JP7136150B2 - 蓄電デバイス用電極及び蓄電デバイス - Google Patents

蓄電デバイス用電極及び蓄電デバイス Download PDF

Info

Publication number
JP7136150B2
JP7136150B2 JP2020041008A JP2020041008A JP7136150B2 JP 7136150 B2 JP7136150 B2 JP 7136150B2 JP 2020041008 A JP2020041008 A JP 2020041008A JP 2020041008 A JP2020041008 A JP 2020041008A JP 7136150 B2 JP7136150 B2 JP 7136150B2
Authority
JP
Japan
Prior art keywords
current collector
positive electrode
storage device
electrode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020041008A
Other languages
English (en)
Other versions
JP2021144800A (ja
Inventor
匠昭 奥田
稔久 棟方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2020041008A priority Critical patent/JP7136150B2/ja
Publication of JP2021144800A publication Critical patent/JP2021144800A/ja
Application granted granted Critical
Publication of JP7136150B2 publication Critical patent/JP7136150B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本明細書では、蓄電デバイス用電極及び蓄電デバイスを開示する。
従来、蓄電デバイスとしては、正極板および負極板のそれぞれ複数箇所に接続されたリード線から集電を行い、電池内部の電流路には、電池温度が所定温度以上に上昇したときに、溶融して電流路を遮断する電流遮断機構としての低融点合金部材を嵌挿したものが提案されている(例えば、特許文献1参照)。この蓄電デバイスでは、電池の内部抵抗を低減し、短絡電流等の発生により電池温度が上昇した場合の電流遮断機構を備えた充放電特性と安全性に優れたリチウム二次電池を提供することができるとしている。
特開平10-233233号公報
しかしながら、特許文献1では、帯状の集電箔上に電極材料を形成した一対の正/負シート電極の所々から熱ヒューズ機能を有する集電体で集電するものであるが、この熱ヒューズの作動により停止可能なのは外部回路を介した充放電に限られ、電極内で内部短絡が発生した場合の放電反応を抑制することはできなかった。その理由は、電極全体が低抵抗な集電箔でつながっているため、内部短絡が発生した場合には、対向する全ての正/負電極からの放電電流が低抵抗な集電箔を通じて、短絡箇所に集中することになった。このように、電極の内部短絡に対処することができる集電構造が求められていた。
本開示は、このような課題に鑑みなされたものであり、シート状の電極において内部短絡時の徐放電機構を発現することができる蓄電デバイス用電極及び蓄電デバイスを提供することを主目的とする。
上述した目的を達成するために鋭意研究したところ、本発明者らは、隣りあうもの同士が先端側で電気的に接続していない櫛歯状の集電線を活物質内部に埋設し、この集電線を体積抵抗率の高い集電体に並列接続させ、更にその集電体に体積抵抗率の低い集電体を設けるよう集電構造を工夫するものとすれば、シート状の電極構造において、効率的に集電可能であり、且つ内部短絡時の徐放電機構を発現することができることを見いだし、本明細書で開示する発明を完成するに至った。
即ち、本明細書で開示する蓄電デバイス用電極は、
蓄電デバイスに用いられるシート状の電極であって、
電極活物質と、
前記電極活物質に隣接し該電極活物質と接触している部分では互いに電気的に接続していない複数の集電線と、前記集電線と前記電極活物質とが接触していない外部で前記複数の集電線を並列接続する連続体である集電体とを有する櫛歯構造の集電部と、
を備えたものである。
本明細書で開示する蓄電デバイスは、
正極活物質を有する正極と、
負極活物質を有する負極と、
前記正極と前記負極との間に介在しイオンを伝導するイオン伝導媒体と、
前記正極と前記負極との間に介在するセパレータと、を備え、
前記正極及び前記負極のうち少なくとも一方が上述した蓄電デバイス用電極であるものである。
本開示は、シート状の電極において内部短絡時の徐放電機構を発現することができる。このような効果が得られる理由は、以下のように推察される。例えば、集電線をストライプ状に配置しているので通常の充放電は問題なく行われる。一方、電極内で内部短絡が発生し、全ての電流が短絡箇所に集中する状況では、短絡箇所近傍の集電線に電流が集中しようとする。しかし、1本の集電線は、連続した集電箔よりも体積が極めて小さいため、同じ体積抵抗率の部材を用いても抵抗が大きくなる。このため、短絡箇所に集中して流れる電流値は小さくなり、長い時間をかけてゆっくり放電する、いわゆる徐放電となり、短絡箇所のジュール発熱が大幅に抑制されるので安全である。なお、1本の集電線の抵抗は大きくなるが、通常使用時に1本の集電線に流れる電流は集電体近傍の電極分のみの小電流であるので、問題なく流れることになる。言い換えれば、セル全体での電極内の集電抵抗は、1本の集電抵抗を多数の集電体の本数で除した値まで小さくなることになる。すなわち、比較的高抵抗の集電線を多数並列接続することで、セル全体の集電抵抗は低く設計し、円滑な充放電を可能とし、どこかで内部短絡が発生した場合は高抵抗の一本の集電線を通るため徐放電になり、高安全を担保することができる。
蓄電デバイス10の一例を示す模式図。 別の蓄電デバイス10Bの一例を示す模式図。 別の蓄電デバイス10Cの一例を示す模式図。 集電線の間隔sと放電容量比との関係図。
(蓄電デバイス用電極)
実施形態で説明する本開示の蓄電デバイス用電極は、蓄電デバイスに用いられるシート状の電極である。この電極は、正極としてもよいし、負極としてもよいが、正極であることが好ましい。正極は、負極に比して導電性が低いため、本開示の集電構造を採用する意義が高い。この電極は、電極活物質と、電極活物質が隣接する集電部とを備える。集電部は、電極活物質に隣接しこの電極活物質と接触している部分では互いに電気的に接続していない複数の集電線と、集電線と電極活物質とが接触していない外部で複数の集電線を並列接続する連続体である集電体と、を有する。この集電部は、櫛歯構造を有している。
集電部は、集電線を並列接続する第1集電体と、外部で第1集電体に電気的に接続する第2集電体とを有しており、第1集電体は、第2集電体よりも高い体積抵抗率を有するものとしてもよい。この第1集電体は、より高い体積抵抗率を有することによって、例えば、部分的な内部短絡が生じた際に大きな抵抗として働き、急激な放電をより抑える徐放電機能を発現する。この第1集電体は、多数の集電線が並列接続されるため、通常の充放電時には、集電に与える影響が少なくなっている。また、第2集電体はより低い体積抵抗率を有することによって、効率よい集電を実現する。
第1集電体は、第2集電体に比してより高い体積抵抗率を有することが好ましいが、第2集電体の10倍以上、より好ましくは100倍以上、あるいは200倍以上や500倍以上の体積抵抗率を有するものとしてもよい。第2集電体の体積抵抗率は、より低いほど好ましい。また、第1集電体は、本数Nが100本以上である集電線が並列接続されているものとしてもよいし、200本以上や、500本以上の集電線が並列接続されているものとしてもよい。並列接続の本数Nに応じて、第1集電体を介して単セルにかかる抵抗が決定されるため、所望の充放電特性に応じて、集電線の並列接続の本数Nや第1集電体の体積抵抗率の高さなどを適宜設定すればよい。また、集電線の本数Nが多くなると単位体積あたりの活物質量が減少することから、エネルギー密度の観点もふまえて、この集電線の本数Nを適宜設定すればよい。この第1集電体は、例えば、体積抵抗率が1.0×10-6Ωm以上であり、第2集電体は、体積抵抗率が1.0×10-7Ωm以下であるものとしてもよい。第1集電体は、体積抵抗率が1.0×10-5Ωm以上であるものとしてもよいし、1.0×10-4Ωm以上であるものとしてもよい。また、第2集電体は、体積抵抗率が5.0×10-8Ωm以下であるものとしてもよいし、体積抵抗率が2.0×10-8Ωm以下であるものとしてもよい。集電線と第2集電体の体積抵抗率は、同じであってもよいし、異なってもよい。
集電部は、集電線の幅tが100μm以上500μm以下の範囲であり、集電線の間隔sが100μm以上500μm以下の範囲であることが好ましい。幅tと間隔sとは、同じ値としてもよいし、異なる値としてもよいが、積層時の支持性を考慮すると、同じ値である方が望ましい。集電線の幅tは、200μm以上がより好ましく、250μm以上としてもよい。また、集電線の幅tは、400μm以下がより好ましく、300μm以下としてもよい。集電線の間隔sは、200μm以上がより好ましく、250μm以上としてもよい。また、集電線の間隔sは、400μm以下がより好ましく、300μm以下としてもよい。
(蓄電デバイス)
実施形態で説明する本開示の蓄電デバイスは、正極活物質を有する正極と、負極活物質を有する負極と、正極と負極との間に介在しイオンを伝導するイオン伝導媒体と、正極と負極との間に介在するセパレータと、を備え、正極及び負極のうち少なくとも一方が上述した蓄電デバイス用電極である。この蓄電デバイスは、例えば、電気二重層キャパシタやハイブリッドキャパシタ、疑似電気二重層キャパシタ、アルカリ金属二次電池、アルカリ金属イオン電池などとしてもよい。蓄電デバイスのキャリアイオンは、リチウムイオンやナトリウムイオン、カリウムイオンなどのアルカリ金属イオンやマグネシウムイオンやストロンチウムイオン、カルシウムイオンなどの第2族イオンなどが挙げられる。ここでは、説明の便宜のため、リチウムイオンをキャリアとするリチウムイオン二次電池をその主たる一例として以下説明する。
本実施形態で開示する蓄電デバイスについて図面を用いて説明する。図1は、蓄電デバイス10の一例を示す模式図であり、図1Aが図1BのA-A断面図、図1Bが蓄電デバイス10の側面図、図1Cが図1BのB-B断面図であり、図1Dが正極集電部30の説明図である。蓄電デバイス10は、負極12と、セパレータ15と、正極16とを備えている。単セル11は、負極12と、セパレータ15と、正極16とにより構成されている。この蓄電デバイス10は、シート状の負極12と、シート状のセパレータ15と、シート状の正極16とが積層された構造を有する。また、この蓄電デバイス10は、負極12とセパレータ15と正極16とを有する単セル11を更に積層した構造を有するものとしてもよい。
負極12は、負極活物質層13と、負極集電部20とを含む。この負極12は、負極活物質層13と負極集電部20とを密着させて形成したものとしてもよいし、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極合材としたものを、負極集電部20が埋設されるように塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質層13には、負極活物質と、導電材と、結着材とを含むものとしてもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、複数の元素を含む複合酸化物、導電性ポリマーなどが挙げられる。炭素質材料は、例えば、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり支持塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時における不可逆容量を少なくできるため、好ましい。複合酸化物としては、例えば、リチウムチタン複合酸化物やリチウムバナジウム複合酸化物などが挙げられる。負極活物質としては、このうち、炭素質材料が安全性の面から見て好ましい。
導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンゴム(EPDM)、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。
負極集電部20は、負極集電線23と、集電体24とを有する櫛歯構造の部材である。負極集電線23は、負極活物質に隣接し負極活物質と接触している部分では互いに電気的に接続していない複数の線状の部材である。負極集電線23は、その断面形状が正方形や長方形の矩形としてもよいし、円柱や楕円柱、六角柱や八角形柱など多角形柱としてもよい。集電体24は、負極集電線23と負極活物質とが接触していない外部で複数の負極集電線23を並列接続する連続体である部材である。集電体24は、負極集電線23の配列方向を長手方向とする箔状又は板状の部材である。この集電体24は、負極集電線23を並列接続する第1集電体21と、外部で第1集電体21に電気的に接続する第2集電体22とを有するものとしてもよい。この第1集電体21は、第2集電体22よりも高い体積抵抗率を有することが好ましい。例えば、第1集電体21は、第2集電体22の100倍以上の体積抵抗率を有することが好ましい。この第1集電体21は、体積抵抗率が1.0×10-6Ωm以上であり、第2集電体22は、体積抵抗率が1.0×10-7Ωm以下であるものとしてもよい。また、集電部24は、負極集電線23の幅tが100μm以上500μm以下の範囲であり、負極集電線23の間隔sが100μm以上500μm以下の範囲であるものとしてもよい。また、集電体24は、100本以上の負極集電線23が並列接続されているものとしてもよい。
負極集電線23には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al-Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。また、第1集電体21は、例えば、導電材としての金属粒子や炭素粒子を分散したインクを固形化したものや、導電性を有する導電性ポリマーなどとしてもよい。導電材の金属は、例えば、銀などの貴金属などが挙げられる。導電性ポリマーとしては、ポリチオフェン系、ポリアセチレン系、ポリアニリン系、ポリピロール系などの高分子材料が挙げられる。第2集電体22の材質及び形状は、例えば、上述した負極集電線23で挙げたいずれかの材質を用いることができる。
セパレータ15は、キャリアイオン(例えばリチウムイオン)のイオン伝導を阻害せず負極12と正極16とを絶縁するものである。セパレータ15としては、蓄電デバイス10の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。このセパレータ15の厚さは、例えば、5μm以上であることが好ましく、8μm以上であることがより好ましく、10μm以上であるものとしてもよい。この厚さが5μm以上では、絶縁性を確保する上で好ましい。また、セパレータ15の厚さは、15μm以下であることが好ましく、10μm以下であることがより好ましい。この厚さが15μm以下では、イオン伝導性の低下を抑制できる点や、セルに占める体積をより低減する上で好ましい。
セパレータ15は、キャリアであるイオンを伝導するイオン伝導媒体を含むものとしてもよい。イオン伝導媒体としては、支持塩を含む非水系電解液や非水系ゲル電解液などを用いることができる。非水系電解液の溶媒としては、例えば、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネート(EC)やプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート、エチル-n-ブチルカーボネート、メチル-t-ブチルカーボネート、ジ-i-プロピルカーボネート、t-ブチル-i-プロピルカーボネートなどの鎖状カーボネート類、γ-ブチルラクトン、γ-バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3-ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。この電解液には、蓄電デバイス10のキャリアであるイオンを含む支持塩を溶解したものとしてもよい。支持塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。
正極16は、正極活物質層17と、正極集電部30とを有するものとしてもよい。正極活物質層17は、正極活物質と、必要に応じて導電材と、結着材とを含むものとしてもよい。正極16は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、正極集電部30が埋設されるように塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質層17には、正極活物質と、導電材と、結着材とを含むものとしてもよい。正極活物質は、例えば、キャリアであるリチウムを吸蔵放出可能な材料が挙げられる。正極活物質としては、例えば、リチウムと遷移金属とを有する化合物、例えば、リチウムと遷移金属元素とを含む酸化物や、リチウムと遷移金属元素とを含むリン酸化合物などが挙げられる。具体的には、基本組成式をLi(1-x)MnO2(0≦x≦1など、以下同じ)やLi(1-x)Mn24などとするリチウムマンガン複合酸化物、基本組成式をLi(1-x)CoO2などとするリチウムコバルト複合酸化物、基本組成式をLi(1-x)NiO2などとするリチウムニッケル複合酸化物、基本組成式をLi(1-x)CoaNibMnc2(a>0、b>0、c>0、a+b+c=1)、Li(1-x)CoaNibMnc4(0<a<1、0<b<1、1≦c<2、a+b+c=2)などとするリチウムコバルトニッケルマンガン複合酸化物、基本組成式をLiV23などとするリチウムバナジウム複合酸化物、基本組成式をV25などとする遷移金属酸化物などを用いることができる。また、基本組成式をLiFePO4とするリン酸鉄リチウム化合物などを正極活物質として用いることができる。これらのうち、リチウムコバルトニッケルマンガン複合酸化物、例えば、LiCo1/3Ni1/3Mn1/32やLiNi0.4Co0.3Mn0.32などが好ましい。なお、「基本組成式」とは、他の元素、例えば、AlやMgなどの成分を含んでもよい趣旨である。また、正極に用いられる導電材、結着材、溶剤などは、それぞれ負極で例示したものを用いることができる。
正極16において、正極活物質の含有量は、より多いことが好ましく、正極16の質量全体に対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。導電材の含有量は、正極16の全体の質量に対して0質量%以上20質量%以下の範囲であることが好ましく、0質量%以上10質量%以下の範囲であることがより好ましい。このような範囲では、電池容量の低下を抑制し、導電性を十分に付与することができる。また、結着材の含有量は、正極16の質量全体に対して0.1質量%以上5質量%以下の範囲であることが好ましく、0.2質量%以上3質量%以下の範囲であることがより好ましい。
正極集電部30は、正極集電線33と、集電体34とを有する櫛歯構造の部材である。正極集電線33は、正極活物質に隣接し正極活物質と接触している部分では互いに電気的に接続していない複数の線状の部材である。正極集電線33は、その断面形状が正方形や長方形の矩形としてもよいし、円柱や楕円柱、六角柱や八角形柱など多角形柱としてもよい。集電体34は、正極集電線33と正極活物質とが接触していない外部で複数の正極集電線33を並列接続する連続体である部材である。集電体34は、正極集電線33の配列方向を長手方向とする箔状又は板状の部材である。この集電体34は、正極集電線33を並列接続する第1集電体31と、外部で第1集電体31に電気的に接続する第2集電体32とを有するものとしてもよい。この第1集電体31は、第2集電体32よりも高い体積抵抗率を有することが好ましい。例えば、第1集電体31は、第2集電体32の100倍以上の体積抵抗率を有することが好ましい。この第1集電体31は、体積抵抗率が1.0×10-6Ωm以上であり、第2集電体32は、体積抵抗率が1.0×10-7Ωm以下であるものとしてもよい。また、集電部34は、正極集電線33の幅tが100μm以上500μm以下の範囲であり、正極集電線33の間隔sが100μm以上500μm以下の範囲であるものとしてもよい。また、集電体34は、100本以上の正極集電線33が並列接続されているものとしてもよい。
正極集電線33には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al-Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。また、第1集電体31は、例えば、導電材としての金属粒子や炭素粒子を分散したインクを固形化したものや、導電性を有する導電性ポリマーなどとしてもよい。導電材の金属は、例えば、銀などの貴金属などが挙げられる。導電性ポリマーとしては、ポリチオフェン系、ポリアセチレン系、ポリアニリン系、ポリピロール系などの高分子材料が挙げられる。第2集電体32の材質及び形状は、例えば、上述した正極集電線33で挙げたいずれかの材質を用いることができる。
蓄電デバイス10において、正極集電部30の有する満充電状態からの内部短絡時における徐放電機能は、安全性の観点では、より長いことが好ましく、例えば、30分以上であることが好ましく、1時間以上であることがより好ましく、2時間以上であることが更に好ましい。この徐放電機能がより長ければ、セル内部の部分短絡時において急激な放電をより抑制し、安全性をより確保することができる。この徐放電機能は、蓄電デバイス10の抵抗の増加など、エネルギー密度の観点からは、5時間以下としてもよい。
以上詳述した蓄電デバイス10では、シート状の電極において内部短絡時の徐放電機構を発現することができる。このような効果が得られる理由は、以下のように推察される。例えば、集電線をストライプ状に配置しているので通常の充放電は問題なく行われる。一方、電極内で内部短絡が発生し、全ての電流が短絡箇所に集中する状況では、短絡箇所近傍の集電線に電流が集中しようとする。しかし、1本の集電線は、連続した集電箔よりも体積が極めて小さいため、同じ体積抵抗率の部材を用いても抵抗が大きくなる。このため、短絡箇所に集中して流れる電流値は小さくなり、長い時間をかけてゆっくり放電する、いわゆる徐放電となり、短絡箇所のジュール発熱が大幅に抑制されるので安全である。なお、1本の集電線の抵抗は大きくなるが、通常使用時に1本の集電線に流れる電流は集電体近傍の電極分のみの小電流であるので、問題なく流れることになる。言い換えれば、セル全体での電極内の集電抵抗は、一本の集電抵抗を多数の集電体の本数で除した値まで小さくなることになる。すなわち、比較的高抵抗の集電線を多数並列接続することで、セル全体の集電抵抗は低く設計し、円滑な充放電を可能とし、どこかで内部短絡が発生した場合は高抵抗の一本の集電線を通るため徐放電になり、高安全を担保することができる。
また、体積抵抗率の高い第1集電体21,31を有するため、部分的な内部短絡が起きた場合に、より大きく、周辺の電極からの電流の流れこみ、ひいては発熱を抑制することができる。また、体積抵抗率の低い第2集電体22,32を有するため、負極12や正極16での集電をより効率よく行うことができる。また、連続体である第1集電体21,31を設けることによって、多数の集電線を並列接続することが可能である。第1集電体21,31は部材の厚さの制御により抵抗を容易に制御可能である。更に、負極集電部20において、負極集電線23と第2集電体22との間の抵抗を、第1集電体21が第2集電体22よりも高い体積抵抗率を有するものとすることによって、負極集電線23の並列接続による低抵抗化を図ることができる。また、正極集電部30でも同様である。したがって、この蓄電デバイス10では、効率的な集電による高エネルギー密度化と内部短絡時の徐放電機構とを両立することができる。
なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
例えば、上述した実施形態では、蓄電デバイスのキャリアをリチウムイオンとしたが、特にこれに限定されず、ナトリウムイオンやカリウムイオンなどのアルカリ金属イオン、カルシウムイオンやマグネシウムイオンなどの2族元素イオンとしてもよい。また、正極活物質は、キャリアのイオンを含むものとすればよい。また、電解液を非水系電解液としたが、水溶液系電解液としてもよい。
上述した実施形態では、正極活物質を遷移金属複合酸化物としたが、特に限定されず、例えば、キャパシタに用いられる炭素材料としてもよい。炭素材料としては、特に限定されるものではないが、例えば、活性炭類、コークス類、ガラス状炭素類、黒鉛類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維類、カーボンナノチューブ類、ポリアセン類などが挙げられる。このうち、高比表面積を示す活性炭類が好ましい。炭素材料としての活性炭は、比表面積が1000m2/g以上であることが好ましく、1500m2/g以上であることがより好ましい。比表面積が1000m2/g以上では、放電容量をより高めることができる。この活性炭の比表面積は、作製の容易性から3000m2/g以下であることが好ましく、2000m2/g以下であることがより好ましい。なお、正極では、イオン伝導媒体に含まれるアニオン及びカチオンの少なくとも一方を吸着、脱離して蓄電するものと考えられるが、さらに、イオン伝導媒体に含まれるアニオン及びカチオンの少なくとも一方を挿入、脱離して蓄電するものとしてもよい。
上述した実施形態では、櫛歯状の集電体構造を負極12及び正極16に備えたものとしたが、特にこれに限定されず、負極12及び正極16のいずれか一方としてもよい。図2は、別の蓄電デバイス10Bの一例を示す模式図であり、図2Aが図2BのA-A断面図、図2Bが蓄電デバイス10Bの側面図、図2Cが図2BのB-B断面図である。蓄電デバイス10Bは、正極16は、櫛歯状の正極集電部30を備えるが、シート状の負極集電部20Bを備えた負極12Bを有する単セル11Bを備えている。このように、負極12及び正極16のいずれか一方に櫛歯状の集電体構造を有するものとしても、シート状の電極において内部短絡時の徐放電機構を発現することができる。なお、図2では、負極12Bがシート状の負極集電部20Bを備えるものとしたが、正極16がシート状の正極集電部を備えるものとしてもよい。
上述した実施形態では、第1集電体21,31及び第2集電体22,32を有する集電体24,34を備えたものとしたが、特にこれに限定されず、体積抵抗率の高い第1集電体21,31のいずれか一方を備えないものとしてもよい。図3は、別の蓄電デバイス10Cの一例を示す模式図であり、図3Aが図3BのA-A断面図、図3Bが蓄電デバイス10Cの側面図、図3Cが図3BのB-B断面図であり、図3Dが集電体30Cを備えた正極集電部30Cの説明図である。蓄電デバイス10Cは、一体の集電体24Cを有する負極集電部20Cを備えた負極12Cと、一体の集電体34Cを有する正極集電部30Cを備えた正極16Cとを備えている単セル11Cにより構成されている。このように、負極12及び正極16のいずれか一方に体積抵抗率の高い第1集電体21,31がなくても、負極集電線23や正極集電線33は細く、抵抗が高いため、シート状の電極において内部短絡時の徐放電機構を発現することができる。なお、図3では、負極12C及び正極16Cの両方が一体の集電体24C,34Cを備えるものとしたが、負極12及び正極16のいずれか一方が一体の集電体を備えるものとしてもよい。
以下には、上述した蓄電デバイスを具体的に作製した例を実施例として説明する。
(実施例1)
(蓄電デバイスの作製)
正極活物質(LiNi0.5Co0.2Mn0.32)と、導電材としてのアセチレンブラック(デンカ社製HS-100)と、導電材としての気相成長炭素繊維(昭和電工製VGCF)と、結着材としてのポリフッ化ビニリデン(クレハ製PVdF7305)とを質量比で90:4:2:4となるよう配合したものにN-メチルピロリドンを加えて正極合材ペーストとした。この正極合材ペーストをAl箔(厚さ10μm)上に塗布し、正極合材の厚さが150μm、VDAサイズの縦80mm×横140mmのサイズとなるように正極合材層を形成した。この上に、Al箔製の集電線(幅200μm、厚さ2μm、間隔200μm)を350本をAl箔製の集電体に接続した正極集電部を、集電線の先端から70mmの部分に正極活物質層とし、集電体が外部に10mm露出した状態で配置した。この集電部上に正極合材ペーストを150μm塗布して加熱乾燥させて塗布シートを作製した。その後塗布シートをロールプレスに通して高密度化させ、Al箔を剥離することにより、300μmの正極合材層に櫛歯状の正極集電部の集電線が埋設された正極シートを得た。負極活物質として黒鉛を95質量%、結着剤としてポリフッ化ビニリデンを5質量%混合し、正極と同様にスラリー状合材とした。このスラリー状合材を10μm厚のシート状の銅箔集電体の両面に均一に塗布し、加熱乾燥させて塗布シートを作製した。その後塗布シートをロールプレスに通して高密度化させ、VDAサイズの縦82mm×横142mmの負極シートとした。上記の正極シートと負極シートをポリエチレン製セパレータを挟み、この電極体を20組積層してAl製のケースに収容し、非水電解液を含侵させた後に密閉してリチウムイオン二次電池を作製した(実施例1)。非水電解液には、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを体積%で30/40/30の割合で混合した混合溶媒に、LiPF6を1Mの濃度で溶解させたものを用いた。
(実施例1の抵抗及び徐放電機構の検討)
短絡箇所に流れる電流について検討した。上記作製したリチウムイオン二次電池を例とする。一枚の電極形状はVDAサイズの横140mm×縦80mmであり、縦の70mmが正極活物質塗布部、10mmが外部に露出した集電体であり、この集電体の20枚を溶接して並列に接続した。正極集電線は、Alであり、幅200μm、厚さ2μm、間隔20μmであり、電極1枚辺り350本、電極20枚で7000本である。電極の1箇所で正極と負極が短絡した時にその他19枚の正極集電体を通って電流が流れる時の抵抗値は、(Alの体積抵抗率(2.82×10-8Ωm)×電流経路長/電流経路断面積)で表される。その他19枚の正極Al集電線の抵抗は、電流経路長:平均経路長:35mm+5mm=40mm、電流経路断面積:200μm×2μm×6650本、とすると、抵抗値は0.04mΩである。短絡部位のある電極での正極アルミ集電線の抵抗は、電流経路長:平均経路長:35mm+5mm=40mm、電流経路断面積:200μm×2μm×1本、とすると、抵抗値は282mΩで、上記の和は、282.04mΩである。正極集電箔のみが抵抗であると仮定すると、Liイオン二次電池の平均電圧を3.6Vとしたときに抵抗0で短絡した場合の短絡電流は、3.6/0.282=12.7Aとなり、この電流が流れることになる。これは後述する従来のシート対向型電池の短絡電流と比較すると極めて少ない電流で、電池容量が10Ahと仮定すると放電時間が約47分もの徐放電となり、極めて安全性が高いことがわかった。
次に、シート状の集電部について検討した。電極を20組積層させたLiイオン電池を例とする。1枚の電極形状はVDAサイズの横140mm×縦80mmであり、縦の70mmが正極活物質塗布部、10mmが外部に露出した集電体であり、この集電体の20枚を溶接して並列に接続した。正極集電部は、シート状のAl集電箔であり、厚さ15μmである。1枚の電極の1箇所で正極と負極が短絡した時にその他19枚の正極集電箔を通って電流が流れる時の抵抗値は(Alの体積抵抗率×電流経路長/電流経路断面積)で表される。その他19枚の正極集電アルミ集電箔の抵抗は、電流経路長:平均経路長:35mm+5mm=40mm、電流経路断面積:140mm×15μm×19枚、とすると、抵抗値は0.028mΩである。短絡部位のある電極での正極Al集電箔の抵抗は、電流経路長:平均経路長:35mm+5mm=40mm、電流経路断面積:140mm×15μm×1枚、とすると、抵抗値は0.54mΩで、上記抵抗との和は、0.543mΩである。正極集電箔のみが抵抗であると仮定すると、Liイオン二次電池の平均電圧を3.6Vとしたときに抵抗0で短絡した場合の短絡電流は、3.6/0.000543=6630Aの電流が流れることになる。これは上記実施例の短絡電流と比較すると極めて大きい。この短絡電流で、電池容量が10Ahと仮定すると放電時間が約5秒であり、極めて短時間で放電する事がわかった。
(適切な集電線の間隔sの検討)
1枚の電極形状はVDAサイズの横140mm×縦80mmであり、縦の70mmが正極活物質塗布部、10mmが外部に露出した集電体であり、この集電体の20枚を溶接して並列に接続した。正極合材層の厚さLは100μmとした。正極集電線は、Alであり、幅tが200μm、厚さが2μm、間隔sが200μmを基準とし、集電体の断面積を変化させずに、間隔s=0(連続一枚の箔:比較例1)、間隔s=400μm、間隔s=600μmと変化させた場合について、シミュレーションによる放電容量を求め、間隔s=0の放電容量を100としたときの放電容量比で各放電容量を規格化した。図4は、集電線の間隔sと相対的な放電容量比との関係図である。図4の縦軸は、集電部がシート状である比較例1を100に規格化したときの櫛歯状の集電部を有するセルの放電容量比である。Cレートが0.05の低電流である場合、集電線の間隔sが正極合材層の厚さLの6倍の600μmでも放電容量比は90%以上であるが、Cレートが0.3に高くなると600μmでの放電容量比は大きく低下した。Cレートが0.3の放電容量比は集電線の間隔が正極合材の厚さの2倍である200μmではほとんど低下せず、400μmの間隔では若干低下し、93%であった。集電線の幅tは実用的には200μm程度が下限と考えられるが、集電線の間隔sは電極の正極活物質層の厚さLの2倍程度が好適で、4倍以下の範囲が好適であると推察された。
なお、本開示は上述した実施例に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
10,10B、10C 蓄電デバイス、11,11B,11C 単セル、12,12B,12C 負極、13 負極活物質層、15 セパレータ、16 正極、17 正極活物質層、20,20B,20C 負極集電部、21 第1集電体、22 第2集電体、23 負極集電線、24,24C 集電体、30,30C 正極集電部、31 第1集電体、32 第2集電体、33 正極集電線、34,34C 集電体、N 本数、L 厚さ、t 幅、s 間隔。

Claims (7)

  1. 蓄電デバイスに用いられるシート状の電極であって、
    電極活物質と、
    前記電極活物質に隣接し該電極活物質と接触している部分では互いに電気的に接続していない複数の集電線と、前記集電線と前記電極活物質とが接触していない外部で前記複数の集電線を並列接続する連続体である集電体とを有する櫛歯構造の集電部と、をえ、
    前記集電部は、前記集電線を並列接続する第1集電体と、前記外部で前記第1集電体に電気的に接続する第2集電体と、を有し、
    前記第1集電体は、前記第2集電体よりも高い体積抵抗率を有する、蓄電デバイス用電極。
  2. 前記第1集電体は、前記第2集電体の100倍以上の体積抵抗率を有する、請求項に記載の蓄電デバイス用電極。
  3. 前記第1集電体は、体積抵抗率が1.0×10-6Ωm以上であり、
    前記第2集電体は、体積抵抗率が1.0×10-7Ωm以下である、請求項又はに記載の蓄電デバイス用電極。
  4. 前記集電部は、前記集電線の幅tが100μm以上500μm以下の範囲であり、前記集電線の間隔sが100μm以上500μm以下の範囲である、請求項1~のいずれか1項に記載の蓄電デバイス用電極。
  5. 前記集電体は、100本以上の前記集電線が並列接続されている、請求項1~のいずれか1項に記載の蓄電デバイス用電極。
  6. 正極活物質を有する正極と、
    負極活物質を有する負極と、
    前記正極と前記負極との間に介在しイオンを伝導するイオン伝導媒体と、
    前記正極と前記負極との間に介在するセパレータと、を備え、
    前記正極及び前記負極のうち少なくとも一方が請求項1~のいずれか1項に記載の蓄電デバイス用電極である、蓄電デバイス。
  7. 前記正極は、前記蓄電デバイス用電極である、請求項に記載の蓄電デバイス。
JP2020041008A 2020-03-10 2020-03-10 蓄電デバイス用電極及び蓄電デバイス Active JP7136150B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020041008A JP7136150B2 (ja) 2020-03-10 2020-03-10 蓄電デバイス用電極及び蓄電デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020041008A JP7136150B2 (ja) 2020-03-10 2020-03-10 蓄電デバイス用電極及び蓄電デバイス

Publications (2)

Publication Number Publication Date
JP2021144800A JP2021144800A (ja) 2021-09-24
JP7136150B2 true JP7136150B2 (ja) 2022-09-13

Family

ID=77766965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020041008A Active JP7136150B2 (ja) 2020-03-10 2020-03-10 蓄電デバイス用電極及び蓄電デバイス

Country Status (1)

Country Link
JP (1) JP7136150B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176962A (ja) 2007-01-16 2008-07-31 Sumitomo Electric Ind Ltd 薄型電池
JP2012528461A (ja) 2009-05-27 2012-11-12 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 電気エネルギー蓄積装置
JP2015072836A (ja) 2013-10-03 2015-04-16 日産自動車株式会社 組電池
JP2018055902A (ja) 2016-09-28 2018-04-05 株式会社 東北テクノアーチ 二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176962A (ja) 2007-01-16 2008-07-31 Sumitomo Electric Ind Ltd 薄型電池
JP2012528461A (ja) 2009-05-27 2012-11-12 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 電気エネルギー蓄積装置
JP2015072836A (ja) 2013-10-03 2015-04-16 日産自動車株式会社 組電池
JP2018055902A (ja) 2016-09-28 2018-04-05 株式会社 東北テクノアーチ 二次電池

Also Published As

Publication number Publication date
JP2021144800A (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
JP4445447B2 (ja) 非水電解質電池および電池パック
US20090166192A1 (en) Electrode for electrochemical device and electrochemical device
US11171389B2 (en) Secondary battery and method for producing the same
JP6930147B2 (ja) 二次電池
JP2013105703A (ja) 電池用電極、非水電解質電池及び電池パック
JP6205889B2 (ja) リチウム二次電池
JP5223494B2 (ja) リチウムイオン二次電池
JP6656370B2 (ja) リチウムイオン二次電池および組電池
JP7009903B2 (ja) 積層構造体、リチウム二次電池及び積層構造体の製造方法
JP6508562B2 (ja) 蓄電素子
JP7111119B2 (ja) 蓄電デバイス
JP7095666B2 (ja) 活物質複合体、電極、蓄電デバイス及び活物質複合体の製造方法
JP7215439B2 (ja) 蓄電デバイス及び蓄電デバイスモジュール
JP7136150B2 (ja) 蓄電デバイス用電極及び蓄電デバイス
JP7505380B2 (ja) 電極構造体及び蓄電デバイス
JP7207348B2 (ja) 蓄電デバイス
JP7200971B2 (ja) 蓄電デバイス及び蓄電デバイスの製造方法
JP7322903B2 (ja) 蓄電デバイス用電極、蓄電デバイス及び蓄電デバイス用電極の製造方法
JP7047826B2 (ja) 活物質膜及び蓄電デバイス
JP7088148B2 (ja) 活物質複合体の製造装置及び活物質複合体の製造方法
JP7484884B2 (ja) 非水電解質蓄電素子及び蓄電装置
JP2011129366A (ja) 非水系リチウム二次電池
WO2024127668A1 (ja) 非水電解質電池及び電池パック
JP2023065025A (ja) 構造体、蓄電デバイス及び蓄電デバイスの製造方法
JP2024015751A (ja) 蓄電デバイス用電極及び蓄電デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7136150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150