WO2020249989A1 - 車両の走行制御方法及び走行制御装置 - Google Patents

車両の走行制御方法及び走行制御装置 Download PDF

Info

Publication number
WO2020249989A1
WO2020249989A1 PCT/IB2019/000590 IB2019000590W WO2020249989A1 WO 2020249989 A1 WO2020249989 A1 WO 2020249989A1 IB 2019000590 W IB2019000590 W IB 2019000590W WO 2020249989 A1 WO2020249989 A1 WO 2020249989A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
track
traveling
travel
Prior art date
Application number
PCT/IB2019/000590
Other languages
English (en)
French (fr)
Inventor
谷口弘樹
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to US17/618,200 priority Critical patent/US11780474B2/en
Priority to PCT/IB2019/000590 priority patent/WO2020249989A1/ja
Priority to JP2021525388A priority patent/JP7226544B2/ja
Priority to EP19932260.3A priority patent/EP3985355A4/en
Priority to CN201980097476.2A priority patent/CN114207380B/zh
Publication of WO2020249989A1 publication Critical patent/WO2020249989A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3658Lane guidance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/007Emergency override
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0255Automatic changing of lane, e.g. for passing another vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/10Number of lanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed

Definitions

  • the present invention relates to a vehicle travel control method and a travel control device for controlling the travel of the own vehicle.
  • the driving control device executes automatic driving control for the own vehicle to follow the target track and autonomously drive, if there is an obstacle such as road parking on the target track, the driver's steering operation intervenes. You need to avoid things.
  • the driving control of the own vehicle is in an override state in which the manual driving control takes precedence over the automatic driving control.
  • the command value of the steering control by the automatic driving control is corrected according to the intention of the driver.
  • Patent Document 1 does not consider changing the lane of the own vehicle due to overriding. Therefore, when the own vehicle changes lanes due to the intervention of the manual driving control by the driver, the switching between the manual driving control and the automatic driving control may not be performed smoothly, and the behavior of the vehicle may not be stable.
  • An object to be solved by the present invention is to provide a vehicle travel control method and a travel control device capable of stabilizing the behavior of the own vehicle when the own vehicle performing autonomous traveling changes lanes by overriding. ..
  • a track is generated in consideration of the overriding of the own vehicle, and the own vehicle travels along the generated track to change lanes.
  • the behavior of the own vehicle can be stabilized when the own vehicle that performs autonomous traveling changes lanes by the override. It works.
  • the vehicle travel control device 100 has a travel control device 100 that executes automatic operation control for autonomously traveling the own vehicle 101.
  • the travel control system 111 includes a memory 2, a locator 3, a camera 4, an LRF (Laser Range Finder) 5, a steering amount detection unit 6, and a steering actuator 7.
  • the travel control device 100 controls various actuators including the steering actuator 7 so that the own vehicle 101 can autonomously travel based on the information acquired from the memory 2, the locator 3, the camera 4, the LRF 5, and the steering amount detection unit 6. ..
  • the memory 2 stores three-dimensional high-definition map information based on the road shape detected when traveling on an actual road using a data acquisition vehicle.
  • the three-dimensional high-definition map information stored in the memory 2 includes the map information, boundary information at each map coordinate, two-dimensional position information, three-dimensional position information, road information, road attribute information, up information, down information, and lane. Identification information, connection destination lane information, etc. are included.
  • Road information and road attributes include road width, radius of curvature, shoulder structure, road traffic regulations (speed limit, lane changeability), road confluences, branch points, toll gates, lane reduction positions, service areas. / Contains information such as parking areas.
  • the locator 3 is composed of a GPS unit, a gyro sensor, a vehicle speed sensor, and the like.
  • the locator 3 detects radio waves transmitted from a plurality of satellite communications by the GPS unit, periodically acquires the position information of the own vehicle 101, and acquires the position information of the own vehicle 101 and the angle acquired from the gyro sensor.
  • the current position information of the own vehicle 101 is periodically detected based on the change information and the vehicle speed acquired from the vehicle speed sensor.
  • the camera 4 is composed of an image sensor such as a CCD wide-angle camera, and is provided in the front and rear of the own vehicle 101 and on both sides as needed, and acquires image information by photographing the surroundings of the own vehicle 101.
  • the camera 4 may be a stereo camera or an omnidirectional camera, and may include a plurality of image sensors. From the acquired image data, the camera 4 detects the road in front of the own vehicle 101 and structures around the road, road signs, signs, other vehicles, two-wheeled vehicles, bicycles, pedestrians, etc. as the surrounding conditions of the own vehicle 101. To do.
  • the LRF5 is provided on the front, rear, and both sides of the own vehicle 101, and irradiates the periphery of the own vehicle 101 with millimeter waves or ultrasonic waves to scan a predetermined range around the own vehicle 101.
  • the LRF5 detects obstacles such as other vehicles, motorcycles, bicycles, pedestrians, curbs on the shoulder of the road, guardrails, wall surfaces, and embankments existing around the own vehicle 101.
  • the LRF 5 detects the relative position (direction) between the obstacle and the own vehicle 101, the relative speed of the obstacle, the distance from the own vehicle 101 to the obstacle, and the like as the surrounding conditions of the own vehicle 101.
  • the steering amount detection unit 6 is, for example, a sensor that detects the rotation angle of the steering shaft (not shown), and detects the steering amount of the own vehicle 101.
  • the steering actuator 7 is composed of, for example, a motor capable of transmitting torque to the steering shaft, and controls the steering of the own vehicle 101 according to a command value of automatic driving control by the traveling control device 100 or an operation of the steering wheel 103 by the driver.
  • the travel control device 100 is composed of one or more computers and software installed on the computers.
  • the travel control device 100 includes a ROM that stores a program for exerting an automatic driving control function, a CPU that executes the program stored in the ROM, and a RAM that functions as an accessible storage device.
  • the travel control device 100 includes a lane planning unit 10, an override determination unit 20, a first travelable area generation unit 31, a second travelable area generation unit 41, a synthesis unit 45, an own vehicle travel track generation unit 50, and a route tracking control unit. Has 60.
  • the travel control device 100 estimates its own position based on the position information of its own vehicle 9 and the map information of the memory 2 obtained by the locator 3 (step S1). Further, the travel control device 100 recognizes pedestrians and other obstacles around the own vehicle 101 by the camera 4 and the LRF 5 (step S2). Then, the self-position information estimated in step S1 and the information such as obstacles recognized in step S2 are expanded on the map information stored in the memory 2 (step S3).
  • the destination is set on the map information of the memory 2 (step S4), and the route planning from the current location to the destination is performed. (Step S5).
  • the action of the own vehicle 101 is determined based on the map information (step S6). Specifically, for example, at each position of a plurality of intersections existing on the planned route, in which direction the own vehicle 101 turns is determined.
  • drive zone planning is performed on the map information of the memory 2 (step S7). Specifically, which lane the own vehicle 101 should drive in at a predetermined position or a predetermined interval on the route is appropriately set.
  • the travel control device 100 uses the own vehicle 101 based on the input current location and destination position information, the set route information, the drive zone information, the obstacle information recognized by the cameras 4 and the LRF5, and the like.
  • the target trajectory of (step S8) is set. Further, the travel control device 100 controls the behavior of various actuators of the own vehicle 101 so that the own vehicle 101 follows the target trajectory (step S9).
  • the travel control method for the travel control device 100 to set the own vehicle travel trajectory as the target trajectory in step S8 described in FIG. 2 will be described in more detail with reference to FIGS. 1, 3 and 4.
  • the lane planning unit 10 of the travel control device 100 performs drive zone planning based on the map data of the memory 2 and the vehicle position information estimated by the locator 3, and the vehicle 101 performs drive zone planning. It is determined which lane to drive (step S11).
  • the drive zone planning of the lane planning unit 10 corresponds to step S7 shown in FIG.
  • the lane planning unit 10 performs drive zone planning so that the own vehicle 101 travels in the first lane 70 on the left side.
  • the lane planning unit 10 acquires the leftmost boundary 77 and the right side boundary 78 of the first lane 70, and the own vehicle 101 travels between the leftmost boundary 77 and the right side boundary 78 of the first lane 70. Do drive zone planning as you do.
  • the boundary 78 on the right side of the first lane 70 is a lane boundary line between the first lane 70 and the second lane 80 adjacent to the first lane 70.
  • the override determination unit 20 determines whether or not the control of the own vehicle 101 is switched from the automatic driving control to the override state and the lane is changed (step 12). Specifically, as shown in FIG. 4, when the own vehicle 101 is traveling in the first lane 70 due to the automatic driving control of the travel control device 100, and there is a road parking 1 in the traveling direction of the own vehicle 101. , The driver operates the steering wheel 103 to change lanes to the adjacent second lane 80 and try to avoid road parking 1. As a result, the control of the own vehicle 101 is overridden, and the own vehicle changes lanes.
  • the override is a state in which the driver has control of the own vehicle 101.
  • the second lane 80 is a lane existing in the direction in which the override of the own vehicle 101 is executed.
  • the override determination unit 20 detects that the control of the own vehicle 101 is switched to the override state by detecting the steering control by the driver based on the steering amount detected by the steering amount detection unit 6, and the own vehicle 101 Determines whether or not to change lanes. Further, the override determination unit 20 detects the road parking 1 as an obstacle by the camera 4 and the LRF 5 mounted on the own vehicle 101, and when the override of the own vehicle 101 is detected, the own vehicle 101 May be expected to change lanes by overriding.
  • the obstacle detected by the camera 4 and the LRF 5 mounted on the own vehicle 101 is not limited to the road parking 1, and may be a preceding vehicle, a bicycle, a two-wheeled vehicle, or the like.
  • step S12 of FIG. 3 If it is determined in step S12 of FIG. 3 that the lane change of the own vehicle 101 is not performed by the override, the control proceeds to step S13, and the travel control device 100 generates a travelable area along the first lane 70. To do. In this case, the travelable area is not generated in the second lane 80.
  • step S12 when it is determined by the override determination unit 20 that the control of the own vehicle 101 is switched to the override state and the lane change is performed, as shown in FIG. 4, the first travelable area generation unit 31 Generates a first travelable area 73 in which the own vehicle 101 can travel (step S14).
  • the first travelable area 73 is generated along the predicted travel track 74 calculated according to the current steering angle and vehicle speed of the own vehicle 101 under the steering control of the driver.
  • the predicted traveling track 74 may be calculated according to the current yaw rate and vehicle speed of the own vehicle 101.
  • the second travelable area generation unit 41 performs the second The second travelable area 82 is generated according to the shape of the lane 80 (step S15).
  • the position of the second lane 80 is recognized based on the map information stored in the memory 2 and the own vehicle position information estimated by the locator 3.
  • the second travelable area generation unit 41 has acquired the boundary 78 on the left side of the second lane 80 and the boundary 88 on the right side of the second lane 80 from the map information of the memory 2. Therefore, the second travelable area 82 is generated between the left boundary 78 and the right boundary 88 of the second lane 80.
  • the boundary 78 on the left side of the second lane 80 is a lane boundary line between the first lane 70 and the second lane 80.
  • the second travelable region 82 is generated from the position 82b on the own vehicle 101 side in the traveling direction of the first lane 70 at least from the position 82a where the predicted travel track 74 is in contact with the second lane 80. Is set to be done.
  • the synthesizing unit 45 combines the first travelable area 73 and the second travelable area 82 to generate the third travelable area 94 (step S16). Further, the own vehicle traveling track generation unit 50 generates the own vehicle traveling track 95 within the third travelable region 94 (step S17). Further, when it is determined that the lane change of the own vehicle 101 is not performed by the override, the own vehicle traveling track generation unit 50 generates the own vehicle traveling track 95 within the travelable area along the first lane 70. (Step S17).
  • the control from the determination of the override of the own vehicle 101 by the override determination unit 20 to the generation of the own vehicle travel track 95 by the own vehicle travel track generation unit 50 corresponds to the track control in step S8 shown in FIG.
  • the route tracking control unit 60 controls the behavior of the steering actuator 7 of the own vehicle 101 so that the own vehicle 101 follows the traveling track 95 of the own vehicle and travels (step S18).
  • the route following control unit 60 controls the behavior of the own vehicle 101 so that the own vehicle 101 travels in the first travelable region 73 in the first lane 70.
  • the route tracking control unit 60 controls the behavior of the own vehicle 101 so that the own vehicle 101 travels in the second travelable area 82 in the second lane 80.
  • the control of the steering actuator 7 by the path tracking control unit 60 corresponds to the behavior control of the vehicle in step S9 shown in FIG.
  • the travel control device 100 sets the first travelable area 73 and the second travelable area 82 in which the own vehicle 101 can travel when it is determined that the own vehicle 101 changes lanes by overriding. It is connected to generate a third travelable area 94.
  • the first travelable area 73 is generated in the first lane 70 in which the own vehicle 101 travels.
  • the second travelable area 82 is generated in the second lane 80 existing in the direction in which the override of the own vehicle 101 is executed. Then, the travel control device 100 generates the own vehicle travel track 95 within the third travelable region 94.
  • the travel control device 100 smoothly generates the own vehicle traveling track 95 that the own vehicle 101 should follow while reflecting the driver's request. ..
  • the traveling control of the own vehicle 101 can be smoothly returned to the automatic driving control again from the override state. Therefore, the behavior of the own vehicle 101 when the lane is changed by overriding is stable.
  • the travel control device 100 generates a travelable area in the first lane 70 even when the own vehicle 101 does not change lanes due to the override. Then, the travel control device 100 generates an own vehicle traveling track for traveling the own vehicle 101 within the travelable area generated in the first lane 70. In this case, the travel control device 100 does not generate a travelable area in the adjacent second lane 80 in order to stably continue the travel of the own vehicle 101 in the first lane 70. Therefore, the travel control device 100 according to this embodiment generates a second travelable area 82 in the second lane 80 at a timing when the lane change is required, while traveling in the first lane 70 when the lane change is not required. Generate the own vehicle driving track within the possible area. As a result, even when the own vehicle 101 does not change lanes due to the override, the travel control device 100 can generate an appropriate own vehicle travel track, and the own vehicle 101 is stable along the first lane 70. You can continue running.
  • the second lane 82 is set in the adjacent second lane 80. It may be generated. That is, in the flowchart of FIG. 3, the generation of the first travelable area is shown as step S14, but the first travelable area 73 of step S14 is generated between steps S11 and S12 of the flowchart of FIG. Processing may come. If YES is determined in the determination that there is a lane change due to the override in step S12, the process may flow from step S12 to step S15 as much as step S14 comes between steps S11 and S12.
  • the first travelable area 73 is generated based on the predicted travel track 74 according to the override of the own vehicle 101. This makes it easier to generate the own vehicle traveling track 95 based on the traveling track required by the driver. Therefore, the own vehicle traveling track 95 becomes a track that reflects the driver's request, and the discomfort felt by the driver during traveling can be suppressed.
  • the second travelable area 82 is set so as to be generated from the position 82b on the own vehicle 101 side in the traveling direction of the first lane 70 at least from the position 82a where the predicted travel track 74 is in contact with the second lane 80. ..
  • the second travelable area 82 is formed so as to match the shape of the second lane 80 and along the extension direction of the second lane 80. As a result, the own vehicle 101 can change lanes to the second lane 80 more smoothly along the own vehicle traveling track 95.
  • the override determination unit 20 uses the own vehicle. It is determined that 101 changes lanes to the second lane 80 by overriding. As a result, the travel control device 100 can surely generate the third travelable area 94 and the own vehicle travel track 95, so that the own vehicle 101 travels more smoothly while avoiding obstacles and changes lanes. be able to.
  • the route tracking control unit 60 of the travel control device 100 controls the behavior of the own vehicle 101 so that the own vehicle 101 travels in the first travelable area 73 in the first lane 70. Further, the route tracking control unit 60 controls the behavior of the own vehicle 101 so that the own vehicle 101 travels in the second travelable area 82 in the second lane 80. As a result, the travel control device 300 can smoothly travel the own vehicle 101 along the own vehicle travel track 95 while reflecting the steering control by the driver in the behavior of the own vehicle 101.
  • the first travelable area 73 is generated based on the current steering angle and vehicle speed of the own vehicle 101, or the predicted travel track 74 calculated from the current yaw rate and vehicle speed.
  • the travel control device 100 can generate the own vehicle travel track 95 according to the actual travel conditions and the driver's request.
  • the travel control device 100 controls the travel of the own vehicle 101 so as to travel along the own vehicle travel track 95 while decelerating at the timing when the own vehicle 101 changes lanes by overriding. As a result, the own vehicle 101 can more reliably follow the own vehicle traveling track 95 and travel.
  • the width of the first travelable area 73 is variable, and when the driver operates the steering wheel 103 more than once when changing lanes, the width of the first travelable area 73 may be narrower.
  • the narrower the width of the first travelable region 73 the stronger the steering control of the driver in the overriding state is reflected in the generation of the own vehicle traveling track 95.
  • the wider the width of the first travelable region 73 the smoother the own vehicle travel track 95. Further, the width of the first travelable area 73 may change according to the travel mode of the own vehicle 101.
  • the travel control device 200 according to the second embodiment of the present invention will be described with reference to FIG.
  • the first travelable area 76, the third travelable area 96, and the own vehicle travel track 97 are the first travelable area 73, the third travelable area 94, and the own vehicle travel track 95 of the first embodiment. It is formed in a different manner from.
  • the travel control device 200 according to the second embodiment has the same configuration as the travel control device 100 according to the first embodiment shown in FIG. Further, the flow of the travel control method for setting the own vehicle travel track 97 by the travel control device 200 is the same as the flow shown in FIG. Further, since the same reference numerals as those shown in FIGS. 1 to 4 indicate the same or similar configuration, detailed description thereof will be omitted.
  • the camera 4 and the LRF 5 detect the road parking 1 as an obstacle. Then, the override determination unit 20 detects the override of the own vehicle 101, and determines that the own vehicle 101 changes lanes to the second lane 80 by the override.
  • the first travelable area generation unit 31 sets the first travelable area 76 in accordance with the shape of the first lane 70. Generate. The first travelable area 76 is generated on the first lane 70 up to the point 75 on the front side of the road parking 1.
  • the second travelable area generation unit 41 performs the second A second travelable area 82 is generated along the lane 80.
  • the synthesis unit 45 combines the first travelable area 76 and the second travelable area 82 to generate the third travelable area 96. Further, the own vehicle traveling track generation unit 50 generates the own vehicle traveling track 97 within the third travelable region 96.
  • the travel control device 200 generates the first travelable area 76 according to the shape of the first lane 70, and creates the second travelable area 82 according to the shape of the second lane 80. Generate. Then, the first travelable area 76 and the second travelable area 82 are connected, and the third travelable area 96 is generated. The travel control device 200 generates the own vehicle travel track 97 within the third travelable region 96. As a result, the area in which the own vehicle 101 can travel can be set widely, so that the area in which the own vehicle traveling track 97 can be generated is expanded. Therefore, it is possible to generate the own vehicle traveling track 97 that does not give a sense of discomfort to the occupants of the own vehicle 101.
  • the first travelable area 76 is generated on the first lane 70 up to the point 75 on the front side of the road parking 1 as an obstacle detected by the camera 4 and the LRF5. As a result, the own vehicle 101 can smoothly change lanes while surely avoiding the road parking 1.
  • the travel control device 300 of the control system 102 shown in FIG. 6 the first travelable area generation unit 31 of the travel control device 100 shown in FIG. 1 is used as the first track generation unit 30, and the second travelable area generation unit 41 is designated as the second travelable area generation unit 41.
  • the two orbit generation units 40 are replaced with each other. Further, the travel control device 300 does not have a configuration corresponding to the synthesis unit 45 of the travel control device 100.
  • the first track generation unit 30 when the control of the own vehicle 101 is switched to the override state by the override determination unit 20 and it is determined that the lane change is performed, the first track generation unit 30 overrides the own vehicle 101.
  • the first orbit 79 corresponding to the above is generated (step S24). Specifically, the first track 79 is generated according to the current steering angle and vehicle speed of the own vehicle 101 under the steering control of the driver. Further, the first track 79 may be generated according to the current yaw rate and vehicle speed of the own vehicle 101.
  • the second track generation unit 40 causes the second lane 80.
  • a second orbit 81 is generated along the line (step S25). The second track 81 is generated so as to pass through the center between the boundaries 78 and 88 of the second lane 80.
  • the own vehicle traveling track generation unit 50 generates the own vehicle traveling track 98 by combining the first track 79 and the second track 81 (step S26). Further, the route tracking control unit 60 controls the behavior of the steering actuator 7 of the own vehicle 101 so that the own vehicle 101 travels following the own vehicle traveling track 98 (step S18). If it is determined in step S12 that the own vehicle 101 does not change lanes by overriding, the route tracking control unit 60 follows the own vehicle traveling track set in advance by the own vehicle 101 and follows the first lane. The behavior of the own vehicle 101 is controlled so as to travel 70 (step S18).
  • the override determination unit 20 determines the override of the own vehicle 101
  • the first track generation unit 30 generates the first track 79
  • the second track generation unit 40 generates the second track 81
  • the own vehicle travel track generation unit The generation of the own vehicle traveling track 98 by 50 corresponds to the track control in step S8 shown in FIG.
  • the travel control device 300 when the own vehicle 101 changes lanes by overriding, the travel control device 300 according to this embodiment combines the first track 79 and the second track 81 to generate the own vehicle travel track 98. Then, the travel control device 300 controls the steering actuator 7 of the own vehicle 101 so that the own vehicle 101 travels following the own vehicle travel track 98.
  • the running control of the own vehicle 101 can smoothly return to the automatic driving control again from the overriding state. Therefore, the behavior of the own vehicle 101 when the lane is changed by overriding is stable.
  • the first track 79 is generated according to the current steering angle and vehicle speed of the own vehicle 101, or the current yaw rate and vehicle speed.
  • the travel control device 300 can generate the own vehicle travel track 98 according to the actual travel conditions and the driver's request.
  • the travel control device 300 is capable of second travel generated according to the shape of the first track 79 corresponding to the override of the own vehicle 101 and the shape of the second lane 80 as shown in FIG.
  • the own vehicle traveling track 98 may be generated based on the region 82.
  • the own vehicle 101 may change lanes by overriding after temporarily stopping before the road parking 1. Further, when the traveling own vehicle 101 decelerates before the road parking 1 and changes lanes, the deceleration of the own vehicle 101 may be changed according to the steering amount of the driver in the overridden state.
  • the first lane 70 corresponds to the traveling lane according to the present invention
  • the second lane 80 corresponds to another lane according to the present invention.

Abstract

自車両が、オーバーライドによって走行車線と異なる他車線に車線変更する場合、 車両の走行制御装置は、自車両のオーバーライドに応じた予測走行軌道に基づいて第 1走行可能領域を生成し、他車線に沿った第2走行可能領域を生成する。車両の走行 制御装置は、第1走行可能領域と第2走行可能領域とを接続して第3走行可能領域を 生成し、第3走行可能領域内で自車両走行軌道を生成して、自車両が自車両走行軌道 に沿って走行するように自車両の挙動を制御する。

Description

車両の走行制御方法及び走行制御装置
 本発明は、自車両の走行を制御するための車両の走行制御方法及び走行制御装置に関するものである。
 走行制御装置によって自車両が目標軌道に追従して自律走行を行うための自動運転制御が実行される場合、目標軌道上に路駐車等の障害物が存在すると、ドライバのステアリング操作の介入により障害物を回避する必要がある。この場合、自車両の走行制御は、手動運転制御が自動運転制御に優先するオーバーライドの状態となる。従来の走行制御装置は、自車両のオーバーライド時に、自動運転制御による操舵制御の指令値を、ドライバの意図に応じて補正するものであった。
特開2017−052486号公報
 しかしながら、特許文献1のステアリング装置では、オーバーライドによる自車両の車線変更が考慮されていない。そのため、ドライバによる手動運転制御の介入によって自車両が車線変更する場合に、手動運転制御と自動運転制御との切り替わりがスムーズに行われず、車両の挙動が安定しない可能性があった。
 本発明が解決しようとする課題は、自律走行を行う自車両がオーバーライドによって車線変更する場合に、自車両の挙動を安定させることができる車両の走行制御方法及び走行制御装置を提供することである。
 本発明は、自律走行する自車両が、オーバーライドによって車線変更する場合、自車両のオーバーライドを考慮した軌道を生成し、自車両が生成された軌道に沿って走行して車線変更を行うように自車両の挙動を制御することによって上記課題を解決する。
 本発明によれば、オーバーライドを考慮して生成された軌道に自車両が追従するため、自律走行を行う自車両がオーバーライドによって車線変更する場合に、自車両の挙動を安定させることができる、という効果を奏する。
第1実施形態に係る走行制御装置を含む走行制御システムの構成を示すブロック図である。 図1に示す走行制御装置による全体的な制御の概要を示すフローチャートである。 図1に示す走行制御装置による自車両走行軌道の生成方法を示すフローチャートである。 図1に示す走行制御装置によって生成される自車両走行軌道の例を示す図である。 第2実施形態に係る走行制御装置によって生成される自車両走行軌道の例を示す図である。 第3実施形態に係る走行制御装置を含む走行制御システムの構成を示すブロック図である。 図6に示す走行制御装置による自車両走行軌道の生成方法を示すフローチャートである。 図6に示す走行制御装置によって生成される自車両走行軌道の例を示す図である。
《第1実施形態》
 以下、本発明の最良の実施形態である第1実施形態に係る車両の走行制御装置100について、図1~4に基づいて、説明する。
 図1に示すように、走行制御システム111は、自車両101を自律走行させるための自動運転制御を実行する走行制御装置100を有している。走行制御システム111は、メモリ2、ロケータ3、カメラ4、LRF(Laser Range Finder,レーザレンジファインダ)5、操舵量検出部6及びステアリングアクチュエータ7を含む。走行制御装置100は、メモリ2、ロケータ3、カメラ4、LRF5及び操舵量検出部6から取得した情報に基づいて、自車両101が自律走行できるように、ステアリングアクチュエータ7を含む各種アクチュエータを制御する。
 メモリ2には、データ取得用車両を用いて実際の道路を走行した際に検出された道路形状に基づく三次元高精細地図情報が格納されている。このメモリ2が記憶する三次元高精細地図情報には、地図情報とともに、各地図座標における境界情報、二次元位置情報、三次元位置情報、道路情報、道路属性情報、上り情報、下り情報、レーン識別情報、接続先レーン情報等が含まれている。道路情報及び道路属性には、道路幅、曲率半径、路肩構造物、道路交通法規(制限速度、車線変更の可否)、道路の合流地点、分岐地点、料金所、車線数の減少位置、サービスエリア/パーキングエリア等の情報が含まれている。
 ロケータ3は、GPSユニット、ジャイロセンサ、及び車速センサ等から構成される。ロケータ3は、GPSユニットにより複数の衛星通信から送信される電波を検出し、自車両101の位置情報を周期的に取得するとともに、取得した自車両101の位置情報と、ジャイロセンサから取得した角度変化情報と、車速センサから取得した車速とに基づいて、自車両101の現在の位置情報を周期的に検出する。
 カメラ4は、CCD広角カメラ等のイメージセンサからなり、自車両101に前方、後方及び必要に応じて両側方に設けられ、自車両101の周囲を撮像して画像情報を取得する。カメラ4は、ステレオカメラや全方位カメラであってもよく、複数のイメージセンサを含むようにしてもよい。カメラ4は、取得した画像データから、自車両101の前方に存在する道路及び道路周辺の構造物、道路標示、標識、他車両、二輪車、自転車、歩行者等を自車両101の周囲状況として検出する。
 LRF5は、自車両101の前方、後方及び両側方に設けられ、ミリ波又は超音波を自車両101の周囲に照射して自車両101の周囲の所定範囲を走査する。これにより、LRF5は、自車両101の周囲に存在する他車両、二輪車、自転車、歩行者、路肩の縁石、ガードレール、壁面、盛り土等の障害物を検出する。例えば、LRF5は、障害物と自車両101との相対位置(方位)、障害物の相対速度、自車両101から障害物までの距離等を自車両101の周囲状況として検出する。
 操舵量検出部6は、例えば、ステアリングシャフト(図示せず)の回転角を検出するセンサであり、自車両101の操舵量を検出する。
 ステアリングアクチュエータ7は、例えばステアリングシャフトにトルクを伝達可能なモータからなり、走行制御装置100による自動運転制御の指令値又はドライバによるステアリングホイール103の操作に応じて、自車両101の操舵を制御する。
 走行制御装置100は、一又は複数のコンピュータ及び当該コンピュータにインストールされたソフトウェアにより構成される。走行制御装置100は、自動運転制御機能を発揮させるためのプログラムを格納したROMと、このROMに格納されたプログラムを実行するCPUと、アクセス可能な記憶装置として機能するRAMとから構成される。走行制御装置100は、車線計画部10、オーバーライド判定部20、第1走行可能領域生成部31、第2走行可能領域生成部41、合成部45、自車両走行軌道生成部50及び経路追従制御部60を有している。
 次に、走行制御装置100による全体的な制御の概要について、図2を用いて説明する。
 まず、走行制御装置100は、ロケータ3によって得られた自車両9の位置情報及びメモリ2の地図情報により、自己位置の推定を行う(ステップS1)。また、走行制御装置100は、カメラ4及びLRF5によって、自車両101の周囲の歩行者その他の障害物を認識する(ステップS2)。そして、ステップS1で推定された自己位置の情報と、ステップS2で認識された障害物等の情報とが、メモリ2に格納された地図情報の上に展開される(ステップS3)。
 さらに、ドライバにより目的地が入力され、自律走行制御の開始指示が入力されると、メモリ2の地図情報上に目的地が設定され(ステップS4)、現在地から目的地までのルートプランニングがなされる(ステップS5)。そして、地図情報に基づいて、自車両101の行動が決定される(ステップS6)。具体的には、たとえばプラニングされたルートに存在する複数の交差点の各位置において、自車両101がどの方向に曲がるか等が決定される。そして次に、メモリ2の地図情報上において、ドライブゾーンプランニングが行われる(ステップS7)。具体的には、ルート上の所定位置又は所定間隔において、自車両101がどの車線を走行するべきかが適宜設定される。そして、走行制御装置100は、入力された現在地及び目的地の位置情報、設定されたルート情報、ドライブゾーンの情報、カメラ4及びLRF5により認識された障害物の情報等に基づいて、自車両101の目標軌道を設定する(ステップS8)。さらに、走行制御装置100は、目標軌道に自車両101が追従するように、自車両101の各種アクチュエータの挙動を制御する(ステップS9)。
 図2に記載されたステップS8において走行制御装置100が目標軌道としての自車両走行軌道を設定するための走行制御方法を、図1,3及び4を参照して、より詳細に説明する。
 まず、図3に示すように、走行制御装置100の車線計画部10は、メモリ2の地図データ及びロケータ3によって推定された自車位置情報に基づいて、ドライブゾーンプランニングを行い、自車両101がどの車線を走行すべきかを決定する(ステップS11)。ここで、車線計画部10のドライブゾーンプランニングは、図2に示すステップS7に対応する。図4の例では、車線計画部10は、自車両101が左側の第1車線70を走行するように、ドライブゾーンプランニングを行う。すなわち、車線計画部10は、第1車線70の左端の境界77と右側の境界78とを取得し、自車両101が第1車線70の左端の境界77と右側の境界78との間を走行するようにドライブゾーンプランニングを行う。なお、第1車線70の右側の境界78は、第1車線70と、第1車線70に隣接する第2車線80との間の車線境界線である。
 また、図3に示すように、オーバーライド判定部20は、自車両101の制御が自動運転制御からオーバーライドの状態に切り替わり、車線変更が行われるか否かを判定する(ステップ12)。具体的には、図4に示すように、走行制御装置100の自動運転制御により自車両101が第1車線70を走行しており、かつ、自車両101の進行方向に路駐車1がある場合、ドライバはステアリングホイール103を操作し、隣接する第2車線80に車線変更して路駐車1を避けようとする。これにより、自車両101の制御はオーバーライドの状態となり、自車両は車線変更を行う。オーバーライドとは、自車両101の制御権をドライバが有する状態である。すなわち、自車両101の制御がオーバーライドの状態にある時、ドライバによる手動運転制御が、走行制御装置100による自動運転制御に優先する。なお、第2車線80は、自車両101のオーバーライドが実行された方向に存在する車線である。
 オーバーライド判定部20は、操舵量検出部6によって検出された操舵量に基づいて、ドライバによる操舵制御を検知することにより、自車両101の制御がオーバーライドの状態に切り替わることを検出し、自車両101が車線変更を行うか否かを判定する。また、オーバーライド判定部20は、自車両101に搭載されたカメラ4及びLRF5によって障害物としての路駐車1が検出された場合、かつ、自車両101のオーバーライドが検出された場合に、自車両101がオーバーライドによって車線変更することを予測してもよい。なお、自車両101に搭載されたカメラ4及びLRF5が検出する障害物は、路駐車1に限定されず、先行車、自転車、二輪車等であってもよい。
 図3のステップS12において、オーバーライドによる自車両101の車線変更は行われないと判定された場合、制御はステップS13に進み、走行制御装置100は、第1車線70に沿った走行可能領域を生成する。この場合、第2車線80には、走行可能領域は生成されない。
 一方、ステップS12において、オーバーライド判定部20によって自車両101の制御がオーバーライドの状態に切り替わり、車線変更が行われることが判定された場合、図4に示すように、第1走行可能領域生成部31は、自車両101が走行可能な第1走行可能領域73を生成する(ステップS14)。第1走行可能領域73は、ドライバの操舵制御による自車両101の現在の舵角及び車速に応じて算出された予測走行軌道74に沿って生成される。なお、予測走行軌道74は、自車両101の現在のヨーレート及び車速に応じて算出されてもよい。
 また、オーバーライド判定部20によって自車両101の制御がオーバーライドの状態に切り替わり、自車両101が第2車線80に車線変更を行うと判定された場合、第2走行可能領域生成部41は、第2車線80の形状に合わせて第2走行可能領域82を生成する(ステップS15)。なお、第2車線80の位置は、メモリ2に格納されている地図情報及びロケータ3によって推定された自車位置情報に基づいて認識される。さらに、第2走行可能領域生成部41は、メモリ2の地図情報から、第2車線80の左側の境界78及び第2車線80の右側の境界88を取得している。従って、第2走行可能領域82は、第2車線80の左側の境界78と右側の境界88との間に生成される。なお、第2車線80の左側の境界78は、第1車線70と第2車線80との車線境界線である。また、図4に示すように、第2走行可能領域82は、予測走行軌道74が第2車線80に接する位置82aよりも少なくとも第1車線70の進行方向の自車両101側の位置82bから生成されるように設定される。
 合成部45は、第1走行可能領域73と第2走行可能領域82とを結合させて第3走行可能領域94を生成する(ステップS16)。さらに、自車両走行軌道生成部50は、第3走行可能領域94内で自車両走行軌道95を生成する(ステップS17)。また、オーバーライドによる自車両101の車線変更が行われないと判定された場合は、自車両走行軌道生成部50は、第1車線70に沿った走行可能領域内で自車両走行軌道95を生成する(ステップS17)。ここで、オーバーライド判定部20による自車両101のオーバーライドの判定から自車両走行軌道生成部50による自車両走行軌道95の生成までの制御は、図2に示すステップS8の軌道制御に相当する。
 次に、経路追従制御部60は、自車両101が自車両走行軌道95に追従して走行するように、自車両101のステアリングアクチュエータ7の挙動を制御する(ステップS18)。ここで、経路追従制御部60は、第1車線70内では、自車両101が第1走行可能領域73を走行するように自車両101の挙動を制御する。さらに、経路追従制御部60は、第2車線80内では、自車両101が第2走行可能領域82を走行するように自車両101の挙動を制御する。経路追従制御部60によるステアリングアクチュエータ7の制御は、図2に示すステップS9の車両の挙動制御に相当する。
 以上より、この実施形態に係る走行制御装置100は、自車両101がオーバーライドによって車線変更すると判定された場合、自車両101が走行可能な第1走行可能領域73と第2走行可能領域82とを接続して第3走行可能領域94を生成する。第1走行可能領域73は、自車両101が走行する第1車線70に生成される。また、第2走行可能領域82は、自車両101のオーバーライドが実行された方向に存在する第2車線80に生成される。そして、走行制御装置100は、第3走行可能領域94内で自車両走行軌道95を生成する。これにより、自律走行を行う自車両101がオーバーライドによって車線変更する場合に、走行制御装置100は、ドライバの要求を反映させつつ、自車両101が追従すべき自車両走行軌道95を滑らかに生成する。これにより、自車両101の走行制御は、オーバーライドの状態から、再び自動運転制御にスムーズに復帰することができる。従って、オーバーライドによる車線変更時の自車両101の挙動が安定する。
 また、この実施形態に係る走行制御装置100は、自車両101がオーバーライドによって車線変更しない場合であっても、第1車線70に走行可能領域を生成する。そして、走行制御装置100は、第1車線70に生成した走行可能領域内で自車両101を走行させるための自車両走行軌道を生成する。この場合、走行制御装置100は、第1車線70での自車両101の走行を安定して継続させるために、隣接する第2車線80には走行可能領域を生成しない。従って、この実施形態に係る走行制御装置100は、車線変更が必要なタイミングで第2車線80に第2走行可能領域82を生成する一方、車線変更が不要な場合は、第1車線70の走行可能領域内で自車両走行軌道を生成する。これにより、自車両101がオーバーライドによって車線変更しない場合であっても、走行制御装置100は、適切な自車両走行軌道を生成することができ、自車両101は第1車線70に沿って安定した走行を継続することができる。
 また、自車両101が走行する第1車線70に第1走行可能領域73を生成して走行している際に、オーバーライドを検出した場合、隣接する第2車線80に第2走行可能領域82を生成するようにしてよい。つまり、図3のフローチャートでは、第1走行可能領域の生成がステップS14として示されているが、図3のフローチャートのステップS11とステップS12の間にステップS14の第1走行可能領域73を生成する処理が来るようにしてもよい。ステップS12でオーバーライドによる車線変更有りの判定でYESと判定された場合、ステップS14がステップS11とステップS12の間に来た分、ステップS12からステップS15に処理が流れるようにしてもよい。
 また、この実施形態において、第1走行可能領域73は、自車両101のオーバーライドに応じた予測走行軌道74に基づいて生成される。これにより、ドライバが要求する走行軌道に基づいた自車両走行軌道95が生成しやすくなる。よって、自車両走行軌道95は、ドライバの要求を反映した軌道となり、走行中にドライバが感じる違和感を抑制することができる。
 また、第2走行可能領域82は、予測走行軌道74が第2車線80に接する位置82aよりも少なくとも第1車線70の進行方向の自車両101側の位置82bから生成されるように設定される。これにより、予測走行軌道74と第2走行可能領域82との間が空くことを防止することができるため、より確実に、第1車線70から第2車線80に移る自車両走行軌道95を生成することができる。
 さらに、第2走行可能領域82は、第2車線80の形状に合わせ、第2車線80の延長方向に沿うように形成される。これにより、自車両101は、自車両走行軌道95に沿って、よりスムーズに第2車線80に車線変更を行うことができる。
 また、自車両101の前方の第1車線70上に路駐車1等の障害物があることが検出され、かつ、自車両101のオーバーライドが検出された場合に、オーバーライド判定部20は、自車両101がオーバーライドによって第2車線80に車線変更すると判定する。これにより、走行制御装置100は確実に第3走行可能領域94及び自車両走行軌道95を生成することができるため、自車両101は、障害物を避けつつよりスムーズに走行し、車線変更を行うことができる。
 また、走行制御装置100の経路追従制御部60は、第1車線70内では、自車両101が第1走行可能領域73を走行するように自車両101の挙動を制御する。さらに、経路追従制御部60は、第2車線80内では、自車両101が第2走行可能領域82を走行するように自車両101の挙動を制御する。これにより、走行制御装置300は、ドライバによる操舵制御を自車両101の挙動に反映させつつ、自車両101を自車両走行軌道95に沿ってスムーズに走行させることができる。
 また、第1走行可能領域73は、自車両101の現在の舵角及び車速、又は、現在のヨーレート及び車速から算出される予測走行軌道74に基づいて生成される。これにより、走行制御装置100は、実際の走行状況及びドライバの要求に応じて自車両走行軌道95を生成することができる。
 また、走行制御装置100は、自車両101がオーバーライドによって車線変更するタイミングで、減速しながら自車両走行軌道95に沿って走行するように自車両101の走行を制御する。これにより、自車両101は、より確実に自車両走行軌道95に追従して走行することができる。
 なお、第1走行可能領域73の幅は可変であり、ドライバが車線変更に際して2回以上ステアリングホイール103の操作を行った場合、第1走行可能領域73の幅をより狭くしてもよい。第1走行可能領域73の幅が狭い程、自車両走行軌道95の生成には、オーバーライドの状態におけるドライバの操舵制御がより強く反映される。一方、第1走行可能領域73の幅が広い程、自車両走行軌道95はより滑らかになる。また、第1走行可能領域73の幅は、自車両101の走行モードに応じて変化してもよい。
《第2実施形態》
 次に、本発明の第2実施形態に係る走行制御装置200について、図5に基づいて説明する。この実施形態では、第1走行可能領域76、第3走行可能領域96及び自車両走行軌道97が、第1実施形態の第1走行可能領域73、第3走行可能領域94及び自車両走行軌道95とは異なる態様で形成される。なお、第2実施形態に係る走行制御装置200は、図1に示す第1実施形態に係る走行制御装置100と同一の構成を有する。また、走行制御装置200によって自車両走行軌道97を設定するための走行制御方法のフローは、図4に示すフローと同一である。さらに、図1~4に記載されている符号と同一の符号は、同一又は同様の構成を示しているため、詳細な説明は省略する。
 図5に示すように、自車両101の前方の第1車線70上に路駐車1がある場合、カメラ4及びLRF5は、路駐車1を障害物として検出する。そして、オーバーライド判定部20は、自車両101のオーバーライドを検出し、自車両101がオーバーライドによって第2車線80に車線変更すると判定する。自車両101の制御がオーバーライドの状態に切り替わり、車線変更が行われることが判定された場合、第1走行可能領域生成部31は、第1車線70の形状に合わせた第1走行可能領域76を生成する。第1走行可能領域76は、路駐車1よりも手前側の地点75までの第1車線70上に生成される。
 また、オーバーライド判定部20によって自車両101の制御がオーバーライドの状態に切り替わり、自車両101が第2車線80に車線変更を行うと判定された場合、第2走行可能領域生成部41は、第2車線80に沿って第2走行可能領域82を生成する。
 そして、合成部45は、第1走行可能領域76と第2走行可能領域82とを結合させて第3走行可能領域96を生成する。さらに、自車両走行軌道生成部50は、第3走行可能領域96内で自車両走行軌道97を生成する。
 以上より、この実施の形態に係る走行制御装置200は、第1車線70の形状に合わせて第1走行可能領域76を生成し、第2車線80の形状に合わせて第2走行可能領域82を生成する。そして、第1走行可能領域76と第2走行可能領域82とが接続され、第3走行可能領域96が生成される。走行制御装置200は、第3走行可能領域96内で自車両走行軌道97を生成する。これにより、自車両101が走行可能な領域を広く設定することができるため、自車両走行軌道97を生成できる領域が広がる。従って、自車両101の乗員に違和感を与えることが少ない自車両走行軌道97を生成することができる。
 また、第1走行可能領域76は、カメラ4及びLRF5が検出した障害物としての路駐車1よりも手前側の地点75までの第1車線70上に生成される。これにより、自車両101は、確実に路駐車1を避けつつ、スムーズに車線変更を行うことができる。
《第3実施形態》
 次に、本発明の第3実施形態に係る走行制御装置300について、図6~8に基づいて説明する。図1~5に記載されている符号と同一の符号は、同一又は同様の構成を示しているため、詳細な説明は省略する。
 図6に示す制御システム102の走行制御装置300は、図1に示す走行制御装置100の第1走行可能領域生成部31を第1軌道生成部30に、第2走行可能領域生成部41を第2軌道生成部40に各々替えたものである。また、走行制御装置300は、走行制御装置100の合成部45に相当する構成は備えていない。
 図7及び8に示すように、オーバーライド判定部20によって自車両101の制御がオーバーライドの状態に切り替わり、車線変更が行われると判定された場合、第1軌道生成部30は、自車両101のオーバーライドに応じた第1軌道79を生成する(ステップS24)。具体的には、第1軌道79は、ドライバの操舵制御による自車両101の現在の舵角及び車速に応じて生成される。また、第1軌道79は、自車両101の現在のヨーレート及び車速に応じて生成されてもよい。
 また、オーバーライド判定部20によって自車両101の制御がオーバーライドの状態に切り替わり、自車両101が第2車線80に車線変更を行うと判定された場合、第2軌道生成部40は、第2車線80に沿って第2軌道81を生成する(ステップS25)。第2軌道81は、第2車線80の境界78,88の間の中央を通過するように生成される。
 そして、自車両走行軌道生成部50は、第1軌道79と第2軌道81とを結合させて自車両走行軌道98を生成する(ステップS26)。さらに、経路追従制御部60は、自車両101が自車両走行軌道98に追従して走行するように、自車両101のステアリングアクチュエータ7の挙動を制御する(ステップS18)。なお、ステップS12で、自車両101がオーバーライドによる車線変更を行わないと判定された場合は、経路追従制御部60は、自車両101が予め設定された自車両走行軌道に追従して第1車線70を走行するように、自車両101の挙動を制御する(ステップS18)。
 ここで、オーバーライド判定部20による自車両101のオーバーライドの判定、第1軌道生成部30による第1軌道79の生成、第2軌道生成部40による第2軌道81の生成及び自車両走行軌道生成部50による自車両走行軌道98の生成は、図2に示すステップS8の軌道制御に相当する。
 以上より、この実施の形態に係る走行制御装置300は、自車両101がオーバーライドによって車線変更する場合、第1軌道79と第2軌道81とを結合させて自車両走行軌道98を生成する。そして、走行制御装置300は、自車両101が自車両走行軌道98に追従して走行するように自車両101のステアリングアクチュエータ7を制御する。これにより、自律走行を行う自車両101がオーバーライドによって車線変更する場合に、自車両101の走行制御は、オーバーライドの状態から、再び自動運転制御にスムーズに復帰することができる。従って、オーバーライドによる車線変更時の自車両101の挙動が安定する。
 また、第1軌道79は、自車両101の現在の舵角及び車速、又は、現在のヨーレート及び車速に応じて生成される。これにより、走行制御装置300は、実際の走行状況及びドライバの要求に応じて自車両走行軌道98を生成することができる。
 なお、この実施の形態において、走行制御装置300は、自車両101のオーバーライドに応じた第1軌道79と、図4に示すように第2車線80の形状に合わせて生成された第2走行可能領域82とに基づいて、自車両走行軌道98を生成してもよい。
 さらに、第1~第3実施形態において、自車両101は、路駐車1の手前で一時停止した後にオーバーライドによって車線変更してもよい。また、走行中の自車両101が路駐車1の手前で減速して車線変更する際、オーバーライドの状態におけるドライバの操舵量に応じて自車両101の減速度を変えてもよい。
 上記第1車線70は本発明に係る走行車線に相当し、上記第2車線80は本発明に係る他車線に相当する。
100,200,300…走行制御装置
101…自車両
  1…路駐車
 20…オーバーライド判定部
 30…第1軌道生成部
 31…第1走行可能領域生成部
 40…第2軌道生成部
 41…第2走行可能領域生成部
 45…合成部
 50…自車両走行軌道生成部
 60…経路追従制御部
 70…第1車線(走行車線)
 79…第1軌道
 73,76…第1走行可能領域
 74…予測走行軌道
 80…第2車線(他車線)
 81…第2軌道
 82…第2走行可能領域
 95,97,98…自車両走行軌道
 94,96…第3走行可能領域

Claims (16)

  1.  走行車線に沿って自律走行する自車両が、オーバーライドによって前記走行車線と異なる他車線に車線変更するか否かを判定し、
     前記自車両がオーバーライドによって車線変更すると判定された場合、
     前記走行車線に、前記自車両が走行可能な第1走行可能領域を生成し、
     前記自車両のオーバーライドが実行された方向の前記他車線に、前記自車両が走行可能な第2走行可能領域を生成し、
     前記第1走行可能領域と前記第2走行可能領域とを接続して第3走行可能領域を生成し、
     前記第3走行可能領域内で自車両走行軌道を生成し、
     前記自車両がオーバーライドによって車線変更する場合、前記自車両が前記自車両走行軌道に沿って走行するように前記自車両の挙動を制御する、車両の走行制御方法。
  2.  前記第1走行可能領域は、前記自車両のオーバーライドに応じた予測走行軌道に基づいて生成される、請求項1に記載の車両の走行制御方法。
  3.  前記第1走行可能領域は、前記自車両の現在の舵角及び車速から算出される前記予測走行軌道に基づいて生成される、請求項2に記載の車両の走行制御方法。
  4.  前記第1走行可能領域は、前記自車両の現在のヨーレート及び車速から算出される前記予測走行軌道に基づいて生成される、請求項2に記載の車両の走行制御方法。
  5.  前記第2走行可能領域は、前記予測走行軌道が前記他車線に接する位置よりも少なくとも前記走行車線の進行方向の自車両側の位置から生成されるように設定される、請求項2~4のいずれか一項に記載の車両の走行制御方法。
  6.  前記第2走行可能領域は、前記他車線の形状に合わせて生成される、請求項1~5のいずれか一項に記載の車両の走行制御方法。
  7.  前記自車両の前方の前記走行車線上に障害物があることが検出され、かつ、前記自車両のオーバーライドが検出された場合に、前記自車両がオーバーライドによって前記他車線に車線変更すると判定する、請求項1~6のいずれか一項に記載の車両の走行制御方法。
  8.  前記第1走行可能領域は、前記自車両が走行する前記走行車線の形状に合わせて生成される、請求項1に記載の車両の走行制御方法。
  9.  前記自車両の前方の前記走行車線上に障害物があることが検出され、かつ、前記オーバーライドが検出された場合に、前記自車両はオーバーライドによって前記他車線に車線変更すると判定され、
     前記第1走行可能領域は、前記障害物の手前側の地点まで、前記走行車線に沿って生成される、請求項8に記載の車両の走行制御方法。
  10.  前記自車両が前記自車両走行軌道に沿って走行するように前記自車両の挙動を制御する場合において、
     前記走行車線内では、前記自車両が前記第1走行可能領域を走行するように前記自車両の挙動を制御し、
     前記他車線内では、前記自車両が前記第2走行可能領域を走行するように前記自車両の挙動を制御する、請求項1~9のいずれか一項に記載の車両の走行制御方法。
  11.  前記自車両がオーバーライドによって車線変更するタイミングで、前記自車両が減速するように前記自車両の挙動を制御する、請求項1~10のいずれか一項に記載の車両の走行制御方法。
  12.  走行車線に沿って自律走行する自車両が、オーバーライドによって前記走行車線と異なる他車線に車線変更するか否かを判定し、
     前記自車両がオーバーライドによって車線変更すると判定された場合、
     前記自車両のオーバーライドに応じた第1軌道を生成し、
     前記自車両のオーバーライドが実行された方向の前記他車線に、前記自車両が走行可能な第2走行可能領域を生成し、
     前記第1軌道及び前記第2走行可能領域に基づいて、自車両走行軌道を生成し、
     前記自車両がオーバーライドによって車線変更する場合、前記自車両が前記自車両走行軌道に沿って走行するように前記自車両の挙動を制御する、車両の走行制御方法。
  13.  走行車線に沿って自律走行する自車両が、オーバーライドによって前記走行車線と異なる他車線に車線変更するか否かを判定し、
     前記自車両がオーバーライドによって車線変更すると判定された場合、
     前記自車両のオーバーライドに応じた第1軌道を生成し、
     前記走行車線と異なる前記他車線に沿った第2軌道を生成し、
     前記第1軌道と前記第2軌道とを接続して自車両走行軌道を生成し、
     前記自車両がオーバーライドによって車線変更する場合、前記自車両が前記自車両走行軌道に沿って走行するように前記自車両の挙動を制御する、車両の走行制御方法。
  14.  前記第1軌道は、前記自車両の現在の舵角及び車速に応じて生成される請求項13に記載の車両の走行制御方法。
  15.  前記第1軌道は、前記自車両の現在のヨーレート及び車速に応じて生成される請求項13に記載の車両の走行制御方法。
  16.  走行車線に沿って自律走行する自車両が、オーバーライドによって前記走行車線と異なる他車線に車線変更することを判定するオーバーライド判定部と、
     前記自車両が走行する車線に、前記自車両が走行可能な第1走行可能領域を生成する第1走行可能領域生成部と、
     前記自車両のオーバーライドが実行された方向の前記他車線に、前記自車両が走行可能な第2走行可能領域を生成する第2走行可能領域生成部と、
     前記第1走行可能領域と前記第2走行可能領域とを結合して第3走行可能領域を生成する合成部と、
     前記第3走行可能領域内で自車両走行軌道を生成する自車両走行軌道生成部と、
     前記自車両がオーバーライドによって車線変更する場合、前記自車両が前記自車両走行軌道に沿って走行するように前記自車両の挙動を制御する経路追従制御部とを備える、車両の走行制御装置。
PCT/IB2019/000590 2019-06-13 2019-06-13 車両の走行制御方法及び走行制御装置 WO2020249989A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/618,200 US11780474B2 (en) 2019-06-13 2019-06-13 Vehicle travel control method and vehicle travel control device
PCT/IB2019/000590 WO2020249989A1 (ja) 2019-06-13 2019-06-13 車両の走行制御方法及び走行制御装置
JP2021525388A JP7226544B2 (ja) 2019-06-13 2019-06-13 車両の走行制御方法及び走行制御装置
EP19932260.3A EP3985355A4 (en) 2019-06-13 2019-06-13 VEHICLE MOVEMENT CONTROL METHOD AND DEVICE
CN201980097476.2A CN114207380B (zh) 2019-06-13 2019-06-13 车辆的行驶控制方法及行驶控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000590 WO2020249989A1 (ja) 2019-06-13 2019-06-13 車両の走行制御方法及び走行制御装置

Publications (1)

Publication Number Publication Date
WO2020249989A1 true WO2020249989A1 (ja) 2020-12-17

Family

ID=73780934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000590 WO2020249989A1 (ja) 2019-06-13 2019-06-13 車両の走行制御方法及び走行制御装置

Country Status (5)

Country Link
US (1) US11780474B2 (ja)
EP (1) EP3985355A4 (ja)
JP (1) JP7226544B2 (ja)
CN (1) CN114207380B (ja)
WO (1) WO2020249989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113799797A (zh) * 2021-07-27 2021-12-17 北京三快在线科技有限公司 轨迹规划方法、装置、存储介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215790A (ja) * 2015-05-19 2016-12-22 株式会社デンソー 車線変更計画生成装置、車線変更計画生成方法
JP2017052486A (ja) 2015-09-11 2017-03-16 株式会社ジェイテクト ステアリング装置
JP2017165153A (ja) * 2016-03-14 2017-09-21 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
JP2018202876A (ja) * 2017-05-30 2018-12-27 日産自動車株式会社 先行車判定方法及び先行車判定装置
JP2018203120A (ja) * 2017-06-06 2018-12-27 トヨタ自動車株式会社 操舵支援装置
JP2019034627A (ja) * 2017-08-14 2019-03-07 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム。

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9187117B2 (en) * 2012-01-17 2015-11-17 Ford Global Technologies, Llc Autonomous lane control system
CN103646298B (zh) * 2013-12-13 2018-01-02 中国科学院深圳先进技术研究院 一种自动驾驶方法及系统
DE102015201878A1 (de) * 2015-02-04 2016-08-04 Continental Teves Ag & Co. Ohg Halbautomatisierter Spurwechsel
JP6376059B2 (ja) * 2015-07-06 2018-08-22 トヨタ自動車株式会社 自動運転車両の制御装置
CN108352116B (zh) * 2015-07-31 2022-04-05 日立安斯泰莫株式会社 自身车辆周边信息管理装置
JP6558239B2 (ja) * 2015-12-22 2019-08-14 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム
CN108778885B (zh) * 2016-03-15 2021-09-10 本田技研工业株式会社 车辆控制系统、车辆控制方法及存储介质
US20180188031A1 (en) * 2016-08-31 2018-07-05 Faraday&Future Inc. System and method for calibrating vehicle dynamics expectations for autonomous vehicle navigation and localization
DE102016117438A1 (de) * 2016-09-16 2018-03-22 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren und Vorrichtung zum Steuern einer Bewegung eines Fahrzeugs und Fahrzeugbewegungssteuersystem
US10809719B2 (en) * 2017-08-29 2020-10-20 Uatc, Llc Systems and methods of controlling an autonomous vehicle using an enhanced trajectory following configuration
US10614717B2 (en) * 2018-05-17 2020-04-07 Zoox, Inc. Drive envelope determination
US11639195B2 (en) * 2019-02-27 2023-05-02 Steering Solutions Ip Holding Corporation Lane change assistant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215790A (ja) * 2015-05-19 2016-12-22 株式会社デンソー 車線変更計画生成装置、車線変更計画生成方法
JP2017052486A (ja) 2015-09-11 2017-03-16 株式会社ジェイテクト ステアリング装置
JP2017165153A (ja) * 2016-03-14 2017-09-21 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
JP2018202876A (ja) * 2017-05-30 2018-12-27 日産自動車株式会社 先行車判定方法及び先行車判定装置
JP2018203120A (ja) * 2017-06-06 2018-12-27 トヨタ自動車株式会社 操舵支援装置
JP2019034627A (ja) * 2017-08-14 2019-03-07 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム。

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113799797A (zh) * 2021-07-27 2021-12-17 北京三快在线科技有限公司 轨迹规划方法、装置、存储介质及电子设备
CN113799797B (zh) * 2021-07-27 2022-07-12 北京三快在线科技有限公司 轨迹规划方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
JP7226544B2 (ja) 2023-02-21
JPWO2020249989A1 (ja) 2020-12-17
CN114207380B (zh) 2024-01-16
US20220266858A1 (en) 2022-08-25
CN114207380A (zh) 2022-03-18
EP3985355A4 (en) 2022-09-07
US11780474B2 (en) 2023-10-10
EP3985355A1 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
EP3611069B1 (en) Vehicle control device
RU2741126C1 (ru) Способ управления движением и устройство управления движением для транспортного средства с помощью при вождении
JP6939428B2 (ja) 車両制御装置
JP2019156174A (ja) 車両制御装置、車両、車両制御方法およびプログラム
JP6825081B2 (ja) 車両制御装置及び車両制御方法
US20170351262A1 (en) Target pathway generating device and driving control device
RU2745936C1 (ru) Устройство определения положения стоп-линии и система управления транспортным средством
US10854083B2 (en) Vehicle control device, vehicle control method, and storage medium
EP3842315B1 (en) Autonomous driving vehicle three-point turn
JP7439911B2 (ja) 走行支援方法、及び、走行支援装置
WO2016189727A1 (ja) 走行制御装置及び方法
JP7035408B2 (ja) 車両走行制御方法及び装置
JP7379033B2 (ja) 運転支援方法及び運転支援装置
WO2018211645A1 (ja) 運転支援方法及び運転支援装置
JP2021041754A (ja) 運転制御方法及び運転制御装置
RU2724213C1 (ru) Способ генерации целевой скорости и устройство генерации целевой скорости транспортного средства с содействием вождению
US11577758B2 (en) Autonomous vehicle park-and-go scenario design
JP7314995B2 (ja) 車両の走行制御方法及び走行制御装置
WO2020249989A1 (ja) 車両の走行制御方法及び走行制御装置
JP7141421B2 (ja) 車両制御装置、車両制御方法、およびプログラム
RU2783328C1 (ru) Способ управления движением и устройство управления движением для транспортного средства
JP7258677B2 (ja) 運転制御方法及び運転制御装置
WO2024069690A1 (ja) 運転支援方法及び運転支援装置
JP2023154622A (ja) 運転支援方法及び運転支援装置
JP2023169524A (ja) 車両の運転支援方法及び運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019932260

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019932260

Country of ref document: EP

Effective date: 20220113