JP7170438B2 - 基板処理装置及び判定方法 - Google Patents

基板処理装置及び判定方法 Download PDF

Info

Publication number
JP7170438B2
JP7170438B2 JP2018126903A JP2018126903A JP7170438B2 JP 7170438 B2 JP7170438 B2 JP 7170438B2 JP 2018126903 A JP2018126903 A JP 2018126903A JP 2018126903 A JP2018126903 A JP 2018126903A JP 7170438 B2 JP7170438 B2 JP 7170438B2
Authority
JP
Japan
Prior art keywords
processing
substrate
timing
time
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018126903A
Other languages
English (en)
Other versions
JP2020009810A (ja
Inventor
謙 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2018126903A priority Critical patent/JP7170438B2/ja
Priority to CN201980015527.2A priority patent/CN111771257B/zh
Priority to US16/971,866 priority patent/US11461136B2/en
Priority to KR1020207024863A priority patent/KR20210027233A/ko
Priority to PCT/JP2019/024455 priority patent/WO2020008892A1/ja
Priority to TW108121968A priority patent/TWI842717B/zh
Publication of JP2020009810A publication Critical patent/JP2020009810A/ja
Application granted granted Critical
Publication of JP7170438B2 publication Critical patent/JP7170438B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • G06F9/4887Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues involving deadlines, e.g. rate based, periodic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • General Factory Administration (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本開示は、基板処理装置及び判定方法に関する。
従来より、基板処理装置では、複数の基板(ウェハ)を処理する際、"OR搬送"(異なるウェハの異なるプロセスモジュールへの搬送)を行い、複数のプロセスモジュールにて並列処理させることで、処理効率の向上を実現している。
また、基板処理装置では、OR搬送により複数のウェハの並列処理を開始する際、各プロセスモジュールの使用状況を参照する。そして、使用可能なプロセスモジュールがある場合には、当該プロセスモジュールにてウェハの処理を開始させることで、各プロセスモジュールの稼働率の向上を実現している。
一方で、各ウェハの製品品質を達成するための「条件」として、一般に、基板処理装置に対しては、工程滞在時間の上下限値(いわゆる"Q-time")が指定され、基板処理装置内における各ウェハの工程滞在時間が管理される。
特開2012-216852号公報
本開示は、基板処理装置において、指定された条件を満たすOR搬送を実現する技術を提供する。
本開示の一態様による基板処理装置は、例えば、以下のような構成を有する。即ち、
クラスタツールの基板処理装置であって、
複数のプロセスモジュールそれぞれの、各処理タイミングにおける使用状況を参照し、各処理タイミングにおいて使用可能なプロセスモジュールの中から、処理対象のコントロールジョブに含まれる各基板の処理を実行可能なプロセスモジュールを特定する特定部と、
前記特定部により特定されたプロセスモジュールの各処理タイミングに、前記各基板の処理を割り当て、前記各基板の処理の開始から終了までの時間を算出する算出部と、
前記算出部により算出された時間が、指定された条件を満たすよう、前記各基板の処理を開始する開始タイミングを決定する決定部とを有する。
本開示によれば、基板処理装置において、指定された条件を満たすOR搬送を実現する技術を提供することができる。
基板処理システムの全体構成の一例を示す図である。 基板処理装置が有する各構成要素の一例を示す図である。 制御装置のハードウェア構成の一例を示す図である。 基板処理システムにおける処理の流れを示すシーケンス図である。 PJ及びCJの生成例を示す図である。 終了時刻予測処理の具体例を示す図である。 並び替え処理の具体例を示す図である。 開始タイミング決定処理の具体例を示す図である。 制御装置による制御処理の流れを示すフローチャートである。
以下、各実施形態の詳細について、添付の図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する。
[第1の実施形態]
<基板処理システムの全体構成>
はじめに、第1の実施形態に係る基板処理装置を有する基板処理システムの全体構成について説明する。図1は、基板処理システムの全体構成の一例を示す図である。図1に示すように、基板処理システム100は、管理装置110と基板処理装置120とを有する。なお、基板処理システム100において、管理装置110と基板処理装置120とは、ネットワーク140を介して通信可能に接続される。
管理装置110は、基板処理装置120を管理する装置であり、ジョブ生成部111を有する。ジョブ生成部111は、基板処理装置120が、基板("ウェハ")に対して実行する処理の処理単位を示すジョブを生成し、基板処理装置120に送信する。
ジョブ生成部111により生成されるジョブには、同一の処理内容の処理が実行されるウェハ群("ロット")に対応する処理単位であるプロセスジョブ("PJ")が含まれる。
また、ジョブ生成部111により生成されるジョブには、基板処理装置120内の1つのフープ(詳細は後述)に格納される複数のウェハ群に対応し、かつ、複数のPJを含む処理単位群であるコントロールジョブ("CJ")が含まれる。
なお、ジョブ生成部111では、ジョブを生成する際に、Q-timeの指定をあわせて受け付ける。Q-timeとは、基板処理装置120がウェハを処理するにあたり、製品品質を達成するための条件として指定される、「工程滞在時間」の上下限値を指す。
ここで、工程滞在時間とは、1つのCJについて、各ウェハの処理の開始から終了までの時間を指す。具体的には、1つのCJが複数のPJを有する場合にあっては、1つのCJに含まれる各ウェハのうち、最初のPJに含まれる最初のウェハがフープから搬送されてから、最後のPJに含まれる最後のウェハがフープに戻るまでの時間を指す。また、1つのCJが1つのPJのみを有する場合にあっては、工程滞在時間とは、1つのPJに含まれる各ウェハのうち、最初のウェハがフープから搬送されてから、最後のウェハがフープに戻るまでの時間を指す。
基板処理装置120は、CJに含まれるウェハに対して処理を実行するプロセスモジュール("PM")を複数有する装置である。基板処理装置120は、当該複数のPMを含む各構成要素(図1において不図示)と、各構成要素を制御する制御装置130とを有する。
なお、本実施形態において、制御装置130には、受付判定プログラムと、順序決定プログラムと、開始判定プログラムとを含む判定プログラムがインストールされている。そして、当該判定プログラムが実行されることで、制御装置130は、受付判定部131、順序決定部132、開始判定部133として機能する。
受付判定部131は、ジョブ生成部111において生成されたCJについての工程滞在時間が、指定されたQ-timeを超えるか否かを判定する。このとき、受付判定部131では、CJに含まれる各ウェハの処理を実行可能な全てのPMを使用して処理を実行させた場合の工程滞在時間を算出し、判定を行う。
また、受付判定部131では、ジョブ生成部111において生成されたCJについての工程滞在時間が、指定されたQ-timeを超えると判定した場合には、ジョブ生成部111において生成されたジョブについて受け付け不可と判定し、受け付けを拒否する。
一方、受付判定部131では、ジョブ生成部111において生成されたCJについての工程滞在時間が、指定されたQ-timeを超えないと判定した場合には、ジョブ生成部111において生成されたCJについて受け付け可と判定し、受け付けを許可する。
順序決定部132は、受付判定部131がCJの受け付けを許可した場合であって、受付判定部131が受け付けたCJに複数のPJが含まれていた場合に、CJ内において複数のPJを並び替え、実行順序を決定する。
開始判定部133は、受付判定部131が受け付けを許可した処理対象のCJに含まれる各ウェハについて、PMの使用状況を参照しながら、処理の実行を開始するタイミングを決定する。具体的には、開始判定部133は特定部として機能し、基板処理装置120が有する複数のPMの使用状況から、使用可能なPMであって、かつ、処理対象のCJに含まれる各ウェハの処理を実行可能なPMを特定する。なお、ここでいうPMの使用状況とは、他のCJに含まれる各ウェハを処理するために使用中のまたは使用が予定されているPMの各処理タイミングの状況を指す。
また、開始判定部133は算出部として機能し、特定したPMの各処理タイミングに、処理対象のCJに含まれる各ウェハの処理を割り当てることで、工程滞在時間を算出する。このように、開始判定部133では、処理対象のCJに含まれる各ウェハについて処理を開始するにあたり、PMの使用状況を加味した工程滞在時間を算出する。
更に、開始判定部133は決定部として機能し、算出した工程滞在時間がQ-timeを超えることがないように、処理対象のCJに含まれる各ウェハの処理を開始する開始タイミングを決定する。これにより、基板処理装置120によれば、Q-timeを超えないOR搬送を実現することができる。
<基板処理装置の各構成要素の構成>
次に、基板処理装置120の各構成要素について説明する。図2は、基板処理装置が有する各構成要素の一例を示す図である。
図2に示すように、基板処理装置120は、平面視六角形のトランスファモジュール("TM")211と、TM211の一方の側面に接続する2つのPM212、213とを有する。
また、基板処理装置120は、2つのPM212、213に対向するようにTM211の他方の側面に接続する2つのPM214、215を有する。
また、基板処理装置120は、PM213に隣接し、かつ、TM211に接続するPM216と、PM215に隣接し、かつ、TM211に接続するPM217とを有する。更に、基板処理装置120は、矩形状の搬送室としてのローダモジュール("LM")218と、TM211及びLM218の間に配置されて、これらを連結する2つのロードロックモジュール("LLM")219、220を有する。
TM211はその内部に配置された屈伸及び旋回自在な搬送アーム221を有し、該搬送アーム221は、PM212~217や、LLM219、220の間においてウェハWを搬送する。
各PM212~217はウェハWを内部に収容し、該内部において処理ガスが励起されて発生したプラズマを用いてウェハWにプラズマ処理、例えば、ドライエッチング処理を施す。
TM211、PM212~217の内部は減圧状態に維持され、TM211と、PM212~217のそれぞれとは真空ゲートバルブを介して接続される。
基板処理装置120では、LM218の内部圧力が大気圧に維持される一方、TM211の内部圧力は真空に維持される。そのため、各LLM219、220は、それぞれTM211との連結部に真空ゲートバルブを備えるとともに、LM218との連結部に大気ドアバルブを備えることによって、その内部圧力を調整可能な真空予備搬送室として構成される。
LM218には、LLM219、220のほか、例えば、25枚のウェハWを収容するフープ222が載置される、例えば、3つのフープ載置台223が接続されている。更に、LM218には、フープ222から搬出されたウェハWの位置をプリアライメントするオリエンタ224が接続されている。
LLM219、220は、LM218の長手方向に沿う側壁に接続されるとともに、LM218を挟んで3つのフープ載置台223と対向するように配置される。また、オリエンタ224は、LM218の長手方向の一端に配置される。
LM218は、内部に配置された、ウェハWを搬送するスカラ型デュアルアームタイプの搬送アーム225と、各フープ載置台223に対応するように側壁に配置されたウェハWの投入口としての3つのロードポート226とを有する。
搬送アーム225は、フープ載置台223に載置されたフープ222からウェハWをロードポート226経由で取り出し、該取り出したウェハWをLLM219、220やオリエンタ224へ搬出入する。
基板処理装置120は、LM218の長手方向の一端に配置されたオペレーションパネル227を有する。オペレーションパネル227は、例えば、表示部を有し、基板処理装置120の制御装置130(図2において不図示)により制御される各構成要素の動作状況を表示する。
<制御装置のハードウェア構成>
次に、制御装置130のハードウェア構成について説明する。図3は、制御装置のハードウェア構成の一例を示す図である。図3に示すように、制御装置130は、CPU(Central Processing Unit)301、ROM(Read Only Memory)302、RAM(Random Access Memory)303を有する。CPU301、ROM302、RAM303は、いわゆるコンピュータを形成する。
また、制御装置130は、補助記憶装置304、オペレーションパネル227、I/F(Interface)装置305を有する。なお、制御装置130の各ハードウェアは、バス310を介して相互に接続されている。
CPU301は、補助記憶装置304にインストールされている各種プログラム(例えば、判定プログラム(受付判定プログラム、順序決定プログラム、開始判定プログラム)等)を実行する演算デバイスである。
ROM302は、不揮発性メモリである。ROM302は、補助記憶装置304にインストールされている各種プログラムをCPU301が実行するために必要な各種プログラム、データ等を格納する、主記憶デバイスとして機能する。具体的には、ROM302はBIOS(Basic Input/Output System)やEFI(Extensible Firmware Interface)等のブートプログラム等を格納する、主記憶デバイスとして機能する。
RAM303は、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等の揮発性メモリである。RAM303は、補助記憶装置304にインストールされている各種プログラムがCPU301によって実行される際に展開される作業領域を提供する、主記憶デバイスとして機能する。
補助記憶装置304は、各種プログラムや、各種プログラムが実行されることで生成される情報を格納する補助記憶デバイスである。
オペレーションパネル227は、基板処理装置120の各構成要素の動作状況を表示部に表示する。I/F装置305は、基板処理装置120内の各構成要素と接続し、各構成要素との間で通信を行うための接続デバイスである。
<基板処理システムにおける処理の流れ>
次に、基板処理システム100における処理のうち、管理装置110におけるPJの生成から制御装置130における、ウェハに対する処理の開始タイミングの決定に至るまでの流れについて説明する。図4は、基板処理システムにおける処理の流れを示すシーケンス図である。基板処理システム100では、CJが生成されるごとに図4に示す処理を実行し、該CJに含まれる各ウェハの処理を開始する開始タイミングを決定する。
ステップS401において、管理装置110のジョブ生成部111は、プロセスジョブ生成処理を実行し、PJを生成する。
ステップS402において、管理装置110のジョブ生成部111は、コントロールジョブ生成処理を実行し、PJを含むCJを生成して、制御装置130に送信する。
ステップS403において、管理装置110のジョブ生成部111は、Q-time指定処理を実行し、指定されたQ-timeを受け付けて、制御装置130に送信する。
ステップS404において、制御装置130の受付判定部131は、終了時刻予測処理を実行する。具体的には、受付判定部131は、制御装置130より送信されたCJについての工程滞在時間を算出し、該CJに含まれる各ウェハの処理が終了する時刻(終了予測時刻)を予測する。
ステップS405において、制御装置130の受付判定部131は、受け付け可否判定処理を実行する。具体的には、受付判定部131は、ステップS404において予測された終了予測時刻と、管理装置110のジョブ生成部111より送信されたQ-timeから算出される終了許容時刻とを対比し、CJの受け付け可否を判定する。
また、受付判定部131は、受け付け可否の判定結果を管理装置110に送信する。更に、受付判定部131は、受け付け可と判定した場合にあっては、判定結果を、順序決定部132に送信する。
ステップS406において、順序決定部132は、並び替え処理を実行する。具体的には、順序決定部132は、CJに複数のPJが含まれるか否かを判定し、複数のPJが含まれると判定した場合に、CJに含まれる複数のPJを並び替え、実行順序を決定する。また、順序決定部132は、決定した実行順序に並び替えられた複数のPJを含むCJを、開始判定部133に送信する。
ステップS407において、開始判定部133は、開始タイミング決定処理を実行する。具体的には、開始判定部133は、基板処理装置120が有する複数のPMの使用状況を参照する。また、開始判定部133は、使用可能なPMであって、かつ、CJに含まれる各ウェハの処理を実行可能なPMの各処理タイミングに、CJに含まれる各ウェハの処理を割り当てることで、現在の処理タイミングを開始タイミングとした場合の工程滞在時間を算出する。更に、開始判定部133は、算出した工程滞在時間がQ-timeを超えないと判定した場合に、現在の処理タイミングを、CJに含まれる各ウェハの処理を開始する開始タイミングに決定し、CJに含まれる各ウェハの処理を開始する。
<基板処理システムにおける各処理の具体例>
次に、図4に示した各処理のうち、
・ステップS401~402(プロセスジョブ、コントロールジョブ生成処理)、
・ステップS404(終了時刻予測処理)、
・ステップS406(並び替え処理)、
・ステップS407(開始タイミング決定処理)、
の具体例について説明する。
(1)ステップS401~S402(プロセスジョブ、コントロールジョブ生成処理)の具体例
はじめに、ステップS401~S402(プロセスジョブ、コントロールジョブ生成処理)の具体例について説明する。図5は、PJ及びCJの生成例を示す図である。
図5において、CJ510(ジョブ名="CJ1")は、1つのPJ511(ジョブ名="PJ1")を有するCJの一例である。図5に示すように、CJ510が有するPJ511は、3つのPM(モジュール名="PM1"、"PM2"、"PM5")のいずれかのPMで各ウェハの処理を実行することができる。なお、図5の例は、CJ510が有するPJ511は、1ロットあたりのウェハの数が25枚であることを示している。
一方、図5において、CJ520(ジョブ名="CJ1")は、複数のPJ521~524(ジョブ名="PJ1"、"PJ2"、"PJ3"、"PJ4")を有するCJの一例である。
図5に示すように、CJ520が有するPJ521は、3つのPM(モジュール名="PM1"、"PM2"、"PM5")のいずれかのPMで各ウェハの処理を実行することができる。なお、図5の例は、CJ520が有するPJ521は、1ロットあたりのウェハの数が8枚であることを示している。
また、図5に示すように、CJ520が有するPJ522(ジョブ名="PJ2")は、2つのPM(モジュール名="PM1"、"PM2")のいずれかのPMで各ウェハの処理を実行することができる。なお、図5の例は、CJ520が有するPJ522(ジョブ名="PJ2")は、1ロットあたりのウェハの数が6枚であることを示している。
また、図5に示すように、CJ520が有するPJ523(ジョブ名="PJ3")は、1つのPM(モジュール名="PM2")でのみ各ウェハの処理を実行することができる。なお、図5の例は、CJ520が有するPJ523(ジョブ名="PJ3")は、1ロットあたりのウェハの数が5枚であることを示している。
また、図5に示すように、CJ520が有するPJ524(ジョブ名="PJ4")は、1つのPM(モジュール名="PM5")でのみ各ウェハの処理を実行することができる。なお、図5の例は、CJ520が有するPJ524(ジョブ名="PJ4")は、1ロットあたりのウェハの数が4枚であることを示している。
(2)ステップS404(終了時刻予測処理)の具体例
次に、制御装置130の受付判定部131により実行されるステップS404(終了時刻予測処理)の具体例について説明する。図6は、終了時刻予測処理の具体例を示す図である。なお、ここでは説明を簡略化するために、PJを1つのみ有するCJである、CJ510が処理対象のCJであるとして説明する。
図6において、横軸は時刻を表し、縦軸は、CJ510が有するPJ511(ジョブ名="PJ1")に含まれる各ウェハの処理が実行可能なPM(モジュール名="PM1"、"PM2"、"PM5")を表している。
図6に示すように、CJ510が有するPJ511(ジョブ名="JP1")に含まれる25枚の各ウェハ("101"~"125")は、各PM(モジュール名="PM1"、"PM2"、"PM5")の各処理タイミングに順次割り当てられる。
各PM(モジュール名="PM1"、"PM2"、"PM5")におけるウェハの処理時間は、例えば、レシピ実績時間、レシピ残時間、搬送時間等に基づいて予測して生成される。なお、図6において、"連続運転"とは、ウェハを搬送するための準備時間を表している。また、"行き搬送時間"とは、ウェハがフープ222から各PM(モジュール名="PM1"、"PM2"、"PM5")に搬送されるまでの時間を表している。
また、"DMY"とは、各PM(モジュール名="PM1"、"PM2"、"PM5")において、ウェハを処理する前に、ダミーのウェハを処理する時間を表している。更に、"WL"とは、各PM(モジュール名="PM1"、"PM2"、"PM5")において、ウェハレスの状態でドライクリーニングを行う時間を表している。
図6の例では、最も長いPM(モジュール名="PM1")におけるウェハの処理時間に、"帰り搬送時間"(ウェハがモジュール名="PM1"のPMからフープ222に搬送されるまでの時間)を足した時間が、工程滞在時間となる。
図6の例は、PJ511に含まれる各ウェハの処理の実行を開始する時刻を"19:00"とし、終了予測時刻を"19:57"と予測した様子を示している。なお、図6に示すように、Q-timeから算出される終了許容時刻が"20:00"であったとすると、受付判定部131では、CJ510について受け付け可と判定する。
(3)ステップS406(並び替え処理)の具体例
次に、制御装置130の順序決定部132によるステップS406(並び替え処理)の具体例について説明する。図7は、並び替え処理の具体例を示す図であり、CJ520の複数のPJ(ジョブ名="PJ1"、"PJ2"、"PJ3"、"PJ4")に対して並び替え処理を実行した様子を示している。
図7に示すように、CJ520において、複数のPJ521~524は、PJ521(ジョブ名="PJ1")→PJ522(ジョブ名="PJ2")→PJ523(ジョブ名="PJ3")→PJ524(ジョブ名="PJ4")の順に配列されている。この場合、CJ520に含まれる各ウェハ(計23枚のウェハ)の処理は、スケジュール701で示す実行順序で実行されることになる(スケジュール701の各マスは、各ウェハの各処理タイミングを表している)。
この結果、CJ520の場合、CJ520に含まれる各ウェハ(計23枚のウェハ)の工程滞在時間は、矢印711で示す時間となる。
一方、順序決定部132による並び替え処理(ステップS406)が行われることで、複数のPJ521~524は、CJ700に示す順序に並び替えられることになる。具体的には、複数のPJ521~524は、PJ523(ジョブ名="PJ3")→PJ524(ジョブ名="PJ4")→PJ522(ジョブ名="PJ2")→PJ521(ジョブ名="PJ1")の順序に並び替えられることになる。
なお、順序決定部132では、以下の手順に従って、複数のPJ521~524の並び替えを行うものとする。
・並列に実行可能なPMの数が少ない順(OR数が少ない順)
・OR数が同じである場合、ウェハの枚数が多い順
・OR数が同じで、かつ、ウェハの枚数が同じ場合、PJが生成された順
CJ520が有するPJ521~PJ524が、図7のCJ700に示す順序に並び替えられることで、CJ700に含まれる各ウェハ(計23枚のウェハ)の処理は、スケジュール702で示す実行順序で実行されることになる。この結果、CJ700の場合、CJ700に含まれる各ウェハ(計23枚のウェハ)の工程滞在時間は、矢印712で示す時間となる。
このように、複数のPJを有するCJの場合、複数のPJを、上記手順に基づいて並び替えて実行順序を決定することで、当該CJについての工程滞在時間を短縮することができる。
(4)ステップS407(開始タイミング決定処理)の具体例
次に、制御装置130の開始判定部133によるステップS407(開始タイミング決定処理)の具体例について説明する。図8は、開始タイミング決定処理の具体例を示す図である。
図8の例は、CJ510(ジョブ名="CJ1")が有するPJ511に含まれる各ウェハ(25枚のウェハ)についての処理が実行中の場合を示している。また、図8の例は、新たに、CJ810(ジョブ名="CJ2")が生成され、開始タイミング決定処理(ステップS407)が実行された様子を示している。なお、CJ810は1つのPJ811(ジョブ名="PJ1")を有し、PJ811は、3つのPM(モジュール名="PM2"、"PM5"、"PM6")のいずれかのPMでウェハの処理が実行可能であることを示している。また、PJ811は、1ロットあたりのウェハの数が12枚であることを示している。
かかる前提のもとで、CJ810に含まれる各ウェハの処理を割り当てたスケジュールは、図8に示すとおりである。
ここで、図8に示す2つのスケジュールのうち、スケジュール820は、CJ810を生成したタイミングで、CJ810に含まれる各ウェハの処理を開始する一般的な開始方法を適用した場合のスケジュールを示している。
上述したとおり、PJ811は、3つのPM(モジュール名="PM2"、"PM5"、"PM6")のいずれかのPMで各ウェハの処理を実行することができる。一方で、CJ810を生成したタイミングにおける各PMの使用状況を参照すると、モジュール名="PM6"のPMのみが使用可能である。
このため、スケジュール820によれば、CJ810を生成したタイミング(T1)で、モジュール名="PM6"のPMによるウェハの処理が開始される。その後、CJ510に含まれる各ウェハについての処理が終了し、モジュール名="PM2"、"PM5"のPMが使用可能となる(タイミング(T2)参照)。このため、タイミング(T2)で、当該PMが、CJ810に含まれる各ウェハについての処理に使用される。
この結果、タイミング(T2)以降は、CJ810に含まれる各ウェハは、3つのPM(モジュール名="PM2"、"PM3"、"PM6")にて並列処理される。その後、タイミング(T3)において、CJ810に含まれる各ウェハについての処理が終了する。
このように、スケジュール820によれば、CJ810についての工程滞在時間(処理を開始するタイミング(T1)から処理が終了するタイミング(T3)までの時間)は、矢印821に示す時間となる。
一方、スケジュール830は、開始タイミング決定処理により決定された開始タイミングで、CJ810に含まれる各ウェハの処理を開始する開始方法を適用した場合のスケジュールを示している。
上述したとおり、PJ811は、3つのPM(モジュール名="PM2"、"PM5"、"PM6")のいずれかのPMで各ウェハの処理を実行することができる。一方で、CJ810を生成したタイミング(T1)における各PMの使用状況を参照すると、使用可能なPMは、モジュール名="PM6"のPMのみである。
このため、CJ810を生成したタイミング(T1)でモジュール名="PM6"による処理を開始してしまうと、工程滞在時間が増大し、終了予測時刻が、Q-timeに基づく終了許容時刻を超えることになる。そこで、開始判定部133では、終了予測時刻がQ-timeに基づく終了許容時刻を超えないようにするための、処理の開始タイミングを決定する。
図8のスケジュール830は、タイミング(T2)において、CJ810に含まれる各ウェハの処理を開始することで、終了予測時刻がQ-timeに基づく終了許容時刻を超えないと判定したことを示している。上述したとおり、タイミング(T2)は、CJ510に含まれる各ウェハの処理が終了したタイミングである。つまり、CJ510に含まれる各ウェハに対する処理として、モジュール名"PM2"、"PM5"のPMが使用されなくなったタイミングである。
このため、図8のスケジュール830に示すように、タイミング(T2)以降は、CJ810に含まれる各ウェハを、3つのPM(モジュール名="PM2"、"PM3"、"PM6")にて並列処理することができる。この結果、タイミング(T4)において、CJ810に含まれる各ウェハの処理を終了させることができる。
このように、スケジュール830によれば、CJ810についての工程滞在時間(処理を開始するタイミング(T2)から処理が終了するタイミング(T4)までの時間)を、矢印831に示す時間に短縮することができる。
この結果、スケジュール830に示した開始方法によれば、終了予測時刻が、Q-timeに基づく終了許容時刻を超えることなく、各ウェハの処理を終了させることができる。
<制御装置における制御処理の流れ>
次に、制御装置130による制御処理の流れについて説明する。図9は、制御装置による制御処理の流れを示すフローチャートであり、図4に示すシーケンス図と対比して示している。制御装置130にインストールされた判定プログラムが起動することで、図9に示すフローチャートが開始される。
はじめに、制御装置130では、受付判定部131による終了時刻予測処理を実行する。具体的には、ステップS901において、受付判定部131は、管理装置110のジョブ生成部111よりCJ及びQ-timeを取得する。また、受付判定部131は、取得したCJに基づいて、終了予測時刻を予測する。
続いて、制御装置130では、受付判定部131による受け付け可否判定処理を実行する。具体的には、ステップS902において、受付判定部131は、算出した終了予測時刻が、Q-timeに基づく終了許容時刻を超えているか否か(製品品質を達成するために指定された条件を満たすか否か)を判定する。
ステップS902においてQ-timeに基づく終了許容時刻を超えていると判定した場合には(ステップS902においてYESの場合には)、ステップS903に進む。ステップS903において、受付判定部131は、CJについて受け付け不可と判定し、判定結果を管理装置110のジョブ生成部111に通知する。この場合、制御装置130では、管理装置110のジョブ生成部111より取得したCJ及びQ-timeについての制御処理を終了する。
一方、ステップS902においてQ-timeに基づく終了許容時刻を超えていないと判定した場合には(ステップS902においてNOの場合には)、ステップS904に進む。ステップS904において、受付判定部131は、CJについて受け付け可と判定し、判定結果を管理装置110のジョブ生成部111に通知する。
続いて、制御装置130では、順序決定部132による並び替え処理を実行する。具体的には、ステップS905において、順序決定部132は、取得したCJが複数のPJを有するか否かを判定する。ステップS905において、取得したCJが1のPJのみを有すると判定した場合には(ステップS905においてNOの場合には)、ステップS907に進む。
一方、ステップS905において、取得したCJが複数のPJを有すると判定した場合には(ステップS905においてYESの場合には)、ステップS906に進む。
ステップS906において、順序決定部132は、取得したCJが有する複数のPJを並び替え、PJの実行順序を決定する。
続いて、制御装置130では、開始判定部133による開始タイミング決定処理を実行する。具体的には、ステップS907において、開始判定部133は、現在のPMの使用状況を参照することで、現在の処理タイミングでCJに含まれる各ウェハの処理を開始した場合の終了予測時刻が、Q-timeに基づく終了許容時刻を超えるか否かを判定する。
ステップS907において超えると判定した場合には(ステップS907においてYESの場合には)、ステップS908に進む。ステップS908において、開始判定部133は、現在の処理タイミングで使用可能なPMが増えたか否かを判定する。
ステップS908において、使用可能なPMが増えていないと判定した場合には(ステップS908においてNoの場合には)、使用可能なPMが増えたと判定するまで待機する。一方、ステップS908において、使用可能なPMが増えたと判定した場合には(ステップS908においてYESの場合には)、ステップS907に戻る。
そして、再び、ステップS907において、現在の処理タイミングでCJに含まれる各ウェハの処理を開始した場合の終了予測時刻が、Q-timeに基づく終了許容時刻を超えるか否かを判定する。ステップS907において、超えないと判定した場合には(ステップS907においてNOの場合には)、ステップS909に進む。
ステップS909において、開始判定部133は、現在の処理タイミングを、CJに含まれる各ウェハの処理を開始する開始タイミングに決定し、CJに含まれる各ウェハの処理を開始する。CJに含まれる各ウェハの処理を開始すると、制御装置130では、管理装置110のジョブ生成部111より取得したCJ及びQ-timeについての制御処理を終了する。
<まとめ>
以上の説明から明らかなように、基板処理装置120は、管理装置110より、CJ及びQ-timeを取得すると、
・複数のPMそれぞれの、各処理タイミングにおける使用状況を参照し、各処理タイミングにおいて使用可能なPMの中から、取得したCJに含まれる各ウェハの処理を実行可能なPMを特定する。
・特定したPMの各処理タイミングに、現在の処理タイミングを開始タイミングとして、CJに含まれる各ウェハの処理を割り当て、工程滞在時間を算出する。
・算出した工程滞在時間に基づく終了予測時刻が、取得したQ-timeに基づく終了許容時刻を超えるか否かを判定する。そして、取得したQ-timeに基づく終了許容時刻を超えないと判定した場合に、現在の処理タイミングを、CJに含まれる各ウェハの処理を開始する開始タイミングに決定する。
このように、基板処理装置120では、CJを取得した際にPMの使用状況を参照し、CJに含まれる各ウェハを処理した場合の終了予測時刻が、Q-timeに基づく終了許容時刻を超えないタイミングで、CJに含まれる各ウェハの処理を開始する。これにより、基板処理装置120によれば、使用可能なPMが少ないにも関わらず処理が開始され、工程滞在時間が増大してしまうといった事態を回避し、製品品質を達成するために指定された条件を満たすOR搬送を実現することができる。
[第2の実施形態]
上記第1の実施形態では、工程滞在時間に基づく終了予測時刻を算出するとともに、Q-timeに基づく終了許容時刻を算出し、両者を対比する構成とした。しかしながら、比較対象は、終了予測時刻と終了許容時刻でなくてもよく、工程滞在時間とQ-timeとを直接対比してもよい。
また、上記第1の実施形態では、開始判定部133が、現在の処理タイミングを開始タイミングとして、CJに含まれる各ウェハの処理を割り当てることで、終了予測時刻を予測する場合について説明した。しかしながら、開始判定部133では、現在の処理タイミングより後の任意のタイミングを開始タイミングとして、CJに含まれる各ウェハの処理を割り当てることで、終了予測時刻を予測してもよい。なお、この場合、開始判定部133では、現在の処理タイミングより後のタイミングを基準として、Q-timeに基づく終了許容時刻を算出するものとする。
また、上記第1の実施形態では、ジョブ生成部111を管理装置110において実現するものとして説明した。しかしながら、例えば、ジョブ生成部111は、基板処理装置120において実現されてもよい。また、上記第1の実施形態では、基板処理装置120内の制御装置130において、受付判定部131、順序決定部132、開始判定部133を実現するものとして説明した。しかしながら、例えば、受付判定部131、順序決定部132は、基板処理装置120内の制御装置130で実現されなくてもよいし、他の装置で実現されてもよい。
なお、上記実施形態に挙げた構成等に、その他の要素との組み合わせ等、ここで示した構成に本発明が限定されるものではない。これらの点に関しては、本発明の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。
100 :基板処理システム
110 :管理装置
111 :ジョブ生成部
120 :基板処理装置
130 :制御装置
131 :受付判定部
132 :順序決定部
133 :開始判定部
510、520 :CJ
521~524 :PJ
700 :CJ
701、702 :スケジュール
810 :CJ
811 :PJ
820、830 :スケジュール

Claims (10)

  1. クラスタツールの基板処理装置であって、
    複数のプロセスモジュールそれぞれの、各処理タイミングにおける使用状況を参照し、各処理タイミングにおいて使用可能なプロセスモジュールの中から、処理対象のコントロールジョブに含まれる各基板の処理を実行可能なプロセスモジュールを特定する特定部と、
    前記特定部により特定されたプロセスモジュールの各処理タイミングに、前記各基板の処理を割り当て、前記各基板の処理の開始から終了までの時間を算出する算出部と、
    前記算出部により算出された時間が、指定された条件を満たすよう、前記各基板の処理を開始する開始タイミングを決定する決定部と
    を有する基板処理装置。
  2. 1のトランスファモジュールと、前記1のトランスファモジュールの側面に接続された4以上のプロセスモジュールとを有し、前記1のトランスファモジュール内に配置された1の搬送アームが前記4以上のプロセスモジュールそれぞれに各基板を搬送する基板処理装置であって、
    複数のプロセスモジュールそれぞれの、各処理タイミングにおける使用状況を参照し、各処理タイミングにおいて使用可能なプロセスモジュールの中から、処理対象のコントロールジョブに含まれる各基板の処理を実行可能なプロセスモジュールを特定する特定部と、
    前記特定部により特定されたプロセスモジュールの各処理タイミングに、前記各基板の処理を割り当て、前記各基板の処理の開始から終了までの時間を算出する算出部と、
    前記算出部により算出された時間が、指定された条件を満たすよう、前記各基板の処理を開始する開始タイミングを決定する決定部と
    を有する基板処理装置。
  3. トランスファモジュールの側面に複数のプロセスモジュールが接続され、フープから搬送した各基板の処理を、前記複数のプロセスモジュールにて実行する基板処理装置であって、
    前記複数のプロセスモジュールそれぞれの、各処理タイミングにおける使用状況を参照し、各処理タイミングにおいて使用可能なプロセスモジュールの中から、処理対象のコントロールジョブに含まれる前記各基板の処理を実行可能なプロセスモジュールを特定する特定部と、
    前記特定部により特定されたプロセスモジュールの各処理タイミングに、前記各基板の処理を割り当て、前記各基板のうちの最初の基板について前記フープからの搬送が開始されてから最後の基板について前記フープへの搬送が終了するまでの時間を算出する算出部と、
    前記算出部により算出された時間が、指定された条件を満たすよう、前記各基板の処理を開始する開始タイミングを決定する決定部と
    を有する基板処理装置。
  4. 前記決定部は、前記算出部により算出された時間が、前記コントロールジョブについて指定されたQ-timeを超えないように前記開始タイミングを決定する、請求項に記載の基板処理装置。
  5. 前記決定部は、
    前記算出部により算出された、現在の処理タイミングを前記開始タイミングとした場合の前記各基板のうちの最初の基板について前記フープからの搬送が開始されてから最後の基板について前記フープへの搬送が終了するまでの時間が、前記指定された条件を満たさない場合、前記特定部により特定されたプロセスモジュールの数が増えたか否かを判定し、
    前記算出部は、
    前記決定部により増えたと判定された場合に、前記決定部により増えたと判定された後の処理タイミングを前記開始タイミングとした場合の前記各基板の処理のうちの最初の基板について前記フープからの搬送が開始されてから最後の基板について前記フープへの搬送が終了するまでの時間を算出する、請求項に記載の基板処理装置。
  6. 複数のプロセスジョブを含む処理対象のコントロールジョブにおいて、該複数のプロセスジョブを並び替え、該複数のプロセスジョブの実行順序を決定する順序決定部を更に有し、
    前記算出部は、
    前記複数のプロセスジョブに含まれる各基板の処理を、決定された前記実行順序に従って、前記特定部により特定されたプロセスモジュールの各処理タイミングに割り当て、前記複数のプロセスジョブに含まれる各基板のうちの最初の基板について前記フープからの搬送が開始されてから最後の基板について前記フープへの搬送が終了するまでの時間を算出する、請求項に記載の基板処理装置。
  7. 前記順序決定部は、
    前記複数のプロセスジョブを、並列に実行可能なプロセスモジュールの数が少ない順に並び替え、並列に実行可能なプロセスモジュールの数が同じであるプロセスジョブが複数ある場合には、基板の数が多い順に並び替え、更に、並列に実行可能なプロセスモジュールの数が同じで、かつ、基板の数が同じであるプロセスジョブが複数ある場合には、プロセスジョブが生成された順に並び替えることで、前記複数のプロセスジョブの実行順序を決定する、請求項に記載の基板処理装置。
  8. 前記処理対象のコントロールジョブに含まれる各基板の処理を実行可能な全てのプロセスモジュールの各処理タイミングに、前記各基板の処理を割り当てることで算出される、前記各基板のうちの最初の基板について前記フープからの搬送が開始されてから最後の基板について前記フープへの搬送が終了するまでの時間を、前記指定された条件と対比し、前記処理対象のコントロールジョブの受け付け可否を判定する受付判定部を更に有する、請求項に記載の基板処理装置。
  9. 前記受付判定部は、前記指定された条件を満たさないと判定した場合、前記処理対象のコントロールジョブについて、受け付け不可と判定し、前記指定された条件を満たすと判定した場合、前記処理対象のコントロールジョブについて、受け付け可と判定する、請求項に記載の基板処理装置。
  10. クラスタツールの基板処理装置における判定方法であって、
    複数のプロセスモジュールそれぞれの、各処理タイミングにおける使用状況を参照し、各処理タイミングにおいて使用可能なプロセスモジュールの中から、処理対象のコントロールジョブに含まれる各基板の処理を実行可能なプロセスモジュールを特定する特定工程と、
    前記特定工程において特定されたプロセスモジュールの各処理タイミングに、前記各基板の処理を割り当て、前記各基板の処理の開始から終了までの時間を算出する算出工程と、
    前記算出工程において算出された時間が、指定された条件を満たすよう、前記各基板の処理を開始する開始タイミングを決定する決定工程と
    を有する判定方法。
JP2018126903A 2018-07-03 2018-07-03 基板処理装置及び判定方法 Active JP7170438B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018126903A JP7170438B2 (ja) 2018-07-03 2018-07-03 基板処理装置及び判定方法
CN201980015527.2A CN111771257B (zh) 2018-07-03 2019-06-20 基板处理装置和判定方法
US16/971,866 US11461136B2 (en) 2018-07-03 2019-06-20 Substrate processing device and determination method
KR1020207024863A KR20210027233A (ko) 2018-07-03 2019-06-20 기판 처리 장치 및 판정 방법
PCT/JP2019/024455 WO2020008892A1 (ja) 2018-07-03 2019-06-20 基板処理装置及び判定方法
TW108121968A TWI842717B (zh) 2018-07-03 2019-06-24 基板處理裝置及判斷方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126903A JP7170438B2 (ja) 2018-07-03 2018-07-03 基板処理装置及び判定方法

Publications (2)

Publication Number Publication Date
JP2020009810A JP2020009810A (ja) 2020-01-16
JP7170438B2 true JP7170438B2 (ja) 2022-11-14

Family

ID=69060211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126903A Active JP7170438B2 (ja) 2018-07-03 2018-07-03 基板処理装置及び判定方法

Country Status (5)

Country Link
US (1) US11461136B2 (ja)
JP (1) JP7170438B2 (ja)
KR (1) KR20210027233A (ja)
CN (1) CN111771257B (ja)
WO (1) WO2020008892A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022119A (ja) 2001-07-06 2003-01-24 Japan Science & Technology Corp 多品種生産システム及びその設計・運用方法、その設計・運用プログラム及びそのプログラムを記録した記録媒体
JP2009145946A (ja) 2007-12-11 2009-07-02 Dainippon Screen Mfg Co Ltd 基板処理装置のスケジュール作成方法及びそのプログラム
JP2013219257A (ja) 2012-04-11 2013-10-24 Hitachi High-Technologies Corp 処理室割当設定装置及び処理室割当設定プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654597B2 (ja) * 1993-07-15 2005-06-02 株式会社ルネサステクノロジ 製造システムおよび製造方法
JP3428946B2 (ja) * 2000-06-07 2003-07-22 日本システム技術株式会社 半導体工場の自動搬送記録解析システム
JP4334817B2 (ja) * 2002-05-15 2009-09-30 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP2008091698A (ja) * 2006-10-03 2008-04-17 Matsushita Electric Ind Co Ltd 基板処理装置および基板処理方法
JP5022302B2 (ja) * 2007-07-10 2012-09-12 大日本スクリーン製造株式会社 基板処理装置のスケジュール作成方法及びそのプログラム
JP5491022B2 (ja) * 2008-12-10 2014-05-14 株式会社日立国際電気 基板処理装置、半導体装置の製造方法、基板処理装置の制御方法および基板処理装置の表示方法
JP5552265B2 (ja) * 2009-06-24 2014-07-16 東京エレクトロン株式会社 基板処理装置の制御方法及び記憶媒体
JP5821689B2 (ja) * 2011-04-20 2015-11-24 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
TWI524456B (zh) * 2011-11-04 2016-03-01 東京威力科創股份有限公司 基板處理系統、基板運送方法、程式及電腦記憶媒體
JP5571122B2 (ja) 2012-06-06 2014-08-13 東京エレクトロン株式会社 基板処理装置および基板処理装置の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022119A (ja) 2001-07-06 2003-01-24 Japan Science & Technology Corp 多品種生産システム及びその設計・運用方法、その設計・運用プログラム及びそのプログラムを記録した記録媒体
JP2009145946A (ja) 2007-12-11 2009-07-02 Dainippon Screen Mfg Co Ltd 基板処理装置のスケジュール作成方法及びそのプログラム
JP2013219257A (ja) 2012-04-11 2013-10-24 Hitachi High-Technologies Corp 処理室割当設定装置及び処理室割当設定プログラム

Also Published As

Publication number Publication date
CN111771257A (zh) 2020-10-13
KR20210027233A (ko) 2021-03-10
US20210011763A1 (en) 2021-01-14
US11461136B2 (en) 2022-10-04
WO2020008892A1 (ja) 2020-01-09
TW202006863A (zh) 2020-02-01
JP2020009810A (ja) 2020-01-16
CN111771257B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
US11237872B2 (en) Semiconductor inspection and metrology systems for distributing job among the CPUs or GPUs based on logical image processing boundaries
US7522968B2 (en) Scheduling method for processing equipment
US8019467B2 (en) Scheduling method for processing equipment
US7974726B2 (en) Method and system for removing empty carriers from process tools by controlling an association between control jobs and carrier
JP6002532B2 (ja) 真空処理装置及び真空処理方法
TWI557524B (zh) A production processing system, a control device for production processing, a control method for production processing, and a control program for production processing
US7151980B2 (en) Transport management system and method thereof
US20170083010A1 (en) Optimally Scheduling of Close-down Process for Single-arm Cluster Tools with Wafer Residency Time Constraints
JP7170438B2 (ja) 基板処理装置及び判定方法
TW201526136A (zh) 基板處理裝置、基板處理方法、暨基板處理系統
JP6981918B2 (ja) 基板処理方法、基板処理装置、およびコンピュータプログラム
TWI842717B (zh) 基板處理裝置及判斷方法
US20130226336A1 (en) Dynamic routing control methods and systems for a cluster tool
JP2005038392A (ja) 単一経路用の作業システム及びその制御方法
US9865488B2 (en) Processing method and processing apparatus
JPH11288990A (ja) プロセス処理方法およびその装置並びに半導体製造ラインおよびそれにおける被処理基板の搬送方法
Rothe et al. Novel approaches to optimizing carrier logistics in semiconductor manufacturing
US11908712B2 (en) Semiconductor manufacturing apparatus, substrate transfer method, and program
Sarin et al. A single-machine, single-wafer-processing, multiple-lots-per-carrier scheduling problem to minimize the sum of lot completion times
JP7316959B2 (ja) 半導体製造装置及びウェーハ搬送方法
KR20190008374A (ko) 기판 처리 장치, 기판 처리 방법, 프로그램 및 물품 제조 방법
US7289860B1 (en) Method and apparatus for reserving a processing tool in a semiconductor fabrication facility
Han et al. Full fabrication simulation of 300mm wafer focused on AMHS (Automated material handling systems)
KR20230167893A (ko) 대규모 스트리밍 데이터를 분산 처리하기 위한 시스템 및 방법
Park et al. A colored Petri net-based approach to the design of 300 mm wafer fab controllers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221101

R150 Certificate of patent or registration of utility model

Ref document number: 7170438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150