JP7172914B2 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP7172914B2
JP7172914B2 JP2019146856A JP2019146856A JP7172914B2 JP 7172914 B2 JP7172914 B2 JP 7172914B2 JP 2019146856 A JP2019146856 A JP 2019146856A JP 2019146856 A JP2019146856 A JP 2019146856A JP 7172914 B2 JP7172914 B2 JP 7172914B2
Authority
JP
Japan
Prior art keywords
engine
accelerator
power
smoothing rate
rotary machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019146856A
Other languages
English (en)
Other versions
JP2021024524A (ja
Inventor
淳 田端
弘一 奥田
亨 松原
康博 日浅
康隆 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019146856A priority Critical patent/JP7172914B2/ja
Priority to US16/925,929 priority patent/US11325584B2/en
Priority to CN202010716823.XA priority patent/CN112339738B/zh
Publication of JP2021024524A publication Critical patent/JP2021024524A/ja
Application granted granted Critical
Publication of JP7172914B2 publication Critical patent/JP7172914B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0633Turbocharger state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、過給機を有するエンジンの回転速度を調整可能な回転機を備えるハイブリッド車両の制御装置に関する。
過給機を有するエンジン、そのエンジンの回転速度を調整可能な回転機、およびその回転機に対して電力を授受する蓄電装置を備えたハイブリッド車両の制御装置が知られている。例えば、特許文献1に記載されたハイブリッド車両の制御装置がそれである。特許文献1には、アクセル戻し操作がなされてエンジンが運転停止される場合において、そのエンジンが運転停止後に安定して再始動できる状態で運転停止されるように制御すべく、緩変化処理によって要求駆動力を実現するための要求エンジン出力(要求エンジンパワー)に対して緩変化する目標エンジン出力が求められ、エンジン出力がその目標エンジン出力となるようにエンジンおよび回転機が制御されることが開示されている。
特開2010-111212号公報
ところで、過給機を有するエンジンにおいては、アクセル戻し操作がなされたとしても、過給圧の応答遅れがあることから、エンジントルクに応答遅れが生じる。この応答遅れと、前記緩変化処理によって要求駆動力を実現するための要求エンジン出力に対して緩変化する目標エンジン出力が求められることと、が相俟って、回転機による発電電力が速やかに低下し難くなる。そのため、回転機による発電電力のうち蓄電装置へ入力される電力が充電許容電力を超えやすくなってしまう。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、過給機を有するエンジンの回転速度を調整可能な回転機による発電電力のうち蓄電装置へ入力される電力が充電許容電力を超えることを抑制できるハイブリッド車両の制御装置を提供することにある。
第1発明の要旨とするところは、(A)過給機を有するエンジンと、前記エンジンの回転速度を調整可能な第1回転機と、前記第1回転機に対して電力を授受する蓄電装置と、を備えるハイブリッド車両の、制御装置であって、(B)アクセル戻し操作がなされた場合には、(b1)アクセル操作量に基づいて前記ハイブリッド車両に要求される要求駆動力を求めるとともに、(b2)緩変化処理によって前記要求駆動力を実現するための要求エンジン出力に対して緩変化する目標エンジン出力を求め、(b3)エンジン出力が前記目標エンジン出力となるように前記エンジンおよび前記第1回転機を制御する駆動制御部と、(C)前記緩変化処理に用いるなまし率を前記エンジンにおける過給圧に応じて変更し、前記過給圧が高い場合には低い場合に比べて前記なまし率を小さな値に設定するなまし率設定部と、を備えることにある。
第2発明の要旨とするところは、第1発明において、前記ハイブリッド車両は、さらに前記蓄電装置に対して電力を授受し且つ前記エンジンと駆動輪との間にある動力伝達経路に動力伝達可能に接続される第2回転機を備え、前記第2回転機は、アクセル踏込操作がなされている場合には前記第1回転機による発電電力を消費し、前記アクセル戻し操作がなされた場合には前記第1回転機による発電電力を消費しないことにある。
第3発明の要旨とするところは、第1発明又は第2発明において、前記なまし率設定部は、さらに、前記アクセル戻し操作におけるアクセル戻し速度に基づき、前記アクセル戻し速度が速い場合には遅い場合に比べて前記なまし率を小さな値に設定することにある。
第4発明の要旨とするところは、第1発明乃至第3発明のいずれか1の発明において、前記なまし率設定部は、さらに、前記アクセル戻し操作後におけるアクセル操作量に基づき、前記アクセル戻し操作後におけるアクセル操作量が小さい場合には大きい場合に比べて前記なまし率を小さな値に設定することにある。
第1発明のハイブリッド車両の制御装置によれば、(A)アクセル戻し操作がなされた場合には、(a1)アクセル操作量に基づいて前記ハイブリッド車両に要求される要求駆動力を求めるとともに、(a2)緩変化処理によって前記要求駆動力を実現するための要求エンジン出力に対して緩変化する目標エンジン出力を求め、(a3)エンジン出力が前記目標エンジン出力となるように前記エンジンおよび前記第1回転機を制御する駆動制御部と、(B)前記緩変化処理に用いるなまし率を前記エンジンにおける過給圧に応じて変更し、前記過給圧が高い場合には低い場合に比べて前記なまし率を小さな値に設定するなまし率設定部と、が備えられる。このようにアクセル戻し操作がなされた場合において過給圧が高い場合には低い場合に比べてなまし率が小さな値に設定される。これにより、過給圧の応答遅れが発生しやすい過給圧が高い場合であっても、例えばエンジンが運転停止後に安定して再始動できる状態で運転停止させられるとともに、過給圧が低い場合と同様になまし率が大きな値に設定されるのに比べてエンジン出力が速やかに低下し、第1回転機による発電電力が速やかに低下する。そのため、第1回転機による発電電力のうち蓄電装置へ入力される電力が充電許容電力を超えることが抑制される。
第2発明のハイブリッド車両の制御装置によれば、第1発明において、前記ハイブリッド車両は、さらに前記蓄電装置に対して電力を授受し且つ前記エンジンと駆動輪との間にある動力伝達経路に動力伝達可能に接続される第2回転機を備え、前記第2回転機は、アクセル踏込操作がなされている場合には前記第1回転機による発電電力を消費し、前記アクセル戻し操作がなされた場合には前記第1回転機による発電電力を消費しない。アクセル踏込操作がなされている状態からアクセル戻し操作がなされた場合には、第1回転機による発電電力が第2回転機で消費されている状態から消費されない状態になるため、第1回転機による発電電力のうち蓄電装置へ入力される電力が充電許容電力を超えやすくなる。過給圧が高い場合には低い場合に比べてなまし率が小さな値に設定されるため、過給圧の応答遅れが発生しやすい過給圧が高い場合であっても、過給圧が低い場合と同様になまし率が大きな値に設定されるのに比べてエンジン出力が速やかに低下し、第1回転機による発電電力が速やかに低下する。そのため、第1回転機による発電電力のうち蓄電装置へ入力される電力が充電許容電力を超えることが抑制される。
第3発明のハイブリッド車両の制御装置によれば、第1発明又は第2発明において、前記なまし率設定部は、さらに、前記アクセル戻し操作におけるアクセル戻し速度に基づき、前記アクセル戻し速度が速い場合には遅い場合に比べて前記なまし率を小さな値に設定する。このようにアクセル戻し操作におけるアクセル戻し速度が速い場合には遅い場合に比べてなまし率が小さな値に設定されるため、運転者の減速の意図に応じた速度でエンジン出力が低下させられる。
第4発明のハイブリッド車両の制御装置によれば、第1発明乃至第3発明のいずれか1の発明において、前記なまし率設定部は、さらに、前記アクセル戻し操作後におけるアクセル操作量に基づき、前記アクセル戻し操作後におけるアクセル操作量が小さい場合には大きい場合に比べて前記なまし率を小さな値に設定する。このようにアクセル戻し操作後におけるアクセル操作量が小さい場合には大きい場合に比べてなまし率が小さな値に設定されるため、運転者の減速の意図に応じた速度でエンジン出力が低下させられる。
本発明の実施例1に係る電子制御装置が搭載される車両の概略構成図であると共に、車両における各種制御の為の制御機能の要部を表す機能ブロック図である。 図1に示すエンジンの概略構成を説明する図である。 図1に示す差動部における各回転要素の回転速度の相対的関係を表す共線図である。 エンジン回転速度及びエンジントルクを変数とする二次元座標上に、最適エンジン動作点の一例を示す図である。 EV走行とHV走行との切替制御に用いる動力源切替マップの一例を示す図である。 各走行モードとそれに用いられるクラッチ及びブレーキの作動状態の組み合わせとの関係を説明する係合作動表である。 過給圧及びアクセル戻し操作におけるアクセル戻し速度と、なまし率と、の関係を説明する図である。 過給圧及びアクセル戻し操作後におけるアクセル開度と、なまし率と、の関係を説明する図である。 電子制御装置の制御作動の要部を説明するフローチャートの一例である。 図9に示す電子制御装置の制御作動が実行された場合のタイムチャートの一例である。 本発明の実施例2に係る電子制御装置が搭載される車両の概略構成図であると共に、車両における各種制御の為の制御機能の要部を表す機能ブロック図である。 図11に示す有段変速部の変速作動とそれに用いられる係合装置の作動状態の組み合わせとの関係を説明する係合作動表である。
以下、本発明の実施例について図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比及び形状等は必ずしも正確に描かれていない。
図1は、本発明の実施例1に係る電子制御装置100が搭載されるハイブリッド車両10の概略構成図であると共に、ハイブリッド車両10における各種制御の為の制御機能の要部を表す機能ブロック図である。ハイブリッド車両10(以下、「車両10」と記す。)は、エンジン12、第1回転機MG1、第2回転機MG2、動力伝達装置14、及び駆動輪16を備える。
図2は、図1に示すエンジン12の概略構成を説明する図である。エンジン12は、車両10の走行用の動力源であり、過給機18を有するガソリンエンジンやディーゼルエンジン等の公知の内燃機関、すなわち過給機18付きエンジンである。エンジン12の吸気系には吸気管20が設けられており、吸気管20はエンジン本体12aに取り付けられた吸気マニホールド22に接続されている。エンジン12の排気系には排気管24が設けられており、排気管24はエンジン本体12aに取り付けられた排気マニホールド26に接続されている。過給機18は、吸気管20に設けられたコンプレッサー18cと排気管24に設けられたタービン18tとを有する、公知の排気タービン式の過給機すなわちターボチャージャーである。タービン18tは、排出ガスすなわち排気ガスの流れにより回転駆動させられる。コンプレッサー18cは、タービン18tに連結されている。タービン18tによってコンプレッサー18cが回転駆動させられることで、エンジン12への吸入空気すなわち吸気が圧縮される。
排気管24には、タービン18tの上流側から下流側へタービン18tを迂回して排気ガスを流す為の排気バイパス28が設けられている。排気バイパス28には、タービン18tを通過する排気ガスと排気バイパス28を通過する排気ガスとの割合を連続的に制御する為のウェイストゲートバルブ30(以下、「WGV30」と記す。)が設けられている。WGV30は、後述する電子制御装置100によって不図示のアクチュエータが作動させられることにより弁開度が連続的に調節される。WGV30の弁開度が大きいほど、エンジン12の排気ガスは排気バイパス28を通って排出されやすくなる。したがって、過給機18の過給作用が効くエンジン12の過給状態において、過給機18による過給圧Pchg[Pa]はWGV30の弁開度が大きいほど低くなる。過給機18による過給圧Pchgは、吸気の圧力であり、吸気管20内でのコンプレッサー18cの下流側気圧である。なお、過給圧Pchgの低い側は、例えば過給機18の過給作用が全く効いていないエンジン12の非過給状態における吸気の圧力となる側、見方を換えれば過給機18を有していないエンジンにおける吸気の圧力となる側である。
吸気管20の入口にはエアクリーナ32が設けられ、エアクリーナ32よりも下流であってコンプレッサー18cよりも上流の吸気管20には、エンジン12の吸入空気量を測定するエアフローメータ34が設けられている。コンプレッサー18cよりも下流の吸気管20には、吸気と外気又は冷却水との間で熱交換を行って過給機18により圧縮された吸気を冷却する熱交換器であるインタークーラ36が設けられている。インタークーラ36よりも下流であって吸気マニホールド22よりも上流の吸気管20には、後述する電子制御装置100によって不図示のスロットルアクチュエータが作動させられることにより開閉制御される電子スロットル弁38が設けられている。インタークーラ36と電子スロットル弁38との間の吸気管20には、過給機18による過給圧Pchgを検出する過給圧センサ40、吸気の温度である吸気温度を検出する吸気温センサ42が設けられている。電子スロットル弁38の近傍例えばスロットルアクチュエータには、電子スロットル弁38の開度であるスロットル弁開度θth[%]を検出するスロットル弁開度センサ44が設けられている。
吸気管20には、コンプレッサー18cの下流側から上流側へコンプレッサー18cを迂回して空気を再循環させる為の空気再循環バイパス46が設けられている。空気再循環バイパス46には、例えば電子スロットル弁38の急閉時に開弁させられることによりサージの発生を抑制してコンプレッサー18cを保護する為のエアバイパスバルブ48が設けられている。
エンジン12は、後述する電子制御装置100によって、電子スロットル弁38や燃料噴射装置や点火装置やWGV30等を含むエンジン制御装置50(図1参照)が制御されることによりエンジン12の出力トルクであるエンジントルクTe[Nm]が制御される。
図1に戻り、車両10には、周知の排気ガス再循環装置110が設けられている。排気ガス再循環装置110は、排気ガス中の窒素酸化物を低減する手段として排気ガスの一部を吸気管20に再び戻し、混合気が燃焼するときの最高温度を低くして窒素酸化物(N0x)の生成量を少なくするものである。吸気管20に戻される排気ガスの量は、電子スロットル弁38付近の負圧や排気管24内の排気圧によって制御されるEGRバルブによって行われる。
第1回転機MG1及び第2回転機MG2は、電動機(モータ)としての機能及び発電機(ジェネレータ)としての機能を有する回転電気機械であって、所謂モータジェネレータである。第1回転機MG1及び第2回転機MG2は、車両10の走行用の動力源となり得る。第1回転機MG1及び第2回転機MG2は、各々、車両10に備えられたインバータ52を介して、車両10に備えられたバッテリ54に接続されている。第1回転機MG1及び第2回転機MG2は、各々、後述する電子制御装置100によってインバータ52が制御されることにより、第1回転機MG1の出力トルクであるMG1トルクTm1[Nm]及び第2回転機MG2の出力トルクであるMG2トルクTm2[Nm]が制御される。回転機の出力トルクは、例えば正回転の場合、加速側となる正トルクでは力行トルクであり、減速側となる負トルクでは回生トルクである。バッテリ54は、第1回転機MG1及び第2回転機MG2の各々に対して電力を授受する。バッテリ54は、例えばリチウムイオン組電池やニッケル水素組電池などの充放電可能な2次電池である。第1回転機MG1及び第2回転機MG2は、車体に取り付けられる非回転部材であるケース56内に設けられている。なお、バッテリ54は、本発明における「蓄電装置」に相当する。
動力伝達装置14は、ケース56内に、変速部58、差動部60、ドリブンギヤ62、ドリブン軸64、ファイナルギヤ66、ディファレンシャルギヤ68、リダクションギヤ70等を備える。変速部58と差動部60とは、変速部58の入力回転部材である入力軸72と同軸心に配置されている。変速部58は、入力軸72などを介してエンジン12に連結されている。差動部60は、変速部58と直列に連結されている。ドリブンギヤ62は、差動部60の出力回転部材であるドライブギヤ74と噛み合っている。ドリブン軸64は、ドリブンギヤ62とファイナルギヤ66とを各々相対回転不能に固設する。ファイナルギヤ66は、ドリブンギヤ62よりも小径である。ディファレンシャルギヤ68は、デフリングギヤ68aを介してファイナルギヤ66と噛み合っている。リダクションギヤ70は、ドリブンギヤ62よりも小径であって、ドリブンギヤ62と噛み合っている。リダクションギヤ70には、入力軸72とは別にその入力軸72と平行に配置された、第2回転機MG2のロータ軸76が連結されており、第2回転機MG2がドリブンギヤ62に動力伝達可能に接続されている。動力伝達装置14は、ディファレンシャルギヤ68に連結された車軸78等を備える。
このように構成された動力伝達装置14は、FF(フロントエンジン・フロントドライブ)方式或いはRR(リヤエンジン・リヤドライブ)方式の車両に好適に用いられる。動力伝達装置14では、エンジン12、第1回転機MG1、及び第2回転機MG2から各々出力される動力は、ドリブンギヤ62へ伝達される。ドリブンギヤ62へ伝達された動力は、ファイナルギヤ66、ディファレンシャルギヤ68、車軸78等を順次介して駆動輪16へ伝達される。動力伝達装置14における変速部58、差動部60、ドリブンギヤ62、ドリブン軸64、ファイナルギヤ66、ディファレンシャルギヤ68、及び車軸78が、エンジン12と駆動輪16との間に設けられた動力伝達経路PTを構成している。このように、第2回転機MG2はリダクションギヤ70を介して動力伝達経路PTに動力伝達可能に接続され、第2回転機MG2は駆動輪16に動力伝達可能に接続されている。
変速部58は、第1遊星歯車機構80、クラッチC1、及びブレーキB1を備える。第1遊星歯車機構80は、サンギヤS0、キャリアCA0、及びリングギヤR0を備える公知のシングルピニオン型の遊星歯車装置である。差動部60は、第2遊星歯車機構82を備える。第2遊星歯車機構82は、サンギヤS1、キャリアCA1、及びリングギヤR1を備える公知のシングルピニオン型の遊星歯車装置である。
クラッチC1及びブレーキB1は、油圧アクチュエータにより押圧される多板式或いは単板式のクラッチやブレーキ、油圧アクチュエータによって引き締められるバンドブレーキなどにより構成される、油圧式の摩擦係合装置である。このクラッチC1及びブレーキB1は、車両10に備えられた油圧制御回路84が後述する電子制御装置100によって制御されることにより、油圧制御回路84から出力される調圧された各油圧に応じて、各々、係合や解放などの状態である作動状態が切り替えられる。
第1遊星歯車機構80、第2遊星歯車機構82、クラッチC1、及びブレーキB1は、図1に示すように連結されている。
クラッチC1及びブレーキB1が共に解放された状態においては、第1遊星歯車機構80の差動が許容される。この状態では、サンギヤS0にてエンジントルクTeの反力トルクが取れない為、変速部58は機械的な動力伝達が不能な中立状態すなわちニュートラル状態とされる。クラッチC1が係合され且つブレーキB1が解放された状態においては、第1遊星歯車機構80は各回転要素が一体となって回転させられる。この状態では、エンジン12の回転は等速でリングギヤR0からキャリアCA1へ伝達される。クラッチC1が解放され且つブレーキB1が係合された状態においては、第1遊星歯車機構80はサンギヤS0の回転が止められ、リングギヤR0の回転がキャリアCA0の回転よりも増速される。この状態では、エンジン12の回転は増速されてリングギヤR0から出力される。
このように、変速部58は、その変速比が「1.0」の直結状態となるローギヤと、その変速比が例えば「0.7」のオーバードライブ状態となるハイギヤと、に切り替え可能な2段の有段変速機として機能する。クラッチC1及びブレーキB1が共に係合された状態においては、第1遊星歯車機構80は各回転要素の回転が止められる。この状態では、変速部58の出力回転部材であるリングギヤR0の回転が停止させられることで、差動部60の入力回転部材であるキャリアCA1の回転が停止させられる。
第2遊星歯車機構82において、キャリアCA1は、変速部58の出力回転部材であるリングギヤR0に連結された回転要素であり、差動部60の入力回転部材として機能する。サンギヤS1は、第1回転機MG1のロータ軸86に一体的に連結されており、第1回転機MG1が動力伝達可能に連結された回転要素である。リングギヤR1は、ドライブギヤ74に一体的に連結されており、駆動輪16に動力伝達可能に連結された回転要素であり、且つ、差動部60の出力回転部材として機能する。
第2遊星歯車機構82は、変速部58を介してキャリアCA1に入力されるエンジン12の動力を第1回転機MG1及びドライブギヤ74に機械的に分割する動力分割機構である。つまり、第2遊星歯車機構82は、エンジン12の動力を駆動輪16と第1回転機MG1とに分割して伝達する差動機構である。第2遊星歯車機構82において、キャリアCA1は入力要素として機能し、サンギヤS1は反力要素として機能し、リングギヤR1は出力要素として機能する。差動部60は、第2遊星歯車機構82に動力伝達可能に連結された第1回転機MG1の運転状態が制御されることにより第2遊星歯車機構82の差動状態(すなわち差動部60の差動状態)が制御される電気式変速機構例えば電気式無段変速機を構成する。無段変速機である差動部60は、動力伝達経路PTに設けられている。第1回転機MG1は、エンジン12の動力が伝達される回転機である。変速部58はオーバードライブであるので、第1回転機MG1の高トルク化が抑制される。
図3は、図1に示す差動部60における各回転要素の回転速度の相対的関係を表す共線図である。図3において、3本の縦線Y1、Y2、Y3は、差動部60を構成する第2遊星歯車機構82の3つの回転要素に対応している。縦線Y1は、第1回転機MG1(図3に示す「MG1」参照)が連結された第2回転要素RE2であるサンギヤS1の回転速度を表している。縦線Y2は、変速部58を介してエンジン12(図3に示す「ENG」参照)が連結された第1回転要素RE1であるキャリアCA1の回転速度を表している。縦線Y3は、ドライブギヤ74(図3に示す「OUT」参照)と一体的に連結された第3回転要素RE3であるリングギヤR1の回転速度を表している。ドライブギヤ74と噛み合うドリブンギヤ62には、リダクションギヤ70等を介して第2回転機MG2(図3に示す「MG2」参照)が連結されている。縦線Y1、Y2、Y3の相互の間隔は、第2遊星歯車機構82の歯車比ρ(=サンギヤS1の歯数/リングギヤR1の歯数)に応じて定められる。共線図の縦軸間の関係においてサンギヤS1とキャリアCA1との間が「1」に対応する間隔とされると、キャリアCA1とリングギヤR1との間が歯車比ρに対応する間隔とされる。
キャリアCA1には、車両10に備えられた機械式のオイルポンプ(図3に示す「MOP」参照)が連結されている。この機械式のオイルポンプは、キャリアCA1の回転に伴って駆動されることで、クラッチC1及びブレーキB1の各係合作動や各部の潤滑及び冷却に用いられるオイルを供給する。キャリアCA1の回転が停止される場合には、車両10に備えられた電動式のオイルポンプ(不図示)によりオイルが供給される。
図3の実線Lefは、少なくともエンジン12を動力源として走行するHV走行(ハイブリッド走行)が可能な走行モードであるHV走行モードでの前進走行における各回転要素の相対速度の一例を示している。図3の実線Lerは、HV走行モードでの後進走行における各回転要素の相対速度の一例を示している。
HV走行モードでは、第2遊星歯車機構82において、例えば変速部58を介してキャリアCA1に入力された正トルクであるエンジントルクTeに対して、第1回転機MG1による負トルクである反力トルクとなるMG1トルクTm1がサンギヤS1に入力されると、リングギヤR1には正トルクであるエンジン直達トルクTd[Nm]が現れる。例えば、クラッチC1が係合され且つブレーキB1が解放されて変速部58が変速比「1.0」の直結状態とされている場合、キャリアCA1に入力されるエンジントルクTeに対して、反力トルクとなるMG1トルクTm1{=-ρ/(1+ρ)×Te}がサンギヤS1に入力されると、リングギヤR1にはエンジン直達トルクTd{=Te/(1+ρ)=-(1/ρ)×Tm1}が現れる。そして、要求駆動力Pr*[N]に応じて、ドリブンギヤ62に各々伝達されるエンジン直達トルクTdとMG2トルクTm2との合算トルクが車両10の実際の駆動トルクTrr[Nm]として駆動輪16へ伝達され得る。
第1回転機MG1は、正回転にて負トルクを発生する場合には発電機として機能する。第1回転機MG1による発電電力Wg[W]は、バッテリ54に充電されたり、第2回転機MG2にて消費されたりする。第2回転機MG2は、発電電力Wgの全部又は一部を消費して、或いは発電電力Wgに加えてバッテリ54からの電力を消費して、MG2トルクTm2を出力する。前進走行時のMG2トルクTm2は正回転の正トルクとなる力行トルクであり、後進走行時のMG2トルクTm2は負回転の負トルクとなる力行トルクである。
差動部60は、電気的な無段変速機として作動させられ得る。例えば、HV走行モードにおいて、駆動輪16の回転に拘束されるドライブギヤ74の回転速度である出力回転速度No[rpm]に対して、第1回転機MG1の運転状態が制御されることによって第1回転機MG1の回転速度つまりサンギヤS1の回転速度が上昇或いは低下させられると、キャリアCA1の回転速度が上昇或いは低下させられる。キャリアCA1は変速部58を介してエンジン12と連結されているので、キャリアCA1の回転速度が上昇或いは低下させられることで、エンジン12の回転速度であるエンジン回転速度Ne[rpm]が上昇或いは下降させられる。したがって、HV走行では、エンジン動作点OPengを効率の良い動作点に設定する制御を行うことが可能である。この種のハイブリッド形式は、機械分割式或いはスプリットタイプと称される。第1回転機MG1は、エンジン回転速度Neを制御可能な回転機である。なお、エンジン動作点OPengは、エンジン回転速度NeとエンジントルクTeとで表されるエンジン12の運転点である。エンジン回転速度Neは、本発明における「エンジンの回転速度」に相当する。
図3の破線Lm1は、エンジン12の運転を停止した状態で第2回転機MG2のみを動力源とするEV走行(モータ走行)が可能な単独駆動EV走行モードでの前進走行における各回転要素の相対速度の一例を示している。単独駆動EV走行モードでは、クラッチC1及びブレーキB1が共に解放されて変速部58がニュートラル状態とされることで差動部60もニュートラル状態とされ、この状態でMG2トルクTm2が車両10の駆動トルクTrrとして駆動輪16へ伝達され得る。単独駆動EV走行モードでは、例えば第1回転機MG1における引き摺り損失等を低減する為に、第1回転機MG1はゼロ回転に維持される。例えば、第1回転機MG1をゼロ回転に維持する制御が行われても、差動部60はニュートラル状態にあるので、駆動トルクTrrは影響を受けない。
図3の破線Lm2は、エンジン12の運転を停止した状態で第1回転機MG1及び第2回転機MG2の両方を動力源とするEV走行が可能な両駆動EV走行モードでの前進走行における各回転要素の相対速度の一例を示している。両駆動EV走行モードでは、クラッチC1及びブレーキB1が共に係合されて第1遊星歯車機構80の各回転要素の回転が止められることでキャリアCA1はゼロ回転で停止状態とされ、この状態でMG1トルクTm1及びMG2トルクTm2が車両10の駆動トルクTrrとして駆動輪16へ伝達され得る。
図4は、エンジン回転速度Ne及びエンジントルクTeを変数とする二次元座標上に、最適エンジン動作点OPengfの一例を示す図である。図4において、最大効率線Lengは、最適エンジン動作点OPengfの集まりを示している。最適エンジン動作点OPengfは、例えば要求エンジン出力(要求エンジンパワー)Pe*[W]を実現するときに、エンジン12単体の燃費にバッテリ54における充放電効率等を考慮した車両10におけるトータル燃費が最も良くなるエンジン動作点OPengとして予め定められている。つまり、最適エンジン動作点OPengfにおけるエンジン回転速度Neは、エンジン12が要求エンジン出力Pe*[W]を最も効率よく出力可能な最適燃費回転速度Neeffである。
等エンジン出力線Lpw1,Lpw2,Lpw3は、各々、要求エンジン出力Pe*がエンジン出力Pe1,Pe2,Pe3であるときの一例を示している。点Aは、エンジン出力Pe3を最適エンジン動作点OPengf上で実現するときのエンジン動作点OPengAであり、点Bは、エンジン出力Pe1を最適エンジン動作点OPengf上で実現するときのエンジン動作点OPengBであり、点Cは、実際のエンジン出力Per[W]が零となるように最適エンジン動作点OPengf上で実現するときのエンジン動作点OPengCである。点A,B,Cは、各々、目標エンジン回転速度Netgt[rpm]と目標エンジントルクTetgt[Nm]とで表されるエンジン動作点OPengの目標値すなわち目標エンジン動作点OPengtgtでもある。つまり、目標エンジン回転速度Netgtは、エンジン回転速度Neの目標値であり、目標エンジントルクTetgtは、エンジントルクTeの目標値である。エンジン出力Perはエンジン12から出力されるパワーである。
図4では不図示であったが、厳密には、過給機18付きエンジン12においては、燃費が最大となる最適エンジン動作点OPengfは、エンジン回転速度Ne及びエンジントルクTeの他に、過給圧Pchgも変数として予め記憶されている。最適エンジン動作点OPengf上で要求エンジン出力Pe*を実現するときの過給圧Pchgが、目標過給圧Pchgtgt[Pa]である。
図5は、EV走行とHV走行との切替制御に用いる動力源切替マップの一例を示す図である。図5において、実線Lswpは、EV走行とHV走行とを切り替える為のEV走行領域とHV走行領域との境界線である。車速V[km/h]が比較的低く且つ要求駆動トルクTr*[Nm]が比較的低い(すなわち要求駆動力Pr*が比較的小さい)領域が、EV走行領域に予め定められている。車速Vが比較的高く又は要求駆動トルクTr*が比較的高い(すなわち要求駆動力Pr*が比較的大きい)領域が、HV走行領域に予め定められている。なお、後述のバッテリ54の充電状態値SOC[%]が所定値未満の低い場合又はエンジン12の暖機が必要なときには、図5におけるEV走行領域がHV走行領域に変更されても良い。この所定値は、エンジン12を強制的に始動してバッテリ54を充電する必要がある充電状態値SOCであることを判断する為の予め定められた閾値である。
ここで、エンジン12が運転状態にある場合において、アクセル開度Acc[%]が一定に維持される操作及び増加させられる操作をアクセル踏込操作ということとする。アクセル踏込操作には、例えば車両10がHV走行の状態にある場合において、運転者による不図示のアクセルペダルの踏込操作量が一定に維持される操作やアクセルペダルの踏込操作量が増加させられる(すなわちアクセルペダルが踏み増しされる)操作が含まれる。また、アクセル開度Accが減少させられる操作をアクセル戻し操作ということとする。アクセル戻し操作には、例えば運転者によってアクセルペダルの踏込操作量が減少させられる(すなわちアクセルペダルが踏み戻される)操作であって、アクセル開度Accが零又は零近傍に減少することによって要求駆動トルクTr*が低くなり、図5に示すように車両10がHV走行からEV走行に走行状態が切り替えられてエンジン12が運転停止させられる場合が含まれる。なお、アクセル開度Accは、本発明における「アクセル操作量」に相当する。
図6は、各走行モードとそれに用いられるクラッチC1及びブレーキB1の作動状態の組み合わせとの関係を説明する係合作動表である。図6において、「○」は係合状態を示し、「空欄」は解放状態を示し、「△」は回転停止状態のエンジン12を連れ回し状態とするエンジンブレーキの併用時にクラッチC1及びブレーキB1のいずれか一方を係合状態とすることを示している。また、「G」は第1回転機MG1を主にジェネレータとして機能させることを示し、「M」は第1回転機MG1及び第2回転機MG2の各々を駆動時には主にモータとして機能させ、回生時には主にジェネレータとして機能させることを示している。車両10は、走行モードとして、EV走行モード及びHV走行モードを選択的に実現することができる。EV走行モードは、単独駆動EV走行モードと両駆動EV走行モードとの2つのモードを有している。
単独駆動EV走行モードは、クラッチC1及びブレーキB1が共に解放された状態で実現される。単独駆動EV走行モードでは、クラッチC1及びブレーキB1が解放されることで、変速部58がニュートラル状態とされる。変速部58がニュートラル状態とされると、差動部60はリングギヤR0に連結されたキャリアCA1にてMG1トルクTm1の反力トルクが取れないニュートラル状態とされる。この状態で、電子制御装置100は、第2回転機MG2から走行用のMG2トルクTm2を出力させる(図3に示す破線Lm1参照)。単独駆動EV走行モードでは、前進走行時に対して第2回転機MG2を逆回転させて後進走行することも可能である。
単独駆動EV走行モードでは、リングギヤR0はキャリアCA1に連れ回されるが、変速部58はニュートラル状態にあるので、エンジン12は連れ回されずゼロ回転で停止状態とされる。よって、単独駆動EV走行モードでの走行中に第2回転機MG2にて回生制御を行う場合、回生量を大きく取ることができる。単独駆動EV走行モードでの走行時に、バッテリ54が満充電状態となり回生エネルギーが取れない場合、エンジンブレーキを併用することが考えられる。エンジンブレーキを併用する場合は、ブレーキB1又はクラッチC1が係合される(図6に示す「エンブレ併用」参照)。ブレーキB1又はクラッチC1が係合されると、エンジン12は連れ回し状態とされて、エンジンブレーキが作用させられる。
両駆動EV走行モードは、クラッチC1及びブレーキB1が共に係合された状態で実現される。両駆動EV走行モードでは、クラッチC1及びブレーキB1が係合されることで、第1遊星歯車機構80の各回転要素の回転が停止させられ、エンジン12がゼロ回転で停止状態とされ且つリングギヤR0に連結されたキャリアCA1の回転が停止させられる。キャリアCA1の回転が停止させられると、キャリアCA1にてMG1トルクTm1の反力トルクが取れる為、MG1トルクTm1がリングギヤR1から機械的に出力されて駆動輪16へ伝達され得る。この状態で、電子制御装置100は、第1回転機MG1及び第2回転機MG2から各々走行用のMG1トルクTm1及びMG2トルクTm2を出力させる(図3に示す破線Lm2参照)。両駆動EV走行モードでは、前進走行時に対して第1回転機MG1及び第2回転機MG2が共に逆回転とされて後進走行とすることも可能である。
HV走行モードのロー状態は、クラッチC1が係合された状態且つブレーキB1が解放された状態で実現される。HV走行モードのロー状態では、クラッチC1が係合されることで、第1遊星歯車機構80の回転要素が一体回転させられ、変速部58は直結状態とされる。そのため、エンジン12の回転は等速でリングギヤR0からキャリアCA1へ伝達される。HV走行モードのハイ状態は、ブレーキB1が係合された状態且つクラッチC1が解放された状態で実現される。HV走行モードのハイ状態では、ブレーキB1が係合されることで、サンギヤS0の回転が停止させられ、変速部58はオーバードライブ状態とされる。そのため、エンジン12の回転が増速されてリングギヤR0からキャリアCA1へ伝達される。HV走行モードにおいて、電子制御装置100は、エンジントルクTeに対する反力トルクとなるMG1トルクTm1を第1回転機MG1の発電により出力させると共に、第1回転機MG1による発電電力Wgにより第2回転機MG2からMG2トルクTm2を出力させる(図3に示す実線Lef参照)。HV走行モードでは例えばHV走行モードのロー状態では、前進走行時に対して第2回転機MG2が逆回転とされて後進走行とすることも可能である(図3に示す実線Ler参照)。HV走行モードでは、バッテリ54からの電力を用いたMG2トルクTm2を更に付加して走行することも可能である。HV走行モードでは、例えば車速Vが比較的高く且つ要求駆動トルクTr*が比較的低い場合には、HV走行モードのうちのハイ状態が成立させられる。
図1に戻り、車両10は、更に、エンジン12、第1回転機MG1、及び第2回転機MG2などの制御に関連する車両10の制御装置を含むコントローラとしての電子制御装置100を備える。電子制御装置100は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。電子制御装置100は、必要に応じてエンジン制御用、回転機制御用、油圧制御用等の各コンピュータを含んで構成される。なお、電子制御装置100は、本発明における「制御装置」に相当する。
電子制御装置100には、車両10に備えられた各種センサ等(例えば、過給圧センサ40、スロットル弁開度センサ44、エンジン回転速度センサ88、出力回転速度センサ90、MG1回転速度センサ92、MG2回転速度センサ94、アクセル開度センサ96、バッテリセンサ98など)による検出値に基づく各種信号等(例えば、過給圧Pchg、スロットル弁開度θth、エンジン回転速度Ne、車速Vに対応する出力回転速度No、第1回転機MG1の回転速度であるMG1回転速度Nm1[rpm]、第2回転機MG2の回転速度であるMG2回転速度Nm2[rpm]、運転者によるアクセル操作量であるアクセル開度Acc、バッテリ54のバッテリ温度THbat[℃]やバッテリ充放電電流Ibat[mA]やバッテリ電圧Vbat[V]など)が、それぞれ入力される。
電子制御装置100からは、車両10に備えられた各装置(例えば、エンジン制御装置50、インバータ52、油圧制御回路84など)に各種指令信号(例えば、エンジン12を制御する指令信号であるエンジン制御指令信号Se、第1回転機MG1及び第2回転機MG2を各々制御する指令信号である回転機制御指令信号Smg、クラッチC1及びブレーキB1の各々の作動状態を制御する指令信号である油圧制御指令信号Spなど)が、それぞれ出力される。
電子制御装置100は、例えばバッテリ充放電電流Ibat及びバッテリ電圧Vbatなどに基づいてバッテリ54の充電状態を示す値としての充電状態値SOCを算出する。電子制御装置100は、例えばバッテリ温度THbat及びバッテリ54の充電状態値SOCに基づいて、バッテリ54のパワーであるバッテリパワーPbat[W]の許容範囲を規定する充電許容電力Win[W]及び放電許容電力Wout[W]を算出する。充電許容電力Win及び放電許容電力Woutは、バッテリ54の劣化を抑制する目的で設定されるものである。充電許容電力Winは、バッテリ54への入力電力の制限を規定する入力許容電力であり、放電許容電力Woutは、バッテリ54からの出力電力の制限を規定する出力許容電力である。したがって、バッテリ54への入力電力が充電許容電力Winを長い期間超えたり、バッテリ54からの出力電力が放電許容電力Woutを長い期間を超えたりすることは、バッテリ54の劣化の観点から好ましくない。充電許容電力Win及び放電許容電力Woutは、例えばバッテリ温度THbatが常用域より低い低温域ではバッテリ温度THbatが低いほど小さくされ、バッテリ温度THbatが常用域より高い高温域ではバッテリ温度THbatが高いほど小さくされる。充電許容電力Winは、例えば充電状態値SOCが高い領域では充電状態値SOCが高いほど小さくされる。放電許容電力Woutは、例えば充電状態値SOCが低い領域では充電状態値SOCが低いほど小さくされる。
図4に戻り、アクセル戻し操作により、例えば目標エンジン動作点OPengtgtが点A(エンジン動作点OPengA)から点C(エンジン動作点OPengC)へ変化させられる場合、最大効率線Leng上を通る経路aでエンジン動作点OPengが変化させられる。点A(エンジン動作点OPengA)では車両10がHV走行の状態にあってエンジン12が運転状態にあるが、点C(エンジン動作点OPengC)では車両10がEV走行の走行状態にあってエンジン12が運転停止となっているか又は車両10が停止している状態である。
ところで、排気ガス再循環装置110が設けられている車両10では、アクセル戻し操作がなされてエンジン12が運転停止される場合において、そのエンジン12が運転停止後に安定して再始動できる状態で運転停止させられることが望ましい。排気ガス再循環装置110による排気ガスの吸気系への供給に応じてエンジン12をより適正に運転停止させる必要がある。そのために、緩変化処理によって要求駆動力Pr*を実現するための要求エンジン出力Pe*に対して(すなわち要求エンジン出力Pe*に向けて)緩変化する目標エンジン出力Petgt[W]が求められ、エンジン出力Perが目標エンジン出力Petgtとなるようにエンジン12および第1回転機MG1が制御される。緩変化処理とは、目標エンジン出力Petgtを緩やかに変化させる処理であるが、詳細は後述する。例えば、図4に示す点Aから点Cへ目標エンジン動作点OPengtgtが変化させられる場合、後述する「なまし率τ」を用いた緩変化処理により目標エンジン動作点OPengtgtが緩変化させられる。
アクセル戻し操作がなされた場合、過給機18を有するエンジン12における過給圧Pchgが低いと過給圧Pchgの応答遅れが発生しにくいため、エンジン出力Perは緩変化する目標エンジン出力Petgtに対して遅れにくい。一方、アクセル戻し操作がなされた場合、過給機18を有するエンジン12における過給圧Pchgが高いと過給圧Pchgの応答遅れが発生しやすいため、エンジン出力Perは緩変化する目標エンジン出力Petgtに対して遅れやすい。そのため、過給圧Pchgの応答遅れとなまし率τを用いた緩変化処理とが相俟って、過給圧Pchgが高い場合には低い場合に比べてエンジン回転速度Neが低下しづらく第1回転機MG1による発電電力Wgが速やかに低下し難くなる。このように、過給圧Pchgが高い場合には低い場合に比べて第1回転機MG1による発電電力Wgのうちバッテリ54へ入力される電力が充電許容電力Winを超えやすくなる。なお、過給圧Pchgの応答遅れとは、アクセル戻し操作によってアクセル戻し操作後におけるアクセル開度Accに応じた過給圧Pchgになるまでの時間的な遅れのことである。この過給圧Pchgの応答遅れにより、エンジン出力Perが低下しづらくなって第1回転機MG1による発電電力Wgが速やかに低下し難くなる。
図1に戻り、電子制御装置100は、戻し操作判定部102、なまし率設定部104、及び駆動制御部106を機能的に備える。以下、アクセル踏込操作がなされていた状態においてアクセル戻し操作がなされることにより、エンジン12が運転状態から運転停止させられる状態になる場合における電子制御装置100の制御機能について説明する。
戻し操作判定部102は、アクセル戻しが発生している否かを判定する。アクセル戻しが発生しているか否かは、アクセル戻し操作がなされたことによって、エンジン12が運転状態から運転停止させられる状態にあるか否かで判定される。例えば、アクセル戻し操作がなされた場合にはアクセル戻しが発生していると判定される。具体的には、戻し操作判定部102は、アクセル開度Accの減少が開始していることに基づいてアクセル戻しが発生していると判定する。また、例えばアクセル戻し操作がなされた後であってエンジン12が運転停止させられる状態にある場合には、アクセル戻しが発生していると判定される。具体的には、後述する要求駆動力Pr*を実現するための要求エンジン出力Pe*(具体的には、エンジン12が運転停止されるので零)に向けて目標エンジン出力Petgtが緩変化している状態にある場合には、アクセル戻しが発生していると判定される。
駆動制御部106は、戻し操作判定部102によりアクセル戻しが発生している(すなわちアクセル戻し操作がなされた)と判定された場合には、予め実験的に或いは設計的に求められて記憶された(すなわち予め定められた)アクセル開度Acc及び車速Vと要求駆動トルクTr*との関係(例えば駆動力マップ)に実際のアクセル開度Acc及び車速Vを適用することで車両10に対する要求駆動トルクTr*を算出する。なお、要求駆動トルクTr*は、見方を換えればそのときの車速Vにおける要求駆動力Pr*であるので、駆動力マップにより要求駆動力Pr*が算出可能である。駆動力マップは、車速Vに替えて出力回転速度Noなどが適用されても良い。
駆動制御部106は、緩変化処理によって要求駆動力Pr*を実現するための要求エンジン出力Pe*(=零)に対して緩変化する目標エンジン出力Petgtを求める。駆動制御部106は、最適エンジン動作点OPengf上で目標エンジン出力Petgtを実現するエンジン回転速度NeとエンジントルクTeで表される目標エンジン動作点OPengtgtを設定する。駆動制御部106は、エンジン12の運転点であるエンジン動作点OPengが目標エンジン動作点OPengtgtとなるように、エンジン12及び第1回転機MG1を制御する。なお、エンジン動作点OPengを表すエンジン回転速度Ne及びエンジントルクTeは緩変化処理の対象としているが、過給圧Pchgはエンジン回転速度Ne及びエンジントルクTeに比べて応答性が良くないため緩変化処理の対象とはしていない。
緩変化処理が行われる目標エンジン出力Petgtが現在の状態から要求エンジン出力Pe*(=零)まで変化する変化速度は、後述する「なまし率τ」に基づいて決められる。
MG1トルクTm1は、例えばエンジン回転速度Neが目標エンジン回転速度Netgtとなるように第1回転機MG1を作動させるフィードバック制御において算出される。MG2トルクTm2は、例えばエンジン直達トルクTdとMG2トルクTm2とを合わせて駆動トルクTrrが得られるように算出される。
なまし率設定部104は、緩変化処理に用いるなまし率τを設定する。なまし率τは、アクセル戻し操作がなされた場合において目標エンジン出力Petgtを要求駆動力Pr*を実現するための要求エンジン出力Pe*へ向けて変化させる変化速度を表すものである。なまし率τは、例えば所定の減少率で目標エンジン出力Petgtを低下させるレート処理におけるその所定の減少率で定義される。ここで、レート処理における所定の減少率は、零よりも大きく且つ1よりも小さな値であり、例えばレート毎に目標エンジン出力Petgtが所定の減少率を乗じた値に減少させられる。また、なまし率τは、例えばアクセル戻し操作がなされた場合において目標エンジン出力Petgtがアクセル戻し操作がなされた時点でのものからアクセル戻し操作後における要求エンジン出力Pe*まで緩変化させられる期間で定義されても良い。いずれにしても、なまし率τが大きな値であるほど目標エンジン出力Petgtの変化速度が遅くなり、なまし率τが小さな値であるほど目標エンジン出力Petgtの変化速度が速くなる。
図7は、過給圧Pchg及びアクセル戻し操作におけるアクセル戻し速度Vacc[%/ms]と、なまし率τと、の関係を説明する図である。アクセル戻し操作におけるアクセル戻し速度Vaccは、アクセル戻し操作がなされた場合におけるアクセル開度Accの変化速度である。アクセル戻し速度Vaccは、例えばアクセル戻し操作がなされた場合におけるアクセル開度Accの変化期間(例えば、図10に示す時刻t1と時刻t2との間である変化期間ΔT)に対するその変化期間でのアクセル開度Accの変化量(例えば、図10に示す時刻t1での開度値Accxと時刻t2での開度値Accyとの差分である変化量ΔAcc)の比(=ΔAcc/ΔT)で定義される。
図7に示すように、過給圧Pchgが高い場合には、低い場合に比べてなまし率τが小さな値に設定される。これは、過給圧Pchg以外の条件が同じであれば(例えば図7に示すアクセル戻し速度Vaccが同じ条件であれば)、過給圧Pchgが高い場合には、低い場合に比べてなまし率τが小さな値に設定されることを意味し、過給圧Pchg以外の条件が異なれば、過給圧Pchgが高い場合には、低い場合に比べて必ずなまし率τが小さな値に設定されることまでは意味しない。図7の例では、過給圧Pchgの増加に対してなまし率τがリニア(線形)に減少している。また、アクセル戻し速度Vaccが速い場合には、遅い場合に比べてなまし率τが小さな値に設定される。これは、アクセル戻し速度Vacc以外の条件が同じであれば(例えば図7に示す過給圧Pchgが同じ条件であれば)、アクセル戻し速度Vaccが速い場合には、遅い場合に比べてなまし率τが小さな値に設定されることを意味し、アクセル戻し速度Vacc以外の条件が異なれば、アクセル戻し速度Vaccが速い場合に、遅い場合に比べて必ずなまし率τが小さな値に設定されることまでは意味しない。
図8は、過給圧Pchg及びアクセル戻し操作後におけるアクセル開度Acc(図10に示す開度値Accy)と、なまし率τと、の関係を説明する図である。アクセル戻し操作後におけるアクセル開度Accは、アクセル戻し操作がなされた場合においてアクセル開度Accの減少が止まった時点でのアクセル開度Acc(例えば、図10に示す時刻t2での開度値Accy)である。前述の図7と同様に、過給圧Pchgが高い場合には、低い場合に比べてなまし率τが小さな値に設定される。また、アクセル戻し操作後におけるアクセル開度Accが小さい場合には、大きい場合に比べてなまし率τが小さな値に設定される。これは、アクセル戻し操作後におけるアクセル開度Acc以外の条件が同じであれば(例えば図8に示す過給圧Pchgが同じ条件であれば)、アクセル戻し操作後におけるアクセル開度Accが小さい場合には、大きい場合に比べてなまし率τが小さな値に設定されることを意味し、アクセル戻し操作後におけるアクセル開度Acc以外の条件が異なれば、アクセル戻し操作後におけるアクセル開度Accが小さい場合に、大きい場合に比べて必ずなまし率τが小さな値に設定されることまでは意味しない。
なまし率設定部104は、図7及び図8を用いて説明したように、過給圧Pchgと、アクセル戻し操作におけるアクセル戻し速度Vaccと、アクセル戻し操作後におけるアクセル開度Accと、の3つを変数として緩変化処理に用いるなまし率τを設定する。すなわち、なまし率設定部104は、過給圧Pchgと、アクセル戻し操作におけるアクセル戻し速度Vaccと、アクセル戻し操作後におけるアクセル開度Accと、に応じてなまし率τを設定する。なお、なまし率τは、排気ガス再循環装置110が設けられている車両10において、エンジン12が運転停止後に安定して再始動できる状態で運転停止されるように、予め実験的に或いは設計的に求められて記憶された所定値以上に設定される。
ところで、アクセル戻し操作がなされる前のアクセル踏込操作がなされていた状態では、要求駆動トルクTr*が高いため、第2回転機MG2は第1回転機MG1による発電電力Wgを消費して動力源として機能していた。一方、アクセル戻し操作がなされる場合には、要求駆動トルクTr*を急減させる必要があるため、第2回転機MG2は動力源として機能しなくなる。例えば、アクセル戻し操作がなされることにより車両10が停止させられる場合には、MG2トルクTm2は零に減少させられ、第2回転機MG2で消費する電力は零に急減する。このようにアクセル踏込操作がなされていた状態においてアクセル戻し操作がなされる場合には、第2回転機MG2で消費する電力が急減する。
アクセル戻し操作によって第1回転機MG1による発電電力Wgを消費する電力が急減するため、過給圧Pchgの応答遅れにより第1回転機MG1による発電電力Wgの低下が遅くなることによって、第1回転機MG1による発電電力Wgのうちバッテリ54へ入力される電力が充電許容電力Winを超えやすくなる。特に、過給圧Pchgが大きい場合には過給圧Pchgの応答遅れが大きいことから、バッテリ54へ入力される電力が充電許容電力Winを超えやすい。よって、なまし率設定部104により設定されるなまし率τは、過給圧Pchgの応答遅れとなまし率τを用いた緩変化処理とが相俟って目標エンジン出力Petgtが必要以上に緩変化しないように(緩やかに変化しないように)、すなわち第1回転機MG1による発電電力Wgの低下が必要以上に遅くならないように設定される。
図1に戻り、駆動制御部106は、エンジン制御部としての機能、回転機制御部としての機能、及び動力伝達切替部としての機能を含んでおり、それらの機能によりエンジン12、第1回転機MG1、及び第2回転機MG2に対するハイブリッド駆動制御、及び動力伝達装置14に設けられた変速機の変速制御を実行する。エンジン制御部としての機能は、エンジン12の運転を制御するエンジン制御手段である。回転機制御部としての機能は、インバータ52を介して第1回転機MG1及び第2回転機MG2の作動を制御する回転機制御手段である。動力伝達切替部としての機能は、変速部58における動力伝達状態の切り替えを制御する動力伝達切替制御手段である。
このように、駆動制御部106は、エンジン回転速度Neが目標エンジン回転速度Netgtとなるように、差動部60のサンギヤS1に入力される第1回転機MG1の反力トルクとなるMG1トルクTm1を制御する車両である。すなわち、第1回転機MG1は、前記反力トルクとなるMG1トルクTm1が制御されることによってエンジン回転速度Neを調整可能である。エンジン12及び無段変速機である差動部60が制御されることで、エンジン回転速度Neが目標エンジン回転速度Netgtとされる。
車両10がHV走行モードにある場合、駆動制御部106は、エンジン制御指令信号Se及び回転機制御指令信号Smgを出力する。エンジン12は、エンジン動作点OPengが目標エンジン動作点OPengtgtとなるように、エンジン制御指令信号Seにより制御される。第1回転機MG1及び第2回転機MG2は、それらの出力トルクが算出されたHV走行モードにおけるMG1トルクTm1及びMG2トルクTm2となるように、回転機制御指令信号Smgによりそれぞれ制御される。具体的には、駆動制御部106は、エンジン動作点OPengが目標エンジン動作点OPengtgtとなるように、エンジン制御装置50及びインバータ52を制御する。なお、過給圧Pchgは、過給圧センサ40で検出される実際の過給圧Pchgが、要求エンジン出力Pe*を実現する目標過給圧Pchgtgtとなるように、WGV30の弁開度がフィードバック制御される。
駆動制御部106は、成立させる走行モードに基づいて、クラッチC1及びブレーキB1の各係合作動を制御する。駆動制御部106は、成立させる走行モードにて走行する為の動力伝達が可能となるように、クラッチC1及びブレーキB1を各々係合及び/又は解放させる油圧制御指令信号Spを油圧制御回路84へ出力する。
図9は、電子制御装置100の制御作動の要部を説明するフローチャートの一例である。図9のフローチャートは、車両10の走行状態がHV走行である場合において、例えば所定時間(例えば、数ms)毎にスタートを繰り返して実行される。
まず、戻し操作判定部102の機能に対応するステップS10において、アクセル開度Acc、車速V、及び過給圧Pchgの各データが取得される。そしてステップS20が実行される。
戻し操作判定部102の機能に対応するステップS20において、アクセル戻しが発生しているか否かが判定される。ステップS20の判定が肯定された場合(アクセル戻しが発生していると判定された場合)、ステップS30が実行される。ステップS20の判定が否定された場合(アクセル戻しが発生していないと判定された場合)、ステップS60が実行される。なお、アクセル戻し操作がなされたことによってステップS20の判定が肯定されることで、後述するステップS30、ステップS40、ステップS50、及びステップS80の一連のステップの実行が開始される。そして、アクセル戻し操作がなされた後に引き続いてステップS20の判定が肯定されることで、前述の一連のステップの実行が継続される。
駆動制御部106の機能に対応するステップS30において、要求駆動力Pr*が算出される。そしてステップS40が実行される。
なまし率設定部104の機能に対応するステップS40において、過給圧Pchg、アクセル戻し速度Vacc、及びアクセル戻し操作後におけるアクセル開度Acc、に応じてなまし率τが設定される。そしてステップS50が実行される。
駆動制御部106の機能に対応するステップS50において、ステップS40で設定されたなまし率τを用いた緩変化処理によって要求エンジン出力Pe*に対して緩変化する目標エンジン出力Petgtが算出される。例えば、なまし率τが前述したレート処理における所定の減少率で定義される場合には、目標エンジン出力Petgtは前回のフローチャート実行時における目標エンジン出力Petgtに対してなまし率τを乗じたものが、今回のフローチャート実行時における目標エンジン出力Petgtとして算出される。そしてステップS80が実行される。
駆動制御部106の機能に対応するステップS60において、要求駆動力Pr*が算出される。そしてステップS70が実行される。
駆動制御部106の機能に対応するステップS70において、例えば要求エンジン出力Pe*が目標エンジン出力Petgtとされる。そしてステップS80が実行される。
駆動制御部106の機能に対応するステップS80において、目標エンジン出力Petgtを実現するエンジン回転速度NeとエンジントルクTeで表される目標エンジン動作点OPengtgtにエンジン動作点OPengがなるように、エンジン12及び第1回転機MG1が制御される。そしてリターンとなる。
図10は、図9に示す電子制御装置100の制御作動が実行された場合のタイムチャートの一例である。図10の横軸は、時間t[ms]である。
図10の上段は、アクセル開度Accの時間経過を示す図である。時刻t1においてアクセル開度Accが減少し始める。時刻t1は、アクセル戻し操作がなされた時刻である。時刻t1以前には、アクセル開度Accが開度値Accxであり、車両10の走行状態はHV走行である。時刻t1において、アクセル開度Accが減少することで車両10の走行状態がEV走行に切り替える判断がなされる。時刻t2においてアクセル開度Accが開度値Accy(=零)とされる。開度値Accy(=零)は、アクセル戻し操作後におけるアクセル開度Accである。時刻t2以降は、開度値Accy(=零)がアクセル開度Accとして維持される。
図10の中段は、過給圧Pchgが低い場合における目標エンジン出力Petgt及び実際のエンジン出力Perの時間経過を示す図である。時刻t1~時刻t3において、目標エンジン出力Petgtが細い実線で示され、実際のエンジン出力Perが太い実線で示されている。時刻t1~時刻t2において、アクセル開度Accの減少に伴って要求駆動力Pr*が低下し、過給圧Pchgが低い場合に設定されるなまし率τ(過給圧Pchgが高い場合に比べて大きな値)に基づいて目標エンジン出力Petgtが低下する。時刻t2において、アクセル戻し操作後におけるアクセル開度Accである開度値Accy(=零)に対応した要求エンジン出力Pe*(=零)に目標エンジン出力Petgtが未だ到達していない。そのため、時刻t2以降においても、目標エンジン出力Petgtが要求エンジン出力Pe*(=零)に到達するまで目標エンジン出力Petgtが低下し続ける。時刻t3の少し手前の時刻において、目標エンジン出力Petgtが要求エンジン出力Pe*(=零)に到達する。過給圧Pchgが低い場合には、過給圧Pchgが高い場合に比べて過給圧Pchgの応答遅れがほとんどないため、実際のエンジン出力Perは、目標エンジン出力Petgtに対してほとんど遅れることなく追従して低下し、時刻t3において要求エンジン出力Pe*(=零)に到達する。実際のエンジン出力Perが変化させられる時刻t1~時刻t3の期間において、エンジン12が運転停止後に安定して再始動できる状態で運転停止させられる。
図10の下段は、過給圧Pchgが高い場合における目標エンジン出力Petgt及び実際のエンジン出力Perを示す図である。時刻t1~時刻t3において、過給圧Pchgが高い場合に設定されるなまし率τ(過給圧Pchgが低い場合に比べて小さな値)に基づいた目標エンジン出力Petgtが細い実線で示され、その目標エンジン出力Petgtに対する実際のエンジン出力Perが太い実線で示されている。時刻t1~時刻t3において、過給圧Pchgが低い場合に比べてなまし率τが小さな値に設定されているので、図10の中段に示した過給圧Pchgが低い場合よりも目標エンジン出力Petgtが要求エンジン出力Pe*(=零)に速やかに到達する。具体的には、時刻t2と時刻t3との中間時点よりも少し早い時刻において、目標エンジン出力Petgtが要求エンジン出力Pe*(=零)に到達する。過給圧Pchgが高い場合には、過給圧Pchgが低い場合に比べて過給圧Pchgの応答遅れが大きいため、実際のエンジン出力Perは、目標エンジン出力Petgtに対して過給圧Pchgの応答遅れに対応する分だけ遅れて低下し、時刻t3において要求エンジン出力Pe*(=零)に到達する。実際のエンジン出力Perが変化させられる時刻t1~時刻t3の期間において、エンジン12が運転停止後に安定して再始動できる状態で運転停止させられる。このように、過給圧Pchgの応答遅れとなまし率τを用いた緩変化処理とが相俟って目標エンジン出力Petgtが必要以上に緩変化しないようにされ、実際のエンジン出力Perの低下が必要以上に遅くならないようにされる。これにより、第1回転機MG1による発電電力Wgの低下が必要以上に遅くならないようにされる。
図10の下段には、比較のため、過給圧Pchgが高い場合に設定されるなまし率τが、過給圧Pchgが低い場合と同様に大きな値である場合の目標エンジン出力Petgtが細い破線で示され、その目標エンジン出力Petgtに対する実際のエンジン出力Perが太い破線で示されている。時刻t1~時刻t3において、過給圧Pchgが低い場合と同様になまし率τが大きな値に設定されているので、時刻t3の少し手前の時刻において、目標エンジン出力Petgtが要求エンジン出力Pe*(=零)に到達する。過給圧Pchgが高い場合には、前述したように過給圧Pchgの応答遅れが大きいため、実際のエンジン出力Perは、目標エンジン出力Petgtに対して過給圧Pchgの応答遅れに対応する分だけ遅れて低下し、時刻t4(>t3)において要求エンジン出力Pe*(=零)に到達する。
このように、過給圧Pchgが高い場合に低い場合と同様になまし率τが大きな値に設定されると、実際のエンジン出力Perが低下させられる期間(時刻t1~時刻t4)が、なまし率τが小さな値に設定される場合に比べて長くなる。そのため、エンジン12が運転停止後に安定して再始動できる状態で運転停止させられる時間には余裕がある。一方、前述したように実際のエンジン出力Perが低下させられる期間が必要以上に長くなってしまい、エンジン回転速度Neの低下が緩やかになるため第1回転機MG1による発電電力Wgが速やかに低下し難くなる。これにより、第1回転機MG1による発電電力Wgのうちバッテリ54へ入力される電力が充電許容電力Winを超えやすくなる。
過給圧Pchgが高い場合に低い場合に比べてなまし率τが小さな値に設定されると、過給圧Pchgが低い場合と同様になまし率が大きな値に設定されるのに比べて、実際のエンジン出力Perが低下させられる期間が長くなりすぎることが抑制される。これにより、エンジン12が運転停止後に安定して再始動できる状態で運転停止させられるとともに、エンジン回転速度Neの低下が速やかになって第1回転機MG1による発電電力Wgが速やかに低下する。その結果、第1回転機MG1による発電電力Wgのうちバッテリ54へ入力される電力が充電許容電力Winを超えてしまうことが抑制される。
本実施例によれば、(A)アクセル戻し操作がなされた場合には、(a1)アクセル開度Accに基づいて車両10に要求される要求駆動力Pr*を求めるとともに、(a2)緩変化処理によって要求駆動力Pr*を実現するための要求エンジン出力Pe*に対して緩変化する目標エンジン出力Petgtを求め、(a3)エンジン出力Perが目標エンジン出力Petgtとなるようにエンジン12および第1回転機MG1を制御する駆動制御部106と、(B)緩変化処理に用いるなまし率をエンジン12における過給圧Pchgに応じて変更し、過給圧Pchgが高い場合には低い場合に比べてなまし率τを小さな値に設定するなまし率設定部104と、が備えられる。このようにアクセル戻し操作がなされた場合において過給圧Pchgが高い場合には低い場合に比べてなまし率τが小さな値に設定される。これにより、過給圧Pchgの応答遅れが発生しやすい過給圧Pchgが高い場合であっても、例えばエンジン12が運転停止後に安定して再始動できる状態で運転停止させられるとともに、過給圧Pchgが低い場合と同様になまし率τが大きな値に設定されるのに比べてエンジン出力Perが速やかに低下し、第1回転機MG1による発電電力Wgが速やかに低下する。そのため、第1回転機MG1による発電電力Wgのうちバッテリ54へ入力される電力が充電許容電力Winを超えることが抑制される。
本実施例によれば、車両10は、さらにバッテリ54に対して電力を授受し且つエンジン12と駆動輪16との間にある動力伝達経路PTに動力伝達可能に接続される第2回転機MG2を備え、第2回転機MG2は、アクセル踏込操作がなされている場合には第1回転機MG1による発電電力Wgを消費し、アクセル戻し操作がなされた場合には第1回転機MG1による発電電力Wgを消費しない。アクセル踏込操作がなされている状態からアクセル戻し操作がなされた場合には、第1回転機MG1による発電電力Wgが第2回転機MG2で消費されている状態から消費されない状態になるため、第1回転機MG1による発電電力Wgのうちバッテリ54へ入力される電力が充電許容電力Winを超えやすくなる。過給圧Pchgが高い場合には低い場合に比べてなまし率τが小さな値に設定されるため、過給圧Pchgの応答遅れが発生しやすい過給圧Pchgが高い場合であっても、過給圧Pchgが低い場合と同様になまし率τが大きな値に設定されるのに比べてエンジン出力Perが速やかに低下し、第1回転機MG1による発電電力Wgが速やかに低下する。そのため、第1回転機MG1による発電電力Wgのうちバッテリ54へ入力される電力が充電許容電力Winを超えることが抑制される。
本実施例によれば、なまし率設定部104は、さらに、アクセル戻し操作におけるアクセル戻し速度Vaccに基づき、アクセル戻し速度Vaccが速い場合には遅い場合に比べてなまし率τを小さな値に設定する。このようにアクセル戻し操作におけるアクセル戻し速度Vaccが速い場合には遅い場合に比べてなまし率τが小さな値に設定されるため、運転者の減速の意図に応じた速度でエンジン出力Perが低下させられる。
本実施例によれば、なまし率設定部104は、さらに、アクセル戻し操作後におけるアクセル開度Acc(開度値Accy)に基づき、開度値Accyが小さい場合には大きい場合に比べてなまし率τを小さな値に設定する。このように開度値Accyが小さい場合には大きい場合に比べてなまし率τが小さな値に設定されるため、運転者の減速の意図に応じた速度でエンジン出力Perが低下させられる。
図11は、本発明の実施例2に係る電子制御装置200が搭載されるハイブリッド車両210の概略構成図であると共に、ハイブリッド車両210における各種制御の為の制御機能の要部を表す機能ブロック図である。ハイブリッド車両210(以下、「車両210」と記す。)は、エンジン12、第1回転機MG1、第2回転機MG2、動力伝達装置214、及び駆動輪16を備える。実施例2について、前述の実施例1と機能において実質的に共通する部分には同一の符号を付して説明を適宜省略する。
エンジン12は、後述する電子制御装置200によって車両210に備えられたエンジン制御装置50が制御されることにより、エンジントルクTeが制御される。
第1回転機MG1及び第2回転機MG2は、各々、車両210に備えられたインバータ252を介して、車両210に備えられたバッテリ54に接続されている。第1回転機MG1及び第2回転機MG2は、各々、後述する電子制御装置200によってインバータ252が制御されることにより、MG1トルクTm1及びMG2トルクTm2が制御される。
動力伝達装置214は、車体に取り付けられる非回転部材としてのケース256内において共通の軸心上に直列に配設された、電気式の無段変速部258及び機械式の有段変速部260等を備える。無段変速部258は、直接的に或いは図示しないダンパーなどを介して間接的にエンジン12に連結されている。有段変速部260は、無段変速部258の出力側に連結されている。動力伝達装置214は、有段変速部260の出力回転部材である出力軸274に連結されたディファレンシャルギヤ68、ディファレンシャルギヤ68に連結された一対の車軸78等を備える。動力伝達装置214において、エンジン12や第2回転機MG2から出力される動力は、有段変速部260へ伝達される。有段変速部260へ伝達された動力は、ディファレンシャルギヤ68等を介して駆動輪16へ伝達される。このように構成された動力伝達装置214は、FR(フロントエンジン・リヤドライブ)方式の車両に好適に用いられる。無段変速部258や有段変速部260等は上記共通の軸心に対して略対称的に構成されており、図11ではその軸心の下半分が省略されている。上記共通の軸心は、エンジン12のクランク軸やクランク軸に連結された入力軸272などの軸心である。動力伝達装置214における無段変速部258、中間伝達部材276、有段変速部260、ディファレンシャルギヤ68、及び車軸78が、エンジン12と駆動輪16との間に設けられた動力伝達経路PTを構成している。
無段変速部258は、エンジン12の動力を第1回転機MG1及び無段変速部258の出力回転部材である中間伝達部材276に機械的に分割する動力分割機構としての差動機構280を備える。第1回転機MG1は、エンジン12の動力が伝達される回転機である。中間伝達部材276には第2回転機MG2が動力伝達可能に接続されている。中間伝達部材276は有段変速部260を介して駆動輪16に連結されているので、第2回転機MG2は動力伝達経路PTに動力伝達可能に接続され、第2回転機MG2は駆動輪16に動力伝達可能に接続された回転機である。差動機構280は、エンジン12の動力を駆動輪16と第1回転機MG1とに分割して伝達する差動機構である。無段変速部258は、差動機構280に動力伝達可能に連結された第1回転機MG1の運転状態が制御されることにより差動機構280の差動状態(すなわち無段変速部258の差動状態)が制御される電気式の無段変速機である。第1回転機MG1は、エンジン回転速度Neを制御可能な回転機である。
差動機構280は、サンギヤS1、キャリアCA1、及びリングギヤR1を備える公知のシングルピニオン型の遊星歯車装置である。
有段変速部260は、中間伝達部材276と駆動輪16との間の動力伝達経路PTの一部を構成する有段変速機としての機械式変速機構、つまり差動機構280と駆動輪16との間の動力伝達経路PTの一部を構成する自動変速機である。中間伝達部材276は、有段変速部260の入力回転部材としても機能する。有段変速部260は、例えば第1遊星歯車装置282A及び第2遊星歯車装置282Bの複数の遊星歯車装置と、クラッチC1、クラッチC2、ブレーキB1、ブレーキB2、及びワンウェイクラッチF1の複数の係合装置と、を備える、公知の遊星歯車式の自動変速機である。以下、クラッチC1、クラッチC2、ブレーキB1、及びブレーキB2については、特に区別しない場合は単に係合装置CBという。第1遊星歯車装置282Aは、サンギヤS2、キャリアCA2、及びリングギヤR2を備える公知のシングルピニオン型の遊星歯車装置である。第2遊星歯車装置282Bは、サンギヤS3、キャリアCA3、及びリングギヤR3を備える公知のシングルピニオン型の遊星歯車装置である。
差動機構280、第1遊星歯車装置282A、第2遊星歯車装置282B、係合装置CB、ワンウェイクラッチF1、第1回転機MG1、及び第2回転機MG2は、図11に示すように連結されている。差動機構280において、キャリアCA1は入力要素として機能し、サンギヤS1は反力要素として機能し、リングギヤR1は出力要素として機能する。
係合装置CBは、油圧式の摩擦係合装置である。係合装置CBは、車両210に備えられた油圧制御回路284内のソレノイドバルブSL1-SL4等から各々出力される調圧された各係合油圧により、係合装置CBのそれぞれのトルク容量である係合トルクが変化させられる。これにより、係合装置CBは、各々、係合や解放などの状態である作動状態が切り替えられる。
有段変速部260は、複数の係合装置CBの作動状態の組み合わせが切り替えられることによって、変速比γat(=AT入力回転速度Nati[rpm]/AT出力回転速度Nato[rpm])が異なる複数のギヤ段のうちのいずれかのギヤ段が形成される。本実施例では、有段変速部260にて形成されるギヤ段をATギヤ段と称す。AT入力回転速度Natiは、有段変速部260の入力回転速度であって、中間伝達部材276の回転速度と同値であり且つMG2回転速度Nm2と同値である。AT出力回転速度Natoは、有段変速部260の出力回転部材である出力軸274の回転速度であって、無段変速部258と有段変速部260とを合わせた全体の変速機である複合変速機262の出力回転速度でもある。
図12は、図11に示す有段変速部260の変速作動とそれに用いられる係合装置CBの作動状態の組み合わせとの関係を説明する係合作動表である。有段変速部260は、複数のATギヤ段として、AT1速ギヤ段(図12に示す「1st」)-AT4速ギヤ段(図12に示す「4th」)の4段の前進用のATギヤ段が形成される。AT1速ギヤ段の変速比γatが最も大きく、ハイ側のATギヤ段ほど、変速比γatが小さくなる。後進用のATギヤ段(図12に示す「Rev」)は、例えばクラッチC1が係合され且つブレーキB2が係合されることによって形成される。つまり、後述するように、後進走行を行う際には、例えばAT1速ギヤ段が形成される。図12において、「○」は係合状態、「△」はエンジンブレーキ時や有段変速部260のコーストダウンシフト時における係合状態、「空欄」は解放状態、をそれぞれ表している。コーストダウンシフトとは、例えばアクセルオフ(アクセル開度Accが零又は略零)の減速走行中における車速Vの低下によって実行されるダウンシフトのうちで、アクセルオフの減速走行状態のまま実行されるダウンシフトである。
有段変速部260は、後述する電子制御装置200によって、例えば運転者によるアクセル操作量であるアクセル開度Accや車速V等に応じて形成されるATギヤ段が切り替えられる、すなわち複数のATギヤ段が選択的に形成される。例えば、有段変速部260の変速制御においては、係合装置CBのいずれかの掴み替えにより変速が実行される、すなわち係合装置CBの係合と解放との切り替えにより変速が実行される、所謂クラッチツゥクラッチ変速が実行される。
車両210は、更に、ワンウェイクラッチF0(図11参照)を備える。ワンウェイクラッチF0は、キャリアCA1を回転不能に固定することができるロック機構である。すなわち、ワンウェイクラッチF0は、エンジン12のクランク軸と連結された、キャリアCA1と一体的に回転する入力軸272を、ケース256に対して固定することができるロック機構である。ワンウェイクラッチF0は、相対回転可能な2つの部材のうちの一方の部材が入力軸272に一体的に連結され、他方の部材がケース256に一体的に連結されている。ワンウェイクラッチF0は、エンジン12の運転時の回転方向である正回転方向に対して空転する一方で、エンジン12の運転時とは逆の回転方向に対して自動係合する。したがって、ワンウェイクラッチF0の空転時には、エンジン12はケース256に対して相対回転可能な状態とされる。一方で、ワンウェイクラッチF0の係合時には、エンジン12はケース256に対して相対回転不能な状態とされる。すなわち、ワンウェイクラッチF0の係合により、エンジン12はケース256に固定される。このように、ワンウェイクラッチF0は、エンジン12の運転時の回転方向となるキャリアCA1の正回転方向の回転を許容し且つキャリアCA1の負回転方向の回転を阻止する。すなわち、ワンウェイクラッチF0は、エンジン12の正回転方向の回転を許容し且つ負回転方向の回転を阻止することができるロック機構である。
車両210は、エンジン12、第1回転機MG1、及び第2回転機MG2などの制御に関連する車両210の制御装置を含むコントローラとしての電子制御装置200を備える。電子制御装置200は、前述の実施例1で示した電子制御装置100と同様の構成である。電子制御装置200には、電子制御装置100に入力されるのと同様の各種信号等が入力される。電子制御装置200からは、電子制御装置100が出力するのと同様の各種指令信号が出力される。電子制御装置200は、電子制御装置100と同様に、戻し操作判定部102、なまし率設定部104、及び駆動制御部106の各機能と同等の機能を有している。したがって、前述の実施例1と同様に、過給圧Pchgが高い場合には低い場合に比べてなまし率τが小さな値に設定される。これにより、過給圧Pchgの応答遅れが発生しやすい過給圧Pchgが高い場合であっても、例えばエンジン12が運転停止後に安定して再始動できる状態で運転停止させられるとともに、過給圧Pchgが低い場合と同様になまし率τが大きな値に設定されるのに比べてエンジン出力Perが速やかに低下し、第1回転機MG1による発電電力Wgが速やかに低下する。そのため、第1回転機MG1による発電電力Wgのうちバッテリ54へ入力される電力が充電許容電力Winを超えることが抑制される。なお、エンジン12及び無段変速機である差動機構280が制御されることで、エンジン回転速度Neが目標エンジン回転速度Netgtとされる。電子制御装置200は、本発明における「制御装置」に相当する。
本実施例によれば、前述の実施例1と同様の効果が得られる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
前述の実施例1で説明した図9のフローチャートでは、過給圧Pchg、アクセル戻し速度Vacc、及びアクセル戻し操作後におけるアクセル開度Acc(開度値Accy)の3つを変数としてなまし率τが設定されたが、この態様に限らない。例えば、これら3つの変数のうち少なくとも過給圧Pchgを変数としてなまし率τが設定されれば良い。過給圧Pchgが変数に含まれれば、過給圧Pchgが高い場合には低い場合に比べてなまし率τが小さな値に設定されることで、過給圧Pchgが低い場合と同様になまし率τが大きな値に設定されるのに比べてエンジン出力Perが速やかに低下させられて第1回転機MG1による発電電力Wgが速やかに低下させられる。そのため、第1回転機MG1による発電電力Wgのうちバッテリ54へ入力される電力が充電許容電力Winを超えることが抑制される。
前述の実施例1,2におけるなまし率τに基づいた緩変化処理では、最大効率線Leng上を通る経路aにおいて目標エンジン動作点OPengtgtが移動させられたが、最大効率線Leng上を一旦離れるように変化させられてもよい。
前述の実施例1,2における緩変化処理では、要求エンジン出力Pe*に対して緩変化する目標エンジン出力Petgtが直接求められたが、この態様に限らない。例えば、要求駆動力Pr*に対して緩変化する目標駆動力Prtgt[N]が一旦求められてからその目標駆動力Prtgtを実現する目標エンジン出力Petgtが求められることが繰り返されることで、結果として要求エンジン出力Pe*に対して緩変化する目標エンジン出力Petgtが求められても良い。
前述の実施例1,2では、なまし率τの定義として、レート処理における所定の減少率や目標エンジン出力Petgtが要求エンジン出力Pe*まで緩変化させられる期間が例示されたが、これに限らない。例えば、なまし率τが一次遅れ関数の時定数として定義されても良い。
前述の実施例1,2では、排気ガス再循環装置110が設けられた車両10,210においてアクセル戻し操作がなされた場合に、エンジン12が運転停止後に安定して再始動できる状態で運転停止させられるように緩変化処理に用いるなまし率τが設定されていたが、この態様に限らない。例えば、車両10,210に排気ガス再循環装置110が設けられていなくても、エンジン12が運転停止させられる場合に目標エンジン出力Petgtが緩変化させられる構成であれば、本発明は適用可能である。
前述の実施例1,2では、アクセル戻し操作がなされた場合にエンジン12が運転状態から運転停止させられたが、この態様に限らない。例えば、HV走行状態においてアクセル戻し操作により要求駆動力Pr*が減少し、その要求駆動力Pr*を実現するためにエンジン12が運転停止させられることなく、減少した要求エンジン出力Pe*(≠零)に対して目標エンジン出力Petgtが緩変化させられる構成である場合にも、本発明は適用可能である。この場合には、戻し操作判定部102におけるアクセル戻しが発生しているか否かの判定は、例えばアクセル戻し操作がなされた場合及びアクセル戻し操作がなされた後であってエンジン出力Perが要求エンジン出力Pe*(≠零)に向けて変化させられる状態にある場合には、アクセル戻しが発生していると判定される。これにより、過給圧Pchgの応答遅れが発生しやすい過給圧Pchgが高い場合であっても、過給圧Pchgの応答遅れとなまし率τを用いた緩変化処理とが相俟って目標エンジン出力Petgtが必要以上に緩変化しないように、すなわち第1回転機MG1による発電電力Wgの低下が必要以上に遅くならないようにされる。
前述の実施例1,2では、アクセル踏込操作がなされている場合には第1回転機MG1による発電電力Wgを消費し、且つ、アクセル戻し操作がなされた場合には第1回転機MG1による発電電力Wgを消費しない第2回転機MG2を備える車両10,210であったが、この態様に限らない。例えば、車両10,210に第2回転機MG2が設けられていなくても、本発明は適用可能である。
前述の実施例1において、車両10は、変速部58を備えずエンジン12が差動部60に連結される車両であっても良い。また、差動部60は、第2遊星歯車機構82の回転要素に連結されたクラッチ又はブレーキの制御により差動作用が制限され得る機構であっても良い。また、第2遊星歯車機構82は、ダブルピニオン型の遊星歯車装置であっても良い。また、第2遊星歯車機構82は、複数の遊星歯車装置が相互に連結されることで4つ以上の回転要素を有する差動機構であっても良い。また、第2遊星歯車機構82は、エンジン12によって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車に第1回転機MG1及びドライブギヤ74が各々連結された差動歯車装置であっても良い。また、第2遊星歯車機構82は、2以上の遊星歯車装置がそれらを構成する一部の回転要素で相互に連結された構成において、それらの遊星歯車装置の回転要素にそれぞれエンジン12、第1回転機MG1、駆動輪16が動力伝達可能に連結される機構であっても良い。
前述の実施例2では、キャリアCA1を回転不能に固定することができるロック機構としてワンウェイクラッチF0を例示したが、この態様に限らない。このロック機構は、例えば入力軸272とケース256とを選択的に連結する、噛合式クラッチ、クラッチやブレーキなどの油圧式摩擦係合装置、乾式の係合装置、電磁式摩擦係合装置、磁粉式クラッチなどの係合装置であっても良い。或いは、車両210は、必ずしもワンウェイクラッチF0を備える必要はない。
前述の実施例1,2では、過給機18は、公知の排気タービン式の過給機であったが、この態様に限らない。例えば、過給機18は、エンジン或いは電動機によって回転駆動される機械ポンプ式の過給機であっても良い。また、過給機として、排気タービン式の過給機と機械ポンプ式の過給機とが併用で設けられても良い。
なお、上述したのはあくまでも本発明の実施例であり、本発明はその趣旨を逸脱しない範囲において当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10、210:ハイブリッド車両
12:エンジン
16:駆動輪
18:過給機
54:バッテリ(蓄電装置)
100、200:電子制御装置(制御装置)
104:なまし率設定部
106:駆動制御部
Acc:アクセル開度(アクセル操作量)
MG1:第1回転機
MG2:第2回転機
Ne:エンジン回転速度(エンジンの回転速度)
Pchg:過給圧
Per:エンジン出力
Petgt:目標エンジン出力
Pe*:要求エンジン出力
Pr*:要求駆動力
PT:動力伝達経路
Vacc:アクセル戻し速度
Wg:発電電力
τ:なまし率

Claims (4)

  1. 過給機を有するエンジンと、前記エンジンの回転速度を調整可能な第1回転機と、前記第1回転機に対して電力を授受する蓄電装置と、を備えるハイブリッド車両の、制御装置であって、
    アクセル戻し操作がなされた場合には、アクセル操作量に基づいて前記ハイブリッド車両に要求される要求駆動力を求めるとともに、緩変化処理によって前記要求駆動力を実現するための要求エンジン出力に対して緩変化する目標エンジン出力を求め、エンジン出力が前記目標エンジン出力となるように前記エンジンおよび前記第1回転機を制御する駆動制御部と、
    前記緩変化処理に用いるなまし率を前記エンジンにおける過給圧に応じて変更し、前記過給圧が高い場合には低い場合に比べて前記なまし率を小さな値に設定するなまし率設定部と、を備える
    ことを特徴とするハイブリッド車両の制御装置。
  2. 前記ハイブリッド車両は、さらに前記蓄電装置に対して電力を授受し且つ前記エンジンと駆動輪との間にある動力伝達経路に動力伝達可能に接続される第2回転機を備え、
    前記第2回転機は、アクセル踏込操作がなされている場合には前記第1回転機による発電電力を消費し、前記アクセル戻し操作がなされた場合には前記第1回転機による発電電力を消費しない
    ことを特徴とする請求項1に記載のハイブリッド車両の制御装置。
  3. 前記なまし率設定部は、さらに、前記アクセル戻し操作におけるアクセル戻し速度に基づき、前記アクセル戻し速度が速い場合には遅い場合に比べて前記なまし率を小さな値に設定する
    ことを特徴とする請求項1又は2に記載のハイブリッド車両の制御装置。
  4. 前記なまし率設定部は、さらに、前記アクセル戻し操作後におけるアクセル操作量に基づき、前記アクセル戻し操作後におけるアクセル操作量が小さい場合には大きい場合に比べて前記なまし率を小さな値に設定する
    ことを特徴とする請求項1乃至3のいずれか1に記載のハイブリッド車両の制御装置。
JP2019146856A 2019-08-08 2019-08-08 ハイブリッド車両の制御装置 Active JP7172914B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019146856A JP7172914B2 (ja) 2019-08-08 2019-08-08 ハイブリッド車両の制御装置
US16/925,929 US11325584B2 (en) 2019-08-08 2020-07-10 Control device for hybrid vehicle
CN202010716823.XA CN112339738B (zh) 2019-08-08 2020-07-23 混合动力车辆的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019146856A JP7172914B2 (ja) 2019-08-08 2019-08-08 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2021024524A JP2021024524A (ja) 2021-02-22
JP7172914B2 true JP7172914B2 (ja) 2022-11-16

Family

ID=74357563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019146856A Active JP7172914B2 (ja) 2019-08-08 2019-08-08 ハイブリッド車両の制御装置

Country Status (3)

Country Link
US (1) US11325584B2 (ja)
JP (1) JP7172914B2 (ja)
CN (1) CN112339738B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6879382B2 (ja) * 2017-12-15 2021-06-02 日産自動車株式会社 ハイブリッド車両の制御方法及び制御装置
JP7230715B2 (ja) * 2019-07-09 2023-03-01 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP7279593B2 (ja) * 2019-09-20 2023-05-23 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2021049807A (ja) * 2019-09-20 2021-04-01 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061312A (ja) 2003-08-12 2005-03-10 Nissan Motor Co Ltd 車両の制御装置
JP2005248714A (ja) 2004-03-01 2005-09-15 Toyota Motor Corp 動力出力装置およびこれを搭載するハイブリッド自動車並びに動力出力装置の制御方法
JP2010111212A (ja) 2008-11-05 2010-05-20 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2011051542A (ja) 2009-09-04 2011-03-17 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2017100469A (ja) 2015-11-30 2017-06-08 三菱自動車工業株式会社 ハイブリッド車両の制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460821B1 (ko) * 1999-02-08 2004-12-09 도요타지도샤가부시키가이샤 전동기의 토크에 의해 제동되는 차량 및 그 제어 방법
JP3925397B2 (ja) * 2002-11-20 2007-06-06 トヨタ自動車株式会社 電動機付ターボチャージャ制御装置
JP4013905B2 (ja) 2003-05-21 2007-11-28 トヨタ自動車株式会社 動力出力装置およびその制御方法並びに自動車
US6883316B2 (en) * 2003-06-23 2005-04-26 Toyota Uidosha Kabushiki Kaisha Control system for a turbo-charged diesel aircraft engine
JP4604687B2 (ja) 2004-12-01 2011-01-05 トヨタ自動車株式会社 車両の制御装置
JP2006242029A (ja) * 2005-03-01 2006-09-14 Denso Corp 過給アシスト制御システム
JP4548215B2 (ja) * 2005-05-20 2010-09-22 株式会社デンソー 内燃機関の過給圧制御装置
GB0616127D0 (en) * 2006-08-14 2006-09-20 Nexxtdrive Ltd A method of operating a supercharger
JP2009248914A (ja) * 2008-04-10 2009-10-29 Toyota Motor Corp 車両およびその制御方法並びに駆動装置
JP5849930B2 (ja) * 2012-10-25 2016-02-03 アイシン精機株式会社 車両用駆動装置
JP2015027854A (ja) * 2013-07-30 2015-02-12 アイシン精機株式会社 トルク制御装置
JP6204866B2 (ja) * 2014-03-31 2017-09-27 日立建機株式会社 ハイブリッド建設機械
JP2016203664A (ja) * 2015-04-15 2016-12-08 トヨタ自動車株式会社 ハイブリッド自動車
JP6380446B2 (ja) * 2016-03-30 2018-08-29 トヨタ自動車株式会社 車両の制御装置
JP6607179B2 (ja) * 2016-12-15 2019-11-20 トヨタ自動車株式会社 車両の制御装置
JP6907817B2 (ja) * 2017-08-25 2021-07-21 トヨタ自動車株式会社 車両の制御装置
JP7226174B2 (ja) * 2019-07-30 2023-02-21 トヨタ自動車株式会社 車両の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061312A (ja) 2003-08-12 2005-03-10 Nissan Motor Co Ltd 車両の制御装置
JP2005248714A (ja) 2004-03-01 2005-09-15 Toyota Motor Corp 動力出力装置およびこれを搭載するハイブリッド自動車並びに動力出力装置の制御方法
JP2010111212A (ja) 2008-11-05 2010-05-20 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2011051542A (ja) 2009-09-04 2011-03-17 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2017100469A (ja) 2015-11-30 2017-06-08 三菱自動車工業株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
US20210039628A1 (en) 2021-02-11
CN112339738B (zh) 2024-03-05
CN112339738A (zh) 2021-02-09
US11325584B2 (en) 2022-05-10
JP2021024524A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
JP7172914B2 (ja) ハイブリッド車両の制御装置
JP7226174B2 (ja) 車両の制御装置
JP7279595B2 (ja) ハイブリッド車両の制御装置
JP7259696B2 (ja) ハイブリッド車両の制御装置
JP7279593B2 (ja) ハイブリッド車両の制御装置
JP7156237B2 (ja) 車両の制御装置
JP7196805B2 (ja) ハイブリッド車両の制御装置
JP7226220B2 (ja) ハイブリッド車両の制御装置
CN112622905A (zh) 混合动力车辆的控制装置
US11352943B2 (en) Control device for hybrid vehicle
US20210031746A1 (en) Control device for hybrid vehicle
JP7247826B2 (ja) ハイブリッド車両の制御装置
JP7207223B2 (ja) ハイブリッド車両の制御装置
JP7279594B2 (ja) ハイブリッド車両の制御装置
JP7200873B2 (ja) ハイブリッド車両の制御装置
JP7188317B2 (ja) ハイブリッド車両の制御装置
JP7183998B2 (ja) ハイブリッド車両の制御装置
JP7251403B2 (ja) ハイブリッド車両の制御装置
CN112537288B (zh) 混合动力车辆的控制装置
JP2021020522A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R151 Written notification of patent or utility model registration

Ref document number: 7172914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151