JP7172794B2 - 自動運転システム - Google Patents

自動運転システム Download PDF

Info

Publication number
JP7172794B2
JP7172794B2 JP2019061643A JP2019061643A JP7172794B2 JP 7172794 B2 JP7172794 B2 JP 7172794B2 JP 2019061643 A JP2019061643 A JP 2019061643A JP 2019061643 A JP2019061643 A JP 2019061643A JP 7172794 B2 JP7172794 B2 JP 7172794B2
Authority
JP
Japan
Prior art keywords
mode
control
wheel
vehicle
control amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019061643A
Other languages
English (en)
Other versions
JP2020158032A (ja
Inventor
豪 井上
義徳 渡邉
裕高 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019061643A priority Critical patent/JP7172794B2/ja
Priority to CN202010081121.9A priority patent/CN111746541B/zh
Priority to DE102020202165.1A priority patent/DE102020202165A1/de
Priority to US16/829,424 priority patent/US20200307625A1/en
Publication of JP2020158032A publication Critical patent/JP2020158032A/ja
Application granted granted Critical
Publication of JP7172794B2 publication Critical patent/JP7172794B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18036Reversing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

本発明は、車両の自動運転を制御する自動運転システムに関する。
特許文献1は、車両の自動運転を制御する技術を開示している。制御部は、センサによって検出される情報に基づいて、車両の操舵及び加減速を自動的に制御する。
特開2006-318446号公報
車両の自動運転を制御する自動運転制御について考える。自動運転制御は、車両の走行(操舵及び加減速)を制御する車両走行制御を含む。一般的な車両では、前輪と後輪、すなわち、前方向と後方向は予め定義(固定)されている。
本発明の1つの目的は、車両の自動運転を制御する自動運転制御において、前方向と後方向をフレキシブルに切り替えることができる新たな技術を提供することにある。
第1の観点は、車両の自動運転を制御する自動運転システムに関連する。
前記車両は、前後方向に分かれて配置された第1車輪と第2車輪を備える。
第1方向は、前記第2車輪から前記第1車輪に向かう方向である。
第2方向は、前記第1車輪から前記第2車輪に向かう方向である。
前記自動運転システムは、
前記車両の走行状態を表すパラメータを検出するセンサと、
前記車両の操舵及び加減速を行う走行装置と、
前記パラメータの検出値に対応付けられた入力値に基づいて制御量を算出し、前記制御量に従って前記走行装置を制御する車両走行制御を行う制御装置と
を備える。
定義情報は、前記検出値と前記入力値との間の対応関係を定義する。
前記車両走行制御のモードは、
前記第1方向を前方向として前記車両走行制御を行う第1モードと、
前記第2方向を前記前方向として前記車両走行制御を行う第2モードと
を含む。
前記制御装置は、
前記第1モード用の前記定義情報である第1定義情報と、前記第2モード用の前記定義情報である第2定義情報とを保持し、
前記第1モードでは前記第1定義情報に従って前記車両走行制御を行い、
前記第2モードでは前記第2定義情報に従って前記車両走行制御を行う。
第2の観点は、車両の自動運転を制御する自動運転システムに関連する。
前記車両は、前後方向に分かれて配置された第1車輪と第2車輪を備える。
第1方向は、前記第2車輪から前記第1車輪に向かう方向である。
第2方向は、前記第1車輪から前記第2車輪に向かう方向である。
前記自動運転システムは、
前記車両の走行状態を表すパラメータを検出するセンサと、
前記車両の操舵及び加減速を行う走行装置と、
前記パラメータに基づいて制御量を算出し、前記算出された制御量に対応付けられた指示制御量に従って前記走行装置を制御する車両走行制御を行う制御装置と
を備える。
定義情報は、前記算出された制御量と前記指示制御量との間の対応関係を定義する。
前記車両走行制御のモードは、
前記第1方向を前方向として前記車両走行制御を行う第1モードと、
前記第2方向を前記前方向として前記車両走行制御を行う第2モードと
を含む。
前記制御装置は、
前記第1モード用の前記定義情報である第1定義情報と、前記第2モード用の前記定義情報である第2定義情報とを保持し、
前記第1モードでは前記第1定義情報に従って前記車両走行制御を行い、
前記第2モードでは前記第2定義情報に従って前記車両走行制御を行う。
自動運転システムの制御装置は、車両走行制御を行う。車両走行制御において、制御装置は、センサによって検出されたパラメータに基づいて制御量を算出し、制御量に従って走行装置を制御する。
車両走行制御のモードは、第1モードと第2モードを含んでいる。第1モードでは、制御装置は、第2車輪から第1車輪に向かう第1方向を前方向として車両走行制御を行う。一方、第2モードでは、制御装置は、第1車輪から第2車輪に向かう第2方向を前方向として車両走行制御を行う。すなわち、本発明では、前方向及び後方向は固定されておらず、フレキシブルに切り替え可能である。
車両走行制御を適切に行うためには、モード(前方向及び後方向)の切り替えと共に、検出パラメータあるいは制御量の定義も切り替える必要がある。検出パラメータの定義とは、センサによって検出された検出値と制御量演算のための入力値との間の対応関係である。制御量の定義とは、制御装置によって算出された制御量と走行装置に対する指示制御量との間の対応関係である。
制御装置は、検出パラメータと制御量の少なくとも一方を定義する定義情報を保持している。定義情報は、第1モード用の第1定義情報と、第2モード用の第2定義情報を含んでいる。第1モードでは、制御装置は、第1定義情報に従って車両走行制御を行う。一方、第2モードでは、制御装置は、第2定義情報に従って車両走行制御を行う。このようにして、前方向と後方向をフレキシブルに切り替え、且つ、適切に車両走行制御を行うことが可能となる。
本発明の第1の実施の形態に係る自動運転システムを説明するための概念図である。 本発明の第1の実施の形態に係る自動運転システムの構成例を示すブロック図である。 本発明の第1の実施の形態に係る車両走行制御を説明するための概念図である。 本発明の第1の実施の形態に係る車両走行制御の一例を説明するための概念図である。 本発明の第1の実施の形態における定義の切り替えの一例を説明するための概念図である。 本発明の第1の実施の形態における定義の切り替えの他の例を説明するための概念図である。 本発明の第1の実施の形態における定義の切り替えの更に他の例を説明するための概念図である。 本発明の第1の実施の形態に係る自動運転システムの制御装置の機能構成例を示すブロック図である。 本発明の第3の実施の形態に係る状態維持制御を説明するためのタイミングチャートである。 本発明の第3の実施の形態に係る自動運転システムの制御装置の機能構成例を示すブロック図である。
添付図面を参照して、本発明の実施の形態を説明する。
1.第1の実施の形態
1-1.自動運転システムの概略構成
図1は、本実施の形態に係る自動運転システム10を説明するための概念図である。自動運転システム10は、車両1の自動運転を制御する自動運転制御を行う。自動運転制御は、車両1の走行(操舵、加減速)を制御する車両走行制御を含む。典型的には、自動運転システム10は、車両1に搭載されている。
図2は、本実施の形態に係る自動運転システム10の構成例を示すブロック図である。自動運転システム10は、走行状態センサ20、運転環境取得装置30、走行装置50、及び制御装置100を備えている。
走行状態センサ20は、車両1の走行状態を表すパラメータを検出する。例えば、走行状態センサ20は、車輪速センサ21、車速センサ22、加速度センサ23、ヨーレートセンサ24、等を含んでいる。車輪速センサ21は、車両1の各車輪5の回転速度を検出する。車速センサ22は、車両1の速度である車速を検出する。加速度センサ23は、車両1の加速度(横加速度、前後加速度、上下加速度)を検出する。ヨーレートセンサ24は、車両1のヨーレートを検出する。走行状態センサ20は、検出パラメータSENを制御装置100に送る。
運転環境取得装置30は、車両1の運転環境を示す運転環境情報ENVを取得する。例えば、運転環境取得装置30は、地図データベース31、認識センサ32、GPS(Global Positioning System)装置33、通信装置34、等を含んでいる。
地図データベース31は、車線配置や道路形状を示す地図情報のデータベースである。運転環境取得装置30は、地図データベース31から、必要なエリアの地図情報を取得する。地図データベース31は、車両1に搭載されている所定の記憶装置に格納されていてもよいし、車両1の外部の管理サーバに格納されていてもよい。後者の場合、運転環境取得装置30は、通信装置34を用いて管理サーバと通信を行い、管理サーバの地図データベース31から必要な地図情報を取得する。
認識センサ32は、車両1の周囲の状況を認識(検出)する。例えば、認識センサ32は、カメラ、ライダー(LIDAR: Laser Imaging Detection and Ranging)、及びレーダを含んでいる。周辺状況情報は、認識センサ32による認識結果を示す。例えば、周辺状況情報は、車両1の周囲の周辺車両や白線の情報を含む。
GPS装置33は、車両1の位置及び方位を示す位置情報を取得する。また、認識センサ32によって検出された白線の配置と地図情報で示される車線配置とを照合することによって、更に精度の高い位置情報を取得することもできる。他の例として、通信装置34を用いたV2X通信(車車間通信および路車間通信)により、位置情報が取得されてもよい。
運転環境情報ENVは、上述の地図情報、周辺状況情報、及び位置情報を含む。運転環境取得装置30は、取得した運転環境情報ENVを制御装置100に送る。
走行装置50は、車両1の操舵(車輪5の転舵)及び加減速を行う。より詳細には、走行装置50は、操舵装置51、駆動装置52、及び制動装置53を含んでいる。操舵装置51は、車輪5を転舵する。例えば、操舵装置51は、パワーステアリング(EPS: Electric Power Steering)装置を含んでいる。駆動装置52は、車輪5の駆動力を発生させる。駆動装置52としては、エンジンや電動機が例示される。制動装置53は、車輪5の制動力を発生させる。走行装置50の動作は、制御装置100によって制御される。
制御装置100は、プロセッサ101及びメモリ102を備えるマイクロコンピュータを含んでいる。制御装置100は、ECU(Electronic Control Unit)とも呼ばれる。プロセッサ101がメモリ102に格納された制御プログラムを実行することにより、制御装置100による各種処理が実現される。
例えば、制御装置100は、走行装置50を制御することによって、車両1の走行を制御する車両走行制御を行う。より詳細には、制御装置100は、検出パラメータSENや運転環境情報ENVに基づいて、車両走行制御のための制御量CONを算出する。そして、制御装置100は、制御量CONに従って走行装置50を制御して車両走行制御を行う。車両走行制御は、操舵(車輪5の転舵)を制御する操舵制御と、加減速を制御する加減速制御を含む。制御装置100は、操舵装置51を制御することによって、操舵制御を行う。また、制御装置100は、駆動装置52及び制動装置53を制御することによって、加減速制御を行う。
更に、制御装置100は、上述の車両走行制御を利用して、車両1の自動運転を制御する自動運転制御を行う。例えば、制御装置100は、運転環境情報ENVに基づいて、目標軌道を定期的に生成する。例えば、目標軌道は、走行車線の中央を通る線である。制御装置100は、地図情報と位置情報に基づいて、目標軌道を算出することができる。他の例として、制御装置100は、周辺状況情報(白線の情報)に基づいて、目標軌道を算出することができる。但し、目標軌道やその算出方法は、それらに限定されない。目標軌道を生成すると、制御装置100は、車両1が目標軌道に追従するように車両走行制御を行う。
以下、本実施の形態に係る車両走行制御について更に詳しく説明する。
1-2.車両走行制御
図3は、本実施の形態に係る車両走行制御を説明するための概念図である。車両1は、前後方向(longitudinal direction)に分かれて配置された第1車輪5-1と第2車輪5-2を備えている。前後方向は、車両1の横方向(lateral direction)と直交する平面方向である。以下の説明において、第1方向D1は、第2車輪5-2から第1車輪5-1に向かう方向である。一方、第2方向D2は、第1車輪5-1から第2車輪5-2に向かう方向である。
本実施の形態に係る車両1は、第1方向D1と第2方向D2のそれぞれに対して同様の車両挙動を実現することができるように構成されている。具体的には、操舵装置51は、第1車輪5-1と第2車輪5-2を独立して転舵することができるように構成されている。駆動装置52は、第1方向D1と第2方向D2のそれぞれの駆動力を発生させることができるように構成されている。駆動輪は、第1車輪5-1と第2車輪5-2の一方であってもよいし、第1車輪5-1と第2車輪5-2の両方であってもよい。制動装置53は、第1方向D1と第2方向D2のそれぞれの制動力を発生させることができるように構成されている。
一般的な車両では、前輪と後輪、すなわち、前方向と後方向は予め定義(固定)されている。例えば、第1車輪5-1が前輪であり、第2車輪5-2が後輪であり、第1方向D1が前方向であり、第2方向D2が後方向である。
一方、本実施の形態によれば、前輪と後輪、すなわち、前方向と後方向は、予め定義(固定)されず、フレキシブルに変更可能である。そのために、車両走行制御のモードとして、「第1モード」と「第2モード」の2種類が用意されている。
第1モードでは、第1方向D1が前方向であり、第2方向D2が後方向である。制御装置100は、第1方向D1を前方向として車両走行制御を行う。従って、第1モードでは、第1車輪5-1が前輪に相当し、第2車輪5-2が後輪に相当する。
第2モードでは、第2方向D2が前方向であり、第1方向D1が後方向である。制御装置100は、第2方向D2を前方向として車両走行制御を行う。従って、第2モードでは、第2車輪5-2が前輪に相当し、第1車輪5-1が後輪に相当する。
例えば、制御装置100は、運転環境情報ENVに基づいて、所望の進行方向を前方向として決定する。前方向が第1方向D1である場合、制御装置100は、第1モードで車両走行制御を行う。一方、前方向が第2方向D2である場合、制御装置100は、第2モードで車両走行制御を行う。制御装置100は、必要に応じて、車両走行制御のモードを第1モードと第2モードとの間で切り替える切替処理を行う。
一例として、図4に示されるような状況を考える。A地点からB地点に移動する際、制御装置100は、第1モードで車両走行制御を行い、第1方向D1に車両1を前進させる。B地点において、制御装置100は、車両走行制御のモードを第1モードから第2モードに切り替える。B地点からC地点に移動する際、制御装置100は、第2モードで車両走行制御を行い、第2方向D2に車両1を前進させる。このように、制御装置100は、車両1が後退することなく常に前方向に前進するように、車両走行制御を行うことができる。
比較例として、第1車輪5-1が前輪として固定され、第2車輪5-2が後輪として固定されている場合を考える。A地点からB地点までの区間、車両1が前方向に前進するように前進制御が行われる。B地点からC地点までの区間、車両1が後方向に後退するように後退制御が行われるかもしれない。しかしながら、後退制御を長時間にわたって継続することは現実的ではない。また、後退制御が長時間にわたって継続すると、車両1の乗員は違和感を感じる。B地点からC地点までの区間においても前進制御を行うためには、車両1を回頭する必要がある。しかしながら、その場合、B地点からC地点まで車両1が移動するために要する移動時間が増加し、移動効率が低下する。
一方、本実施の形態によれば、図4で示されたように、B地点からC地点に移動する際に車両1を回頭する必要がない。前方向(モード)をフレキシブルに切り替えることによって、車両1を効率的に移動させることが可能となる。
1-3.定義の切り替え
上述の通り、車両走行制御において、制御装置100は、検出パラメータSENに基づいて制御量CONを算出し、制御量CONに従って走行装置50を制御する。車両走行制御のモード(前方向及び後方向)を切り替える際、検出パラメータSENあるいは制御量CONの“定義”も共に切り替える必要がある場合がある。
一例として、車輪速センサ21について考える。車輪速センサ21は、各車輪5の回転速度と共に回転方向も検出することができるとする。例えば、車両1が第1方向D1に移動する場合、回転速度の検出値の符号は「正」であり、車両1が第2方向D2に移動する場合、回転速度の検出値の符号は「負」である。符号が「正」である場合、制御装置100は、車両1が前進していると判断し、符号が「負」である場合、制御装置100は、車両1が後退していると判断する。
上述の図4において、B地点からC地点に車両1が移動する場合、回転速度の検出値の符号は「負」である。負の検出値がそのまま用いられると、制御装置100は、車両1が後退していると誤って判断してしまう。その結果、制御装置100は、不必要な制動制御を行い、車両1の移動が停止してしまう。このような誤判断及び誤制御を防止するためには、符号を適切に修正する必要がある。すなわち、検出パラメータSENの“定義”を適切に切り替える必要がある。
他の例として、車輪5の転舵を制御する操舵制御について考える。制御装置100は、第1車輪5-1と第2車輪5-2を区別することなく、単純に前輪の目標操舵量を制御量CONとして算出するとする。但し、実際の前輪はモードに応じて変わるため、算出した制御量CONを適用する対象を適切に切り替える必要がある。具体的には、第1モードでは、制御量CONに従って第1車輪5-1を制御し、第2モードでは、制御量CONに従って第2車輪5-2を制御する必要がある。このように、制御量CONの“定義”を適切に切り替える必要がある。
以下の説明においては、便宜上、走行状態センサ20によって検出される検出パラメータSENを、「検出値SEN-A」と呼ぶ。制御量CONの算出に用いられる検出パラメータSENを、「入力値SEN-B」と呼ぶ。また、制御装置100によって算出される制御量CONを、「算出制御量CON-A」と呼ぶ。走行装置50の制御に用いられる制御量CONを、「指示制御量CON-B」と呼ぶ。
検出値SEN-Aと入力値SEN-Bは、互いに対応付けられる。そのような検出値SEN-Aと入力値SEN-Bとの間の対応関係が、検出パラメータSENの“定義”に相当する。また、算出制御量CON-Aと指示制御量CON-Bは、互いに対応付けられる。そのような算出制御量CON-Aと指示制御量CON-Bとの間の対応関係が、制御量CONの“定義”に相当する。
1-3-1.検出パラメータの定義の切り替え
図5は、検出パラメータSENの定義の切り替え例を示している。
一例として、車輪速センサ21あるいは車速センサ22によって検出される前後速度について考える。前後速度の検出値SEN-Aの符号は、車両1の進行方向が第1方向D1か第2方向D2かによって異なるとする。第1モードにおいて、前後速度の入力値SEN-Bは、検出値SEN-Aである。一方、第2モードにおいて、前後速度の入力値SEN-Bは、検出値SEN-Aの-1倍である。言い換えれば、第2モードでは、入力値SEN-Bと検出値SEN-Aとの間で符号が反転する。このように、前後速度の定義は、第1モードと第2モードとで異なり、モードに応じて切り替えられる。
尚、第1モード用の定義内容と第2モード用の定義内容を入れ替えてもよい。これは、以下の説明においても同様である。いずれにせよ、第1モードと第2モードとで異なる定義が用いられる。
他の例として、車速が正値であることを前提とした車両走行制御について考える。車速は、車輪速センサ21あるいは車速センサ22によって検出される。その車速の検出値SEN-Aの符号は、車両1の進行方向が第1方向D1か第2方向D2かによって異なるとする。例えば、車両1が第1方向D1に移動する場合、車速の検出値SEN-Aの符号は正であり、車両1が第2方向D2に移動する場合、車速の検出値SEN-Aの符号は負である。第1モードにおいて、車速の入力値SEN-Bは、検出値SEN-Aである。第2モードにおいて、車速の入力値SEN-Bは、検出値SEN-Aの絶対値である。このように、車速の定義は、第1モードと第2モードとで異なり、モードに応じて切り替えられる。
更に他の例として、加速度センサ23によって検出される加速度(前後加速度、横加速度)について考える。加速度の検出値SEN-Aの符号は、車両1の加速方向が第3方向か第4方向かによって異なるとする。前後加速度の場合、第3方向は第1方向D1であり、第4方向は第2方向D2である。横加速度の場合、第3方向は、第1方向D1及び第2方向D2と直交する横方向であり、第4方向は、第3方向と反対の横方向である。第1モードにおいて、加速度の入力値SEN-Bは、検出値SEN-Aである。一方、第2モードにおいて、加速度の入力値SEN-Bは、検出値SEN-Aの-1倍である。言い換えれば、第2モードでは、入力値SEN-Bと検出値SEN-Aとの間で符号が反転する。このように、加速度の定義は、第1モードと第2モードとで異なり、モードに応じて切り替えられる。
1-3-2.操舵制御に関連する定義の切り替え
図6は、操舵制御に関連する定義の切り替え例を示している。制御装置100は、操舵制御に関連する算出制御量CON-Aを算出する。算出制御量CON-Aは、前輪の目標操舵量である前輪操舵量STFと、後輪の目標操舵量である後輪操舵量STRとを含んでいる。制御装置100は、前方向を参照して、前輪操舵量STFと後輪操舵量STRを算出制御量CON-Aとして算出する。
操舵装置51の制御に用いられる指示制御量CON-Bは、第1車輪5-1の目標操舵量である第1操舵量ST1と、第2車輪5-2の目標操舵量である第2操舵量ST2とを含んでいる。第1モードにおいて、第1操舵量ST1は、前輪操舵量STFであり、第2操舵量ST2は、後輪操舵量STRである。一方、第2モードにおいて、第1操舵量ST1は、後輪操舵量STRであり、第2操舵量ST2は、前輪操舵量STFである。このように、制御量CONの定義は、第1モードと第2モードとで異なり、モードに応じて切り替えられる。
ここで、制御量CONを算出するための演算処理自体は、第1モードと第2モードとで同じであることに留意されたい。モードによらず、制御装置100は、必要な前輪操舵量STFと後輪操舵量STRを算出するだけである。制御量CONの定義がモードに応じて適切に切り替えられるため、制御量CONの演算処理自体はモードに応じて切り替える必要が無いのである。第1モード用の演算処理と第2モード用の演算処理を用意する必要が無いため、演算処理が簡略化される。このことは、演算負荷の軽減及び演算時間の短縮に寄与する。
1-3-3.加減速制御に関連する定義の切り替え
図7は、加減速制御に関連する定義の切り替え例を示している。
一例として、駆動装置52を制御するための制御量CONについて考える。まず、第1車輪5-1と第2車輪5-2の一方が駆動輪である場合を考える。算出制御量CON-Aは、目標駆動力ACTを含んでいる。制御装置100は、車両1を前進させるために必要な目標駆動力ACTを算出する。駆動装置52の制御に用いられる指示制御量CON-Bは、駆動輪に対する指示駆動力ACを含んでいる。第1モードにおいて、指示駆動力ACは、目標駆動力ACTである。一方、第2モードにおいて、指示駆動力ACは、目標駆動力ACTの-1倍である。言い換えれば、第2モードでは、指示制御量CON-Bと算出制御量CON-Aとの間で符号が反転する。
次に、第1車輪5-1と第2車輪5-2の両方が駆動輪である場合を考える。算出制御量CON-Aは、前輪の目標駆動力である前輪駆動力ACFと、後輪の目標駆動力である後輪駆動力ACRとを含んでいる。制御装置100は、前方向を参照して、前輪駆動力ACFと後輪駆動力ACRを算出制御量CON-Aとして算出する。駆動装置52の制御に用いられる指示制御量CON-Bは、第1車輪5-1の目標駆動力である第1駆動力AC1と、第2車輪5-2の目標駆動力である第2駆動力AC2とを含んでいる。第1モードにおいて、第1駆動力AC1は、前輪駆動力ACFであり、第2駆動力AC2は、後輪駆動力ACRである。一方、第2モードにおいて、第1駆動力AC1は、後輪駆動力ACRの-1倍であり、第2駆動力AC2は、前輪駆動力ACFの-1倍である。
他の例として、制動装置53を制御するための制御量CONについて考える。算出制御量CON-Aは、前輪の目標制動力である前輪制動力BRFと、後輪の目標制動力である後輪制動力BRRとを含んでいる。制御装置100は、前方向を参照して、前輪制動力BRFと後輪制動力BRRを算出制御量CON-Aとして算出する。制動装置53の制御に用いられる指示制御量CON-Bは、第1車輪5-1の目標制動力である第1制動力BR1と、第2車輪5-2の目標制動力である第2制動力BR2とを含んでいる。第1モードにおいて、第1制動力BR1は、前輪制動力BRFであり、第2制動力BR2は、後輪制動力BRRである。一方、第2モードにおいて、第1制動力BR1は、後輪制動力BRRの-1倍であり、第2制動力BR2は、前輪制動力BRFの-1倍である。
制動装置53のキャリパー等のアクチュエータに対する指示量が、正あるいは負の符号を有する場合も同様である。
このように、制御量CONの定義は、第1モードと第2モードとで異なり、モードに応じて切り替えられる。制御量CONの定義がモードに応じて適切に切り替えられるため、制御量CONの演算処理自体をモードに応じて切り替える必要は無い。第1モード用の演算処理と第2モード用の演算処理を用意する必要が無いため、演算処理が簡略化される。このことは、演算負荷の軽減及び演算時間の短縮に寄与する。
1-4.制御装置による処理
図8は、本実施の形態に係る制御装置100の機能構成例を示すブロック図である。制御装置100は、機能ブロックとして、制御量演算部110、定義切替部120、及びモード判定部130を備えている。これら機能ブロックは、制御装置100のプロセッサ101がメモリ102に格納された制御プログラムを実行することにより実現される。
制御量演算部110は、検出パラメータSEN及び運転環境情報ENVに基づいて、車両走行制御のための制御量CONを算出する。より詳細には、制御量演算部110は、検出パラメータSENの入力値SEN-Bに基づいて、算出制御量CON-Aを算出する。この制御量演算部110における演算処理を、第1モードと第2モードとで切り替える必要はない。よって、制御量演算部110にかかる演算負荷が軽減され、また、演算時間が短縮される。
定義切替部120は、定義情報DEFを保持している。定義情報DEFは、検出値SEN-Aと入力値SEN-Bとの間の対応関係、及び、算出制御量CON-Aと指示制御量CON-Bとの間の対応関係を定義している(図5~図7参照)。このような定義情報DEFは、予め作成され、制御装置100のメモリ102に格納される。
定義切替部120は、走行状態センサ20から検出値SEN-Aを受け取る。定義切替部120は、定義情報DEFを参照して、検出値SEN-Aに対応付けられた入力値SEN-Bを取得する。言い換えれば、定義切替部120は、検出値SEN-Aを入力値SEN-Bに変換する。そして、定義切替部120は、入力値SEN-Bを制御量演算部110に出力する。
また、定義切替部120は、制御量演算部110によって算出された算出制御量CON-Aを受け取る。定義切替部120は、定義情報DEFを参照して、算出制御量CON-Aに対応付けられた指示制御量CON-Bを取得する。言い換えれば、定義切替部120は、算出制御量CON-Aを指示制御量CON-Bに変換する。そして、制御装置100は、指示制御量CON-Bに従って走行装置50を制御する。
更に、定義情報DEFは、第1モード用の第1定義情報DEF1と、第2モード用の第2定義情報DEF2を含んでいる。図5~図7で説明されたように、第1定義情報DEF1による定義と第2定義情報DEF2による定義は異なっている。第1モードでは、定義切替部120は、第1定義情報DEF1を定義情報DEFとして用いる。一方、第2モードでは、定義切替部120は、第2定義情報DEF2を定義情報DEFとして用いる。つまり、定義切替部120は、モードに応じて定義情報DEFを切り替える切替処理を行う。
モード判定部130は、車両走行制御のモードを判定する。例えば、モード判定部130は、運転環境情報ENVに基づいて、所望の進行方向を前方向として決定する。前方向が第1方向D1である場合、モード判定部130は、第1モードを選択する。一方、前方向が第2方向D2である場合、モード判定部130は、第2モードを選択する。つまり、モード判定部130は、車両走行制御のモードを第1モードと第2モードとの間で切り替える切替処理を行う。
モード判定部130は、選択モードを定義切替部120に通知する。定義切替部120は、選択モードに対応した定義情報DEFを用いる。前方向が変わる場合、モード判定部130は、選択モードを切り替え、定義切替部120は、用いる定義情報DEFを切り替える。車両走行制御のモードの切り替えは、定義情報DEFの切り替えであると言うこともできる。
以上に説明されたように、本実施の形態に係る制御装置100は、第1定義情報DEF1と第2定義情報DEF2とを保持している。第1モードでは、制御装置100は、第1定義情報DEF1に従って車両走行制御を行う。一方、第2モードでは、制御装置100は、第2定義情報DEF2に従って車両走行制御を行う。これにより、車両走行制御を適切に行うことが可能となる。
1-5.変形例
上述の説明では、検出パラメータSEN及び制御量CONの両方の定義が切り替えられていた。但し、本実施の形態は、それに限定されない。
制御量CONの定義の切り替えが不要な車両構成の場合、検出パラメータSENの定義だけが切り替えられる。その場合、定義情報DEFは、検出値SEN-Aと入力値SEN-Bとの間の対応関係を定義する。制御装置100によって算出される算出制御量CON-Aは、そのまま指示制御量CON-Bとして用いられる。
検出パラメータSENの定義の切り替えが不要な車両構成の場合、制御量CONの定義だけが切り替えられる。その場合、定義情報DEFは、算出制御量CON-Aと指示制御量CON-Bとの間の対応関係を定義する。検出パラメータSENの検出値SEN-Aは、そのまま入力値SEN-Bとして用いられる。
1-6.まとめ
本実施の形態によれば、自動運転システム10の制御装置100は、車両走行制御を行う。車両走行制御において、制御装置100は、検出パラメータSENに基づいて制御量CONを算出し、制御量CONに従って走行装置50を制御する。
車両走行制御のモードは、第1モードと第2モードを含んでいる。第1モードでは、制御装置100は、第2車輪5-2から第1車輪5-1に向かう第1方向D1を前方向として車両走行制御を行う。一方、第2モードでは、制御装置100は、第1車輪5-1から第2車輪5-2に向かう第2方向D2を前方向として車両走行制御を行う。すなわち、本実施の形態では、前方向及び後方向は固定されておらず、フレキシブルに切り替え可能である。
車両走行制御を適切に行うためには、モード(前方向及び後方向)の切り替えと共に、検出パラメータSENあるいは制御量CONの定義も切り替える必要がある。そのために、制御装置100は、検出パラメータSENあるいは制御量CONを定義する定義情報DEFを保持している。定義情報DEFは、第1モード用の第1定義情報DEF1と、第2モード用の第2定義情報DEF2を含んでいる。第1モードでは、制御装置100は、第1定義情報DEF1に従って車両走行制御を行う。一方、第2モードでは、制御装置100は、第2定義情報DEF2に従って車両走行制御を行う。このようにして、前方向と後方向をフレキシブルに切り替え、且つ、適切に車両走行制御を行うことが可能となる。
本実施の形態によれば、前方向がフレキシブルに切り替え可能であるため、車両1を効率的に移動させることができる場合がある。例えば、図4で説明されたように、前方向をフレキシブルに切り替えることによって、B地点からC地点に移動する際に車両1を回頭する必要がなくなる。
また、制御装置100は、車両1が後退することなく常に前方向に前進するように、車両走行制御を行ってもよい。これにより、車両走行制御に必要な処理が簡略化される。
本実施の形態に係る技術は、例えばMaaS(Mobility as a Service)等にも適用され得る。
2.第2の実施の形態
上述の通り、制御装置100は、車両走行制御のモードを第1モードと第2モードとの間で切り替える「切替処理」を行う。車両1の挙動が大きい最中に切替処理が行われると、車両1の挙動が意図しないものになる可能性がある。また、車両1に対する制御(操作)が大きい最中に切替処理が行われると、車両1の制御が意図しないものになる可能性がある。これらのことは、安定的な車両走行制御の観点から好ましくない。また、意図しない車両1の挙動や制御に対して、車両1の乗員が違和感を覚える。そこで、第2の実施の形態では、制御装置100は、状況に応じて切替処理を許可/禁止する。
例えば、車両1の挙動の大きさを表す「車両挙動量」を考える。車両挙動量としては、前後速度、前後加速度、横加速度、上下加速度、ヨーレート、ピッチレート、ロールレート、等が例示される。切替許可条件は、車両挙動量が許容範囲内にあることである。言い換えれば、切替許可条件は、車両挙動量が閾値以下であることである。制御装置100は、検出パラメータSENに基づいて、切替許可条件が成立するか否かを判定することができる。
他の例として、車両1の制御の大きさを表す「車両制御量」を考える。車両制御量としては、前輪操舵角、前輪操舵角速度、前輪操舵角加速度、後輪操舵角、後輪操舵角速度、後輪操舵角加速度、駆動力、制動力、等が例示される。切替許可条件は、車両制御量が許容範囲内にあることである。言い換えれば、切替許可条件は、車両制御量が閾値以下であることである。制御装置100は、制御量CONに基づいて、切替許可条件が成立するか否かを判定することができる。
切替許可条件は、車両挙動量と車両制御量のそれぞれが閾値以下であることであってもよい。制御装置100は、検出パラメータSEN及び制御量CONに基づいて、切替許可条件が成立するか否かを判定することができる。
切替許可条件が成立しない場合、制御装置100は、切替処理を禁止する。一方、切替許可条件が成立する場合、制御装置100は、切替処理を許可する。切替処理が許可された後、制御装置100は、切替処理を実行する。
第2の実施の形態によれば、車両挙動量あるいは車両制御量が大きい期間に切替処理が行われることが防止される。これにより、車両1の挙動あるいは制御が意図しないものになることが防止される。その結果、車両走行制御の安定性が確保される。また、車両走行制御に対する違和感が抑制される。
3.第3の実施の形態
第3の実施の形態によれば、制御装置100は、切替処理の開始後、切替許可条件が成立する状態を第1期間にわたって維持する。例えば、制御装置100は、制動装置53を制御して、車両1が停止した状態を第1期間にわたって維持する。第1期間は、一定期間であってもよいし、可変期間であってもよい。切替許可条件が成立する状態を第1期間にわたって維持する制御は、以下「状態維持制御」と呼ばれる。
図9は、状態維持制御を説明するためのタイミングチャートである。横軸は時間を表し、縦軸は車両挙動量あるいは車両制御量を表している。時刻taにおいて、車両挙動量あるいは車両制御量が閾値THを下回る。これにより、切替許可条件が成立する。その後、時刻tb~tcの期間、切替処理が行われる。制御装置100は、時刻tb~tcの期間、状態維持制御を行い、切替許可条件が成立する状態を維持する。これにより、切替処理を確実に実行することが可能となる。
図10は、本実施の形態に係る制御装置100の機能構成例を示すブロック図である。制御装置100は、主体切替部140と状態維持制御部150を更に備えている。
主体切替部140は、制御量CONの算出主体を切り替える。通常、主体切替部140は、制御量演算部110を制御量CONの算出主体として選択する。主体切替部140は、モード判定部130からモード切替に関する情報を取得する。切替処理の開始から第1期間にわたって、主体切替部140は、状態維持制御部150を制御量CONの算出主体として選択する。
状態維持制御部150は、検出パラメータSENの検出値SEN-Aに基づいて、指示制御量CON-Bを算出する。このとき、指示制御量CON-Bは、切替許可条件が成立する状態が維持されるように算出される。例えば、状態維持制御部150は、車両1が停止し続けるような目標制動力及び目標駆動力を指示制御量CON-Bとして算出する。そして、制御装置100は、状態維持制御部150によって算出された指示制御量CON-Bに従って走行装置50を制御する。
第3の実施の形態によれば、切替処理の開始後、切替許可条件が成立する状態が維持される。これにより、切替処理を確実に実行することが可能となる。
1 車両
5 車輪
5-1 第1車輪
5-2 第2車輪
10 自動運転システム
20 走行状態センサ
30 運転環境取得装置
50 走行装置
51 操舵装置
52 駆動装置
53 制動装置
100 制御装置
110 制御量演算部
120 定義切替部
130 モード判定部
140 主体切替部
150 状態維持制御部
CON 制御量
CON-A 算出制御量
CON-B 指示制御量
DEF1 第1定義情報
DEF2 第2定義情報
ENV 運転環境情報
SEN 検出パラメータ
SEN-A 検出値
SEN-B 入力値

Claims (11)

  1. 車両の自動運転を制御する自動運転システムであって、
    前記車両は、前後方向に分かれて配置された第1車輪と第2車輪を備え、
    第1方向は、前記第2車輪から前記第1車輪に向かう方向であり、
    第2方向は、前記第1車輪から前記第2車輪に向かう方向であり、
    前記自動運転システムは、
    前記車両の走行状態を表すパラメータを検出するセンサと、
    前記車両の操舵及び加減速を行う走行装置と、
    前記パラメータの検出値に対応付けられた入力値に基づいて制御量を算出し、前記制御量に従って前記走行装置を制御する車両走行制御を行う制御装置と
    を備え、
    定義情報は、前記センサによって検出される前記パラメータの前記検出値と前記制御量の算出に用いられる前記入力値との間の対応関係を定義し、
    前記車両走行制御のモードは、
    前記第1方向を前方向として前記車両走行制御を行う第1モードと、
    前記第2方向を前記前方向として前記車両走行制御を行う第2モードと
    を含み、
    前記制御装置は、
    前記第1モード用の前記定義情報である第1定義情報と、前記第2モード用の前記定義情報である第2定義情報とを保持し、前記車両走行制御の前記モードに応じて前記定義情報を切り替える定義切替部と、
    前記入力値に基づいて前記制御量を算出する制御量演算部と
    を含み、
    前記第1モードにおいて、前記定義切替部は、前記第1定義情報に基づいて前記パラメータの前記検出値を前記入力値に変換し、前記入力値を前記制御量演算部に出力し、
    前記第2モードにおいて、前記定義切替部は、前記第2定義情報に基づいて前記パラメータの前記検出値を前記入力値に変換し、前記入力値を前記制御量演算部に出力する
    自動運転システム。
  2. 請求項1に記載の自動運転システムであって、
    前記検出値の符号は、前記車両の進行方向が前記第1方向か前記第2方向かによって異なり、
    前記第1モードと前記第2モードの一方において、前記入力値は、前記検出値であり、
    前記第1モードと前記第2モードの他方において、前記入力値は、前記検出値の-1倍である
    自動運転システム。
  3. 請求項1又は2に記載の自動運転システムであって、
    前記検出値の符号は、前記車両の加速方向が第3方向か前記第3方向と反対の第4方向かによって異なり、
    前記第1モードと前記第2モードの一方において、前記入力値は、前記検出値であり、
    前記第1モードと前記第2モードの他方において、前記入力値は、前記検出値の-1倍である
    自動運転システム。
  4. 車両の自動運転を制御する自動運転システムであって、
    前記車両は、前後方向に分かれて配置された第1車輪と第2車輪を備え、
    第1方向は、前記第2車輪から前記第1車輪に向かう方向であり、
    第2方向は、前記第1車輪から前記第2車輪に向かう方向であり、
    前記自動運転システムは、
    前記車両の走行状態を表すパラメータを検出するセンサと、
    前記車両の操舵及び加減速を行う走行装置と、
    前記パラメータの検出値に対応付けられた入力値に基づいて制御量を算出し、前記算出された制御量に対応付けられた指示制御量に従って前記走行装置を制御する車両走行制御を行う制御装置と
    を備え、
    定義情報は、前記センサによって検出される前記パラメータの前記検出値と前記制御量の算出に用いられる前記入力値との間の対応関係、及び、前記算出された制御量と前記走行装置の制御に用いられる前記指示制御量との間の対応関係を定義し、
    前記車両走行制御のモードは、
    前記第1方向を前方向として前記車両走行制御を行う第1モードと、
    前記第2方向を前記前方向として前記車両走行制御を行う第2モードと
    を含み、
    前記制御装置は、
    前記第1モード用の前記定義情報である第1定義情報と、前記第2モード用の前記定義情報である第2定義情報とを保持し、前記車両走行制御の前記モードに応じて前記定義情報を切り替える定義切替部と、
    前記入力値に基づいて前記制御量を算出する制御量演算部と
    を含み、
    前記第1モードにおいて、前記定義切替部は、前記パラメータの前記検出値を前記第1定義情報に基づいて前記入力値に変換し、前記入力値を前記制御量演算部に出力し、また、前記制御量演算部によって算出された前記制御量を前記第1定義情報に基づいて前記指示制御量に変換し、
    前記第2モードにおいて、前記定義切替部は、前記パラメータの前記検出値を前記第2定義情報に基づいて前記入力値に変換し、前記入力値を前記制御量演算部に出力し、また、前記制御量演算部によって算出された前記制御量を前記第2定義情報に基づいて前記指示制御量に変換する
    自動運転システム。
  5. 請求項4に記載の自動運転システムであって、
    前記走行装置は、前記第1車輪及び前記第2車輪を独立して転舵する操舵装置を含み、
    前記指示制御量は、前記第1車輪の第1操舵量と、前記第2車輪の第2操舵量とを含み、
    前記制御装置は、前輪操舵量と後輪操舵量を前記制御量として算出し、
    前記第1モードと前記第2モードの一方において、前記第1操舵量は、前記前輪操舵量であり、前記第2操舵量は、前記後輪操舵量であり、
    前記第1モードと前記第2モードの他方において、前記第1操舵量は、前記後輪操舵量であり、前記第2操舵量は、前記前輪操舵量である
    自動運転システム。
  6. 請求項4又は5に記載の自動運転システムであって、
    前記走行装置は、前記第1方向と前記第2方向のそれぞれの駆動力を発生させる駆動装置を含み、
    前記指示制御量は、前記第1車輪及び前記第2車輪の一方である駆動輪に対する指示駆動力を含み、
    前記制御装置は、目標駆動力を前記制御量として算出し、
    前記第1モードと前記第2モードの一方において、前記指示駆動力は、前記目標駆動力であり、
    前記第1モードと前記第2モードの他方において、前記指示駆動力は、前記目標駆動力の-1倍である
    自動運転システム。
  7. 請求項4又は5に記載の自動運転システムであって、
    前記走行装置は、前記第1方向と前記第2方向のそれぞれの駆動力を発生させる駆動装置を含み、
    前記指示制御量は、前記第1車輪の第1駆動力と、前記第2車輪の第2駆動力とを含み、
    前記制御装置は、前輪駆動力と後輪駆動力を前記制御量として算出し、
    前記第1モードと前記第2モードの一方において、前記第1駆動力は、前記前輪駆動力であり、前記第2駆動力は、前記後輪駆動力であり、
    前記第1モードと前記第2モードの他方において、前記第1駆動力は、前記後輪駆動力の-1倍であり、前記第2駆動力は、前記前輪駆動力の-1倍である
    自動運転システム。
  8. 請求項4乃至7のいずれか一項に記載の自動運転システムであって、
    前記走行装置は、前記第1方向と前記第2方向のそれぞれの制動力を発生させる制動装置を含み、
    前記指示制御量は、前記第1車輪の第1制動力と、前記第2車輪の第2制動力とを含み、
    前記制御装置は、前輪制動力と後輪制動力を前記制御量として算出し、
    前記第1モードと前記第2モードの一方において、前記第1制動力は、前記前輪制動力であり、前記第2制動力は、前記後輪制動力であり、
    前記第1モードと前記第2モードの他方において、前記第1制動力は、前記後輪制動力の-1倍であり、前記第2制動力は、前記前輪制動力の-1倍である
    自動運転システム。
  9. 請求項1乃至8のいずれか一項に記載の自動運転システムであって、
    前記制御装置は、前記モードを前記第1モードと前記第2モードとの間で切り替える切替処理を行い、
    切替許可条件は、前記車両の挙動の大きさを表す車両挙動量及び前記車両の制御の大きさを表す車両制御量のうち少なくとも一方が閾値以下であることであり、
    前記制御装置は、
    前記パラメータ及び前記制御量の少なくとも1つに基づいて、前記切替許可条件が成立するか否かを判定し、
    前記切替許可条件が成立する場合、前記切替処理を許可し、
    前記切替許可条件が成立しない場合、前記切替処理を禁止する
    自動運転システム。
  10. 請求項9に記載の自動運転システムであって、
    前記制御装置は、前記切替処理の開始後、前記切替許可条件が成立する状態を第1期間にわたって維持する状態維持制御を行う
    自動運転システム。
  11. 請求項1乃至10のいずれか一項に記載の自動運転システムであって、
    前記制御装置は、前記車両が後退することなく前記前方向に前進するように前記車両走行制御を行う
    自動運転システム。
JP2019061643A 2019-03-27 2019-03-27 自動運転システム Active JP7172794B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019061643A JP7172794B2 (ja) 2019-03-27 2019-03-27 自動運転システム
CN202010081121.9A CN111746541B (zh) 2019-03-27 2020-02-06 自动驾驶系统
DE102020202165.1A DE102020202165A1 (de) 2019-03-27 2020-02-20 Automatisiertes fahrsystem
US16/829,424 US20200307625A1 (en) 2019-03-27 2020-03-25 Automated driving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061643A JP7172794B2 (ja) 2019-03-27 2019-03-27 自動運転システム

Publications (2)

Publication Number Publication Date
JP2020158032A JP2020158032A (ja) 2020-10-01
JP7172794B2 true JP7172794B2 (ja) 2022-11-16

Family

ID=72603992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061643A Active JP7172794B2 (ja) 2019-03-27 2019-03-27 自動運転システム

Country Status (4)

Country Link
US (1) US20200307625A1 (ja)
JP (1) JP7172794B2 (ja)
CN (1) CN111746541B (ja)
DE (1) DE102020202165A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751859B (zh) * 2020-12-25 2022-01-01 財團法人車輛研究測試中心 具自我診斷功能的自動駕駛車輛之模態控制方法及底盤控制模組
CN112896188B (zh) * 2021-02-22 2022-07-15 浙江大学 一种考虑前车遭遇的自动驾驶决策控制的系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310651A (ja) 2000-02-24 2001-11-06 Toyota Motor Corp 自動走行連結車両及びその進行方向切り替え方法
JP2008191800A (ja) 2007-02-02 2008-08-21 Hitachi Ltd 先導者追従車両
JP2018049573A (ja) 2016-09-23 2018-03-29 株式会社小松製作所 作業車両の管理システム及び作業車両の管理方法
JP2019506126A (ja) 2015-11-04 2019-02-28 ズークス インコーポレイテッド ロボット型車両の象限構成

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753511B2 (ja) * 1997-08-27 2006-03-08 本田技研工業株式会社 電動パワーステアリング装置
JP3546830B2 (ja) * 2000-10-05 2004-07-28 トヨタ自動車株式会社 車輌のロール挙動制御装置
JP2010120597A (ja) * 2008-11-21 2010-06-03 Yamaha Motor Co Ltd 車両
JP5723589B2 (ja) * 2010-09-30 2015-05-27 本田技研工業株式会社 前後輪駆動車両
JP6156504B2 (ja) * 2013-09-04 2017-07-05 株式会社村田製作所 手押し車
JP5859093B1 (ja) * 2014-10-29 2016-02-10 三菱電機株式会社 軌道追従制御装置
JP6332170B2 (ja) * 2015-07-01 2018-05-30 トヨタ自動車株式会社 自動運転制御装置
GB2544764B (en) * 2015-11-25 2019-04-03 Jaguar Land Rover Ltd Controller for a motor vehicle and method
CN108698609A (zh) * 2016-02-18 2018-10-23 本田技研工业株式会社 车辆控制装置、车辆控制方法及车辆控制程序
JP6752168B2 (ja) * 2017-02-27 2020-09-09 日立建機株式会社 ダンプトラック及び後退支援装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310651A (ja) 2000-02-24 2001-11-06 Toyota Motor Corp 自動走行連結車両及びその進行方向切り替え方法
JP2008191800A (ja) 2007-02-02 2008-08-21 Hitachi Ltd 先導者追従車両
JP2019506126A (ja) 2015-11-04 2019-02-28 ズークス インコーポレイテッド ロボット型車両の象限構成
JP2018049573A (ja) 2016-09-23 2018-03-29 株式会社小松製作所 作業車両の管理システム及び作業車両の管理方法

Also Published As

Publication number Publication date
JP2020158032A (ja) 2020-10-01
CN111746541A (zh) 2020-10-09
US20200307625A1 (en) 2020-10-01
DE102020202165A1 (de) 2020-10-01
CN111746541B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
US10343718B2 (en) Driver assistance system for vehicle
US10179602B2 (en) Driver assistance system for vehicle
JP6630267B2 (ja) 車両制御装置
US10571910B2 (en) Vehicle control device
JP6432679B2 (ja) 停車位置設定装置及び方法
JP7172257B2 (ja) 自動運転システム
JP6369061B2 (ja) 車線変更支援装置
JP6323572B2 (ja) 目標車速生成装置および走行制御装置
US11731631B2 (en) Vehicle movement control device, method, program, and system, and target trajectory generating device, method, program, and system
CN110678372B (zh) 车辆控制装置
JP7172287B2 (ja) 自動運転システム
CN110446641B (zh) 车辆控制装置和车辆控制方法
US20190315403A1 (en) Vehicle control system
JP7172794B2 (ja) 自動運転システム
CN108238100A (zh) 车辆行驶控制装置和自动驾驶控制方法
JP6979091B2 (ja) 車両制御装置、車両、車両制御方法及びプログラム
CN115195718A (zh) 一种车道保持辅助驾驶方法、系统及电子设备
JP2015074425A (ja) 転舵制御装置及び転舵制御方法
JP7260503B2 (ja) 車両制御装置及び車両制御方法
JP6776543B2 (ja) 車両制御システム
JP2017177943A (ja) 自動操舵装置
WO2020249989A1 (ja) 車両の走行制御方法及び走行制御装置
GB2586822A (en) Vehicle control system and method
JP2021143908A (ja) 車両制御装置、車両、車両制御方法およびプログラム
JP2020163971A (ja) 車両運転支援装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R151 Written notification of patent or utility model registration

Ref document number: 7172794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151