JP6670209B2 - ハイブリッド光回路 - Google Patents

ハイブリッド光回路 Download PDF

Info

Publication number
JP6670209B2
JP6670209B2 JP2016168597A JP2016168597A JP6670209B2 JP 6670209 B2 JP6670209 B2 JP 6670209B2 JP 2016168597 A JP2016168597 A JP 2016168597A JP 2016168597 A JP2016168597 A JP 2016168597A JP 6670209 B2 JP6670209 B2 JP 6670209B2
Authority
JP
Japan
Prior art keywords
waveguide
light
optical
optical circuit
demultiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016168597A
Other languages
English (en)
Other versions
JP2018036433A (ja
Inventor
阿部 淳
淳 阿部
田中 拓也
拓也 田中
隼志 阪本
隼志 阪本
毅伺 梅木
毅伺 梅木
拓志 風間
拓志 風間
弘和 竹ノ内
弘和 竹ノ内
橋本 俊和
俊和 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016168597A priority Critical patent/JP6670209B2/ja
Publication of JP2018036433A publication Critical patent/JP2018036433A/ja
Application granted granted Critical
Publication of JP6670209B2 publication Critical patent/JP6670209B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、ハイブリッド光回路に関し、より詳細には、石英系平面回路とPPLN導波路とが接合されたハイブリッド光回路に関する。
石英系光回路は、石英ガラス基板又はシリコン基板上に、石英系ガラスを主たる材料として作製される石英系光導波路により構成され、実用に供せられている。石英系光回路上の石英系光導波路は、伝播損失が低い、信頼性・安定性が高い、および加工性が良い等の特徴を有している。また、石英系光ファイバとの整合性が良いため、標準的な通信用石英系光ファイバと接続した場合においても、低損失・高信頼性を有している。
現在、石英系光導波路により構成したY分岐パワースプリッター、マッハ・ツェンダ干渉計(MZI:Mach-Zehnder Interferometer)、MZIを利用した光スイッチ、およびアレイ導波路型波長合分波器(AWG:Arrayed Waveguide Grating)などの光回路(PLC:Planar Lightwave Circuits)の開発が進められている。これらの光回路は、近年、構築が進められつつある波長分割多重(WDM)光伝送システムを基盤とした、フォトニックネットワークシステムの重要なキーデバイスとなっている(例えば、非特許文献1、2および3参照)。
周期分極反転ニオブ酸リチウム(Periodically Poled LiNbO3:PPLN)導波路は、高効率な二次非線形光学効果を有する媒質で、波長変換および光パラメトリック増幅器(Optical parametric amplifier:OPA)としての研究開発が進められている。近年は、PPLN導波路の特性向上及び実装技術の進展、並びに励起光を発生させるファイバ光増幅器技術の進展に伴い、通信分野を中心として、PPLN導波路を使用した光デバイスの実用化を視野にいれた研究開発も進められている。特に、PPLN導波路を使用したOPAは、低雑音光増幅器として注目され、実用化に向けた研究開発が加速されている(例えば、非特許参考文献5、6および7参照)。
Y. Hibino, IEEE CIRCUITS & DEVICES, Nov., 2000, pp.21-27 A. Himeno, et al., J. Sel. Top. Q.E., vol. 4, 1998, pp.913-924 M. Abe, J. Cer. Soc. J., 2008, pp.1063-1070. M. Kawachi, Opt. Quantum Electron., 22, 1990, pp.391-416 O plus E, Vol.37, 2015, pp.636-639 T. Kazama, et al., CLEO2014, SM4I.8 T. Kazama, et al., PTL, vol. 26, 2014, pp.2248-2251
図1は、従来のPPLN導波路を使用したOPAの構成を示す概略図である。図1のOPA100は、入力光ファイバ101および出力光ファイバ103が接続されたOPA用モジュール110と、入力光ファイバ102および出力光ファイバ104が接続された第2高調波光(Second Harmonic light:SH光)発生(SHG)用モジュール120とを備える。OPA用モジュール110は、光の入力側から、コリメートレンズ111、ダイクロイックミラー112、集光レンズ113、PPLN導波路114、集光レンズ115、ダイクロイックミラー116、コリメートレンズ117が順に配置されている。SHG用モジュール120は、光の入力側から、コリメートレンズ121、ダイクロイックミラー122、集光レンズ123、PPLN導波路124、集光レンズ125、ダイクロイックミラー126、コリメートレンズ127が順に配置されている。OPA用モジュール110とSHG用モジュール120とは光ファイバ105により接続されている。また、入力光ファイバ102とSHG用モジュール120との間にEDFA106と、BPF107とが挿入されている。
OPA100においては、まず、入力光ファイバ102からEDFA106およびBPF107を介して、基本波光がSHG用モジュール120に入射する。基本波光は、コリメートレンズ121にてコリメートされ、ダイクロイックミラー122を通過した後、集光レンズ123において集光され、PPLN導波路124に入射する。PPLN導波路124において、基本光波は、励起光となる第2高調波光(Second Harmonic light:SH光)に変換され、出射される。このとき、すべての基本波光がSH光に変換されるわけではなく、未変換基本波光も一緒に出射される。SH光は、集光レンズ125によりコリメートされた後、ダイクロイックミラー(dichroic mirror:DM)126において基本波光と分離して、光ファイバ105を介してOPA用モジュール110に入力される。
OPA用モジュール110には、入力光ファイバ101から信号光が入射される。入射された信号光は、コリメートレンズ111によりコリメートされ、ダイクロイックミラー112において、光ファイバ105からのSH光と合波され、集光レンズ113において集光され、PPLN導波路114に入射される。PPLN導波路114において、信号光はSH光とのパラメトリック効果により増幅されて出力される。このとき、すべてのSH光が信号光増幅に寄与するわけではなく、SH光の一部も増幅された信号光と伴にPPLN導波路114から出射される。PPLN導波路114からの出射光は、コリメートレンズ115でコリメートされ、ダイクロイックミラー116により未変換SH光と増幅された信号光とに分波され、信号光はコリメートレンズ117により出力光ファイバ103に集光、入射される。
通信分野等における実用化を想定した場合に、OPAは、光ファイバによる入出力形態での実装モジュール化が必須又は好ましい為、光ファイバ入出力を想定したモジュール化実装の検討が進められている。一方で、OPAは、励起光発生用のSHG用モジュールおよびOPA用モジュール等のPPLNモジュールを実装するにあたり、コリメートレンズ、ダイクロイックミラーおよび集光レンズ等の素子を個々に設置・調整(アライメント)する必要がある。こうしたアセンブリは、量産性を低くし、コストを高くするという問題等を有している。
本発明は、上記問題点に鑑みなされたもので、PPLN導波路を含むモジュール等の作製において、レンズおよびダイクロイックミラー等の設置並びに調整のアセンブリに係る工程を軽減し、部品点数を軽減し、量産性を向上し、安価で製造することができるPPLN導波路を含む光回路の実装方法を提供することを目的とする。
このような目的を達成するために、本発明の第1の態様は、基板上に、導波路と光合分波器とが形成され、当該導波路は、石英系ガラスにより形成されたコア層及びクラッド層から構成される光回路と、少なくとも一部に周期分極反転構造を有するニオブ酸リチウムにより形成され、励起光発生用の導波路と光パラメトリック増幅用の導波路とを備えるPPLN導波路と、を備えたハイブリッド光回路であって、前記光回路と前記PPLN導波路とは、直接接合され、前記光回路の前記光合分波器は、少なくとも前記励起光発生用の前記導波路からの光を基本波光と励起光とに分岐して出力する第1の光合分波器と、信号光と前記励起光とを合波して前記光パラメトリック増幅用の前記導波路へと出力する第2の光合分波器と、を備え、前記光回路の前記導波路の一部は、少なくとも異なる2つの曲率半径の曲線導波路を含み、前記曲線導波路の曲率半径による損失の波長依存性を用いて長波長光を放射減衰させて波長の分離を行うものであり、前記曲線導波路のうち、前記曲率半径による損失の波長依存性を用いて前記基本波光を放射減衰させて波長の分離を行う放射減衰導波路が、前記第1の光合分波器及び前記第2の光合分波器を繋ぐ経路に対し、当該基本波光の放射方向が前記PPLN導波路の接合された端面に対向する端面に向かう方向となるように設けられ、前記光回路の端面であって、前記対向する端面には、前記クラッド層と屈折率を整合したジェル、オイル又は樹脂が塗布され、更に前記ジェル、前記オイル又は前記樹脂の外側に前記基本波光の吸収材を混合したジェルが塗布されることにより、前記クラッド層内の迷光を当該対向する端面で反射させず、当該光回路の外部に導いて吸収することを特徴とする。
また、本発明の第2の態様は、第1の態様のハイブリッド光回路であって、前記第1の光合分波器及び前記第2の光合分波器は、方向性結合器、又はマッハ・ツェンダ干渉計であることを特徴とする。
本発明のハイブリッド光回路は、ダイクロイックミラー等の部品点数の削減を図ることを可能とし、レンズ、ダイクロイックミラー等の設置調整のアセンブリに係る工程を削減することができる。これにより、製造コストの低減が図れ、OPAハイブリッドデバイスを安価に製造することが可能になる。
従来のPPLN導波路を使用したOPAの構成を示す概略図である。 本発明の一実施形態に係るハイブリッド光回路の構成を示す平面図である。 図2の石英系光回路の構成を示す平面図である。 図2および図3に記載の石英系光回路の損失スペクトル特性を示す図である。 図2のハイブリッド光回路に光ファイバを接続したハイブリッドデバイスの構成を示す斜視図である。
以下、図面を参照しながら本発明の実施形態について詳細に説明する。
図2は、本発明の一実施形態に係るハイブリッド光回路の構成を示す平面図である。ハイブリッド光回路200は、石英系光回路210と、石英系光回路210に直接接合されたPPLN導波路220とを備える。石英系光回路210は、Si基板上に石英系ガラスを主たる材料として形成されたコアおよびクラッド層からなる導波路、および波長合分波器の機能を有する方向性結合器(directional coupler:DC)が形成される。また、PPLN導波路220は、少なくとも一部に周期分極反転構造を有するニオブ酸リチウムを主たる材料とする導波路からなる、OPA用PPLN導波路221と、SHG用PPLN導波路222とを含む。
石英系光回路210は、Si基板上に、熱酸化膜層に加え火炎堆積法(flame hydrolysis deposition:FHD)を用いてアンダークラッド層を形成し、アンダークラッド層上に、導波路のコア層となるSiO2−GeO2ガラス層を堆積する。SiO2−GeO2ガラス層上に導波路パターンの加工マスク層を形成した後、フォトリソグラフィー技術を用いて、露光および導波路パターン化を行い、反応性イオンエッチング(RIE)により、コアガラス層を加工してパターン化する。
コア層のパターン化加工後、残留加工マスク層を除去し、再び火炎堆積法を用いて、オーバークラッドとなるガラス層を堆積して、埋め込み型導波路により構成された石英系光回路を作製する。なお、本実施形態において、光回路を形成する導波路の、クラッド層に対するコアの比屈折率差(Δ)は、約2%に設定する。アンダークラッド層は、20μmとする。コアサイズは、約3μm×3μmとする。
図3は、図2の石英系光回路210の構成を示す平面図である。図3の石英系光回路の導波路パターンは、導波路211−1は一端がポート6となり、他端が方向性結合器212−1の入力に接続される。方向性結合器212−1の出力の一方には導波路211−2の一端が結合され、導波路211−2の他端がポート3となり、方向性結合器212−1の出力の他方には放射減衰導波路213が接続される。放射減衰導波路213は方向性結合器212−2の入力に接続され、方向性結合器212−2の出力には導波路211−3の一端および211−4の一端が接続される。導波路211−4の他端はポート2となり、導波路211−3の他端は方向性結合器212−3の入力の一方に接続される。方向性結合器212−3の入力の他方には、導波路211−5の一端が接続され、導波路211−5の他端はポート1となり、方向性結合器212−3の出力には、導波路211−6の一端および211−7の一端が接続される。導波路211−6の他端はポート4となり、導波路211−7の他端はポート5となる。ポート6はSHG用PPLN導波路222が接続され、ポート5にはOPA用PPLN導波路221が接続される。
基本光波(本実施形態では、1.5μm帯光)は、PPLN導波路220のSHG用PPLN導波路222において、一部が第2次高調波(SH光、0.78μm帯光)に変換される。高強度の未変換基本波光と第2次高調波光は、PPLN導波路220との接続面のポート6より入射し、導波路211−1を伝搬して方向性結合器212−1に入射する。方向性結合器212−1は、クロスポート(放射減衰導波路213側)から結合した基本波光(1.5μm帯光)が出力し、スルーポート(Through port:導波路211−2側)はSH光が結合せずに出力する様に設計した。
放射減衰導波路213においては、基本波光(1.5μm帯光)を放射減衰させるために、導波路の一部を曲線状に形成する。本実施形態において、石英系光回路210に形成された導波路は、少なくとも異なる2つの曲率半径の曲線導波路を含み、導波路の曲率半径による損失の波長依存性を用い、曲線導波路部分において長波長光を放射減衰させて波長の分離を行う。石英系光回路210においては、一般的な曲線導波路の曲率半径Rは約2mmであり、この部分における長波長(基本波光)の放射は少ない。しかし、放射減衰導波路213においては、基本波光を放射減衰させたい部分の導波路の曲率半径を、R=0.3mmとして、放射減衰導波路213を伝搬する長波長光の放射減衰を行う。R=0.3mmでの基本波光の減衰量は約50dBである。基本波光が放射減衰されたSH光は方向性結合器212−2に入射し、さらに基本波光とSH光が分波される。
ポート1からは信号光が入射し、導波路211−5を伝搬して方向性結合器212−3に入射する。また、SH光は導波路211−3を伝搬して方向性結合器212−3に入射する。方向性結合器212−3においては、信号光とSH光とが合波され、導波路211−7を介してOPA用PPLN導波路221と接続するポート5に結合する。信号光が出力するポート(ポート5)は、放射減衰導波路213の曲線部分からの長波長光の放射光が主に進む方向と反対側の端面にレイアウトして、迷光の信号光ポートへの結合が低減するようにしている。
なお、波長合分波機能は、方向性結合器の替わりにマッハ・ツェンダ干渉計(MZI:Mach-Zehnder Interferometer)を使用することによっても実現することができる。
OPA用PPLN導波路221内では、SH光は励起光(Pump光)として作用し、信号光がパラメトリック増幅される。
図4は、図2および図3に記載の石英系光回路の損失スペクトル特性を示す図である。図4は、SHG用PPLN導波路222に接続されたポート6に入射する光と、OPA用PPLN導波路221に接続されたポート5から出射する光とにおける光の損失スペクトル特性を示している。SH光(0.78μm帯光)の透過損失(401)は、約1dBであった。一方で基本波光(1.5μm帯光)の透過損失(402)は、62〜67dBであり、SH光と基本波光との消光比は、約60dBであった。放射減衰導波路213における長波長光(基本波光)の放射によるSH光と基本波光の分離は、導波路の製造誤差、即ち導波路の幅や屈折率の設計値に差異が生じた際にも、高い消光比を保ち、製造誤差に対する許容性が高い。
図5は、図2のハイブリッド光回路200に光ファイバを接続したハイブリッドデバイス500の構成を示す斜視図である。ハイブリッドデバイス500は、石英系光回路210と、石英系光回路210に直接接合されたPPLN導波路220と、ファイバブロック502を介して石英系光回路210に光学的に接続された光ファイバ503と、ファイバブロック504を介してPPLN導波路220に光学的に接続された光ファイバ505とを備える。
石英系光回路210の、PPLN導波路220が接合される側と反対側の端面には、石英系ガラスと屈折率が整合したジェル、オイル又は樹脂を塗布し、さらにその外側に1.5μm帯光の吸収材を混合したジェルを塗布した。ジェル等を塗布することにより、クラッド内の迷光を端面で反射させず、石英系光回路210の外部に導くことにより迷光を低減した。ジェルを塗布した後の消光比は、概ね90dBに改善した(図4の403参照)。
石英系光回路210の導波路および方向性結合器には、基本波光、SH光および信号光の合分波に用いるダイクロイックミラーと同等の機能をもたせることができる。また、石英系光回路210の導波路は、入出力光ファイバとの直接接合が可能であるという特徴を有している。従って、ハイブリッド光回路200は、石英系光回路210にダイクロイックミラー等の機能を集積することにより、図1に記載の従来のOPA中の個々の素子の設置・調整を不要となる。また、石英系光回路とPPLN導波路との調整接合、及び光ファイバとの直接接合を行うことにより、コリメート用レンズを不要とするため、大幅なアセンブリ工程の削減が可能となり、量産性が向上するため、OPAのハイブリッドデバイスとして安価に製造することが可能となる。
なお、PPLN導波路チップに、基本波光、SH光および信号光の合分波機能を付加する試み(非特許参考文献6および7参照)もあるが、PPLN導波路において急峻な曲げ導波路を作製することは困難であり、石英系光回路によって機能付加を図る方が製造歩留りが高く、また石英系光回路PPLN導波路ハイブリッドデバイスの方が最終的に安価に製造可能である。
100 OPA
101、102、103、104、105、503、505 光ファイバ
106 EDFA
107 BPF
111、117、121、127 コリメートレンズ
112、116、122、126 ダイクロイックミラー
113、115、123、125 集光レンズ
114、124 PPLN導波路
200 ハイブリッド光回路
210 石英系光回路
211−1〜211−7 導波路
212−2〜212−3 方向性結合器
213 放射減衰導波路
220 PPLN導波路
221 OPA用PPLN導波路
222 SHG用PPLN導波路
500 ハイブリッドデバイス
501 ジェル
502、504 ファイバブロック

Claims (2)

  1. 基板上に、導波路と光合分波器とが形成され、当該導波路は、石英系ガラスにより形成されたコア層及びクラッド層から構成される光回路と、
    少なくとも一部に周期分極反転構造を有するニオブ酸リチウムにより形成され、励起光発生用の導波路と光パラメトリック増幅用の導波路とを備えるPPLN導波路と、を備えたハイブリッド光回路であって
    前記光回路と前記PPLN導波路とは、直接接合され、
    前記光回路の前記光合分波器は、少なくとも前記励起光発生用の前記導波路からの光を基本波光と励起光とに分岐して出力する第1の光合分波器と、信号光と前記励起光とを合波して前記光パラメトリック増幅用の前記導波路へと出力する第2の光合分波器と、を備え、
    前記光回路の前記導波路の一部は、少なくとも異なる2つの曲率半径の曲線導波路を含み、前記曲線導波路の曲率半径による損失の波長依存性を用いて長波長光を放射減衰させて波長の分離を行うものであり、
    前記曲線導波路のうち、前記曲率半径による損失の波長依存性を用いて前記基本波光を放射減衰させて波長の分離を行う放射減衰導波路が、前記第1の光合分波器及び前記第2の光合分波器を繋ぐ経路に対し、当該基本波光の放射方向が前記PPLN導波路の接合された端面に対向する端面に向かう方向となるように設けられ、
    前記光回路の端面であって、前記対向する端面には、前記クラッド層と屈折率を整合したジェル、オイル又は樹脂が塗布され、更に前記ジェル、前記オイル又は前記樹脂の外側に前記基本波光の吸収材を混合したジェルが塗布されることにより、前記クラッド層内の迷光を当該対向する端面で反射させず、当該光回路の外部に導いて吸収する
    ことを特徴とするハイブリッド光回路。
  2. 前記第1の光合分波器及び前記第2の光合分波器は、方向性結合器、又はマッハ・ツェンダ干渉計であることを特徴とする請求項1に記載のハイブリッド光回路。
JP2016168597A 2016-08-30 2016-08-30 ハイブリッド光回路 Active JP6670209B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016168597A JP6670209B2 (ja) 2016-08-30 2016-08-30 ハイブリッド光回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016168597A JP6670209B2 (ja) 2016-08-30 2016-08-30 ハイブリッド光回路

Publications (2)

Publication Number Publication Date
JP2018036433A JP2018036433A (ja) 2018-03-08
JP6670209B2 true JP6670209B2 (ja) 2020-03-18

Family

ID=61565803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016168597A Active JP6670209B2 (ja) 2016-08-30 2016-08-30 ハイブリッド光回路

Country Status (1)

Country Link
JP (1) JP6670209B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043999B2 (ja) 2018-07-11 2022-03-30 日本電信電話株式会社 ハイブリッド光デバイスの溝作製方法およびハイブリッド光デバイス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304643A (ja) * 1995-04-28 1996-11-22 Nippon Telegr & Teleph Corp <Ntt> 光導波路型長波長光遮断フィルタおよび光波長分波回路
US20020171913A1 (en) * 2000-11-16 2002-11-21 Lightbit Corporation Method and apparatus for acheiving
JP2011043575A (ja) * 2009-08-19 2011-03-03 Nippon Telegr & Teleph Corp <Ntt> 光変調器
JP5643037B2 (ja) * 2010-09-17 2014-12-17 日本電信電話株式会社 光変調器
JP2014095780A (ja) * 2012-11-08 2014-05-22 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置
US9612410B2 (en) * 2013-07-18 2017-04-04 Nec Corporation Optical transmission/reception module
CN204405193U (zh) * 2015-02-11 2015-06-17 山东量子科学技术研究院有限公司 基于全光纤器件的高效率近红外上转换单光子探测器

Also Published As

Publication number Publication date
JP2018036433A (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
JP5880209B2 (ja) 光素子
JP3152189B2 (ja) 平板導波路型グレーティング素子
JP6204064B2 (ja) 光増幅装置
JPH08304664A (ja) 波長分波素子
JP2014066905A (ja) 光導波路素子
JP6871137B2 (ja) ハイブリッド光回路
JP5421230B2 (ja) 波長変換デバイス及び波長変換装置
JP6670209B2 (ja) ハイブリッド光回路
JP2011064895A (ja) 波長変換デバイス及び波長変換装置
JP6853730B2 (ja) 波長変換デバイス
WO2020105412A1 (ja) 光接続構造およびその製造方法
JP5751008B2 (ja) 光合分波器および光合分波方法
JP2013250403A (ja) 光合分波器および波長変換デバイス
JP3128974B2 (ja) 導波路型光合分波器
JP2018194665A (ja) 波長分離素子
TW499581B (en) Planar waveguide diffractive beam splitter/beam coupler
JP7295459B2 (ja) 光合波回路
JP6842377B2 (ja) 平面光回路積層デバイス
JP7120053B2 (ja) 光回路
US11747557B2 (en) Wavelength checker
JP6771600B2 (ja) 光導波路回路
JP6401107B2 (ja) 光増幅装置
Teng Design and characterization of optical fiber-to-chip edge couplers and on-chip mode division multiplexing devices
Wang Grating and ring based devices on SOI platform
Alonso-Ramos Photonic chip interconnects and integrated polarization management for coherent communication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200228

R150 Certificate of patent or registration of utility model

Ref document number: 6670209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150