JP2019095485A - ハイブリッド光回路 - Google Patents

ハイブリッド光回路 Download PDF

Info

Publication number
JP2019095485A
JP2019095485A JP2017222180A JP2017222180A JP2019095485A JP 2019095485 A JP2019095485 A JP 2019095485A JP 2017222180 A JP2017222180 A JP 2017222180A JP 2017222180 A JP2017222180 A JP 2017222180A JP 2019095485 A JP2019095485 A JP 2019095485A
Authority
JP
Japan
Prior art keywords
light
optical circuit
waveguide
face
connection end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017222180A
Other languages
English (en)
Other versions
JP6871137B2 (ja
Inventor
阿部 淳
Atsushi Abe
淳 阿部
田中 拓也
Takuya Tanaka
拓也 田中
橋本 俊和
Toshikazu Hashimoto
俊和 橋本
毅伺 梅木
Takeshi Umeki
毅伺 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017222180A priority Critical patent/JP6871137B2/ja
Publication of JP2019095485A publication Critical patent/JP2019095485A/ja
Application granted granted Critical
Publication of JP6871137B2 publication Critical patent/JP6871137B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】石英系光回路とPPLN導波路との接続部の長期的安定性を実現する。【解決手段】石英系光回路1は、PPLN導波路との接続端面10aに、光が伝播する導波路が形成された領域11と光が伝播しない領域12とを分断するように形成された溝6を有する。石英系光回路1のPPLN導波路との接続端面10aのうち、光が伝播しない領域12に設けられた紫外線硬化型接着剤13により、石英系光回路1の接続端面とこれと向かい合うPPLN導波路の接続端面とが接着される。【選択図】 図2

Description

本発明は、ハイブリッド光回路に関し、より詳細には、石英系光回路とPPLN導波路とが接合されたハイブリッド光回路に関するものである。
石英系光回路は、石英ガラス基板又はシリコン基板上に、石英系ガラスを主たる材料として作製される石英系光導波路により構成され、実用に供せられている。石英系光回路上の石英系光導波路は、伝播損失が低い、信頼性・安定性が高い、および加工性が良い等の特徴を有している。また、石英系光導波路は、石英系光ファイバとの整合性が良いため、標準的な通信用石英系光ファイバと接続した場合においても、低損失・高信頼性を有している。
現在、石英系光導波路により構成したY分岐パワースプリッター、マッハ・ツェンダ干渉計(Mach-Zehnder Interferometer:MZI)、MZIを利用した光スイッチ、およびアレイ導波路型波長合分波器(Arrayed Waveguide Grating:AWG)などの光回路(Planar Lightwave Circuits:PLC)の開発が進められている。これらの光回路は、近年、構築が進められつつある波長分割多重(Wavelength Division Multiplexing:WDM)光伝送システムを基盤とした、フォトニックネットワークシステムの重要なキーデバイスとなっている(例えば、非特許文献1、非特許文献2、非特許文献3および非特許文献4参照)。
周期分極反転ニオブ酸リチウム(Periodically Poled LiNbO3:PPLN)導波路は、高効率な二次非線形光学効果を有する媒質で、波長変換および光パラメトリック増幅器(Optical parametric amplifier:OPA)としての研究開発が進められている。近年は、PPLN導波路の特性向上及び実装技術の進展、並びに励起光を発生させるファイバ光増幅器技術の進展に伴い、通信分野を中心として、PPLN導波路を使用した光デバイスの実用化を視野にいれた研究開発も進められている。特に、PPLN導波路を使用したOPAは、低雑音光増幅器として注目され、実用化に向けた研究開発が加速されている(例えば、非特許文献5、非特許文献6および非特許文献7参照)。
図8は、従来のPPLN導波路を使用したOPAの構成を示す概略図である。図8のOPA100は、入力光ファイバ101および出力光ファイバ103が接続されたOPA用モジュール110と、入力光ファイバ102および出力光ファイバ104が接続された第2高調波光発生(Second Harmonic Generation:SHG)用モジュール120とを備える。
OPA用モジュール110内には、光の入力側から順に、コリメートレンズ111、ダイクロイックミラー(dichroic mirror)112、集光レンズ113、PPLN導波路114、集光レンズ115、ダイクロイックミラー116、コリメートレンズ117が配置されている。SHG用モジュール120内には、光の入力側から順に、コリメートレンズ121、ダイクロイックミラー122、集光レンズ123、PPLN導波路124、集光レンズ125、ダイクロイックミラー126、コリメートレンズ127が配置されている。OPA用モジュール110とSHG用モジュール120とは、光ファイバ105により接続されている。また、入力光ファイバ102とSHG用モジュール120との間に、EDFA(Erbium-Doped Fiber Amplifier)106と、BPF(Band Pass Filter)107とが挿入されている。
OPA100においては、まず、入力光ファイバ102からEDFA106およびBPF107を介して、基本波光がSHG用モジュール120に入射する。基本波光は、コリメートレンズ121により平行光に変換され、ダイクロイックミラー122を通過した後、集光レンズ123により集光され、PPLN導波路124に入射する。PPLN導波路124において、基本光波は、励起光となる第2高調波光(Second Harmonic light:SH光)に変換され、PPLN導波路124を出射する。このとき、すべての基本波光がSH光に変換されるわけではなく、未変換基本波光も一緒に出射される。SH光は、集光レンズ125により平行光に変換された後、ダイクロイックミラー126において基本波光と分離され、光ファイバ105を介してOPA用モジュール110に入射する。
OPA用モジュール110には、入力光ファイバ101から信号光が入射する。入射した信号光は、コリメートレンズ111により平行光に変換され、ダイクロイックミラー112において、光ファイバ105からのSH光と合波され、集光レンズ113により集光され、PPLN導波路114に入射する。PPLN導波路114において、信号光はSH光とのパラメトリック効果により増幅されて、PPLN導波路114を出射する。このとき、全てのSH光が信号光増幅に寄与するわけではなく、SH光の一部も、増幅された信号光と共にPPLN導波路114から出射する。PPLN導波路114からの出射光は、コリメートレンズ115により平行光に変換され、ダイクロイックミラー116により未変換SH光と増幅された信号光とに分波される。信号光は、コリメートレンズ117により集光され、OPA用モジュール110を出射して出力光ファイバ103に入射する。
通信分野等における実用化を想定した場合に、OPAは、光ファイバによる入出力形態での実装モジュール化が必須又は好ましいため、光ファイバ入出力を想定したモジュール化実装の検討が進められている。一方で、OPAは、励起光発生用のSHG用モジュールおよびOPA用モジュール等のPPLNモジュールを実装するにあたり、コリメートレンズ、ダイクロイックミラーおよび集光レンズ等の素子を個々に設置・調整(アライメント)する必要がある。こうしたアセンブリは、量産性を低くし、コストを高くするという課題を有している。
これらの課題は、石英系PLCとの複合化を図ることで、解決が可能である。従来の石英系PLCでは、ファイバ接続にあたり、ファイバブロックを用い、紫外線硬化型接着剤によって固定する方法が用いられるのが一般的となっている。このような固定方法が採用される理由は、紫外線硬化型接着剤が、熱硬化型接着剤の様に広範な領域を加熱することを必要とせず、接着部に局所的に紫外線を照射することにより硬化させることができることから、光軸の調芯工程との整合性が高く、全体として高精度で高い信頼性を有した形で接続実装を可能とするからである。
しかしながら、高強度の780nm〜800nm帯の光や、更にそれより短波長で、高強度の光が、紫外線硬化樹脂で接続された端面を透過する場合、時間が経過するに従って紫外線硬化樹脂が劣化するという問題があった。この問題は、光の波長が短い方が、例えば400nmといった波長の方がより顕著であり、また光強度が強ければ強いほど顕著となる。
PPLN導波路を用いたパラメトリック増幅を用いる応用分野では、基本波光と信号光に1.5μ帯光を用い、励起光(SH光)に0.78μm帯光を用いることが多く、また量子光情報処理の応用分野では、基本波光と信号光に800nm帯光を用い、励起光(SH光)に400nm帯光を用いることがある。このため、PPLN−PLCハイブリッド光回路の応用範囲の拡大を図るためには、従来の紫外線硬化型接着剤に依らない、もしくは光が通る経路上に従来の紫外線硬化型樹脂が無い接続手法が望まれる。
Y.Hibino,"An Array of Photonic Filtering Advantages Arrayed-Waveguide-Grating Multi/Demultiplexers for Photonic Networks",IEEE CIRCUITS & DEVICES,Nov.,2000,pp.21-27 A.Himeno,et al.,"Silica-Based Planar Lightwave Circuits",IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,VOL. 4,NO. 6,1998,pp.913-924 M.Abe,"Silica-based waveguide devices for photonic networks",Journal of Ceramic Society of Japan,2008,pp.1063-1070 M.Kawachi,"TUTORIAL REVIEW Silica waveguides on silicon and their application to integrated-optic components",Optical and Quantum Electronics,22,1990,pp.391-416 竹ノ内 弘和他,"光周波数・位相を操る光伝送技術の最新動向 PPLNを用いた位相感応増幅技術",O plus E,Vol.37,NO.8,2015,pp.636-639 T.Kazama,et al.,"Monolithically integrated optical parametric up/down frequency converter using arrayed PPLN waveguides",CLEO2014,SM4I.8 T.Kazama,et al.,"Single-Chip Parametric Frequency Up/Down Converter Using Parallel PPLN Waveguides",IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.26,NO.22,2014,pp.2248-2251
本発明は、上記問題点に鑑みなされたもので、石英系光回路と二次非線形導波路(PPLN導波路)とを備えたハイブリッド光回路において、石英系光回路と二次非線形導波路との接続部の長期的安定性を実現することを目的とする。
本発明のハイブリッド光回路は、石英系ガラスを主たる材料として形成された第1の導波路を含む石英系光回路と、周期分極反転構造を有する二次非線形光学材料からなり、基本波光の第2高調波光を発生させる第2の導波路と、前記第2高調波光を励起光として用いて信号光のパラメトリック増幅を行う第3の導波路とを含む二次非線形導波路とを備え、前記石英系光回路は、前記二次非線形導波路との接続端面に、光が伝播する前記第1の導波路が形成された領域と光が伝播しない領域とを分断するように形成された溝を有することを特徴とするものである。
また、本発明のハイブリッド光回路の1構成例において、前記石英系光回路の溝は、前記二次非線形導波路との接続端面のうち、光が伝播する前記第1の導波路が形成された領域とその両側の前記光が伝播しない領域とを分断するように少なくとも2箇所形成され、前記石英系光回路の前記二次非線形導波路との接続端面のうち、前記光が伝播しない領域に設けられた接着剤により、前記石英系光回路の接続端面とこれと向かい合う前記二次非線形導波路の接続端面とが接着されていることを特徴とするものである。
また、本発明のハイブリッド光回路の1構成例において、前記石英系光回路の前記二次非線形導波路との接続端面のうち、光が伝播する前記第1の導波路が形成された領域と前記二次非線形導波路の接続端面との間隙に、高耐光性屈折率整合性樹脂が充填されていることを特徴とするものである。
また、本発明のハイブリッド光回路の1構成例において、前記石英系光回路の前記二次非線形導波路との接続端面のうち、光が伝播する前記第1の導波路が形成された領域と前記二次非線形導波路の接続端面とに反射防止膜コートがなされていることを特徴とするものである。
また、本発明のハイブリッド光回路は、石英系ガラスを主たる材料として形成された第1の導波路を含む石英系光回路と、周期分極反転構造を有する二次非線形光学材料からなり、基本波光の第2高調波光を発生させる第2の導波路と、前記第2高調波光を励起光として用いて信号光のパラメトリック増幅を行う第3の導波路とを含む二次非線形導波路と、前記石英系光回路と前記二次非線形導波路とを光ファイバを介して接続するファイバアレイブロックとを備え、前記ファイバアレイブロックは、前記石英系光回路との接続端面および前記二次非線形導波路との接続端面のそれぞれに、光が伝播する前記光ファイバが配置された領域と光が伝播しない領域とを分断するように形成された溝を有することを特徴とするものである。
また、本発明のハイブリッド光回路の1構成例において、前記ファイバアレイブロックの溝は、前記二次非線形導波路との接続端面のうち、光が伝播する前記光ファイバが配置された領域とその両側の前記光が伝播しない領域とを分断するように少なくとも2箇所形成されると共に、前記石英系光回路との接続端面のうち、光が伝播する前記光ファイバが配置された領域とその両側の前記光が伝播しない領域とを分断するように少なくとも2箇所形成され、前記ファイバアレイブロックの前記二次非線形導波路との接続端面のうち、前記光が伝播しない領域に設けられた接着剤により、前記ファイバアレイブロックの接続端面とこれと向かい合う前記二次非線形導波路の接続端面とが接着され、前記ファイバアレイブロックの前記石英系光回路との接続端面のうち、前記光が伝播しない領域に設けられた接着剤により、前記ファイバアレイブロックの接続端面とこれと向かい合う前記石英系光回路の接続端面とが接着されていることを特徴とするものである。
また、本発明のハイブリッド光回路の1構成例において、前記ファイバアレイブロックの前記二次非線形導波路との接続端面のうち、光が伝播する前記光ファイバが配置された領域と前記二次非線形導波路の接続端面との間隙、および前記ファイバアレイブロックの前記石英系光回路との接続端面のうち、光が伝播する前記光ファイバが配置された領域と前記石英系光回路の接続端面との間隙に、高耐光性屈折率整合性樹脂が充填されていることを特徴とするものである。
また、本発明のハイブリッド光回路の1構成例において、前記接着剤は、紫外線硬化型接着剤である。
本発明によれば、石英系光回路の二次非線形導波路との接続端面に、光が伝播する第1の導波路が形成された領域と光が伝播しない領域とを分断するように溝を設けることにより、接着剤の塗り分けを実現することができ、光が伝播しない領域に接着剤を塗布して石英系光回路と二次非線形導波路とを接着すれば、接続端面の光が伝播する領域に接着剤が無い構造を実現することができるので、石英系光回路と二次非線形導波路との接続部の長期的安定性を実現することができる。また、本発明では、石英系光回路内の第1の導波路と方向性結合器とによって石英系光回路内で信号光と第2高調波光との合波を行うようにすれば、二次非線形導波路にダイクロイックミラー等の部品を設けることを不要とし、ハイブリッド光回路の部品点数の削減を図ることができる。また、石英系光回路内で信号光と第2高調波光との合波を行うようにすれば、コリメート用レンズ、ダイクロイックミラー等の設置調整のアセンブリに係る工程を削減することができ、量産性を高め、製造コストの低減を図ることができ、ハイブリッド光回路を安価に製造することができる。
また、本発明では、石英系光回路の二次非線形導波路との接続端面のうち、光が伝播する第1の導波路が形成された領域と二次非線形導波路の接続端面との間隙に、高耐光性屈折率整合性樹脂を充填することにより、石英系光回路と二次非線形導波路の間隙で反射が発生することを抑制することができる。
また、本発明では、石英系光回路の二次非線形導波路との接続端面のうち、光が伝播する第1の導波路が形成された領域と二次非線形導波路の接続端面とに反射防止膜コートを施すことにより、石英系光回路と二次非線形導波路の間隙で反射が発生することを抑制することができる。
また、本発明では、ファイバアレイブロックの石英系光回路との接続端面および二次非線形導波路との接続端面のそれぞれに、光が伝播する光ファイバが配置された領域と光が伝播しない領域とを分断するように溝を設けることにより、接着剤の塗り分けを実現することができ、光が伝播しない領域に接着剤を塗布してファイバアレイブロックと二次非線形導波路とを接着すると共に、ファイバアレイブロックと石英系光回路とを接着すれば、接続端面の光が伝播する領域に接着剤が無い構造を実現することができるので、石英系光回路と二次非線形導波路との接続部の長期的安定性を実現することができる。
また、本発明では、ファイバアレイブロックの二次非線形導波路との接続端面のうち、光が伝播する光ファイバが配置された領域と二次非線形導波路の接続端面との間隙、およびファイバアレイブロックの石英系光回路との接続端面のうち、光が伝播する光ファイバが配置された領域と石英系光回路の接続端面との間隙に、高耐光性屈折率整合性樹脂を充填することにより、ファイバアレイブロックと二次非線形導波路の間隙およびファイバアレイブロックと石英系光回路の間隙で反射が発生することを抑制することができる。
図1は、本発明の第1の実施例に係るハイブリッド光回路の構成を示す斜視図である。 図2は、本発明の第1の実施例に係る石英系光回路のPPLN導波路との接続端面を拡大した斜視図である。 図3は、本発明の第1の実施例に係る石英系光回路の構成を示す平面図である。 図4は、本発明の第1の実施例において光パラメトリック増幅の利得評価を行う系の概略図である。 図5は、本発明の第1の実施例に係るハイブリッド光回路における小信号利得の時間経過に対する安定性を評価した結果を示す図である。 図6は、本発明の第2の実施例に係るファイバアレイブロックの構成を示す斜視図である。 図7は、本発明の第2の実施例に係るハイブリッド光回路の構成を示す斜視図である。 図8は、従来のPPLN導波路を使用した光パラメトリック増幅器の構成を示す概略図である。
[第1の実施例]
以下、図面を参照しながら本発明の実施例について詳細に説明する。図1は、本発明の第1の実施例に係るハイブリッド光回路の構成を示す斜視図である。ハイブリッド光回路は、石英系光回路1と、石英系光回路1に直接接合されたPPLN導波路2(二次非線形導波路)とを備える。
石英系光回路1は、Si基板上に石英系ガラスを主たる材料として形成されたコア層とクラッド層とからなる導波路(不図示)を備えている。
PPLN導波路2は、少なくとも一部に周期分極反転構造を有するニオブ酸リチウム(二次非線形光学材料)を主たる材料とするOPA用PPLN導波路200(第3の導波路)と、同じく周期分極反転構造を有するニオブ酸リチウムを主たる材料とするSHG用PPLN導波路201(第2の導波路)とを含む。
石英系光回路1を作製するため、Si基板上に、熱酸化膜層に加え、火炎堆積法(flame hydrolysis deposition:FHD)を用いてアンダークラッド層を形成し、アンダークラッド層上に、導波路のコア層となるSiO2−GeO2ガラス層を堆積する。このSiO2−GeO2ガラス層上に導波路パターンの加工マスク層を形成した後、フォトリソグラフィー技術を用いて、露光および導波路パターン化を行い、反応性イオンエッチング(RIE)により、コアガラス層を加工してパターン化する。
コア層のパターン化加工後、残留加工マスク層を除去し、再び火炎堆積法を用いて、オーバークラッドとなるガラス層を堆積して、埋め込み型導波路を有する石英系光回路を作製する。このような石英系光回路の作製方法は、周知の技術である。なお、本実施例において、石英系光回路内の導波路の、クラッド層に対するコア層の比屈折率差(Δ)は、約2%に設定する。アンダークラッド層の厚さは、20μmとする。コア層の断面寸法は、約3μm×3μmとした。
以上のような石英系光回路をウエハからチップ状に切り出して、石英系光回路1を完成させる。
一方、PPLN導波路2は、直接接合とエッチングを用いて作製することができる。具体的には、Znを添加したLiNbO3の基板をコア層として、このLiNbO3基板に先に分極反転を施し、この周期分極反転構造を有するLiNbO3基板とクラッド層となるLiTaO3基板とを直接接合し、その後LiNbO3基板を薄膜化して、ダイシングにより横方向の閉じ込めを行いリッジ型の光導波路構造とする(例えば非特許文献5参照)。上記のとおり、PPLN導波路2内には、光パラメトリック増幅用のPPLN導波路200(図8のPPLN導波路114に相当)と波長変換用のPPLN導波路201(図8のPPLN導波路124に相当)とが設けられている。
次に、石英系光回路1を加工してPPLN導波路2と接合する方法について説明する。
図2は、図1の石英系光回路1のPPLN導波路2との接続端面を拡大した斜視図である。上記のようにチップ状に加工した石英系光回路1の上面と下面に、加工時の補強材として、パイレックス(登録商標)の厚板を張り付け、PPLN導波路2と接続する側の端面10aの所望の位置、具体的には、石英系光回路1の接続端面10aのうち、光が伝播する導波路が形成された領域11とその両側の光が伝播しない領域12とを分断するように、接続端面10aから光回路内側に向かう溝6を石英系光回路1の厚さ方向に沿って2箇所形成した。この溝6の形成には、今回、ダイシングソーを用いた。
次に、補強材として用いたパイレックス板を石英系光回路1から取り外し、研磨時及び接続時の補強となるヤトイガラス製の補強硝材5aを、その端面が接続端面10aと面一になるように石英系光回路1の上面と下面に接着剤で貼り付けると共に、同じくヤトイガラス製の補強硝材5bを、その端面が接続端面10aと反対側の石英系光回路1の接続端面10bと面一になるように石英系光回路1の上面と下面に接着剤で貼り付け、端面10a,10bの研磨を行った。
このとき、接続端面10a側の補強硝材5aの端面には、端面10aに形成された溝6と同じ間隔、同じ幅の溝7を2箇所形成しておき、溝6と溝7の位置が一致するように、補強硝材5aを石英系光回路1の上面と下面に貼り付けた。
石英系光回路1の接続端面10aの研磨後、接続端面10aのうち、溝6,7の外側の、光が伝播しない領域12に紫外線硬化型接着剤13を塗布し、接続端面10aとPPLN導波路2の接続端面とを向かい合わせる。そして、石英系光回路1の導波路とPPLN導波路2との光軸調整後、紫外線硬化型接着剤13に紫外線を照射し、石英系光回路1とPPLN導波路2とを接合した。
本実施例では、溝6,7を設けたことにより、石英系光回路1の接続端面10aを、導波路が形成された領域11とその両側の光が伝播しない領域12とに分断しているので、領域12に塗布した紫外線硬化型接着剤13が領域11まで食み出すことはない。
この接続端面10aの領域11とPPLN導波路2の接続端面との間には、紫外線硬化型接着剤13の厚さ分の僅かな間隙がある。そこで、紫外線硬化型接着剤13の硬化後、この間隙に高耐光性屈折率整合性樹脂14を充填することにより、石英系光回路1とPPLN導波路2の間隙で反射が発生することを抑制した。
本実施例では、高耐光性屈折率整合性樹脂14を充填したが、石英系光回路1の接続端面10aとPPLN導波路2の接続端面の両端面に反射防止多層膜コート(ARコート)を行うことにより、高耐光性屈折率整合性樹脂14と同様の効果を得ることができる。
PPLN導波路2と光ファイバ4aとの接続、石英系光回路1と光ファイバ4bとの接続についても同様である。具体的には、光ファイバ4aを固定するためのファイバブロック3aのPPLN導波路2との接続端面のうち、光が伝播する光ファイバ4aが配置された領域とその両側の光が伝播しない領域とを分断するように、溝8aをファイバブロック3aの厚さ方向に沿って2箇所形成した。そして、ファイバブロック3aの接続端面のうち、溝8aの外側の、光が伝播しない領域に紫外線硬化型接着剤を塗布し、この接続端面とPPLN導波路2の接続端面とを向かい合わせる。そして、光ファイバ4aとPPLN導波路2との光軸調整後、紫外線硬化型接着剤に紫外線を照射し、ファイバブロック3aとPPLN導波路2とを接着する。また、ファイバブロック3aの接続端面の、光が伝播する光ファイバ4aが配置された領域とPPLN導波路2の接続端面との間隙に高耐光性屈折率整合性樹脂を充填した。
同様に、光ファイバ4bを固定するためのファイバブロック3bの石英系光回路1との接続端面のうち、光が伝播する光ファイバ4bが配置された領域とその両側の光が伝播しない領域とを分断するように、溝8bをファイバブロック3bの厚さ方向に沿って2箇所形成した。そして、ファイバブロック3bの接続端面のうち、溝8bの外側の、光が伝播しない領域に紫外線硬化型接着剤を塗布し、この接続端面と石英系光回路1の接続端面とを向かい合わせる。そして、光ファイバ4bと石英系光回路1の導波路との光軸調整後、紫外線硬化型接着剤に紫外線を照射し、ファイバブロック3bと石英系光回路1とを接着する。また、ファイバブロック3bの接続端面の、光が伝播する光ファイバ4bが配置された領域と石英系光回路1の接続端面との間隙に高耐光性屈折率整合性樹脂を充填した。
図3は、図1の石英系光回路1の構成を示す平面図である。図3の31〜36は光が入出射するポートである。図3の石英系光回路1の導波路パターンでは、PPLN導波路2との接続端面10aのポート36より、高強度の未変換基本波光(本実施例では、1.5μm帯光)と第2高調波光(SH光、0.78μm帯光)が入射する。ポート36に入射した光は、導波路37を伝播した後、方向性結合器(directional coupler:DC)38に入射する。この方向性結合器38に入射した光のうち、基本波光(1.5μm光)は方向性結合器38のクロスポートから導波路39に出力され、SH光は方向性結合器38のスルーポート(Through port)から導波路40に出力されるように設計した。
導波路40に設ける曲部48の半径Rは約2mmとした。導波路40を伝播するSH光は、方向性結合器41に入射する。方向性結合器41に入射した光のうち、SH光は方向性結合器41のスルーポートから導波路42に出力され、方向性結合器45に入射し、基本波光は方向性結合器41のクロスポートから導波路43に出力される。
一方、ファイバブロック3bとの接続端面10bのポート31より信号光(本実施例では、1.5μm光)が入射する。信号光は、導波路44を伝播した後、方向性結合器45に入射する。方向性結合器45において信号光とSH光とが合波され、合波された信号光とSH光とが同じパラメトリック増幅用のPPLN導波路2のポートに結合するようにレイアウトした。すなわち、信号光とSH光の合波光は、方向性結合器45から導波路47に出力され、PPLN導波路2との接続端面10aのポート35に出力される。出力ポート35を、導波路40の曲部48からの長波長光の放射光が主に進む方向と反対側の端面10aに配置することにより、迷光の信号光ポートへの結合が低減されるようにした。
PPLN導波路2内では、波長変換用のPPLN導波路により基本波光がSH光に変換され、また光パラメトリック増幅用のPPLN導波路においてSH光が励起光(Pump光)として作用し、信号光がパラメトリック増幅される。
前述のとおり、溝6は、PPLN導波路2との接続端面10aのポート34,35,36(導波路46,47,37)の外側に設けてある。
図4は、図1〜図3に示したハイブリッド光回路を用いた光パラメトリック増幅の利得評価を行う系の概略図である。光源には、外部共振器型波長可変半導体レーザー(1.55μm帯)50を用いた。ファイバカプラ51は、外部共振器型波長可変半導体レーザー50の出力光を2系統に分岐させる。分岐させた2系統の光のうち、一方を信号光とし、他方をパラメトリック増幅の励起光となるSHG光の基本波光とした。
基本波光は、Er添加ファイバ光増幅器52により概ね+30dBm増幅された後、光ファイバ4aを伝播してPPLN導波路2に入射し、PPLN導波路2内でSH光に変換される。
一方、信号光は、ファイバカプラ53を通過した後、光ファイバ4bを伝播して石英系光回路1に入射する。ファイバカプラ53を設けた理由は、信号光の一部を取り出して、信号光の強度をフォトディテクター54を用いて測定するためである。
上記のとおり、PPLN導波路2からのSH光と未変換の基本波光とは石英系光回路1のポート36に入射し、信号光は石英系光回路1のポート31に入射する。図3で説明した石英系光回路1での処理により、未変換の基本波光が除去され、信号光とSH光とが合波されて、この合波光が石英系光回路1のポート35からPPLN導波路2に入射する。PPLN導波路2において、信号光はSH光とのパラメトリック効果により増幅されて、PPLN導波路2を出射する。図4の構成では、増幅された信号光の強度を測定するために、フォトディテクター55が設けられている。
本実施例で用いたPPLN−PLCハイブリッド光回路では、+30dBmの増幅された基本波光入力に対し、信号光の増幅率は、+11dBであった。
図5は、本実施例のハイブリッド光回路の小信号利得の時間経過に対する安定性を評価した結果を示している。図5の縦軸は利得、横軸は時間である。ここでは、パラメトリック増幅の励起光の元となる基本波光の強度を、+30dBmで一定とした。図5の58は本実施例のハイブリッド光回路の小信号利得(増幅率)を示している。図5によれば、外部共振器型波長可変半導体レーザー50の光出力開始から2000時間経過後も、小信号利得が安定して約11dBが得られていることが分かる。
参考として、本実施例のように溝6,7,8a,8bを設けずに、石英系光回路1とPPLN導波路2との接続端面、PPLN導波路2と光ファイバ4aとの接続端面、石英系光回路1と光ファイバ4bとの接続端面のそれぞれについて、接続端面全面に紫外光硬化型着接着材を塗り、石英系光回路1とPPLN導波路2とを接着し、PPLN導波路2と光ファイバ4aとを接着し、石英系光回路1と光ファイバ4bとを接着したハイブリッド光回路の小信号利得の特性を図5の59で示す。このハイブリッド光回路では、外部共振器型波長可変半導体レーザー50の光出力開始から1500時間が経過したときに小信号利得の減少が現れ、2000時間経過後には小信号利得が9.1dBに劣化した。この劣化は、紫外光硬化型着接着材による接続部の劣化に起因するものと推定される。
以上のように、本実施例によれば、石英系光回路1のPPLN導波路2との接続端面10aに溝6を設け、溝6の外側の光が伝播しない領域12に紫外線硬化型接着剤13を塗布して石英系光回路1とPPLN導波路2とを接着することにより、接続端面10aの光が伝播する領域11に紫外線硬化型接着剤13が無い構造を実現することができるので、長時間経過した後においても、変わらぬ安定した利得特性を得ることができる。同様に、本実施例では、ファイバブロック3aのPPLN導波路2との接続端面、ファイバブロック3bの石英系光回路1との接続端面のそれぞれに溝8a,8bを設け、溝8a,8bの外側の光が伝播しない領域に紫外線硬化型接着剤を塗布して、ファイバブロック3aとPPLN導波路2とを接着する共にファイバブロック3bと石英系光回路1とを接着するので、光が伝播する光ファイバ4a,4bが配置された領域に紫外線硬化型接着剤が無い構造を実現することができる。
また、本実施例では、石英系光回路1に導波路37,39,40,42〜44,46,47(第1の導波路)と方向性結合器38,41,45とを設け、石英系光回路1内で信号光とSH光の合波を行うことにより、PPLN導波路2にダイクロイックミラー等の部品を設けることを不要とし、ハイブリッド光回路の部品点数の削減を図ることができる。また、本実施例では、コリメート用レンズ、ダイクロイックミラー等の設置調整のアセンブリに係る工程を削減することができ、量産性を高め、製造コストの低減を図ることができ、ハイブリッド光回路を安価に製造することができる。
[第2の実施例]
次に、本発明の第2の実施例について説明する。本実施例では、V溝に光ファイバを並べたファイバアレイブロックを第1の実施例のファイバブロック3a,3bと同様に作製し、このファイバアレイブロックを用いて石英系光回路とPPLN導波路とを接続する。
図6は、本実施例に係るファイバアレイブロックの構成を示す斜視図である。ファイバアレイブロック15では、V溝基板16上に光ファイバ17を配置し、V溝基板16と例えばヤトイガラス製の補強硝材18a,18bで光ファイバ17を挟むようにして、V溝基板16と補強硝材18a,18bとの間に接着剤を充填して硬化させることにより、光ファイバ17を固定する。
第1の実施例の石英系光回路1と同様に、V溝基板16のPPLN導波路との接続端面19aのうち、光が伝播する光ファイバ17が配置された領域20とその両側の光が伝播しない領域21とを分断するように、接続端面19aからV溝基板16の内側に向かう溝22aをV溝基板16の厚さ方向に沿って2箇所形成した。同様に、V溝基板16の石英系光回路との接続端面19bのうち、光が伝播する光ファイバ17が配置された領域とその両側の光が伝播しない領域とを分断するように、接続端面1baからV溝基板16の内側に向かう溝22bをV溝基板16の厚さ方向に沿って2箇所形成した。
また、上記のようにヤトイガラス製の補強硝材18a,18bを、その端面が接続端面19a,19bと面一になるようにV溝基板16の上面に接着剤で貼り付けると共に、同じくヤトイガラス製の補強硝材18c,18dを、その端面が接続端面19a,19bと面一になるようにV溝基板16の下面に接着剤で貼り付けた。
このとき、補強硝材18a,18cの端面には、接続端面19aに形成された溝22aと同じ間隔、同じ幅の溝23aを2箇所形成しておき、溝22aと溝23aの位置が一致するように、補強硝材18a,18cをV溝基板16の上面と下面に貼り付けた。同様に、補強硝材18b,18dの端面には、接続端面19bに形成された溝22bと同じ間隔、同じ幅の溝23bを2箇所形成し、溝22bと溝23bの位置が一致するように、補強硝材18b,18dをV溝基板16の上面と下面に貼り付けた。
図7は、本実施例に係るハイブリッド光回路の構成を示す斜視図であり、図1と同一の構成には同一の符号を付してある。
PPLN導波路2とファイバブロック3a,3bの構成、PPLN導波路2とファイバブロック3a(光ファイバ4a)との接続方法、石英系光回路1aとファイバブロック3b(光ファイバ4b)との接続方法は、第1の実施例で説明したとおりである。本実施例の石英系光回路1aは、PPLN導波路2側の接続端面に第1の実施例で説明した溝6が無い点のみ石英系光回路1と異なる。
ファイバアレイブロック15とPPLN導波路2との接続のため、ファイバアレイブロック15のPPLN導波路2との接続端面19aのうち、溝22a,23aの外側の、光が伝播しない領域21に紫外線硬化型接着剤24を塗布し、接続端面19aとPPLN導波路2の接続端面とを向かい合わせる。そして、光ファイバ17とPPLN導波路2との光軸調整後、紫外線硬化型接着剤24に紫外線を照射し、ファイバアレイブロック15とPPLN導波路2とを接着する。この接続端面19aの、光が伝播する光ファイバ17が配置された領域20とPPLN導波路2の接続端面との間には、紫外線硬化型接着剤24の厚さ分の僅かな間隙がある。そこで、紫外線硬化型接着剤24の硬化後、この間隙に高耐光性屈折率整合性樹脂25を充填することにより、ファイバアレイブロック15とPPLN導波路2の間隙で反射が発生することを抑制する。
同様に、ファイバアレイブロック15と石英系光回路1aとの接続のため、ファイバアレイブロック15の石英系光回路1aとの接続端面19bのうち、溝22b,23bの外側の、光が伝播しない領域に紫外線硬化型接着剤を塗布し、接続端面19bと石英系光回路1aの接続端面とを向かい合わせる。そして、光ファイバ17と石英系光回路1aの導波路との光軸調整後、紫外線硬化型接着剤に紫外線を照射し、ファイバアレイブロック15と石英系光回路1aとを接着する。この接続端面19bの、光が伝播する光ファイバ17が配置された領域と石英系光回路1aの接続端面との間には、僅かな間隙がある。紫外線硬化型接着剤の硬化後、この間隙に高耐光性屈折率整合性樹脂を充填することにより、ファイバアレイブロック15と石英系光回路1aの間隙で反射が発生することを抑制する。
本実施例では、溝22a,22b,23a,23bを設けたことにより、ファイバアレイブロック15の接続端面19a,19bを、光が伝播する光ファイバ17が配置された領域と光が伝播しない領域とに分断しているので、光が伝播しない領域に塗布した紫外線硬化型接着剤が、光が伝播する光ファイバ17が配置された領域まで食み出すことはない。
本実施例では、ファイバアレイブロック15を用いることにより、石英系光回路1a及びPPLN導波路2には、付加的加工を必要とせず、従来のチップの形態で、ハイブリッド光回路を実現することができる。
石英系光回路1aに付加工程を要しない作製方法は、種々の石英系PLCとのハイブリッド光回路を作製する量産時に、特に生産効率を高め、且つ、溝作製部を石英系PLCに設ける必要がないことから、設計自由度を制限しないという利点を有している。
更に、ファイバアレイブロック15において用いる光ファイバ17としてGIファイバを用い、ファイバアレイブロック15を適当な長さにすることにより、GRINレンズと同様の効果を得ることができ、PPLN導波路2と石英系光回路1aの導波路との間に開口数(NA)の差があっても、損失を低減して接続することが可能となる。
本発明は、石英系光回路とPPLN導波路とを接合する技術に適用することができる。
1…石英系光回路、2,200,201…PPLN導波路、3a,3b…ファイバブロック、4a,4b,17…光ファイバ、5a,5b,18a,18b,18c,18d…補強硝材、6,7,8a,8b,22a,22b,23a,23b…溝、10a,10b,19a,19b…接続端面、13,24…紫外線硬化型接着剤、14,25…高耐光性屈折率整合性樹脂、15…ファイバアレイブロック、16…V溝基板、31〜36…ポート、37,39,40,42,43,44,46,47…導波路、38,41,45…方向性結合器、50…外部共振器型波長可変半導体レーザー、51,53…ファイバカプラ、52…Er添加ファイバ光増幅器、54,55…フォトディテクター。

Claims (8)

  1. 石英系ガラスを主たる材料として形成された第1の導波路を含む石英系光回路と、
    周期分極反転構造を有する二次非線形光学材料からなり、基本波光の第2高調波光を発生させる第2の導波路と、前記第2高調波光を励起光として用いて信号光のパラメトリック増幅を行う第3の導波路とを含む二次非線形導波路とを備え、
    前記石英系光回路は、前記二次非線形導波路との接続端面に、光が伝播する前記第1の導波路が形成された領域と光が伝播しない領域とを分断するように形成された溝を有することを特徴とするハイブリッド光回路。
  2. 請求項1記載のハイブリッド光回路において、
    前記石英系光回路の溝は、前記二次非線形導波路との接続端面のうち、光が伝播する前記第1の導波路が形成された領域とその両側の前記光が伝播しない領域とを分断するように少なくとも2箇所形成され、
    前記石英系光回路の前記二次非線形導波路との接続端面のうち、前記光が伝播しない領域に設けられた接着剤により、前記石英系光回路の接続端面とこれと向かい合う前記二次非線形導波路の接続端面とが接着されていることを特徴とするハイブリッド光回路。
  3. 請求項1または2記載のハイブリッド光回路において、
    前記石英系光回路の前記二次非線形導波路との接続端面のうち、光が伝播する前記第1の導波路が形成された領域と前記二次非線形導波路の接続端面との間隙に、高耐光性屈折率整合性樹脂が充填されていることを特徴とするハイブリッド光回路。
  4. 請求項1または2記載のハイブリッド光回路において、
    前記石英系光回路の前記二次非線形導波路との接続端面のうち、光が伝播する前記第1の導波路が形成された領域と前記二次非線形導波路の接続端面とに反射防止膜コートがなされていることを特徴とするハイブリッド光回路。
  5. 石英系ガラスを主たる材料として形成された第1の導波路を含む石英系光回路と、
    周期分極反転構造を有する二次非線形光学材料からなり、基本波光の第2高調波光を発生させる第2の導波路と、前記第2高調波光を励起光として用いて信号光のパラメトリック増幅を行う第3の導波路とを含む二次非線形導波路と、
    前記石英系光回路と前記二次非線形導波路とを光ファイバを介して接続するファイバアレイブロックとを備え、
    前記ファイバアレイブロックは、前記石英系光回路との接続端面および前記二次非線形導波路との接続端面のそれぞれに、光が伝播する前記光ファイバが配置された領域と光が伝播しない領域とを分断するように形成された溝を有することを特徴とするハイブリッド光回路。
  6. 請求項5記載のハイブリッド光回路において、
    前記ファイバアレイブロックの溝は、前記二次非線形導波路との接続端面のうち、光が伝播する前記光ファイバが配置された領域とその両側の前記光が伝播しない領域とを分断するように少なくとも2箇所形成されると共に、前記石英系光回路との接続端面のうち、光が伝播する前記光ファイバが配置された領域とその両側の前記光が伝播しない領域とを分断するように少なくとも2箇所形成され、
    前記ファイバアレイブロックの前記二次非線形導波路との接続端面のうち、前記光が伝播しない領域に設けられた接着剤により、前記ファイバアレイブロックの接続端面とこれと向かい合う前記二次非線形導波路の接続端面とが接着され、前記ファイバアレイブロックの前記石英系光回路との接続端面のうち、前記光が伝播しない領域に設けられた接着剤により、前記ファイバアレイブロックの接続端面とこれと向かい合う前記石英系光回路の接続端面とが接着されていることを特徴とするハイブリッド光回路。
  7. 請求項5または6記載のハイブリッド光回路において、
    前記ファイバアレイブロックの前記二次非線形導波路との接続端面のうち、光が伝播する前記光ファイバが配置された領域と前記二次非線形導波路の接続端面との間隙、および前記ファイバアレイブロックの前記石英系光回路との接続端面のうち、光が伝播する前記光ファイバが配置された領域と前記石英系光回路の接続端面との間隙に、高耐光性屈折率整合性樹脂が充填されていることを特徴とするハイブリッド光回路。
  8. 請求項2または6記載のハイブリッド光回路において、
    前記接着剤は、紫外線硬化型接着剤であることを特徴とするハイブリッド光回路。
JP2017222180A 2017-11-17 2017-11-17 ハイブリッド光回路 Active JP6871137B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017222180A JP6871137B2 (ja) 2017-11-17 2017-11-17 ハイブリッド光回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017222180A JP6871137B2 (ja) 2017-11-17 2017-11-17 ハイブリッド光回路

Publications (2)

Publication Number Publication Date
JP2019095485A true JP2019095485A (ja) 2019-06-20
JP6871137B2 JP6871137B2 (ja) 2021-05-12

Family

ID=66971683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017222180A Active JP6871137B2 (ja) 2017-11-17 2017-11-17 ハイブリッド光回路

Country Status (1)

Country Link
JP (1) JP6871137B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210218217A1 (en) * 2019-03-14 2021-07-15 Hisense Broadband Multimedia Technologies Co., Ltd. Optical transmission module, optical transmission-reception module and optical module
JP7138744B1 (ja) 2021-05-26 2022-09-16 Nttエレクトロニクス株式会社 光デバイス接続方法、光デバイス接続構造及び光デバイス接続システム
US20220373737A1 (en) * 2019-07-09 2022-11-24 Nippon Telegraph And Telephone Corporation Optical Multiplexing Circuit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168040A (ja) * 1993-12-14 1995-07-04 Nippon Steel Corp 半導体レーザー集光装置
JP2003167221A (ja) * 2001-11-30 2003-06-13 Hitachi Cable Ltd 導波路型光素子
JP2003248143A (ja) * 2001-12-21 2003-09-05 Furukawa Electric Co Ltd:The 光モジュールおよびその製造方法
CN101504507A (zh) * 2008-12-31 2009-08-12 中国科学院安徽光学精密机械研究所 光纤型3-5微米连续波差频产生中红外激光光源及其实现方法
JP2010185980A (ja) * 2009-02-10 2010-08-26 Kita Nippon Electric Cable Co Ltd 高出力用光部品
JP2014197054A (ja) * 2013-03-29 2014-10-16 住友大阪セメント株式会社 光変調器
JP2014228639A (ja) * 2013-05-21 2014-12-08 日本電信電話株式会社 光増幅装置
JP2016213246A (ja) * 2015-04-30 2016-12-15 日本電信電話株式会社 ハイブリッド集積化光デバイスとその製造方法
JP2017054110A (ja) * 2015-09-09 2017-03-16 日本電信電話株式会社 光モジュール
US20170235209A1 (en) * 2016-02-11 2017-08-17 Ape Angewandte Physik Und Elektronik Gmbh Optical amplifier-arrangement, laser-amplifier-system and process for generating a broad, visible to infrared spectrum, in particular to near-infrared spectrum, of coherent ultra-short light pulses with an optical amplifier-arrangement

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168040A (ja) * 1993-12-14 1995-07-04 Nippon Steel Corp 半導体レーザー集光装置
JP2003167221A (ja) * 2001-11-30 2003-06-13 Hitachi Cable Ltd 導波路型光素子
JP2003248143A (ja) * 2001-12-21 2003-09-05 Furukawa Electric Co Ltd:The 光モジュールおよびその製造方法
CN101504507A (zh) * 2008-12-31 2009-08-12 中国科学院安徽光学精密机械研究所 光纤型3-5微米连续波差频产生中红外激光光源及其实现方法
JP2010185980A (ja) * 2009-02-10 2010-08-26 Kita Nippon Electric Cable Co Ltd 高出力用光部品
JP2014197054A (ja) * 2013-03-29 2014-10-16 住友大阪セメント株式会社 光変調器
JP2014228639A (ja) * 2013-05-21 2014-12-08 日本電信電話株式会社 光増幅装置
JP2016213246A (ja) * 2015-04-30 2016-12-15 日本電信電話株式会社 ハイブリッド集積化光デバイスとその製造方法
JP2017054110A (ja) * 2015-09-09 2017-03-16 日本電信電話株式会社 光モジュール
US20170235209A1 (en) * 2016-02-11 2017-08-17 Ape Angewandte Physik Und Elektronik Gmbh Optical amplifier-arrangement, laser-amplifier-system and process for generating a broad, visible to infrared spectrum, in particular to near-infrared spectrum, of coherent ultra-short light pulses with an optical amplifier-arrangement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210218217A1 (en) * 2019-03-14 2021-07-15 Hisense Broadband Multimedia Technologies Co., Ltd. Optical transmission module, optical transmission-reception module and optical module
US20220373737A1 (en) * 2019-07-09 2022-11-24 Nippon Telegraph And Telephone Corporation Optical Multiplexing Circuit
JP7138744B1 (ja) 2021-05-26 2022-09-16 Nttエレクトロニクス株式会社 光デバイス接続方法、光デバイス接続構造及び光デバイス接続システム
JP2022181482A (ja) * 2021-05-26 2022-12-08 Nttエレクトロニクス株式会社 光デバイス接続方法、光デバイス接続構造及び光デバイス接続システム

Also Published As

Publication number Publication date
JP6871137B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2004063808A1 (ja) 光導波路デバイスならびにそれを用いた光導波路レーザおよびそれを備えた光学装置
JP5290534B2 (ja) 光集積回路および光集積回路モジュール
JP5323646B2 (ja) ハイブリッド集積光モジュール
JP4734053B2 (ja) 光導波路部品の実装ずれ補償方法
JP6204064B2 (ja) 光増幅装置
JP6871137B2 (ja) ハイブリッド光回路
JP6788436B2 (ja) 光モジュール
JP2014222331A (ja) 波長変換素子
JP2004170924A (ja) 導波路埋め込み型光回路及びこれに用いる光学素子
JP2012118465A (ja) 波長変換デバイス及び波長変換装置
JP2011064895A (ja) 波長変換デバイス及び波長変換装置
JP6670209B2 (ja) ハイブリッド光回路
WO2020012909A1 (ja) ハイブリッド光デバイスの溝作製方法およびハイブリッド光デバイス
WO2020105412A1 (ja) 光接続構造およびその製造方法
JP5814183B2 (ja) 波長変換デバイス
JP7124672B2 (ja) 光接続部品および光接続構造
US11960123B2 (en) Optical interconnect structure
JP7124632B2 (ja) 光接続構造およびその形成方法
JP2018194665A (ja) 波長分離素子
WO2023079720A1 (ja) 光素子、光集積素子および光集積素子の製造方法
Grant Glass integrated optical devices on silicon for optical communications
WO2023218646A1 (ja) 波長変換システム
JP2982691B2 (ja) 導波路型光サーキュレータ
WO2020158588A1 (ja) 光回路
JP6401107B2 (ja) 光増幅装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R150 Certificate of patent or registration of utility model

Ref document number: 6871137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150