JP7124672B2 - 光接続部品および光接続構造 - Google Patents

光接続部品および光接続構造 Download PDF

Info

Publication number
JP7124672B2
JP7124672B2 JP2018221094A JP2018221094A JP7124672B2 JP 7124672 B2 JP7124672 B2 JP 7124672B2 JP 2018221094 A JP2018221094 A JP 2018221094A JP 2018221094 A JP2018221094 A JP 2018221094A JP 7124672 B2 JP7124672 B2 JP 7124672B2
Authority
JP
Japan
Prior art keywords
optical
resin
substrate
input
optical connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018221094A
Other languages
English (en)
Other versions
JP2020086155A (ja
Inventor
光太 鹿間
淳 荒武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2018221094A priority Critical patent/JP7124672B2/ja
Priority to US17/287,094 priority patent/US20210382231A1/en
Priority to PCT/JP2019/044283 priority patent/WO2020110700A1/ja
Publication of JP2020086155A publication Critical patent/JP2020086155A/ja
Application granted granted Critical
Publication of JP7124672B2 publication Critical patent/JP7124672B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12195Tapering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、光接続部品および光接続構造に関し、特に、光通信ネットワークに用いられる光ファイバ間の光接続、光ファイバとレーザ,フォトダイオード,光導波路、光変調器などの光デバイスとの光接続、光デバイス間の光接続を実現するための光接続部品および光接続構造に関する。
光通信ネットワークの進展に伴い、光通信用デバイスの集積度を向上させ、光デバイスの小型化することが強く求められている。光通信用デバイスとして用いられる光回路では、従来、ガラスをコアとする石英ガラス系からなる平面光波回路(Planar Lightwave Circuit;PLC)が広く用いられている。これは、光ファイバとの結合に優れ、材料としての信頼性も高いため、光スプリッタ、波長合分波器、光スイッチ、偏波制御素子など光通信用の多種多様な光機能素子へ応用されている。
近年では、前述の光回路の小型化に対応するために、コアの屈折率を大きくし、クラッドとの屈折率差を大きくすることで最小曲げ径を小さく設計する高屈折率差の光回路の研究が進んでいる。また、近年では、光の閉じ込めの強いシリコンをコアとしたシリコンフォトニクス技術が進展し、ガラス系よりもより小型な光回路が実現されている。シリコンフォトニクス技術には、電子部品などで一般に用いられているシリコンプロセスが適用できる。
また、透明な高分子重合体などの樹脂(合成樹脂)からなる樹脂光導波路などもよく知られている。また、光変調素子や波長変換素子、増幅素子としては、ニオブ酸リチウム(LiNbO3)などに代表される強誘電体材料をコアとする光回路なども広く利用されている。また、発光素子や受光素子、光変調素子としては、インジウムリン(InP)やガリウムヒ素(GaAs)などに代表されるIII-V族半導体も実用化されており、これらに光導波機構を有する光回路集積型の発光素子、受光素子、光変調素子なども広く応用がなされている。これら強誘電体系や半導体系の光導波路に関しても、ガラスよりも屈折率が大きいことから、光の閉じ込めが強く、回路の小型化が期待できる。以上の光機能素子をまとめて、単に光デバイスと呼ぶこととする。
上記のような、光デバイスの小型化に合わせて、光導波路の光入出力部の小型化の需要が増大している。従来、石英ガラス系PLCの光入出力部での光学的な接続(光接続)の例では、光ファイバのクラッド径以下に接続ピッチを小さくできないことから、光回路上で接続ピッチを広げたのちに、光ファイバと光接続することが一般的である。したがって、PLCの光接続には、この接続ピッチが制限となり、光入出力部を含めると光デバイス全体が小型化できないという課題がある。このため、光ファイバのクラッド径で制限されるピッチ以下で光接続する技術が求められている。
一般に、光ファイバ間、光ファイバと光デバイスとの間、および光デバイス同士の間の光接続においては、光デバイスの光軸に直交する接続端面同士を向かい合う状態に配置し、お互いのコア位置の軸ずれがないよう位置決めして光接続するバッドカップリング技術が知られている。他方、光デバイスの光軸に直交する接続端面から出射した光ビームをレンズなどの空間光学系を介して集光するなどして、再度光デバイスに接続する空間系接続なども広く用いられている。
上記のバッドカップリング技術では、必ず光デバイスの光接続面同士を向かい合わせて配置しなければならない上に、熱膨張係数や導波光のモード径の整合性の観点などから実装上の制約が大きいという課題がある。また、空間光学系結合においても、ビーム径の広がりによる制約や、微小のレンズ、ミラーなどの製造上の制約があり、接続ピッチの小型化や量産性向上に技術限界がある。
上述した限界を打破する技術として、光デバイス間を樹脂光導波路で接続する技術が提案されている。例えば、自己形成光導波路を用いた光接続や、非特許文献1に記載のように2光子吸収を用いたナノレベルの光造形技術により、任意の光立体配線パターンを作製し、樹脂内に光を導波させて前記光ファイバ間、光ファイバと光デバイスとの間、および光デバイス同士の間を光学的に接続(光接続)する方法がある。
これは、基板上に樹脂の原材料となるレジスト液(光硬化性樹脂溶液)などを浸漬させ、レーザからの光ビームをレンズなどにより集光させ、前記光ビームの集光部に2光子吸収を誘起させることにより集光部の樹脂のみを硬化させ、さらに、このレーザを走査することにより集光部を任意に動かし、結果として、光造形を行う技術であり、光造形型の3次元プリンタとしても知られている。
特に、2光子吸収を用いた光造形の技術は、よく知られているように、集光サイズが極微小であることから、微小駆動する走査部と組み合わせることにより、ナノレベルの光造形が可能である。この技術を用いて、非特許文献1のように造形した樹脂自体をコアとした微小樹脂光配線(光導波路)を用い、接続対象の光デバイスと光接続する方法が知られている。
N. Lindenmann et al., "Photonic wire bonding: a novel concept for chip-scale interconnects", Optics Express, vol. 20, no. 16, pp. 17667-17677, 2012.
しかしながら、上述した技術では、樹脂光導波路を形成するために、光造形型装置に光デバイスごと固定して樹脂光導波路の光硬化を行うため、実装上の手間がかかる。また、光デバイスの寸法、サイズなどの制限のため、光デバイスを光造形型装置に導入できない場合もある。さらに、光造形型において光硬化させた後の未硬化のレジスト液を除去するために、除去溶剤に光デバイスを浸漬すると、除去溶剤が光デバイスを汚染したり、光デバイスに損傷を与えたりするなどの懸念が存在した。また、光デバイスに直接樹脂光導波路を形成する方法では、ポリマー導波路形成の歩留まりがデバイス接続構造の歩留まりに直結することにつながり、全体の歩留まり低下につながっていた。これらのように、従来では、光接続構造の製造に手間がかかり、また光接続構造の製造歩留まりの低下が問題となっていた。
本発明は、以上のような問題点を解消するためになされたものであり、手間をかけることなく、より高い製造歩留まりで光接続構造が製造できるようにすることを目的とする。
本発明に係る光接続部品は、第1入出力端および第2入出力端の組を複数備えて対象とする光を透過する板状の基板と、第1入出力端と第2入出力端の複数の組の各々とを光学的に接続する、各々個別に形成された樹脂コアによる複数の樹脂光導波路とを備え、樹脂コアは、曲線部を有する折り返しの構造に形成され、樹脂光導波路は、樹脂コアの周囲の空気をクラッドとしている。
上記光接続部品の一構成例において、第1入出力端における導波方向および第2入出力端における導波方向は、基板の表面の法線方向とされている。
上記光接続部品の一構成例において、樹脂コアは、光硬化した樹脂から構成されている。
本発明に係る光接続構造は、上述した光接続部品と、基板を介して第1入出力端に光学的に接続する第1光部品を備える。
上記光接続構造の一構成例において、第1光部品は、光導波路を備える光デバイスまたは光ファイバである。
上記光接続構造の一構成例において、基板を介して第2入出力端に光学的に接続する第2光部品を備える。
上記光接続構造の一構成例において、第2光部品は、光導波路を備える光デバイスまたは光ファイバである。
以上説明したように、本発明によれば、第1入出力端および第2入出力端を備えて対象とする光を透過する板状の基板の、第1入出力端および第2入出力端に、樹脂コアによる樹脂光導波路を光学的に接続した光接続部品を用いるようにしたので、手間をかけることなく、より高い製造歩留まりで光接続構造が製造できるという優れた効果が得られる。
図1は、本発明の実施の形態1に係る光接続部品の構成を示す断面図である。 図2Aは、本発明の実施の形態1における光接続部品の形成方法を説明するための各工程における光接続部品状態を示す説明図である。 図2Bは、本発明の実施の形態1における光接続部品の形成方法を説明するための各工程における光接続部品状態を示す説明図である。 図3は、本発明の実施の形態1に係る他の光接続部品の構成を示す断面図である。 図4は、本発明の実施の形態1に係る他の光接続部品の構成を示す断面図である。 図5は、本発明の実施の形態1に係る光接続部品を適用した光接続構造の構成を示す断面図である。 図6は、本発明の実施の形態1に係る光接続部品を適用した光接続構造の構成を示す斜視図である。 図7は、本発明の実施の形態1に係る光接続部品を適用した他の光接続構造の構成を示す断面図である。 図8は、本発明の実施の形態1に係る光接続部品を適用した他の光接続構造の構成を示す斜視図である。 図9は、本発明の実施の形態2に係る光接続構造の構成を示す断面図である。 図10は、本発明の実施の形態2に係る光接続構造の構成を示す斜視図である。 図11は、本発明の実施の形態2に係る他の光接続構造の構成を示す斜視図である。 図12は、本発明の実施の形態2に係る他の光接続構造の構成を示す斜視図である。 図13は、本発明の実施の形態3に係る光接続構造の構成を示す斜視図である。 図14は、本発明の実施の形態3に係る他の光接続構造の構成を示す斜視図である。
以下、本発明の実施の形態に係る光接続部品について説明する。
[実施の形態1]
はじめに、本発明の実施の形態1に係る光接続部品について図1を参照して説明する。この光接続部品は、対象とする光を透過する板状の基板101と、樹脂光導波路102とから構成されている。基板101は、対象とする光、例えば、1.55μm帯の波長の光に対して透明な、ガラス、石英やシリコンなどから構成することができる。また、樹脂光導波路102は、対象とする光が透過する樹脂からなる樹脂コア103から構成されている。例えば、樹脂コア103は、光硬化した樹脂から構成されている。なお、図1に例示する構成の樹脂光導波路102は、樹脂コア103の周囲の空気をクラッドとしている。
また、基板101は、第1入出力端104および第2入出力端105を備え、樹脂光導波路102は、第1入出力端104と第2入出力端105とを光学的に接続する。第1入出力端104と第2入出力端105とは、基板101の表面に互いに離間して配置されている。例えば、樹脂コア103は、基板101の表面より一度離間してから基板101の表面に戻る折り返し構造とされ、第1入出力端104および第2入出力端105の各々に光学的に接続している。樹脂コア103は、例えば、U字状などの折り返しの構造に形成されている。なお、樹脂コア103は、U字状に限らず、折り返す構造となっていればよい。また、樹脂光導波路102の、第1入出力端104における導波方向および第2入出力端105における導波方向は、基板101の表面の法線方向とされている。
例えば、基板101の第1入出力端104に入射した光は、樹脂光導波路102を導波し、第2入出力端105より外部に出射される。
次に、上述した光接続部品の形成方法について、図2A、図2Bを用いて説明する。まず、図2Aに示すように、基板101の表面を、露光のための露光光151が照射される方向に向けて配置する。また、基板101の表面を、露光光151が照射される方向(露光光151の光軸152)に対して垂直となるように所定の箇所に配置する(第1工程)。露光光151は、レーザなどの光源(不図示)から出射され、レンズなどによる光学系153で集光される。
次に、図2Bに示すように、露光光151を照射することにより光硬化樹脂を硬化することで、基板101の第1箇所101aから第2箇所101bにかけて光硬化樹脂が光硬化した樹脂コア103を形成する。光硬化樹脂は、光硬化により光が透過する樹脂となるものを用いる。例えば、樹脂コア103を、U字状に形成する。樹脂コア103を形成することで、基板101の表面に離間して配置されている第1入出力端104と第2入出力端105との各々に光学的に接続する樹脂光導波路102を形成する(第2工程)。この工程において、樹脂を形成するための露光光学系の軌道は、3Dプリンタなどで用いられるいずれの技術でもよく、例えば、第1箇所101aおよび第2箇所101bの各々から樹脂を積み上げるように形成していき、頂点付近で、第1箇所101aおよび第2箇所101bの各々から積み上げた各々の樹脂を結合させる。
上述した樹脂による樹脂光導波路102の形成工程(第2工程)において、レーザ(露光光)とレンズ(光学系)から、光造形の起点となる第1入出力端104,第2入出力端105が容易に観察できる。またこの場合、露光光を遮蔽するものがない。これらのことから、2つの光デバイス間に、高効率かつ微小領域での樹脂配線を形成することが可能となる。
次に、光造形の方法について、より詳細に説明する。
第1の方法としては、まず、紫外線(UV)硬化型の樹脂やSU8などに代表されるフォトレジストを塗布することで、フォトレジストの膜を光デバイスの端面に形成する。あるいは、フォトレジストを充填した容器に、光デバイスの端面を浸漬させる。
次に、所定の光学系を介し、導波路形成用のレーザからのUV光を集光して照射する。この照射位置を走査して、所望とする任意の樹脂光導波路を形成する。UV光が照射されたフォトレジストは、光硬化するので、照射位置を走査することで、走査の軌跡に沿って樹脂が硬化して樹脂光導波路が形成できる。照射位置の走査では、例えば、光源および光学系を、モータあるいはピエゾステージなどを用いて照射位置を走査させる。
第2の方法としては、レーザとして、光硬化する樹脂が硬化する波長よりも長い波長のフェムト秒レーザを用い、光造形を行う方法がある。この方法では、集光することで一定の光強度とされた箇所に、非線形効果により、樹脂が硬化する波長の2光子吸収を発生させる。この2光子吸収が発生する集光箇所を、前述した方法と同様に走査することで、樹脂光導波路を形成する。この方法によれば、よく知られているように、高精度、かつ、ナノレベルの光造形を行うことが可能である。
上述したように、光硬化により造形した後に、未硬化領域の樹脂を除去すれば、樹脂コア103による樹脂光導波路102が形成できる。なお、ここで、樹脂としては、伝搬距離が微小ではあるが、光デバイスに入出力する光の波長において高い透過率を有することが好ましい。
樹脂コア103の径は、光を伝搬するサイズ(径)であれば、任意であるが、空気層をクラッド層にシングルモードとして伝搬する径であることが、接続損失の低減と曲げロスの低減の観点から好ましい。このシングルモードの条件は、樹脂の屈折率から計算することが可能である。さらに、微小曲げを行う観点から、樹脂コアの径は小さいほど好ましい。上記2点の観点から、樹脂コアの径は、好ましくは10μm以下、より好ましくは3μm以下である。
空気クラッドで閉じ込めが不可能な場合などは、図3に示すように、樹脂コア103を覆うクラッド層106を形成して樹脂光導波路102aとすることができる。上述したように、光硬化による造形で樹脂コア103を形成した後、樹脂コア103をクラッド材で埋め込んで、クラッド層106を形成する。クラッド材は、樹脂コア103よりも屈折率が小さい材料とする。クラッド層106を形成することで、樹脂コア103の機械的な強度を補強できる。
また、図4に示すように、例えば、基板101に近づくほど径(モード径)が太くなる樹脂コア103aによる樹脂光導波路102bとすることができる。また、図4に示すように、樹脂コア103aを収容する中空の外壁構造体107を備えることも可能である。外壁構造体107は、例えば、内部に密閉された空間を形成している。
外壁構造体107は、例えば、樹脂から構成することができる。この場合、外壁構造体107は、樹脂コア103aと同一の樹脂から構成することができる。また、外壁構造体107の材料は、樹脂に限るものではなく、ガラス、半導体、金属などから構成することが可能である。外壁構造体107の内壁と樹脂コア103aとの間に、樹脂光導波路102bのクラッドとなる領域が十分に確保されるように、樹脂コア103aから離間して外壁構造体107を形成する。
外壁構造体107を設けることで、周囲のごみやかすなどが樹脂コア103aに付着することが抑制できる。外壁構造体107を設けて樹脂コア103aへのごみなどの付着を抑制すれば、光の放射損が抑制できるようになり、低損失性を高信頼に維持することが可能となる。この効果は、外壁構造体107を気密構造とすることでより高くなる。また、樹脂コア103aに誤って触れて破壊することなどを予防することが可能となり、機械的な信頼性を高めることができる。
次に、実施の形態1における光接続部品を用いた光接続構造について説明する。例えば、図5に示すように、光ファイバ(第1光部品)108を、基板101の第1入出力端104で樹脂光導波路102に光学的に接続することができる。光ファイバ108は、固定部品109により、基板101に固定されている。固定部品109は、接着剤による接着層110で、基板101の裏面に接着されている。固定部品109は、光ファイバ108を収容するためのV溝などが形成されたV溝基板と、フラット基板の接着構造から構成され、接続端面はダイシングあるいは、研磨処理などがなされて平坦になっている。
光ファイバ108は、樹脂光導波路102と低損失に光接続する状態で基板101に固定されている。より詳しくは、光ファイバ108のコアと樹脂コア103とが軸ずれが無い状態に調芯されて、光ファイバ108が基板101に固定されている。例えば、光ファイバ108からの入力光は、接着層110および基板101を介し、第1入出力端104において樹脂光導波路102に接続されて樹脂光導波路102を伝搬し、基板101を介して第2入出力端105から外部に出射される。第1入出力端104と第2入出力端105とを入れ替えても同様である。
また、図6に示すように、複数の樹脂光導波路102が設けられた基板101による光接続部品を用い、各々の樹脂光導波路102の一方の入出力端に、基板101を介して光ファイバ108を接続することもできる。図6では、4つの樹脂光導波路102が設けられた基板101に、4本の光ファイバ108を接続する例を示している。光ファイバ108は、V溝基板111の上に配列され、平基板112によりV溝基板111に押さえつけられて固定されている。なお、図示していないが、V溝基板111および平基板112と基板101との間には、接着剤による接着層が形成され、各々を接着固定している。
ここで、接着層の厚さおよび基板101の板厚は、薄いほど好ましい。光ファイバ108からの出射光は、シングルモード伝搬の場合、ガウス分布に近い強度分布を有しているが、接着層、基板101などのように導波構造を有しないものを通過する際は、出射光のビームモード径は徐々に広がっていく。基板101に形成された樹脂光導波路102の一方の入出力端における樹脂コア103の直径は、出射光のビームモード径の広がり後のモードビーム径に応じて適宜、設計することができる。
しかしながら、入出力端の後の樹脂光導波路102の折り返し構造などにおいては、前述のように径を細くすることが求められる。このため、図4を用いて説明したように、基板101に近づくほどモード径が太くなる樹脂コア103aが用いることになるが、上述したモード径の広がりが小さいほど、樹脂コア103aにおける径の変化を小さくすることができる。このため、接着層、基板101は、薄いほど、小型かつ低損失な光接続構造を形成することができる。好ましくは接着層の厚さは10μm以下、基板101の厚さは0.5mm以下とする。より好ましくは、基板101の厚さは0.3mm以下とする。
また、図7に示すように、基板101の裏面の一部あるいは全面に、反射防止(AR:Anti Reflection Coating)膜113を形成してもよい。AR膜113は、第2入出力端105の部分の基板101の裏面に形成してもよく、第1入出力端104の部分の基板101の裏面に形成してもよい。また、第1入出力端104の部分の基板101の裏面および第2入出力端105の部分の基板101の裏面に形成することもできる。
また、基板101は、ITO(Indium Tin Oxide)やZnOから構成し、電気を流すことを可能とすることもできる。このように基板101が導電性を有すれば、電源や高周波の接続を必要とする光デバイス応用にもより効果的に光接続部品を用いることができる。
また、実施の形態1における光接続部品を用いることで、図8に示すような光接続構造とすることができる。この光接続構造は、光接続部品に、光導波路型の光デバイス(第1光部品)115を組み合わせている。光デバイス115は、シリコン細線により形成された光導波路から構成されている。この光導波路は、次に示すように製造することができる。ます、よく知られたSOI(Silicon on Insulator)基板などを用い、公知のフォトリソグラフィー技術およびエッチング技術などにより表面Si層をパターニングし、光導波路(光回路)を構成するコア層を形成する。次に、例えば、プラズマCVD法などのよく知られた堆積法により、酸化Siを堆積してクラッド層を形成し、光導波路を形成する。
ここで、光デバイス115は、例えばシリコン基板上に堆積して形成された石英ガラス薄膜からなる平面光波回路から構成することもできる。また、他にも、光導波機構を有する光導波路デバイスであれば、これに限らない。例えば、基板や光導波路として、石英ガラスの他、背景で述べたような、有機物からなるポリマーや、Si、シリコンナイトライド(SiN)、ガリウムヒ素、インジウムリン(InP)等の半導体あるいは化合物半導体導波路、ニオブ酸リチウム(LN)、周期的分極反転ニオブ酸リチウム(PPLN)などの誘電体を用いることができる。
また、光を伝搬、入出力する光デバイスであれば、その機能も任意に適応可能である。例えば、光デバイスは、光導波路の他に、レーザなどの発光素子、フォトダイオードなどの受光素子、光変調器などを備えることもできる。また、光デバイスは、光増幅器、アイソレータ、偏波回転、偏波分離素子、光減衰器、など任意の光機能素子を供えることもできる。光デバイスには、信号を処理するための各種の光回路や、発光・受光・変調・制御等するための各種の光機能素子が集積可能である。本発明は、光デバイスとの光接続構造にその特徴を有するのであって、光デバイスの回路構成や回路の機能によらない。本発明の実施の形態については、光デバイスの中身の詳細な説明は割愛する。
なお、光デバイス115を構成している光導波路のコアは、前述したように樹脂光導波路102を構成する樹脂コアと軸ずれ無く、低損失に光る接続可能に調芯して接着固定されている。光デバイス115と基板101との間には、接着層が形成されているが図8では省略されている。光デバイス115を構成している各々の光導波路のコアは、光造形により形成された樹脂コアによる樹脂光導波路102と、接着層および基板101を介して光学的に接続されている。
上述した実施の形態1によれば、基板101および樹脂光導波路102とから構成した光接続部品を用いることで、下記のような顕著な効果を奏する。
まず、従来の、例えば、光ファイバと光デバイスとを対向配置して、バッドカップリングなどで光接続することに比べ、光ファイバと光デバイス間とを折り返し構造の樹脂光導波路102で接続する光接続構造を実現することが可能となり、微小領域で実装上の制限を大幅に緩和することができる。
また、光ファイバのコアや光デバイスの光導波路のコアの端面に、直接、樹脂コアを接続して形成する場合に比べて、別体の光接続部品を用いるので、光接続部品を形成する光造形型装置に、光デバイスや光ファイバを配置する必要が無く、実装上の工程が大幅に容易になる。また、光接続構造の形成においては、光造形型装置を用いることがないため、寸法などの制限上、光造形型装置に導入できない光デバイスや光ファイバにも適用することができる。
また、従来の光造形型においては、光デバイスに直接樹脂コアを形成しているので、光が照射されていない未硬化分の樹脂を除去する際などに使う除去溶剤による光デバイスの汚染やダメージが発生している。これに対し、実施の形態1によれば、光デバイスに直接樹脂コアを形成することがないので、上記除去溶剤による光デバイスへの汚染やダメージを無視することが可能となり、工程上の大幅な簡易化と制約緩和につながる。また、製造上において、良品の光接続部品を用いて光接続構造が形成できるので、結果として、歩留まりを向上させることができる。
[実施の形態2]
次に、本発明の実施の形態2に係る光接続構造について図9,図10を参照して説明する。この光接続構造は、基板101、樹脂コア103による樹脂光導波路102から構成された光接続部品と、光デバイス115とから構成されている。光接続部品は、前述した実施の形態1と同様である。光デバイス115は、デバイス基板116と、デバイス基板116の上に形成された光導波路層117とを備える。光導波路層117は、コア118とクラッド119とを備える。また、光デバイス115は、接着剤による接着層110aで、基板101の裏面に接着されている。
光導波路層117におけるコア118よりなる光導波路が、第1入出力端104における樹脂光導波路102と低損失に光接続する状態で、光デバイス115が基板101に固定されている。より詳しくは、第1入出力端104において、コア118と樹脂コア103とが軸ずれが無い状態に調芯されて、光デバイス115が基板101に固定されている。なお、コア118よりなる光導波路が、第2入出力端105において樹脂光導波路102に光接続するようにしてもよい。図10に示すように、光接続部品は、基板101に複数の樹脂光導波路102を備えることができる。光デバイス115の光導波路層117に形成されている複数の光導波路の各々に対応し、複数の樹脂光導波路102の各々が、基板101を介して光接続する。
また、図11に示すように、第1光デバイス(第1光部品)115aと第2光デバイス(第2光部品)115bとを基板101および樹脂光導波路102による光接続部品に接続することもできる。第1光デバイス115aと第2光デバイス115bとは、各々接着層(不図示)で、基板101の裏面に接着されている。
第1光デバイス115aは、第1デバイス基板116aと、第1デバイス基板116aの上に形成された第1光導波路層117aとを備える。第1光導波路層117aは、図示していないがコアおよびクラッドを備える。また、第2光デバイス115bは、第2デバイス基板116bと、第2デバイス基板116bの上に形成された第2光導波路層117bとを備える。第2光導波路層117bは、図示していないがコアおよびクラッドを備える。
例えば、第1光デバイス115aの第1光導波路層117aにおけるコアよりなる光導波路が、第1入出力端104において、樹脂光導波路102と低損失に光接続する状態で、第1光デバイス115aが基板101に固定されている。また、第2光デバイス115bの第2光導波路層117bにおけるコアよりなる光導波路が、第2入出力端105において、樹脂光導波路102と低損失に光接続する状態で、第2光デバイス115bが基板101に固定されている。
例えば、第1光デバイス115aと第2光デバイス115bとは、第1光導波路層117aと第2光導波路層117bとが、互いに向かい合う状態で配置される。また、第1光導波路層117aと第2光導波路層117bとの間に、これらを固定する台座を配置し、この台座に、第1光導波路層117aおよび第2光導波路層117bを固定してもよい。また、第1光導波路層117aと第2光導波路層117bとの間に接着樹脂を充填して、一体化して固定してもよい。第1光導波路層117aのコアと第2光導波路層117bのコアとの間隔は、例えば、100μm程度とすることができる。
上述したように第1光デバイス115aと第2光デバイス115bとを、基板101および樹脂光導波路102による光接続部品に接続することで、第1光デバイス115aと第2光デバイス115bとを、光接続部品を介して光学的に接続することができる。
また、第1光デバイス115aと第2光デバイス115bとは、図12に示すように、第1光導波路層117aの表面と第2光導波路層117bの表面とが同一の方向を向く状態で、基板101および樹脂光導波路102による光接続部品に接続することもできる。
上述したように、第1光デバイス115aと第2光デバイス115bとを光接続部品を用いて接続することで、下記のような顕著な効果を奏する。
従来のように2つの光デバイスを対向配置して、バッドカップリングなどで接続することに比べ、光デバイスと光デバイス間を折り返し構造の樹脂光導波路で光接続する光接続構造を実現することが可能となり、微小領域で実装上の制限を大幅に緩和することができる。
また、光デバイスの光導波路のコアの端面に、直接、樹脂コアを接続して形成する場合に比べて、別体の光接続部品を用いるので、光接続部品を形成する光造形型装置に、光デバイスや光ファイバを配置する必要が無く、実装上の工程が大幅に容易になる。また、光接続構造の形成においては、光造形型装置を用いることがないため、寸法などの制限上、光造形型装置に導入できない光デバイスにも適用することができる。
また、従来の光造形型においては、光デバイスに直接樹脂コアを形成しているので、光が照射されていない未硬化分の樹脂を除去する際などに使う除去溶剤による光デバイスの汚染やダメージが発生している。これに対し、実施の形態1によれば、光デバイスに直接樹脂コアを形成することがないので、上記除去溶剤による光デバイスへの汚染やダメージを無視することが可能となり、工程上の大幅な簡易化と制約緩和につながる。また、製造上において、良品の光接続部品を用いて光接続構造が形成できるので、結果として、歩留まりを向上させることができる。
[実施の形態3]
次に、本発明の実施の形態3に係る光接続構造について図13を参照して説明する。この光接続構造は、基板101、樹脂コア103による樹脂光導波路102から構成された光接続部品と、光デバイス(第1光部品)115cと、光ファイバ(第2光部品)108aとから構成されている。光接続部品は、前述した実施の形態1,2と同様である。
光デバイス115cは、デバイス基板116cと、デバイス基板116cの上に形成された素子形成層117cとを備える。素子形成層117cには、例えば、光導波路型のレーザ素子が形成されている。光デバイス115cは、接着剤による接着層110aで、基板101の裏面に接着されている。
光ファイバ108aは、V溝基板111の上に配列され、素子形成層117cによりV溝基板111に押さえつけられて固定されている。なお、図示していないが、V溝基板111およびデバイス基板116cと基板101との間には、接着剤による接着層が形成され、互いに接着固定している。
素子形成層117cのレーザ光出力端が、第1入出力端104において、樹脂光導波路102と低損失に光接続する状態で、光デバイス115cが基板101に固定されている。より詳しくは、第1入出力端104において、レーザ光出力端より出射されるレーザ光の光軸と、樹脂コア103とが軸ずれが無い状態に調芯されて、光デバイス115cが基板101に固定されている。また、光ファイバ108aは、第2入出力端105において、基板101を介して樹脂光導波路102に光学的に接続されている。
このような構成とすることで、素子形成層117cより出射されるレーザ光を、樹脂光導波路102を介して光ファイバ108aに結合させることが可能となる。この結果、従来のように光デバイス(レーザ素子)と光ファイバとを対向配置して光接続することに比べ、光デバイスと光ファイバ間を折り返し構造の樹脂光導波路で光接続する光接続構造を実現することが可能となり、微小領域で実装上の制限を大幅に緩和することができる。
また、レーザ素子のレーザ出力端面、および光ファイバの端面の各々に、直接、樹脂コアを接続して形成する場合に比べて、別体の光接続部品を用いるので、光接続部品を形成する光造形型装置に、光デバイスや光ファイバを配置する必要が無く、実装上の工程が大幅に容易になる。また、光接続構造の形成においては、光造形型装置を用いることがないため、寸法などの制限上、光造形型装置に導入できない光デバイスにも適用することができる。
また、従来の光造形型においては、光デバイスに直接樹脂コアを形成しているので、光が照射されていない未硬化分の樹脂を除去する際などに使う除去溶剤による光デバイスの汚染やダメージが発生している。これに対し、実施の形態1によれば、光デバイスに直接樹脂コアを形成することがないので、上記除去溶剤による光デバイスへの汚染やダメージを無視することが可能となり、工程上の大幅な簡易化と制約緩和につながる。また、製造上において、良品の光接続部品を用いて光接続構造が形成できるので、結果として、歩留まりを向上させることができる。
ところで、前述したように、光ファイバ108aは、素子形成層117cにより押さえつけることで固定している。各部分の位置をより一意に決定するために、素子形成層117cの表面(上面)は、平坦であることが好ましい。素子形成層117cの表面が、十分に平坦ではない場合、図14に示すように、ノッチ構造(溝構造)121などの機械的な位置決め機構を素子形成層117cに形成することもできる。素子形成層117cの一部を、デバイス基板116cをエッチング停止層として用いて選択的にエッチングすることで、断面矩形状の溝構造121を形成し、ここに光ファイバ108aを嵌合させる。これにより、光ファイバ108aの高精度な位置決めも可能であり、生産上の歩留まりをさらに高めることができる。
以上に説明したように、本発明によれば、第1入出力端および第2入出力端を備えて対象とする光を透過する板状の基板の、第1入出力端および第2入出力端に、樹脂コアによる樹脂光導波路を光学的に接続した光接続部品を用いるようにしたので、手間をかけることなく、より高い製造歩留まりで光接続構造が製造できるようになる。
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
101…基板、102…樹脂光導波路、103…樹脂コア、104…第1入出力端、105…第2入出力端。

Claims (7)

  1. 第1入出力端および第2入出力端の組を複数備えて対象とする光を透過する板状の基板と、
    前記第1入出力端と前記第2入出力端の複数の組の各々とを光学的に接続する、各々個別に形成された樹脂コアによる複数の樹脂光導波路と
    を備え
    前記樹脂コアは、曲線部を有する折り返しの構造に形成され、
    前記樹脂光導波路は、前記樹脂コアの周囲の空気をクラッドとしていることを特徴とする光接続部品。
  2. 請求項1記載の光接続部品において、
    前記第1入出力端における導波方向および前記第2入出力端における導波方向は、前記基板の表面の法線方向とされている
    ことを特徴とする光接続部品。
  3. 請求項1または2記載の光接続部品において、
    前記樹脂コアは、光硬化した樹脂から構成されていることを特徴とする光接続部品。
  4. 請求項1~3のいずれか1項の光接続部品と、
    前記基板を介して前記第1入出力端に光学的に接続する第1光部品を備えることを特徴とする光接続構造。
  5. 請求項4記載の光接続構造において、
    前記第1光部品は、光導波路を備える光デバイスまたは光ファイバであることを特徴とする光接続構造。
  6. 請求項4または5記載の光接続構造において、
    前記基板を介して前記第2入出力端に光学的に接続する第2光部品を備えることを特徴とする光接続構造。
  7. 請求項6記載の光接続構造において、
    前記第2光部品は、光導波路を備える光デバイスまたは光ファイバであることを特徴とする光接続構造。
JP2018221094A 2018-11-27 2018-11-27 光接続部品および光接続構造 Active JP7124672B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018221094A JP7124672B2 (ja) 2018-11-27 2018-11-27 光接続部品および光接続構造
US17/287,094 US20210382231A1 (en) 2018-11-27 2019-11-12 Optical Connection Component and Optical Connection Structure
PCT/JP2019/044283 WO2020110700A1 (ja) 2018-11-27 2019-11-12 光接続部品および光接続構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018221094A JP7124672B2 (ja) 2018-11-27 2018-11-27 光接続部品および光接続構造

Publications (2)

Publication Number Publication Date
JP2020086155A JP2020086155A (ja) 2020-06-04
JP7124672B2 true JP7124672B2 (ja) 2022-08-24

Family

ID=70853805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018221094A Active JP7124672B2 (ja) 2018-11-27 2018-11-27 光接続部品および光接続構造

Country Status (3)

Country Link
US (1) US20210382231A1 (ja)
JP (1) JP7124672B2 (ja)
WO (1) WO2020110700A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020212112A1 (de) * 2020-09-25 2022-03-31 Karlsruher Institut für Technologie Optisches Wellenleiterbauelement und Verfahren zu dessen Herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275343A (ja) 2004-02-26 2005-10-06 Ngk Spark Plug Co Ltd 光導波路構造付きデバイス及びその製造方法
JP2006106480A (ja) 2004-10-07 2006-04-20 Bridgestone Corp 光導波路
US20150007812A1 (en) 2013-07-03 2015-01-08 Mathew S. Smith Delivery of Nebulized Medicines
WO2018083191A1 (de) 2016-11-02 2018-05-11 Karlsruher Institut für Technologie Verfahren zur herstellung eines optischen systems und optisches system
JP2018533033A (ja) 2015-08-10 2018-11-08 マルチフォトン オプティクス ゲーエムベーハー ビーム偏向素子を有する光学部品、その製造方法及び当該部品に適したビーム偏向素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905546A3 (en) * 1997-09-26 2002-06-19 Nippon Telegraph and Telephone Corporation Stacked thermo-optic switch, switch matrix and add-drop multiplexer having the stacked thermo-optic switch
JP3945322B2 (ja) * 2002-06-27 2007-07-18 富士ゼロックス株式会社 光学素子およびその製造方法
US20050135733A1 (en) * 2003-12-19 2005-06-23 Benoit Reid Integrated optical loop mirror
JP5290737B2 (ja) * 2008-02-08 2013-09-18 古河電気工業株式会社 光−マイクロ波発振器及びパルス発生装置
US9034222B2 (en) * 2012-02-23 2015-05-19 Karlsruhe Institut Fuer Technologie Method for producing photonic wire bonds
JPWO2021199377A1 (ja) * 2020-04-01 2021-10-07

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275343A (ja) 2004-02-26 2005-10-06 Ngk Spark Plug Co Ltd 光導波路構造付きデバイス及びその製造方法
JP2006106480A (ja) 2004-10-07 2006-04-20 Bridgestone Corp 光導波路
US20150007812A1 (en) 2013-07-03 2015-01-08 Mathew S. Smith Delivery of Nebulized Medicines
JP2018533033A (ja) 2015-08-10 2018-11-08 マルチフォトン オプティクス ゲーエムベーハー ビーム偏向素子を有する光学部品、その製造方法及び当該部品に適したビーム偏向素子
WO2018083191A1 (de) 2016-11-02 2018-05-11 Karlsruher Institut für Technologie Verfahren zur herstellung eines optischen systems und optisches system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOOSE et al.,Hardwired Configurable Photonic Integrated Circuits Enabled by 3D Nanoprinting,2018 European Conference on Optical Communication(ECOC),IEEE,2018年09月23日,pp. 1-3,DOI:10.1109/ECOC.2018.8535238

Also Published As

Publication number Publication date
JP2020086155A (ja) 2020-06-04
US20210382231A1 (en) 2021-12-09
WO2020110700A1 (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
US20220390693A1 (en) Micro-optical interconnect component and its method of fabrication
JP5323646B2 (ja) ハイブリッド集積光モジュール
JP2002122750A (ja) 光導波路接続構造
JP7400843B2 (ja) 光素子の製造方法
JP7024359B2 (ja) 光ファイバ接続構造
JP2018189875A (ja) 光接続構造およびその形成方法
JP2015191110A (ja) 光導波路結合構造および光導波路結合構造の製造方法
JP7231028B2 (ja) ガイド部材の形成方法
JP7124672B2 (ja) 光接続部品および光接続構造
JP7372578B2 (ja) 光モジュール
JP2019095485A (ja) ハイブリッド光回路
US20230089592A1 (en) Optical Connecting Device, Optical Device, and Method for Manufacturing Optical Device
JP7124632B2 (ja) 光接続構造およびその形成方法
JP6992398B2 (ja) 光接続構造の形成方法
WO2021033217A1 (ja) 光接続構造およびその製造方法
JP2001051142A (ja) 光集積装置及びその製造方法
US20220390670A1 (en) Optical Module
JP4095358B2 (ja) ホーリー導波路型光回路及びその製造方法
JP7464053B2 (ja) 光導波路素子のアライメント方法
WO2023079720A1 (ja) 光素子、光集積素子および光集積素子の製造方法
WO2022102053A1 (ja) 光接続構造、光モジュールおよび光接続構造の製造方法
JP4018852B2 (ja) 光導波路基板
WO2023095278A1 (ja) 光素子、光集積素子および光素子の製造方法
WO2022264322A1 (ja) 光回路デバイス
JP7347505B2 (ja) 光ファイバガイド構造および光ファイバ接続構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7124672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150