有限公司 抗人血清白蛋白单链抗体及其氮端连接多肽药物的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Emma Dave et al.,MABS,2016年,Vol. 8, No. 7,1319-1335
Zoller, M J, and M Smith,Nucleic Acids Research,Vol. 10, No. 20,1982年,p. 6487-6500

Also Published As

Publication number Publication date
BR112019017001A2 (pt) 2020-04-28
WO2018151868A3 (en) 2018-09-27
NZ756674A (en) 2023-06-30
EP3583125A2 (en) 2019-12-25
CA3053906A1 (en) 2018-08-23
JP2022511135A (ja) 2022-01-31
RU2019128690A (ru) 2021-03-16
US20220106392A1 (en) 2022-04-07
WO2018151868A2 (en) 2018-08-23
JP2024051123A (ja) 2024-04-10
RU2019128690A3 (ja) 2021-07-29
JP7447232B2 (ja) 2024-03-11
JP2023051999A (ja) 2023-04-11
US20190016793A1 (en) 2019-01-17
AU2018220516A1 (en) 2019-09-19
CN110461871A (zh) 2019-11-15
US11028166B2 (en) 2021-06-08
CN110461871B (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
JP7200138B2 (ja) アルブミン結合ドメイン融合タンパク質
RU2711979C2 (ru) Белковый комплекс интерлейкина 15 и его применение
JP7121496B2 (ja) 癌治療で使用するためのペグ化インターロイキン-10
US10865250B2 (en) Anti-cancer fusion polypeptide
ES2752248T5 (es) Heterodímero proteínico y uso del mismo
CA3133162C (en) Synergistic tumor treatment with il-2 and integrin-binding-fc-fusion protein
JP2022536898A (ja) 新規il-15プロドラッグおよびその使用方法
JP2020200346A (ja) 腫瘍療法のためのil−12とt細胞阻害分子遮断薬とを含む医薬組成物
EP2016098B1 (en) Antibody-targeted cytokines for therapy
JP6732041B2 (ja) 炎症性免疫サイトカインおよびキメラ抗原受容体(car)−t細胞を含む併用治療
US20220204587A1 (en) Tgf-b-receptor ectodomain fusion molecules and uses thereof
JP2020505438A (ja) インテグリン結合性ポリペプチド−Fc融合タンパク質および免疫調節物質を用いる併用がん治療法
ES2911663T3 (es) Anticuerpos humanos anti-IFN-alfa
US20240108690A1 (en) Compositions and methods of use of interleukin-10 in combination with immune check-point pathway inhibitors
US20210261654A1 (en) Anti-il-17 antibody/tnfr ecd fusion protein and use thereof
CN116322785A (zh) 包含il-10的双细胞因子融合蛋白
JP7404343B2 (ja) 融合タンパク質、並びに腫瘍及び/又はウイルス感染の治療薬を製造するためのその使用
US12006361B2 (en) Albumin binding domain fusion proteins
RU2786444C2 (ru) Слитые белки с альбумин-связывающими доменами
CN101027079B (zh) 嵌合蛋白
JP2022518441A (ja) ヒトcd137に結合する抗体の製剤およびその使用
Lutz et al. Main Manuscript for Intratumoral nanobody-IL-2 fusions that bind the tumor extracellular matrix suppress solid tumor growth in mice
CN108601819B (zh) 用死亡受体激动剂改善系统性硬化症
Gouyou Generation and characterization of novel bifunctional protein and peptides for pharmaceutical applications
KR20170027795A (ko) 항-사이토카인 항체의 동정을 위한 인간-유래 항-인간 il-20 항체 및 검정

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220311

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221221

R150 Certificate of patent or registration of utility model

Ref document number: 7200138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150