JP7191002B2 - コンバイン - Google Patents

コンバイン Download PDF

Info

Publication number
JP7191002B2
JP7191002B2 JP2019215936A JP2019215936A JP7191002B2 JP 7191002 B2 JP7191002 B2 JP 7191002B2 JP 2019215936 A JP2019215936 A JP 2019215936A JP 2019215936 A JP2019215936 A JP 2019215936A JP 7191002 B2 JP7191002 B2 JP 7191002B2
Authority
JP
Japan
Prior art keywords
turning radius
travel
radius
turning
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019215936A
Other languages
English (en)
Other versions
JP2021083398A (ja
Inventor
俊樹 渡邉
友彦 佐野
脩 吉田
翔太郎 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2019215936A priority Critical patent/JP7191002B2/ja
Priority to PCT/JP2020/042971 priority patent/WO2021106708A1/ja
Publication of JP2021083398A publication Critical patent/JP2021083398A/ja
Application granted granted Critical
Publication of JP7191002B2 publication Critical patent/JP7191002B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/60Grain tanks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)
  • Combines (AREA)
  • Threshing Machine Elements (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、自動走行可能なコンバインに関する。
特許文献1には、自動走行可能なコンバインの発明が記載されている。このコンバインは、刈取部と、脱穀装置(特許文献1では「脱穀部」)と、穀粒タンク(特許文献1では「グレンタンク」)と、を備えている。
刈取部は、圃場の植立穀稈を刈り取る。脱穀装置は、刈取部により刈り取られた刈取穀稈を脱穀処理する。穀粒タンクは、脱穀装置によって脱穀された穀粒を貯留する。
このコンバインを利用した収穫作業において、オペレータは、収穫作業の最初にコンバインを手動で操作し、圃場内の外周部分を一周するように刈取走行を行う。
この外周部分での走行において、コンバインの走行すべき方位が記録される。そして、記録された方位に基づく自動走行によって、圃場における未刈領域での刈取走行が行われる。
実開平2-107911号公報
特許文献1に記載のコンバインでは、刈取走行に伴って、穀粒タンクに貯留されている穀粒の重量が増加していく。そして、穀粒タンクに貯留されている穀粒の重量の増加により、最小旋回半径が大きくなる事態が想定される。尚、最小旋回半径とは、機体の旋回半径の最小値である。
ここで、特許文献1に記載のコンバインにおいて、穀粒タンクに穀粒が貯留されていない状態(言い換えれば、穀粒タンクが空の状態)でのコンバインの旋回性能を基準とした走行制御が行われるように構成することが考えられる。しかしながら、この構成では、最小旋回半径が大きくなった場合に、実際の旋回性能と、走行制御の基準となっている旋回性能と、が大きく乖離することとなる。その結果、自動走行の制御の精度が悪くなりがちである。
本発明の目的は、自動走行の制御の精度が悪くなりにくいコンバインを提供することである。
本発明の特徴は、自動走行可能なコンバインであって、圃場の植立穀稈を刈り取る刈取部と、前記刈取部により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置によって脱穀された穀粒を貯留する穀粒タンクと、前記穀粒タンクに貯留されている穀粒の重量を示す値である貯留重量を検知する重量検知部と、前記貯留重量に基づいて機体の旋回半径の最小値である最小旋回半径を算出する半径算出部と、前記最小旋回半径に基づいて前記機体の自動走行を制御する走行制御部と、を備えることにある。
本発明であれば、算出された最小旋回半径に基づいて自動走行が制御される。そのため、穀粒タンクに穀粒が貯留されていない状態でのコンバインの旋回性能を基準とした走行制御が行われる構成に比べて、自動走行の制御の精度が悪くなりにくい。
従って、本発明であれば、自動走行の制御の精度が悪くなりにくいコンバインを実現できる。
さらに、本発明において、前記走行制御部は、前記最小旋回半径に基づいて、複数種類の方向転換方法から1種類の前記方向転換方法を選択すると好適である。
この構成によれば、最小旋回半径に応じた、適切な方向転換方法が選択されるコンバインを実現できる。
さらに、本発明において、圃場の未刈領域を通る目標走行経路を算出する経路算出部を備え、前記走行制御部は、前記機体が前記目標走行経路に沿って走行するように前記機体の自動走行を制御するように構成されており、前記目標走行経路は、平行に並ぶ複数の走行ラインを含んでおり、前記複数種類の方向転換方法は、Uターンと、スイッチバックターンと、を含んでおり、前記機体が走行中の前記走行ラインである現走行ラインと、前記機体が次に走行する予定の前記走行ラインである次走行ラインと、の間の距離が所定距離であり、且つ、前記最小旋回半径が所定の基準半径以下である場合、前記走行制御部は、前記Uターンを選択し、前記現走行ラインと、前記次走行ラインと、の間の距離が前記所定距離であり、且つ、前記最小旋回半径が前記基準半径より大きい場合、前記走行制御部は、前記スイッチバックターンを選択すると好適である。
一般に、Uターンによる方向転換は、スイッチバックターンによる方向転換よりも短い時間で行うことができる。しかしながら、次走行ラインが既に決定されている状況において、最小旋回半径が比較的大きい場合に、Uターンを行うと、次走行ラインへの進入に失敗する事態が想定される。その場合、後進と前進とを繰り返しながら、次走行ラインへの進入を再度試みる必要が生じる。その結果、走行の効率が低下しがちである。
ここで、上記の構成によれば、最小旋回半径が所定の基準半径以下である場合、走行制御部は、Uターンを選択する。これにより、最小旋回半径が所定の基準半径以下である場合にスイッチバックターンが選択される構成に比べて、短い時間で方向転換を行うことが可能となる。
また、上記の構成によれば、最小旋回半径が基準半径より大きい場合、走行制御部は、スイッチバックターンを選択する。これにより、次走行ラインへの進入に失敗する事態を回避しやすい。従って、走行の効率が低下しにくい。
さらに、本発明において、圃場の未刈領域を通る目標走行経路を算出する経路算出部を備え、前記走行制御部は、前記機体が前記目標走行経路に沿って走行するように前記機体の自動走行を制御するように構成されており、前記目標走行経路は、平行に並ぶ複数の走行ラインを含んでおり、前記走行制御部は、前記最小旋回半径に基づいて、前記機体が次に走行する予定の前記走行ラインである次走行ラインを選択すると好適である。
最小旋回半径が比較的大きい場合に、機体が走行中の走行ラインに比較的近い走行ラインが次走行ラインとして選択されると、次走行ラインへの進入に失敗する事態が想定される。その場合、後進と前進とを繰り返しながら、次走行ラインへの進入を再度試みる必要が生じる。その結果、走行の効率が低下しがちである。
ここで、上記の構成によれば、走行制御部は、最小旋回半径に基づいて次走行ラインを選択する。そのため、最小旋回半径が比較的大きい場合には機体が走行中の走行ラインから比較的遠い走行ラインが次走行ラインとして選択される構成を実現しやすい。これにより、次走行ラインへの進入に失敗する事態を回避しやすい。従って、走行の効率が低下しにくい。
さらに、本発明において、前記穀粒タンクは、前記機体の左右方向一方側に偏倚した位置に配置されており、前記半径算出部は、左旋回時の前記機体の旋回半径の最小値である最小左旋回半径と、右旋回時の前記機体の旋回半径の最小値である最小右旋回半径と、を算出するように構成されていると好適である。
穀粒タンクが機体の左右方向一方側に偏倚した位置に配置されており、且つ、穀粒タンクに穀粒が貯留されている場合、左旋回時の機体の旋回半径の最小値と、右旋回時の機体の旋回半径の最小値と、は互いに異なりがちである。
そのため、最小左旋回半径と最小右旋回半径とのうち、最小左旋回半径のみが算出される構成においては、走行制御部は、算出された最小左旋回半径に基づいて、右旋回を制御することとなる。このとき、算出された最小左旋回半径と、実際の最小右旋回半径と、は互いに異なりがちである。そのため、自動走行の制御の精度が悪くなりがちである。
また、最小左旋回半径と最小右旋回半径とのうち、最小右旋回半径のみが算出される構成においても、同様に、自動走行の制御の精度が悪くなりがちである。
ここで、上記の構成によれば、半径算出部は、最小左旋回半径と、最小右旋回半径と、を算出する。そのため、自動走行の制御の精度が悪くなりにくい。
さらに、本発明において、前記半径算出部は、前進旋回時の前記機体の旋回半径の最小値である最小前進旋回半径と、後進旋回時の前記機体の旋回半径の最小値である最小後進旋回半径と、を算出するように構成されていると好適である。
前進旋回時の機体の旋回半径の最小値と、後進旋回時の機体の旋回半径の最小値と、は互いに異なりがちである。
そのため、最小前進旋回半径と最小後進旋回半径とのうち、最小前進旋回半径のみが算出される構成においては、走行制御部は、算出された最小前進旋回半径に基づいて、後進旋回を制御することとなる。このとき、算出された最小前進旋回半径と、実際の最小後進旋回半径と、は互いに異なりがちである。そのため、自動走行の制御の精度が悪くなりがちである。
また、最小前進旋回半径と最小後進旋回半径とのうち、最小後進旋回半径のみが算出される構成においても、同様に、自動走行の制御の精度が悪くなりがちである。
ここで、上記の構成によれば、半径算出部は、最小前進旋回半径と、最小後進旋回半径と、を算出する。そのため、自動走行の制御の精度が悪くなりにくい。
さらに、本発明において、前記穀粒タンクは、前記機体の左右方向一方側に偏倚した位置に配置されており、前記半径算出部は、左右方向他方側前進旋回時の前記機体の旋回半径の最小値である第1旋回半径と、左右方向他方側後進旋回時の前記機体の旋回半径の最小値である第2旋回半径と、左右方向一方側前進旋回時の前記機体の旋回半径の最小値である第3旋回半径と、左右方向一方側後進旋回時の前記機体の旋回半径の最小値である第4旋回半径と、を算出するように構成されていると好適である。
この構成によれば、左右方向他方側前進旋回時には第1旋回半径に基づいて旋回が制御され、左右方向他方側後進旋回時には第2旋回半径に基づいて旋回が制御され、左右方向一方側前進旋回時には第3旋回半径に基づいて旋回が制御され、左右方向一方側後進旋回時には第4旋回半径に基づいて旋回が制御される構成を実現できる。
これにより、各方向への旋回時における自動走行の制御の精度が良好となりやすい。
さらに、本発明において、前記半径算出部は、前記第1旋回半径が前記第2旋回半径以上であり、且つ、前記第2旋回半径が前記第3旋回半径以上であり、且つ、前記第3旋回半径が前記第4旋回半径以上であるように、前記最小旋回半径を算出すると好適である。
穀粒タンクが機体の左右方向一方側に偏倚した位置に配置されている場合、穀粒タンクに貯留されている穀粒の重量による左右方向他方側前進旋回への影響は、穀粒タンクに貯留されている穀粒の重量による左右方向他方側後進旋回への影響より大きくなりがちである。
また、穀粒タンクに貯留されている穀粒の重量による左右方向他方側後進旋回への影響は、穀粒タンクに貯留されている穀粒の重量による左右方向一方側前進旋回への影響より大きくなりがちである。
また、穀粒タンクに貯留されている穀粒の重量による左右方向一方側前進旋回への影響は、穀粒タンクに貯留されている穀粒の重量による左右方向一方側後進旋回への影響より大きくなりがちである。
ここで、上記の構成によれば、半径算出部により算出される第1旋回半径、第2旋回半径、第3旋回半径、第4旋回半径の大小関係は、穀粒タンクに貯留されている穀粒の重量による影響の大きさに応じた大小関係となりやすい。従って、半径算出部により算出される第1旋回半径、第2旋回半径、第3旋回半径、第4旋回半径の大小関係が、実態に応じた大小関係となりやすい。
コンバインの平面図である。 コンバインの左側面図である。 圃場における周回走行を示す図である。 目標走行経路に沿った渦巻き走行を示す図である。 目標走行経路に沿った往復走行を示す図である。 制御部に関する構成を示すブロック図である。 最小旋回半径を示す図である。 最小旋回半径に基づく自動走行の制御の例を示す図である。 最小旋回半径に基づく自動走行の制御の例を示す図である。
本発明を実施するための形態について、図面に基づき説明する。尚、以下の説明においては、特に断りがない限り、図1及び図2に示す矢印Fの方向を「前」、矢印Bの方向を「後」として、図1に示す矢印Lの方向を「左」、矢印Rの方向を「右」とする。
また、図4、図5、図8、図9に示す矢印Nの方向を「北」、矢印Sの方向を「南」として、矢印Eの方向を「東」、矢印Wの方向を「西」とする。
〔コンバインの全体構成〕
図1及び図2に示すように、自脱型のコンバイン1は、クローラ式の走行装置11、運転部12、脱穀装置13、穀粒タンク14、刈取部H、穀粒排出装置18、衛星測位モジュール80を備えている。
走行装置11は、コンバイン1における下部に備えられている。また、走行装置11は、エンジン(図示せず)からの動力によって駆動する。そして、コンバイン1は、走行装置11によって自走可能である。
また、運転部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられている。運転部12には、コンバイン1の作業を監視するオペレータが搭乗可能である。尚、オペレータは、コンバイン1の機外からコンバイン1の作業を監視していても良い。
穀粒排出装置18は、穀粒タンク14に接続している。また、衛星測位モジュール80は、運転部12の上面に取り付けられている。
刈取部Hは、コンバイン1における前部に備えられている。そして、刈取部Hは、バリカン型の切断装置15、及び、搬送装置16を有している。
切断装置15は、圃場の植立穀稈の株元を切断する。そして、搬送装置16は、切断装置15により切断された穀稈を後側へ搬送する。
この構成により、刈取部Hは、圃場の植立穀稈を刈り取る。コンバイン1は、刈取部Hによって圃場の植立穀稈を刈り取りながら走行装置11によって走行する刈取走行が可能である。
搬送装置16により搬送された穀稈は、脱穀装置13において脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。
このように、コンバイン1は、刈取部Hにより刈り取られた刈取穀稈を脱穀処理する脱穀装置13を備えている。また、コンバイン1は、脱穀装置13によって脱穀された穀粒を貯留する穀粒タンク14を備えている。
また、運転部12には、通信端末(図示せず)が配置されている。通信端末は、種々の情報を表示可能に構成されている。本実施形態において、通信端末は、運転部12に固定されている。しかしながら、本発明はこれに限定されず、通信端末は、運転部12に対して着脱可能に構成されていても良いし、通信端末は、コンバイン1の機外に位置していても良い。
また、図1に示すように、穀粒タンク14は、機体右側に偏倚した位置に配置されている。尚、本発明はこれに限定されず、穀粒タンク14は、機体左側に偏倚した位置に配置されていても良い。
即ち、穀粒タンク14は、機体の左右方向一方側に偏倚した位置に配置されている。
ここで、コンバイン1は、図3に示すように圃場における外周側の領域で穀物を収穫しながら周回走行を行った後、図4及び図5に示すように圃場における内側の領域で刈取走行を行うことにより、圃場の穀物を収穫するように構成されている。
本実施形態においては、図3に示す周回走行は手動走行により行われる。また、図4及び図5に示す内側の領域での刈取走行は、自動走行により行われる。即ち、コンバイン1は、自動走行可能である。
尚、本発明はこれに限定されず、図3に示す周回走行は自動走行により行われても良い。
また、オペレータは、通信端末を操作することにより、エンジンの回転速度を変更することができる。
作物の状態によって、適切な作業速度は異なる。オペレータが通信端末を操作し、エンジンの回転速度を適切な回転速度に設定すれば、作物の状態に適した作業速度で作業を行うことができる。
〔制御部に関する構成〕
図6に示すように、コンバイン1は、制御部20を備えている。制御部20は、自車位置算出部21、領域算出部22、経路算出部23、走行制御部24を有している。
衛星測位モジュール80は、GPS(グローバル・ポジショニング・システム)で用いられる人工衛星からのGPS信号を受信する。そして、図6に示すように、衛星測位モジュール80は、受信したGPS信号に基づいて、コンバイン1の自車位置を示す測位データを自車位置算出部21へ送る。
自車位置算出部21は、衛星測位モジュール80により出力された測位データに基づいて、コンバイン1の位置座標を経時的に算出する。算出されたコンバイン1の経時的な位置座標は、領域算出部22及び走行制御部24へ送られる。
領域算出部22は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、図4に示すように、外周領域SA及び作業対象領域CAを算出する。
より具体的には、領域算出部22は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、圃場の外周側における周回走行でのコンバイン1の走行軌跡を算出する。そして、領域算出部22は、算出されたコンバイン1の走行軌跡に基づいて、コンバイン1が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部22は、算出された外周領域SAよりも圃場内側の領域を、作業対象領域CAとして算出する。
例えば、図3においては、圃場の外周側における周回走行のためのコンバイン1の走行経路が矢印で示されている。図3に示す例では、コンバイン1は、3周の周回走行を行う。そして、この走行経路に沿った刈取走行が完了すると、圃場は、図4に示す状態となる。
図4に示すように、領域算出部22は、コンバイン1が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部22は、算出された外周領域SAよりも圃場内側の領域を、作業対象領域CAとして算出する。
そして、図6に示すように、領域算出部22による算出結果は、経路算出部23へ送られる。
経路算出部23は、領域算出部22から受け取った算出結果に基づいて、図4に示すように、作業対象領域CAにおける刈取走行のための走行経路である目標走行経路LNを算出する。尚、図4に示すように、本実施形態においては、目標走行経路LNは、縦横方向に延びる複数のメッシュ線である。また、複数のメッシュ線は直線でなくても良く、湾曲していても良い。
また、圃場が図4に示す状態であるとき、作業対象領域CAの全体が未刈領域である。そして、目標走行経路LNは、圃場の未刈領域を通っている。
即ち、コンバイン1は、圃場の未刈領域を通る目標走行経路LNを算出する経路算出部23を備えている。
図6に示すように、経路算出部23により算出された目標走行経路LNは、走行制御部24へ送られる。
走行制御部24は、走行装置11を制御可能に構成されている。そして、走行制御部24は、自車位置算出部21から受け取ったコンバイン1の位置座標と、経路算出部23から受け取った目標走行経路LNと、に基づいて、コンバイン1の自動走行を制御する。より具体的には、走行制御部24は、図4及び図5に示すように、目標走行経路LNに沿った自動走行によって刈取走行が行われるように、コンバイン1の走行を制御する。
即ち、走行制御部24は、機体が目標走行経路LNに沿って走行するように機体の自動走行を制御するように構成されている。
〔コンバインによる収穫作業の流れ〕
以下では、コンバイン1による収穫作業の例として、コンバイン1が、図3に示す圃場で収穫作業を行う場合の流れについて説明する。
最初に、オペレータは、コンバイン1を手動で操作し、図3に示すように、圃場内の外周部分において、圃場の境界線BDに沿って周回するように刈取走行を行う。図3に示す例では、コンバイン1は、3周の周回走行を行う。この周回走行が完了すると、圃場は、図4に示す状態となる。
領域算出部22は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、図3に示す周回走行でのコンバイン1の走行軌跡を算出する。そして、図4に示すように、領域算出部22は、算出されたコンバイン1の走行軌跡に基づいて、コンバイン1が植立穀稈を刈り取りながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部22は、算出された外周領域SAよりも圃場内側の領域を、作業対象領域CAとして算出する。
次に、経路算出部23は、領域算出部22から受け取った算出結果に基づいて、図4に示すように、作業対象領域CAにおける目標走行経路LNを設定する。
そして、オペレータが自動走行開始ボタン(図示せず)を押すことにより、図4に示すように、目標走行経路LNに沿った自動走行が開始される。このとき、走行制御部24は、目標走行経路LNに沿った自動走行によって刈取走行が行われるように、コンバイン1の走行を制御する。
作業対象領域CAにおける自動走行が開始されると、図4に示すように、まず、コンバイン1は、作業対象領域CAにおける外周部分において、作業対象領域CAの外形に沿って周回するように刈取走行を行う。このとき、コンバイン1は、目標走行経路LNに沿った走行と、αターンによる方向転換と、を繰り返す。これにより、コンバイン1は、作業対象領域CAにおける外周部分を渦巻き状に刈取走行する。
尚、以下では、この渦巻き状の刈取走行を、「渦巻き走行」と称する。
図4においては、αターンによる方向転換が3回しか行われていないが、αターンによる方向転換は、4回以上行われても良い。即ち、渦巻き走行は、図4に示すケースよりも長い走行距離に亘って行われても良い。例えば、渦巻き走行は、コンバイン1が2周するまで行われても良い。
渦巻き走行が完了すると、コンバイン1は、目標走行経路LNに沿って前進しながら行われる刈取走行と、Uターンによる方向転換と、を繰り返すことにより、作業対象領域CAの全体を網羅するように刈取走行を行う。尚、本実施形態においては、コンバイン1の方向転換の際、Uターンに代えて、スイッチバックターンが行われる場合もある。
尚、以下では、前進しながらの刈取走行と、Uターンまたはスイッチバックターンによる方向転換と、を繰り返す走行を、「往復走行」と称する。
即ち、走行制御部24は、渦巻き走行の後に往復走行に移行するように、コンバイン1の走行を制御する。
そして、作業対象領域CAの全体の刈取走行が完了すると、圃場の全体が収穫済みとなる。
〔最小旋回半径の算出に関する構成〕
図6に示すように、制御部20は、半径算出部25を有している。また、コンバイン1は、重量検知部33を備えている。重量検知部33は、穀粒タンク14の重量を検知する。本実施形態において、重量検知部33は、ロードセルにより構成されている。
尚、穀粒タンク14の重量は、穀粒タンク14に貯留されている穀粒の重量を示す値である。従って、穀粒タンク14の重量は、本発明に係る「貯留重量」に相当する。
このように、コンバイン1は、穀粒タンク14に貯留されている穀粒の重量を示す値である貯留重量を検知する重量検知部33を備えている。
重量検知部33により検知された穀粒タンク14の重量は、半径算出部25へ送られる。半径算出部25は、穀粒タンク14の重量に基づいて、図7に示すように、第1旋回半径R1と、第2旋回半径R2と、第3旋回半径R3と、第4旋回半径R4と、を算出する。
尚、第1旋回半径R1とは、左前進旋回時の機体の旋回半径の最小値である。また、第2旋回半径R2とは、左後進旋回時の機体の旋回半径の最小値である。また、第3旋回半径R3とは、右前進旋回時の機体の旋回半径の最小値である。また、第4旋回半径R4とは、右後進旋回時の機体の旋回半径の最小値である。
このように、半径算出部25は、左右方向他方側前進旋回時の機体の旋回半径の最小値である第1旋回半径R1と、左右方向他方側後進旋回時の機体の旋回半径の最小値である第2旋回半径R2と、左右方向一方側前進旋回時の機体の旋回半径の最小値である第3旋回半径R3と、左右方向一方側後進旋回時の機体の旋回半径の最小値である第4旋回半径R4と、を算出するように構成されている。
尚、本実施形態において、旋回半径の最小値とは、制御可能な範囲で旋回半径が最も小さくなるように走行装置11が制御されたときの旋回半径を意味する。例えば、走行装置11における左のクローラの駆動速度と、右のクローラの駆動速度と、の差が、制御可能な範囲で最も大きくなるように走行装置11が制御されたときの旋回半径は、旋回半径の最小値である。
ここで、第1旋回半径R1、第2旋回半径R2、第3旋回半径R3、第4旋回半径R4は、何れも、機体の旋回半径の最小値である。即ち、第1旋回半径R1、第2旋回半径R2、第3旋回半径R3、第4旋回半径R4は、何れも、本発明に係る「最小旋回半径」に相当する。
即ち、コンバイン1は、貯留重量に基づいて機体の旋回半径の最小値である最小旋回半径を算出する半径算出部25を備えている。
また、半径算出部25は、第1旋回半径R1が第2旋回半径R2以上であるように、第1旋回半径R1及び第2旋回半径R2を算出する。また、半径算出部25は、第2旋回半径R2が第3旋回半径R3以上であるように、第2旋回半径R2及び第3旋回半径R3を算出する。また、半径算出部25は、第3旋回半径R3が第4旋回半径R4以上であるように、第3旋回半径R3及び第4旋回半径R4を算出する。
即ち、半径算出部25は、第1旋回半径R1が第2旋回半径R2以上であり、且つ、第2旋回半径R2が第3旋回半径R3以上であり、且つ、第3旋回半径R3が第4旋回半径R4以上であるように、最小旋回半径を算出する。
また、第1旋回半径R1及び第2旋回半径R2は、何れも、左旋回時の機体の旋回半径の最小値である。即ち、第1旋回半径R1及び第2旋回半径R2は、何れも、本発明に係る「最小左旋回半径」に相当する。
また、第3旋回半径R3及び第4旋回半径R4は、何れも、右旋回時の機体の旋回半径の最小値である。即ち、第3旋回半径R3及び第4旋回半径R4は、何れも、本発明に係る「最小右旋回半径」に相当する。
即ち、半径算出部25は、左旋回時の機体の旋回半径の最小値である最小左旋回半径と、右旋回時の機体の旋回半径の最小値である最小右旋回半径と、を算出するように構成されている。
また、第1旋回半径R1及び第3旋回半径R3は、何れも、前進旋回時の機体の旋回半径の最小値である。即ち、第1旋回半径R1及び第3旋回半径R3は、何れも、本発明に係る「最小前進旋回半径」に相当する。
また、第2旋回半径R2及び第4旋回半径R4は、何れも、後進旋回時の機体の旋回半径の最小値である。即ち、第2旋回半径R2及び第4旋回半径R4は、何れも、本発明に係る「最小後進旋回半径」に相当する。
即ち、半径算出部25は、前進旋回時の機体の旋回半径の最小値である最小前進旋回半径と、後進旋回時の機体の旋回半径の最小値である最小後進旋回半径と、を算出するように構成されている。
ここで、図7においては、穀粒タンク14に穀粒が貯留されていない状態での最小旋回半径が、実線の矢印にて示されている。また、穀粒タンク14に、穀粒タンク14の容量のうちの50%に相当する穀粒が貯留されている状態での最小旋回半径が、破線の矢印にて示されている。
図7に示すように、穀粒タンク14に穀粒が貯留されていない状態での第1旋回半径R1、第2旋回半径R2、第3旋回半径R3、第4旋回半径R4の大きさは、それぞれ、半径R11、R21、R31、R41である。尚、半径R11、R21、R31、R41は、互いに等しい。
穀粒タンク14に、穀粒タンク14の容量のうちの50%に相当する穀粒が貯留されている状態での第1旋回半径R1、第2旋回半径R2、第3旋回半径R3、第4旋回半径R4の大きさは、それぞれ、半径R12、R22、R32、R42である。
尚、半径R12は、半径R22よりも大きい。また、半径R22は、半径R32よりも大きい。また、半径R32は、半径R42よりも大きい。また、半径R42は、半径R11、R21、R31、R41よりも大きい。
図7に示すように、穀粒タンク14に、穀粒タンク14の容量のうちの50%に相当する穀粒が貯留されている状態での最小旋回半径は、穀粒タンク14に穀粒が貯留されていない状態での最小旋回半径よりも大きい。
このように、穀粒タンク14に貯留されている穀粒の重量が大きいほど、最小旋回半径は大きくなる。
〔走行制御に関する構成〕
図6に示すように、半径算出部25により算出された最小旋回半径は、走行制御部24へ送られる。そして、走行制御部24は、半径算出部25から受け取った最小旋回半径に基づいて、機体の自動走行を制御する。
このように、コンバイン1は、最小旋回半径に基づいて機体の自動走行を制御する走行制御部24を備えている。
以下では、最小旋回半径に基づく走行制御について説明する。
図6に示すように、走行制御部24は、方法選択部24aを有している。方法選択部24aは、半径算出部25から受け取った最小旋回半径に基づいて、複数種類の方向転換方法から1種類の方向転換方法を選択する。
本実施形態において、方向転換方法の候補は、Uターンと、スイッチバックターンと、である。即ち、複数種類の方向転換方法は、Uターンと、スイッチバックターンと、を含んでいる。
そして、方法選択部24aは、半径算出部25から受け取った最小旋回半径に基づいて、Uターンと、スイッチバックターンと、のうちの何れか一方を選択する。
即ち、走行制御部24は、最小旋回半径に基づいて、複数種類の方向転換方法から1種類の方向転換方法を選択する。
以下では、最小旋回半径に基づく走行制御の例として、コンバイン1が図8に示す圃場を自動走行する場合について説明する。
この例では、図8に示すように、目標走行経路LNは、平行に並ぶ複数の走行ラインLSを含んでいる。各走行ラインLSは、東西方向に延びている。尚、図8においては、南北方向に延びる各走行ラインLSの図示を省略している。
図8には、第1ラインLS1、第2ラインLS2、第3ラインLS3、第4ラインLS4が示されている。第1ラインLS1、第2ラインLS2、第3ラインLS3、第4ラインLS4は、それぞれ、走行ラインLSである。そして、北側から、第1ラインLS1、第2ラインLS2、第3ラインLS3、第4ラインLS4の順に並んでいる。
コンバイン1は、第1ラインLS1に沿って、西へ向かって走行中である。そして、コンバイン1が次に走行する予定の走行ラインLSは、第4ラインLS4である。
即ち、第1ラインLS1は、現走行ラインである。現走行ラインとは、機体が走行中の走行ラインLSである。また、第4ラインLS4は、次走行ラインである。次走行ラインとは、機体が次に走行する予定の走行ラインLSである。
また、図8に示すように、第1ラインLS1と、第4ラインLS4と、の間の距離は、所定距離DPである。即ち、現走行ラインと次走行ラインとの間の距離は、所定距離DPである。
尚、この例では、所定距離DPは、コンバイン1の刈幅の3倍に相当する。しかしながら、本発明はこれに限定されず、所定距離DPは、いかなる長さであっても良い。
また、図8には、穀粒タンク14に穀粒が貯留されていない状態でのコンバイン1の走行軌跡が、実線の矢印にて示されている。また、穀粒タンク14に、穀粒タンク14の容量のうちの50%に相当する穀粒が貯留されている状態でのコンバイン1の走行軌跡が、破線の矢印にて示されている。
ここで、方法選択部24aは、現走行ラインと次走行ラインとの間の距離が所定距離DPであり、且つ、最小旋回半径が所定の基準半径以下である場合、Uターンを選択するように構成されている。
また、方法選択部24aは、現走行ラインと次走行ラインとの間の距離が所定距離DPであり、且つ、最小旋回半径が基準半径より大きい場合、スイッチバックターンを選択するように構成されている。
この例では、図8に示すように、コンバイン1は、第1ラインLS1の終端から、左前進旋回する。そのため、この例において、方法選択部24aは、第1旋回半径R1に基づいて、Uターンと、スイッチバックターンと、のうちの何れか一方を選択する。
即ち、この例において、方法選択部24aは、現走行ラインと次走行ラインとの間の距離が所定距離DPであり、且つ、第1旋回半径R1が所定の基準半径以下である場合、Uターンを選択する。
また、方法選択部24aは、現走行ラインと次走行ラインとの間の距離が所定距離DPであり、且つ、第1旋回半径R1が基準半径より大きい場合、スイッチバックターンを選択する。
そして、本実施形態において、図7に示した半径R11は、基準半径以下であるとする。また、半径R12は、基準半径より大きいものとする。
従って、穀粒タンク14に穀粒が貯留されていない状態での第1旋回半径R1は、基準半径以下である。また、穀粒タンク14に、穀粒タンク14の容量のうちの50%に相当する穀粒が貯留されている状態での第1旋回半径R1は、基準半径より大きい。
そのため、図8に実線の矢印にて示すように、穀粒タンク14に穀粒が貯留されていない状態では、方法選択部24aによってUターンが選択される。これにより、コンバイン1は、第1ラインLS1の終端から、Uターンによって方向転換し、第4ラインLS4へ進入する。尚、このときの旋回半径は、半径TR1である。半径TR1は、図7に示した半径R11に等しくても良いし、半径R11より大きくても良い。
また、図8に破線の矢印にて示すように、穀粒タンク14に、穀粒タンク14の容量のうちの50%に相当する穀粒が貯留されている状態では、方法選択部24aによってスイッチバックターンが選択される。これにより、コンバイン1は、第1ラインLS1の終端から、スイッチバックターンによって方向転換し、第4ラインLS4へ進入する。尚、このときの旋回半径は、半径TR2である。半径TR2は、図7に示した半径R12に等しくても良いし、半径R12より大きくても良い。
このように、機体が走行中の走行ラインLSである現走行ラインと、機体が次に走行する予定の走行ラインLSである次走行ラインと、の間の距離が所定距離DPであり、且つ、最小旋回半径が所定の基準半径以下である場合、走行制御部24は、Uターンを選択する。
また、現走行ラインと、次走行ラインと、の間の距離が所定距離DPであり、且つ、最小旋回半径が基準半径より大きい場合、走行制御部24は、スイッチバックターンを選択する。
尚、図8に示すように、半径TR2は、半径TR1よりも大きい。即ち、走行制御部24は、穀粒タンク14に貯留されている穀粒の重量が大きいほど、旋回半径が大きくなるように、コンバイン1の自動走行を制御する。
また、図6に示すように、走行制御部24は、ライン選択部24bを有している。ライン選択部24bは、半径算出部25から受け取った最小旋回半径に基づいて、次走行ラインを選択する。
即ち、走行制御部24は、最小旋回半径に基づいて、機体が次に走行する予定の走行ラインLSである次走行ラインを選択する。
以下では、最小旋回半径に基づく走行制御の例として、コンバイン1が図9に示す圃場を自動走行する場合について説明する。
この例では、図9に示すように、目標走行経路LNは、平行に並ぶ複数の走行ラインLSを含んでいる。各走行ラインLSは、東西方向に延びている。尚、図9においては、南北方向に延びる各走行ラインLSの図示を省略している。
図9には、第5ラインLS5、第6ラインLS6、第7ラインLS7、第8ラインLS8が示されている。第5ラインLS5、第6ラインLS6、第7ラインLS7、第8ラインLS8は、それぞれ、走行ラインLSである。そして、北側から、第5ラインLS5、第6ラインLS6、第7ラインLS7、第8ラインLS8の順に並んでいる。
コンバイン1は、第5ラインLS5に沿って、西へ向かって走行中である。即ち、第5ラインLS5は、現走行ラインである。
また、図9には、穀粒タンク14に穀粒が貯留されていない状態でのコンバイン1の走行軌跡が、実線の矢印にて示されている。また、穀粒タンク14に、穀粒タンク14の容量のうちの50%に相当する穀粒が貯留されている状態でのコンバイン1の走行軌跡が、破線の矢印にて示されている。
ここで、ライン選択部24bは、最小旋回半径が大きいほど、現走行ラインと次走行ラインとの間の距離が長くなるように、次走行ラインを選択するように構成されている。
この例では、図9に示すように、コンバイン1は、第5ラインLS5の終端から、左前進旋回する。そのため、この例において、ライン選択部24bは、第1旋回半径R1に基づいて、次走行ラインを選択する。
即ち、この例において、ライン選択部24bは、第1旋回半径R1が大きいほど、現走行ラインと次走行ラインとの間の距離が長くなるように、次走行ラインを選択する。
そのため、図9に実線の矢印にて示すように、穀粒タンク14に穀粒が貯留されていない状態では、ライン選択部24bによって、第7ラインLS7が次走行ラインとして選択される。これにより、コンバイン1は、第5ラインLS5の終端から、Uターンによって方向転換し、第7ラインLS7へ進入する。尚、このときの旋回半径は、半径TR3である。半径TR3は、図7に示した半径R11に等しくても良いし、半径R11より大きくても良い。
また、図9に破線の矢印にて示すように、穀粒タンク14に、穀粒タンク14の容量のうちの50%に相当する穀粒が貯留されている状態では、ライン選択部24bによって、第8ラインLS8が次走行ラインとして選択される。尚、第5ラインLS5と第8ラインLS8との間の距離は、第5ラインLS5と第7ラインLS7との間の距離よりも長い。
これにより、コンバイン1は、第5ラインLS5の終端から、Uターンによって方向転換し、第8ラインLS8へ進入する。尚、このときの旋回半径は、半径TR4である。半径TR4は、図7に示した半径R12に等しくても良いし、半径R12より大きくても良い。また、半径TR4は、半径TR3よりも大きい。
尚、方法選択部24aは、コンバイン1が左後進旋回する場合には、第2旋回半径R2に基づいて、Uターンと、スイッチバックターンと、のうちの何れか一方を選択する。また、方法選択部24aは、コンバイン1が右前進旋回する場合には、第3旋回半径R3に基づいて、Uターンと、スイッチバックターンと、のうちの何れか一方を選択する。また、方法選択部24aは、コンバイン1が右後進旋回する場合には、第4旋回半径R4に基づいて、Uターンと、スイッチバックターンと、のうちの何れか一方を選択する。
また、ライン選択部24bは、コンバイン1が左後進旋回する場合には、第2旋回半径R2に基づいて、次走行ラインを選択する。また、ライン選択部24bは、コンバイン1が右前進旋回する場合には、第3旋回半径R3に基づいて、次走行ラインを選択する。また、ライン選択部24bは、コンバイン1が右後進旋回する場合には、第4旋回半径R4に基づいて、次走行ラインを選択する。
以上で説明した構成であれば、算出された最小旋回半径に基づいて自動走行が制御される。そのため、穀粒タンク14に穀粒が貯留されていない状態でのコンバイン1の旋回性能を基準とした走行制御が行われる構成に比べて、自動走行の制御の精度が悪くなりにくい。
従って、以上で説明した構成であれば、自動走行の制御の精度が悪くなりにくいコンバイン1を実現できる。
尚、以上に記載した実施形態は一例に過ぎないのであり、本発明はこれに限定されるものではなく、適宜変更が可能である。
〔その他の実施形態〕
(1)走行装置11は、ホイール式であっても良いし、セミクローラ式であっても良い。
(2)上記実施形態においては、経路算出部23により算出される目標走行経路LNは、縦横方向に延びる複数のメッシュ線である。しかしながら、本発明はこれに限定されず、経路算出部23により算出される目標走行経路LNは、縦横方向に延びる複数のメッシュ線でなくても良い。例えば、経路算出部23により算出される目標走行経路LNは、渦巻き状の走行経路であっても良い。また、目標走行経路LNにおける走行ラインLSは、別の走行ラインLSと直交していても良いし、直交していなくても良い。また、経路算出部23により算出される目標走行経路LNは、互いに平行な複数の平行線であっても良い。
(3)上記実施形態においては、オペレータは、コンバイン1を手動で操作し、図3に示すように、圃場内の外周部分において、圃場の境界線BDに沿って周回するように刈取走行を行う。しかしながら、本発明はこれに限定されず、コンバイン1が自動で走行し、圃場内の外周部分において、圃場の境界線BDに沿って周回するように刈取走行を行うように構成されていても良い。また、このときの周回数は、3周以外の数であっても良い。例えば、このときの周回数は2周であっても良い。
(4)自車位置算出部21、領域算出部22、経路算出部23、走行制御部24、半径算出部25のうち、一部または全てがコンバイン1の外部に備えられていても良いのであって、例えば、コンバイン1の外部に設けられた管理サーバに備えられていても良い。
(5)第1旋回半径R1は、右前進旋回時の機体の旋回半径の最小値であっても良い。
(6)第2旋回半径R2は、右後進旋回時の機体の旋回半径の最小値であっても良い。
(7)第3旋回半径R3は、左前進旋回時の機体の旋回半径の最小値であっても良い。
(8)第4旋回半径R4は、左後進旋回時の機体の旋回半径の最小値であっても良い。
(9)ライン選択部24bは、コンバイン1がまだ走行していない複数の走行ラインLSの中から、半径算出部25により算出された最小旋回半径に基づいて、現走行ラインの次に進入可能な一つまたは複数の走行ラインLSを抽出しても良い。さらに、ライン選択部24bは、抽出された走行ラインLSの中から、一つの走行ラインLSを次走行ラインとして選択しても良い。このとき、ライン選択部24bは、抽出された各走行ラインLSを、走行効率等の評価基準に従って評価することによって、次走行ラインを選択しても良い。さらに、ライン選択部24bによって次走行ラインが選択された後で、方法選択部24aが、最小旋回半径に基づいて、Uターンと、スイッチバックターンと、のうちの何れか一方を選択しても良い。さらに、この場合、コンバイン1が普通型であっても良い。
(10)走行制御部24は、複数種類の方向転換方法から1種類の方向転換方法を選択できないように構成されていても良い。例えば、走行制御部24は、最小旋回半径がいかなる値であってもコンバイン1がUターンによって方向転換するように、コンバイン1の自動走行を制御しても良い。
(11)複数種類の方向転換方法には、Uターンとスイッチバックターンとに加えて、さらに別の方向転換方法が含まれていても良い。また、複数種類の方向転換方法には、Uターンが含まれていなくても良い。また、複数種類の方向転換方法には、スイッチバックターンが含まれていなくても良い。
(12)走行制御部24は、最小旋回半径とは無関係に次走行ラインを選択するように構成されていても良い。
本発明は、自脱型のコンバインだけではなく、普通型のコンバインにも利用可能である。
1 コンバイン
13 脱穀装置
14 穀粒タンク
23 経路算出部
24 走行制御部
25 半径算出部
33 重量検知部
DP 所定距離
H 刈取部
LN 目標走行経路
LS 走行ライン
R1 第1旋回半径(最小旋回半径、最小左旋回半径、最小前進旋回半径)
R2 第2旋回半径(最小旋回半径、最小左旋回半径、最小後進旋回半径)
R3 第3旋回半径(最小旋回半径、最小右旋回半径、最小前進旋回半径)
R4 第4旋回半径(最小旋回半径、最小右旋回半径、最小後進旋回半径)

Claims (8)

  1. 自動走行可能なコンバインであって、
    圃場の植立穀稈を刈り取る刈取部と、
    前記刈取部により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、
    前記脱穀装置によって脱穀された穀粒を貯留する穀粒タンクと、
    前記穀粒タンクに貯留されている穀粒の重量を示す値である貯留重量を検知する重量検知部と、
    前記貯留重量に基づいて機体の旋回半径の最小値である最小旋回半径を算出する半径算出部と、
    前記最小旋回半径に基づいて前記機体の自動走行を制御する走行制御部と、を備えるコンバイン。
  2. 前記走行制御部は、前記最小旋回半径に基づいて、複数種類の方向転換方法から1種類の前記方向転換方法を選択する請求項1に記載のコンバイン。
  3. 圃場の未刈領域を通る目標走行経路を算出する経路算出部を備え、
    前記走行制御部は、前記機体が前記目標走行経路に沿って走行するように前記機体の自動走行を制御するように構成されており、
    前記目標走行経路は、平行に並ぶ複数の走行ラインを含んでおり、
    前記複数種類の方向転換方法は、Uターンと、スイッチバックターンと、を含んでおり、
    前記機体が走行中の前記走行ラインである現走行ラインと、前記機体が次に走行する予定の前記走行ラインである次走行ラインと、の間の距離が所定距離であり、且つ、前記最小旋回半径が所定の基準半径以下である場合、前記走行制御部は、前記Uターンを選択し、
    前記現走行ラインと、前記次走行ラインと、の間の距離が前記所定距離であり、且つ、前記最小旋回半径が前記基準半径より大きい場合、前記走行制御部は、前記スイッチバックターンを選択する請求項2に記載のコンバイン。
  4. 圃場の未刈領域を通る目標走行経路を算出する経路算出部を備え、
    前記走行制御部は、前記機体が前記目標走行経路に沿って走行するように前記機体の自動走行を制御するように構成されており、
    前記目標走行経路は、平行に並ぶ複数の走行ラインを含んでおり、
    前記走行制御部は、前記最小旋回半径に基づいて、前記機体が次に走行する予定の前記走行ラインである次走行ラインを選択する請求項1から3の何れか一項に記載のコンバイン。
  5. 前記穀粒タンクは、前記機体の左右方向一方側に偏倚した位置に配置されており、
    前記半径算出部は、左旋回時の前記機体の旋回半径の最小値である最小左旋回半径と、右旋回時の前記機体の旋回半径の最小値である最小右旋回半径と、を算出するように構成されている請求項1から4の何れか一項に記載のコンバイン。
  6. 前記半径算出部は、前進旋回時の前記機体の旋回半径の最小値である最小前進旋回半径と、後進旋回時の前記機体の旋回半径の最小値である最小後進旋回半径と、を算出するように構成されている請求項1から5の何れか一項に記載のコンバイン。
  7. 前記穀粒タンクは、前記機体の左右方向一方側に偏倚した位置に配置されており、
    前記半径算出部は、左右方向他方側前進旋回時の前記機体の旋回半径の最小値である第1旋回半径と、左右方向他方側後進旋回時の前記機体の旋回半径の最小値である第2旋回半径と、左右方向一方側前進旋回時の前記機体の旋回半径の最小値である第3旋回半径と、左右方向一方側後進旋回時の前記機体の旋回半径の最小値である第4旋回半径と、を算出するように構成されている請求項1から6の何れか一項に記載のコンバイン。
  8. 前記半径算出部は、前記第1旋回半径が前記第2旋回半径以上であり、且つ、前記第2旋回半径が前記第3旋回半径以上であり、且つ、前記第3旋回半径が前記第4旋回半径以上であるように、前記最小旋回半径を算出する請求項7に記載のコンバイン。
JP2019215936A 2019-11-29 2019-11-29 コンバイン Active JP7191002B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019215936A JP7191002B2 (ja) 2019-11-29 2019-11-29 コンバイン
PCT/JP2020/042971 WO2021106708A1 (ja) 2019-11-29 2020-11-18 コンバイン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019215936A JP7191002B2 (ja) 2019-11-29 2019-11-29 コンバイン

Publications (2)

Publication Number Publication Date
JP2021083398A JP2021083398A (ja) 2021-06-03
JP7191002B2 true JP7191002B2 (ja) 2022-12-16

Family

ID=76084622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019215936A Active JP7191002B2 (ja) 2019-11-29 2019-11-29 コンバイン

Country Status (2)

Country Link
JP (1) JP7191002B2 (ja)
WO (1) WO2021106708A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023098040A (ja) * 2021-12-28 2023-07-10 株式会社クボタ 作業車

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175369A (ja) 2010-02-23 2011-09-08 Toyota Industries Corp 無人搬送車
JP2017182373A (ja) 2016-03-30 2017-10-05 ヤンマー株式会社 経路生成装置
US20170311534A1 (en) 2016-05-02 2017-11-02 Cnh Industrial America Llc System For Conducting An Agricultural Operation Using An Autonomous Vehicle
JP2019110790A (ja) 2017-12-21 2019-07-11 株式会社クボタ コンバイン制御システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2837986B2 (ja) * 1992-01-28 1998-12-16 新キャタピラー三菱株式会社 走行体の旋回制御システム
JPH1132512A (ja) * 1997-07-16 1999-02-09 Yanmar Agricult Equip Co Ltd コンバイン
JP4104252B2 (ja) * 1999-06-22 2008-06-18 本田技研工業株式会社 車両の自動操舵装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175369A (ja) 2010-02-23 2011-09-08 Toyota Industries Corp 無人搬送車
JP2017182373A (ja) 2016-03-30 2017-10-05 ヤンマー株式会社 経路生成装置
US20170311534A1 (en) 2016-05-02 2017-11-02 Cnh Industrial America Llc System For Conducting An Agricultural Operation Using An Autonomous Vehicle
JP2019110790A (ja) 2017-12-21 2019-07-11 株式会社クボタ コンバイン制御システム

Also Published As

Publication number Publication date
WO2021106708A1 (ja) 2021-06-03
JP2021083398A (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
CN111386030B (zh) 自动行驶系统、自动行驶管理程序及方法、记录介质
CN111343854B (zh) 作业车、用于作业车的行驶路径选择系统以及行驶路径计算系统
JP7130535B2 (ja) 自動走行制御システム
CN112638147A (zh) 自动转向系统及收获机、自动转向方法、自动转向程序、记录介质
JP2020028225A (ja) 収穫機
JP7072381B2 (ja) コンバイン制御システム
JP7117985B2 (ja) 自動走行制御システム
JP7068961B2 (ja) 外形形状算出システム及び外形形状算出方法
JP2020124149A (ja) 経路生成システム
JP7155096B2 (ja) 自動走行経路生成システム
JP7191002B2 (ja) コンバイン
JP2022191350A (ja) 自動走行制御システム
JP6843037B2 (ja) コンバイン制御システム
JP2020124175A (ja) 自動収穫システム
JP7213670B2 (ja) 自動走行制御システム
JP2019106926A (ja) 自動走行システム
JP7113726B2 (ja) 農作業機
JP2023029429A (ja) 自動走行システム
JP7262377B2 (ja) コンバイン
JP2020022428A (ja) 走行経路生成システム及び走行経路生成方法
JP2021185842A (ja) 走行経路管理システム
CN112868369A (zh) 自动行驶系统和收割机
JP7328394B2 (ja) 経路生成システム
JP7191001B2 (ja) 自動走行システム
JP2021083395A (ja) コンバイン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221206

R150 Certificate of patent or registration of utility model

Ref document number: 7191002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150