JP7079727B2 - 導電トラックの形成方法および装置 - Google Patents

導電トラックの形成方法および装置 Download PDF

Info

Publication number
JP7079727B2
JP7079727B2 JP2018509591A JP2018509591A JP7079727B2 JP 7079727 B2 JP7079727 B2 JP 7079727B2 JP 2018509591 A JP2018509591 A JP 2018509591A JP 2018509591 A JP2018509591 A JP 2018509591A JP 7079727 B2 JP7079727 B2 JP 7079727B2
Authority
JP
Japan
Prior art keywords
laser beam
substrate
cross
energy distribution
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018509591A
Other languages
English (en)
Other versions
JP2018525838A5 (ja
JP2018525838A (ja
Inventor
ノース ブルトン,アダム
ジョン ヘンリー,サイモン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Solv Ltd
Original Assignee
M Solv Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Solv Ltd filed Critical M Solv Ltd
Publication of JP2018525838A publication Critical patent/JP2018525838A/ja
Publication of JP2018525838A5 publication Critical patent/JP2018525838A5/ja
Application granted granted Critical
Publication of JP7079727B2 publication Critical patent/JP7079727B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、導電トラックの形成プロセスに関する。特に、パス内の堆積材料を照射するレーザービームを使用して導電トラックを形成する方法を記載する。また、本発明は、上述の方法を実行する装置に関する。
パス内の堆積材料を照射して導電トラックを形成する方法がいくつか知られている。
米国特許第7,722,422号は、保護層が存在しない開口領域を有するパターン化された保護層を電極上に形成する方法を開示する。導電性成分を含む溶液は、この開口領域に形成される。導電性成分を含む溶液は堆積されるとドライ処理され、指向性レーザービームを有するレーザーを用いて硬化される。指向性レーザービームは、ドライ処理された導電性前駆体材料を焼結して硬化溶液を形成し、パターン化された保護層の開口領域の導電性を向上させることができる。
米国特許第7,722,422号に記載のプロセスでは、レーザービームが正しく堆積粒子に向かうことを確実にするために、レーザービームの正確な解像度が求められる。
そこで、導電トラックを設けるために基板の表面に堆積材料をより正確に照射する方法および/または基板の表面において堆積材料をより効率的に照射する方法が引き続き必要とされている。製造プロセスの効率を向上し、熱的損傷を最小限にするために、導電トラックを形成する材料をできるだけ迅速に照射することが有益である。また、熱的損傷を最小限にしつつ高速で導電トラックを確実に形成できるプロセスが引き続き必要とされている。
本発明は、上述の従来技術の課題を解決し、以下に詳細に説明するさらなる利点を有する導電トラックを形成する方法を提供する。さらに、本発明は、本方法を実行するための装置を提供する。
本発明の一態様によると、請求項1に記載の基板の表面上に導電トラックを形成する方法が提供される。
本発明のさらなる態様によると、請求項16に記載の基板の表面に導電トラックを形成する装置が提供される。
本発明の他の好適なおよび任意の特徴は、以下の説明および本明細書の従属請求項から明らかになろう。
添付図面を参照しながら、一例として本発明を以下に説明する。
図1は、本発明のさらなる態様による方法を実行するための本発明の態様による例示的な装置を示す。 図2aは、本発明に係る導電トラックを設けるために照射され得る堆積材料をその表面上に有する基板の実質的に平坦な表面の断面図を示す。 図2bは、本発明に係る導電トラックを設けるために照射され得る堆積材料をその表面上に有する基板の実質的に平坦な表面の断面図を示す。 図2cは、本発明に係る導電トラックを設けるために照射され得る堆積材料をその表面上に有する基板の実質的に平坦な表面の断面図を示す。 図2dは、本発明に係る導電トラックを設けるために照射され得る堆積材料を表面に有する、溝を含む基板の表面の断面図を示す。 図2eは、本発明に係る導電トラックを設けるために照射され得る堆積材料を表面に有する、溝を含む基板の表面の断面図を示す。 図2fは、本発明に係る導電トラックを設けるために照射され得る堆積材料を表面に有する、溝を含む基板の表面の断面図を示す。 図3aは、本発明に係る導電トラックを設けるために照射され得る堆積粒子をその表面に沿って有する基板の断面図および平面図をそれぞれ示す。 図3bは、本発明に係る導電トラックを設けるために照射され得る堆積粒子をその表面に沿って有する基板の断面図および平面図をそれぞれ示す。 図4aは、図3aの堆積材料および基板を示し、 図4bは、図3bの堆積材料および基板を示し、 図4cは、基板表面の堆積材料に入射する本発明に使用されるレーザービームの断面図の例示的な平面図を示す。 図5aは、基板上に入射するレーザー強度を濃淡によって模式的に示した平面図を示す。 図5bは、本発明で使用されるレーザービームの主軸および副軸それぞれから見たレーザー強度のプロファイルを示す。 図5cは、本発明で使用されるレーザービームの主軸および副軸それぞれから見たレーザー強度のプロファイルを示す。 図6aは、基板上に入射するレーザー強度を濃淡によって模式的に示した平面図を示す。 図6bは、本発明で使用されるレーザービームの主軸および副軸それぞれから見たレーザー強度のプロファイルを示す。 図6cは、本発明で使用されるレーザービームの主軸および副軸それぞれから見たレーザー強度のプロファイルを示す。 図7aは、基板上に入射するレーザービームの形状を模式的に示す平面図を示す。 図7bは、基板に対してビームが移動する際の基板に入射するレーザーエネルギー線量のプロファイルを示す。 図8は、基板表面の堆積材料に印加された本発明の実施形態によるレーザービームを示す。 図9は、本発明のさらなる態様に関して説明される方法を実行するための本発明の一態様による別の例示的な装置を示す。
図1は、本発明のさらなる態様による方法を実行するために使用される、本発明の態様による例示的な装置を記載する。本発明の方法は、導電トラックを形成するプロセスを提供する。この方法は、導電トラックを形成するために堆積材料を照射するレーザービームを使用する。
この方法は、基板11の表面21上のパスに堆積材料23を有する基板11を設ける工程を含む。言い換えれば、堆積材料23は、基板11上の特定の部分にのみ存在する。堆積材料23は、基板11の表面21上のパスに沿って設けられ、つまり、基板の表面の少なくとも1つの所望の位置に材料のパスが形成される。
レーザービームは、例えば炭酸ガスレーザー、ダイオード励起固体レーザー、ファイバーレーザー、およびレーザーダイオードなどのレーザー12から発生される。レーザー12は連続波レーザービーム、または準連続波レーザービームを提供するように構成され得る。あるいは、レーザー12はパルスレーザービームを提供するように構成され得る。レーザー12は、約500nm~11μm、好ましくは500~1100nmの波長を有するレーザービームを提供するのが好ましい。
レーザービームは、基板11の表面に入射するように向けられる。レーザービームは、指向手段を使用して、基板11の表面に向けられ得る。さらに詳細には、レーザービームは、基板の表面21上の堆積材料23に入射するように向けられ得る。図1に示すように、指向手段は、ビームエキスパンダー13、第1ミラー14、第2ミラー15、ガルバノスキャナ16、および/またはコントローラー17を選択的に含んでもよい。
ビームエキスパンダー13は、理想的にはレーザービームをコリメートしつつレーザービームの直径を拡げるのに使用され得る。第1ミラー14および第2ミラー15はそれぞれ、ガルバノスキャナ16に向けてレーザービームを反射および偏向するのに使用される。ガルバノスキャナ16は、さらなるミラーなどの光学要素、および基板11上の所望の位置にレーザービームを正確に向ける(つまり、ステアリング)ように光学要素を移動するための位置決め装置を含み得、必要に応じて基板11をスキャンする。ガルバノスキャナ16は、例えば二次元音響光学ビーム偏向器などの別のタイプのスキャナに置き換えられ得る。レーザービームの動きは、ガルバノスキャナ16によってコントロールされ得る。コントローラー17は、基板11上の所望の位置にレーザービームを正確に向けるようにレーザービームの移動をコントロールし、基板11においてレーザービームを正確にスキャンするために使用され得る。つまり、コントローラー17はレーザービームのステアリングおよび向きをコントロールする。例えば、コントローラー17はガルバノスキャナ16または同様の装置をコントロールし得る。このようにレーザービームを向けることは、基板の表面上のパスに沿った堆積材料23が正確に照射されることを意味する。
第1ミラー14および/または第2ミラー15は、ビームを向けるように、コントローラー17にコントロールされ得る。第1ミラー14および/または第2ミラー15は、ビームを能動的に成形するように構成された装置に置き換えられてよく、例えば少なくとも1つのミラーが空間光変調器に置き換えられてよく、コントローラー17によって任意でコントロールされることによってビームが成形される、および/または向けられる。
図1において、基板11は堆積材料23を含んで設けられてもよい。基板11の表面上の堆積材料23は、堆積材料23の照射にレーザービームが使用される前であれば、いつ設けられてもよい。基板11は事前に堆積材料23を有していてもよいし、本方法が基板上に材料を堆積する工程をさらに有してもよい。堆積材料23は、基板11の表面にパスを形成し得る。
実施形態による装置は、上述の堆積材料23を有する基板11を支持する支持体を有する。支持体は、例えば基板11を適所に保持できる枠体または台部などの任意の支持手段の形態であり得る。装置は、レーザービームを発生するレーザー12および指向手段を有し、この指向手段は、パスの移動方向に沿って移動されるようにレーザービームを向けることで、堆積材料23を照射してパスに沿った導電トラックを形成するように構成される。指向手段は、上述のビームエキスパンダー13、任意の数のミラー(例えば第1ミラー14および第2ミラー15)、ガルバノスキャナ16、および/またはコントローラー17を有し得る。基板11は、基板支持体18(例えばXYステージ上のチャックなど)に取り付けられ得る。基板11に対するビームの相対的移動は、ガルバノスキャナ16および/または基板支持体18によって行われ得る。
図2a~2fは、基板11の表面21上の堆積材料の例を示す。基板の表面21上の堆積材料23の断面の形状および厚みは限定されない。これらの図は単に例を示し、基板の断面から見た堆積材料の形状が異なる多くの様々な方法が存在する。厚みは多様な方法で変えられ得るが、理想的には、堆積材料23の厚みおよびその変形例が知られている。
図2aに示す通り、堆積材料は基板11の表面21の上に略均一に配置され得る。言い換えれば、堆積材料23は均一な厚み、例えば、ばらつきが約10%未満の堆積材料23の厚みを有し得る。この例において、基板11の表面21は略平坦である。例えば、図2bまたは図2cに示す通り、堆積材料の厚みは断面において異なっていてよい。図2bにおいて、堆積材料23は略中央において最大厚みを有し、堆積材料23の端部において最小厚みを有する。言い換えれば、堆積材料23の厚みは、その幅にわたって、最小厚みから最大厚み、そして最小厚みに戻るように変化する。図2cにおいて、堆積材料23は、堆積材料23の端部においてより肉厚であり、肉厚領域の間に肉薄領域(略平坦であっても略平坦でなくてもよい)を有する。基板11の断面から見た場合、堆積材料の幅はパスの幅と合致する(図2a~2f参照)。堆積材料23の厚みは、基板11の表面21上のパスに沿って異なり得る。
図2d、2eおよび図2fに示す通り、基板11の表面21は溝20を選択的に有してもよい。また、堆積材料23は溝20内に配置され得る。図2dは図2bの堆積材料を示し、表面21が溝20を有する。図2dに示す通り、堆積材料23の厚みは溝部分においてより大きくなる。図2dにおいて、断面において溝20が中央に位置する基板11の表面21上に堆積材料23が配置されるように示されるが、必ずしもこれに限定されない。図2eにおいては、堆積材料23は基板11の表面において、完全に溝20の内部に配置される。図2eに示す通り、堆積材料23は選択的に基板11の上面と略同一平面となってもよい。この上面は、基板11の表面21の最上部であり得る。
上記実施形態のいずれにおいても、堆積材料23は少なくとも2つの異なる材料を含み得る。例えば、堆積材料23は第1堆積材料23aおよび第2堆積材料23bから成り得る。一つの実施形態において、第1堆積材料23aまたは第2堆積材料23bのいずれかは、堆積材料23と同じ材料であり得る。一つの実施形態において、図2fに示す通り、第1堆積材料23aは基板の上面に配置され得る。図2fにおいて、表面21は溝20を含む。一つの実施形態において、第2堆積材料23bは図2fに示す通り、実質的に溝20の内部に堆積され得る(ただし、第2堆積材料23bの位置はこの位置に限定されない)。第2堆積材料23bは第1堆積材料23aおよび基板11に使用される材料と異なり得る。一つの実施形態において、第2堆積材料23bは溝20内に堆積され得、例えばUVランプ、UVレーザー、またはIRレーザーを使用して硬化され得る。第2堆積材料23bは、例えば無機フィラーを含むポリマーなどの、無機系絶縁体またはポリマーを含んでもよい。第1堆積材料23aは、基板11および第2堆積材料23bの上に堆積され得る。その後、他のいずれの実施形態にも説明されるように、第1堆積材料23aは照射されて導電トラックが設けられる。
図3aは、図2aと同様であるが、図2dのように表面21が溝20を有する基板の断面の例を示す。堆積材料23は、基板の表面21上において、溝20内部および溝20に隣接して、つまり基板11の上面および溝20に接した状態で存在する。よって、堆積材料23は基板11の断面視において、(図2dに示すように)異なった厚みを有する。材料23は、図3bの平面図において示されるように、基板11の表面21上のパスに沿って堆積される。図3bにおいて、クロスハッチングで表されるパスの中央部は、図3aの溝20内における堆積材料23に相当する肉厚箇所を示す。図3bにおいて、溝の両側にある堆積材料23はハッチングによって表され、図3aの溝20の両側において肉薄となる堆積材料23に相当する。
図2b、2c、3a、および3bの例に示されるように、堆積材料23の厚みは基板11の表面21上のパスの幅に沿って異なり得る。代替的にまたは追加的に、厚みがパスの幅に沿って均一であろうとなかろうと、堆積材料23の厚みはパスに沿って異なり得る。つまり、レーザービームがパスに沿って移動するにつれて、照射される堆積材料23の厚みは異なり得る。言い換えれば、基板の断面における堆積材料23の形状は、パスに沿って異なり得る。例えば、1つの箇所において、堆積材料23/基板11は図2bと同様の断面を有し得るが、他の箇所において、堆積材料23/基板11は図2cと同様の断面を有し得る。
代替的にまたは追加的に、例えばパスの幅、溝20の幅、溝20の深さ、基板11の表面21を形成するのに使用される材料、基板11の下地層に使用される材料、および/またはパスを形成する堆積材料23などは、パスに沿って他の変形例があってもよい。一つの実施形態において、溝は基板11の全域にわたって形成されてもよい。つまり、基板11の溝20の位置において、溝20の深さは基板11の厚みと等しくなるように形成されてよく、また溝20は基板11を貫通する開口部として形成されてもよい。
実施形態において、堆積材料23は導電トラックを設けるために、例えば電気回路の一部を形成するために照射される。堆積材料23が照射される時には、レーザービームが堆積材料23に入射する。堆積材料を照射するレーザービームの効果は、使用される個々の堆積材料23に応じて異なる。堆積材料23は、導電トラックを形成するために照射できるものであればいかなる材料であってもよく、本明細書に記載される材料に限定されない。
一つの実施形態において、堆積材料23は、例えば母材(マトリックス)中に保持された状態の粒子を含む。堆積材料23がレーザービームによって照射されることによって、粒子間相互作用が改変されて導電トラックが設けられる。粒子は、酸化を防ぐようにコーティングされた状態で堆積材料23内に設けられ得る。堆積材料23がレーザービームによって加熱されることにより、粒子表面のコーティングが熱で取り除かれる。粒子表面のコーティングを熱で取り除くのに必要な温度は、堆積材料23を溶融するのに必要な温度よりも高い場合がある。粒子からコーティングが取り除かれた後、堆積材料23がさらにレーザービームによって照射される。堆積材料23は、例えば堆積材料の焼成によって、所定の温度に達することで軟化または溶融し、粒子間相互作用の変化によって物理的接触が改善し、これによって粒子間の電気的接触が改善するため、堆積材料23が固化した際に導電トラックが形成される。
本実施形態において、粒子はナノ粒子であり得る。また、粒子は、金属粒子であり得る。好ましくは、金属粒子は銀、金、ニッケル、アルミニウムおよび/または銅であり、銀および/または銅がより好ましい。特に、金属粒子は金属微粒子および/または金属ナノ粒子であり得る。一つの実施形態によると、粒子は母材の形態に保持される。母材は例えば流体でもよく、母材は粒子を含むペーストまたはインキでもよい。母材は有機溶剤または有機溶剤の組み合わせ、例えば母材はエタノールおよび/またはエチレングリコールを含んでもよい。
一つの実施形態において、堆積材料23は有機金属を含む。例えば、堆積材料23は銀塩、例えば硝酸銀に由来する有機化合物であり得る。例えば、堆積材料23はネオデカン酸銀を含み得る。上述と同じ方法で堆積材料23を照射するのにレーザービームを使用し得るが、照射の効果は上述の効果と異なる場合がある。照射によって有機金属が熱せられ、これにより沈降反応が起こることで堆積材料が導電トラックを形成する。
本方法は、例えば図1に示されるレーザー12を使用してレーザービームを発生する工程を含む。パスを正確に照射しつつ、できるだけ早くレーザービームを移動させることが好ましい。レーザービームを高速で移動する利点がいくつか挙げられる。レーザービームの速度を増加させることによって導電トラックの形成速度も増加し、それによって導電トラックが上面に形成された基板の製造速度も増加する。さらに、堆積材料23の特定のスポットまたは部分を長時間照射しすぎることによって、基板11の表面21の周辺領域および/または基板11の下地層に熱的損傷を起こし得る。言い換えれば、レーザービームは堆積材料23だけでなく基板11も加熱する場合があり、これにより基板11が損傷するおそれがある。よって、特に基板11の領域において堆積材料23のパスを越えてレーザービームが入射する場合、レーザービームの速度を増加することにより、このような熱的損傷のリスクを減らし得る。
少なくとも上記の理由により、堆積材料23が導電トラックを形成するのに十分な長さの照射時間を確保しつつ、レーザービームをパスに沿ってできるだけ迅速に移動することが望ましい。このため、レーザービームは約5m/秒よりも速い速度でパスに沿って移動するように構成され得る。しかし、導電トラックが効果的に形成されることを確実にするために、レーザービームの速度を遅くし得る。例えば、レーザービームは約5m/秒以下の速度でパスに沿って移動するように構成され得る。より好ましくは、レーザービームは0.1m/秒~5m/秒の範囲、さらに好ましくは1m/秒~4m/秒の範囲の速度で移動するように構成され得る。
効率性を上げるために、できるだけ迅速に材料を照射して導電トラックを形成することが有益であるが、速度の増加には、さらなるコントロールが必要となる。このため、理想的には、基板の周辺領域を避けながら堆積材料23のみを効果的に照射するように、堆積材料23に対してより正確に向けられるレーザービームを設けるすることが有益である。
上述した通り、堆積材料23の厚さはパスの断面の幅にわたっておよび/またはパスの長さの少なくとも一方向にわたって異なっている。このため、堆積材料23の照射に必要なエネルギー量は、パスのどの部分が照射されるかによって変わる。言い換えれば、面積あたりのエネルギー量、つまりエネルギー線量は、必要とされる量がパスの個々の箇所によって異なり得る。
ーザービームは、光軸と、表面21に入射するレーザービームの断面領域におけるエネルギー分布とを有し、表面21においてこのエネルギー分布は光軸に対して非円形対称である。非円形対称であるエネルギー分布は、全く対称性のないエネルギー分布を有し得るが、これに限定されない。本方法は、基板11の表面21上の堆積材料23に入射するようにレーザービームを向ける工程を含む。装置は、基板11の表面21上の堆積材料23にレーザービームを向ける、上述の指向手段を含む。レーザービームは基板11の表面21上のパスに沿って移動するように向けられ、堆積材料23を照射することでパスに沿った導電トラックが設けられる。断面領域内のエネルギー分布の選択された配向は、レーザービームの移動方向に整列される。
基板11の堆積材料23に入射するレーザービームの断面におけるエネルギー分布が非円形対称であるということは、パス上の所定の箇所における所定のスポットのレーザービームの断面領域におけるエネルギー量が、円形対称ではないことを意味する。このようにして、例えば堆積材料23に対して所要のまたは所望の角度で照射しつつ、基板11の他の部分に熱損傷を起こすリスクを最小限にするように、パスの照射をコントロールするようなエネルギー分布の配向が選択されてもよい。
エネルギー分布を非円形対称にすることによって、レーザービームが必要または所望の領域にエネルギーを集中させつつ、例えば損傷を受ける可能性がある他の領域におけるエネルギーを減らすことができる。配向は、レーザービーム下のパス領域にもたらされるエネルギー線量をコントロールするように選択される。例えば、選択された配向において、表面21に入射する断面におけるエネルギー分布は、基板11の断面視において、パスの端部に相当する断面の両側で強度が減少されているかもしれない。このようにして、例えば図2bに示されるように、パスの端部で厚みが小さければ、端部の照射が少なくなるように配向が選択され得る。表面に入射する断面におけるエネルギー分布は、任意の分布であってよい。表面に入射する断面におけるエネルギー分布は個々に適合するように、つまり、断面において選択された強度プロファイルを有するように、調整され得る。代替的にまたは追加的に、断面の形状は選択されてよく、または異なってよい。
ーザービームは、表面に入射するレーザービームの断面領域において選択されたエネルギー分布を有し、このエネルギー分布はレーザービームの光軸に対して非円形対称である。このエネルギー分布は、レーザービームが生成された時点の状態に応じて、つまり、レーザー12自体によって非対称に形成され得る。代替的にまたは追加的に、レーザー12は光軸に対して実質的に円形対称であるエネルギー分布を有する第1レーザービームを生成してもよい。しかしながら、この方法では、レーザー12によって生成した第1レーザービームを修正する工程をさらに設けて、修正レーザービームである第2レーザービームを生成する。第2レーザービームは、表面に入射するレーザービームの断面領域におけるエネルギー分布が、表面において光軸に対して非円形対称となるように修正される。装置は、第1ビームのエネルギー分布および第2ビームのエネルギー分布が互いに異なるようにレーザービームを修正する修正手段を有し得る。
レーザービームを修正する工程は、例えば非円形のアパーチャーを第1レーザービームが通過するようにしてもよい。また、レーザービームは、図1に示されないマスクをレーザービームが通過することによって、異なる断面形状または断面において変化するエネルギー分布を有するように修正されてもよい。マスクは、非円形のアパーチャーを有し得る。マスクは、パターン化、焼き付け、およびレーザービームの焼き付け形状を変更するのに使用できる任意の装置であってもよい。代替的に、レーザービームが通過できるようにするのではなく、入射するレーザービームを反射することによって、レーザービームの断面形状または断面におけるエネルギー分布を修正するように反射マスクを同様に使用してもよい。
レーザービームは、レーザービームを形成および/または向けるように構成された透過型または反射型の、例えば回折光学素子、空間光変調器および/またはデジタルマイクロミラーなどの、任意の装置を使用して修正され得る。これらの装置はいずれも、レーザービームの断面におけるレーザーを適合するように調整、つまりレーザー焦点にエネルギー分布を修正するのに使用され得る。これらの装置は図1に記載の部品の代替として、または追加として、使用され得る。一つの実施形態によると、第1および/または第2ミラーは回折光学素子、空間光変調器おまたはデジタルマイクロミラーに置き換えられ得る。代替的にまたは追加的に、第1および/または第2ミラーは、第1および/または第2ミラーによってそれぞれ反射されたレーザービームの方向をコントロールするように、コントローラー17によってコントロールされ得る。
好ましくは、基板11の表面21に入射するレーザービーム断面の幅は、パスの幅と実質的に相当するように設定される。言い換えれば、レーザービームの幅はパスと同じでもよい。レーザービームの幅は、好ましくは、約10μm~10mmの範囲、より好ましくは約100μm~1mmの範囲である。レーザービーム(およびパス)の幅は、できるだけ小さく且つ導電トラックを確実に形成できる幅にすることが理想的である。
レーザービームの断面の幅がパスの幅に相当する場合、パスの幅にわたって存在する全ての堆積材料23が確実に照射される。さらに、これによりレーザービームが基板上のパスに隣接する領域に入射する可能性を低減または回避する。これは、基板の隣接表面をレーザーが照射しないため、パスを含まない基板領域への熱的損傷を低減し得るという点で有益である。
レーザービームの幅は、例えばマスクによって変えられ得る。よって、レーザーの断面はトランケートされ得る。一般的には、移動方向に直交するレーザービームの幅は典型的にはトランケートされ得る。レーザービーム断面の幅は両側が対称的にトランケートされ得る。レーザービームの幅は、光学素子を使って修正され、レーザービームの幅を変えるれ得る。
装置の修正手段はマスク、反射マスク、ならびに/または、例えば表面に入射するレーザービームの断面形状および/もしくは断面におけるエネルギー分布を変えることによって、レーザービームを修正するのに使用される任意の光学素子を有し得る。修正手段は、例えばビームエキスパンダーを使って、光学的にレーザービームを変形させることでビームを縮小または拡大させる。装置は、例えばマスクなどの修正手段が基板上に投影されるように構成してもよい。
また、追加的に、基板の表面に堆積される材料は、パスの所望の位置を越えて堆積される場合がある。所望のパスの一部を形成しない堆積材料23を、余剰材料という。レーザービームはパス上の堆積材料23の周辺領域を照射した場合、余剰材料の一部も照射され、余剰の(望まない)導電部分を形成し得る。このような余剰の導電部分は、導電トラックが形成する電気接続の質を低下させる場合がある。よって、(例えば、基板の表面に入射するレーザービームの断面の幅をコントロールすることによって)所望のパス以外の基板領域をレーザー照射する可能性を減らすことで、導電トラックの質を向上させる。
上述のように、堆積材料23および/または基板は、パスの長さに沿って異なる場合があるため、他の領域への熱的損傷を起こすことなく導電トラックを形成するのに適切な放射量を堆積材料23に確実に照射することがより難しくなる場合がある。このように、レーザービームのエネルギー分布の配向を選択することや、板11の表面21に入射するレーザービームの断面形状または断面におけるエネルギー分布をせることで、堆積材料23を照射して導電トラックを形成するのに望ましいまたは必要なように、放射量を変えることができる。
表面に入射するレーザービーム断面のエネルギー分布は、個別に調整されたスポットが設けられるように、選択される。これは、断面の形状を選択および/または断面におけるエネルギー分布を選択することを意味し得る。個別に調整されたスポットの実現可能な変形例が、図4~7に示す実施形態に説明される。
図4a、4b、4cは、基板11の表面21に入射するレーザービームの断面形状が、図3aおよび3bに示す基板11上の堆積材料23にどのように合致し得るかの例を示す。図4aおよび4bはそれぞれ図3aおよび3bに相当する。上述したように、図4aに示す堆積材料23の厚みは、基板11の表面21の溝20に応じて変わる。よって、堆積材料23はパスに沿った中央部分が肉厚である。堆積材料23は、図4bの平面視において、パスの長さに沿って実質上均一な幅を有する。
図4cは、基板11の表面21におけるレーザービーム断面のエネルギー分布形状を示す。一つの実施形態によると、放射強度は断面形状内で均一であり得るが、図示されるように、形状自体は光軸に対して非円形対称であり得る。図4cに示すように、この例において、レーザービームのエネルギー分布は、パスの堆積材料23の肉厚領域に配向する中央部分を有する。この中央部分は、移動方向に沿って、堆積材料23の肉薄部分の延長上に並ぶエネルギー分布の両脇部分よりも長い。レーザービームの移動方向は、矢印によって示される。よって、レーザービームは、パスに沿って移動するにしたがって、中央(肉厚)部分を両脇(肉薄)部分よりも長い時間照射する。これにより、堆積材料23の全ての部分が、適切な(所望の)放射量を受けることができる。
もしこのようなプロファイルが使用されなければ、レーザービームを所要の速度で移動させて堆積材料23の両脇(肉薄)部分を照射しても、中央部分は完全には照射されないであろう。これにより、中央溝20の導電トラックの質を劣化させるおそれがある。あるいは、中央部分が追加的に放射を受けるようにレーザーをさらにゆっくりと移動させた場合、導電トラックを形成する速度および効率が低減してしまうおそれがある。また、この追加的な放射は、堆積材料23および/または溝20に隣接する堆積材料23の下にある基板を損傷させ得る。よって、レーザービームのプロファイルは、熱損傷のリスクを最小限に抑えつつ全ての堆積材料23が適切な放射線量を受けるように、パス上の堆積材料23の幅および/または厚みに応じて選択される。
好ましい実施形態によると、基板11の表面に入射するレーザービームの断面におけるエネルギー分布の強度は、図5aに示されるとおりである。図5aは、基板11の表面に入射するレーザービームの放射強度変化を示す。表面21に入射するレーザービームの断面の外形が、図5aに示される。この外形は、レーザービームの断面形状に相当する。レーザービームの移動方向は、矢印によって示される。図5cは、主軸、つまり基板11の表面21に入射するビームの断面の中心軸における強度の変化を示す。主軸は、光軸に直交し得る。図5cに示す通り、主軸(X)におけるエネルギー分布の強度変化は、実質的にガウス型プロファイルを有する。
図5bは、主軸に直交する副軸(Y)から見たビームプロファイルを示す。主軸は、副軸がレーザービームの幅に相当しており、レーザービームの移動方向に配向され得る。図5bに示すように、本実施形態によると、レーザービームの幅にわたるレーザービームの強度変化は、トランケートされたガウス型プロファイルを有する。ガウス型プロファイルは、中央に、つまり光軸上に放射ピークを有し、ここから両側に向かって放射強度が減少する。
副軸における放射強度は、光軸の両側において対称的にトランケートされたガウス型プロファイルを有する。このプロファイルは、パスの外にある基板11や余剰堆積材料23をレーザービームが照射するのを回避するようにトランケートされ得る。これは、パスが明確な端部を有しやすく、第2ビームプロファイルがより正確にパスの端部に適合して、パスに入射するレーザービームの断面幅が実質的にパスと同じになるように第2ビームプロファイルがトランケートされ得るという点で有益である。
主軸に沿った強度変化は、図5cに示される。本実施形態によると、このプロファイルは、光軸に対して対称なガウス型プロファイルである。ガウス型プロファイルは主軸に沿った断面の中央にピークを有し、レーザービームの前端およびレーザービームの後端に向かう側において減少する。前端は、あるいはスキャン方向とも呼ばれる移動方向に移動する際のレーザービームの前側端部である。後端は、スキャン方向に移動する際のレーザービームの後側端部である。
前端において強度の小さいエネルギー分布を使用することによって、堆積材料がゆっくりと加熱されて堆積材料の損傷を減少または回避する。損傷は、材料の加熱が急速すぎる場合に発生する。例えば残りの堆積材料が高温で照射される前に溶媒を低温で取り除くなどのいくつかの状況において、前端における強度を小さくすることは有利である。
図5aからわかるように、上述のエネルギー分布は、ほぼ中央に位置する強度ピーク、特定の幅、および中央の一点から断面の前端および後端に向かって徐々に変化する強度を有する。
好ましい実施形態によると、図6aに示すとおり、レーザービームは、基板11の表面21に入射するレーザービームの断面の後端においてピーク放射強度を有するように変えてもよい。レーザービームの移動方向は、矢印によって示される。
図6bに示すように、副軸におけるビーム強度は実質的にシルクハット型プロファイルを有する。言い換えれば、放射分布はパスの幅にわたって実質的に均一である。このタイプの分布を有するレーザーを使用すると、レーザービームが正確に位置してレーザービームの幅が実質的にパスの幅に相当している限り、余分な材料またはパスに隣接する基板周辺を照射する可能性は低くなるため、有利である。さらに、堆積材料23が基板の表面に均一な厚みを有する場合(例えば図2aまたは2d)、パスにわたって均一に放射することが特に有用である。パスの幅にわたって一定である(つまり、シルクハット型の)エネルギー分布を有するレーザービームを使うことによって、レーザービームは他のプロファイル、例えばガウス型プロファイルを使うよりも、パスの幅にわたってより均一にパスを照射できる。
表面21に入射するレーザービーム断面におけるエネルギー分布の強度変化は、図6cに示すように、主軸においてスロープ型プロファイルであってもよい。スロープ型プロファイルは前端における最小値から、後端における最大値に向かって徐々に上がっていく図6cに示すように、スロープの傾きは直線でなくてもよい。図6cに示すように、スロープ型プロファイルは実質的にガウス型分布の半分と同じであってもよい。スロープ型プロファイルは、前端における低温から、レーザービームがパスに沿って移動するにしたがって高温になっていくという点で有益である。例えば残りの堆積材料が高温で照射される前に溶媒を低温で取り除くなどのいくつかの状況において、これは有益である。また、前端における最大値から後端における最小値に向かって徐々に下がる、上記スロープ型プロファイルの反対となる逆スロープ型プロファイルも使用され得る。
さらなる実施形態によると、図4cに関連して記載されるように、また図7aに示されるように、強度が主軸または副軸に沿った断面内で変化しないという点で、エネルギー分布の強度は断面において均一であり得る。断面は、均一なエネルギー分布強度を有しており、その断面を図7aに示す。レーザービームの移動方向は、矢印によって示される。図7bは、ビームが基板11に対して移動するにつれて基板11に入射するレーザーエネルギー線量のプロファイルを示す。基板11に入射するレーザーエネルギー線量は、レーザービームが基板11に対する移動に伴って基板11に入射するレーザーエネルギー分布の総量となる。
さらなる例示的な強度変化には、強度ピークを両脇側に有して強度の低点を中央に有するM型プロファイル、ならびに異なる直径を有するおよびトランケートされた環状プロファイルなどが挙げられ得る。上記の例にある強度変化はいずれも、堆積材料23を照射するのに必要/望ましいような、所要の/所望の強度分布に応じて用いられ得る。エネルギー分布は、主軸または副軸において、上述のいずれかの実施形態に記載の放射を有するように設けられる。効率的に導電トラックを形成するために、堆積材料23のパスの幅および厚みに最も効果的に適合するエネルギー分布が選択され得る。レーザービームのエネルギー分布は、パスを形成する堆積材料23の厚みおよび/もしくは幅の変形例、基板の表面21または下地層を形成する材料の変形例、ならびに/または使用される材料の変形例が主要因となって選択される。レーザービームのエネルギー分布は、使用中を含めていつでも変更してもよい。例えば、エネルギー分布は上述の変形例に最も効果的に合致するように変更され得る。このように、レーザービーム断面の特性および放射強度を、堆積材料23および/もしくは基板11のパスならびに/または材料の厚みおよび/もしくは幅に適合させることは、より効率的に堆積材料23を照射し、上述のような高品質の導電トラックを形成する上で有益であり、同時に周辺領域および下地層への熱損傷を最小限に抑制する。
図8は、例えば光電池パネルなどの薄膜機器の隣接するセル間などの電気的インターコネクタの平面図である。このようなインターコネクタは、国際公開2011/048352号に記載されている。本明細書で説明される方法は、図8に示されるように、機器の上側および下側電極層を電気的に接続する導電トラックを形成するのに使用され得る。図8はさらに、堆積材料23に向けられ、個別に調整されたレーザースポットのさらなる例を示す。レーザービームの移動方向は、矢印によって示される。図8の調整されたスポットは、断面におけるエネルギー分布が均一であり得る点で、図4および図7a~に示すエネルギー分布に類似する。基板11の表面21に入射するレーザービームは、堆積材料23の異なる箇所において必要な放射量を効率的に提供するための特殊な断面形状を有する。
上述のいずれの実施形態においても、レーザービームのエネルギー分布の選択される配向は、移動方向、つまりスキャン方向に伸長され得る。代替的にまたは追加的に、図4~8に示されるように、エネルギー分布は移動方向に対して対称でもよい。
上述の例のいずれの場合においても、堆積材料23はパスに沿って均一に設けられなくてもよい。例えば、パスの一部は堆積材料23の肉厚層を有する箇所を有してもよく、他の箇所は肉薄にしてもよい。さらに、パスの一部は均一の断面厚みを有し得るが、パスの他の部分は溝内に部分的に堆積材料23有する、または基板の上面に不均一に分布する堆積材料23を有する断面を有してもよい。言い換えれば、パスに沿って断面の厚みが異なってもよい。
ましい実施形態によると、堆積材料23を効率的に照射するのに必要な放射分布をより近くなるように適合させるために、堆積材料23を照射しつつエネルギー分布プロファイルを変えて、レーザービームの断面形状および/または断面形状内における放射強度を変えることができる。よって、レーザースポットがパスに沿って移動するにつれて、レーザースポットにおいて(つまり、断面形状において)のエネルギー分布を動的に変えることができる。よって、代替的にまたは追加的に、レーザースポットがパスに沿って移動するにつれて、断面形状自体を動的に変えることができる。これは、パスにある堆積材料23が全て照射されることを確実にするため、およびパス外の余剰堆積材料23および周辺基板が照射される可能性を低減するために、堆積材料23をより正確に照射できることを意味するという点で有利である。上述のいずれかの実施形態による修正工程によって、第1および/または第2ビームプロファイルを変更し得る。
実施形態に係る方法は、選択された配向を移動方向に整列させた状態で、レーザービームをパスに沿って移動させる工程を含む。これは、選択された配向が、パスの少なくとも一部に沿った移動方向に整列されることを意味する。選択された配向は、短時間のみ移動方向に整列されてもよい。代替として、選択された配向は、レーザービームがパスに沿って移動する間、長時間移動方向に整列されてもよく、または実質的にパスの全長に整列されてもよい。
選択された配向と移動方向との整列を維持するため、レーザービームのエネルギー分布
は光軸に対して回転され。整列が変更されて、堆積材料23に入射するレーザービームの断面が、レーザービームが入射する堆積材料23の幅の近傍に合致するように、レーザービームを回転するレーザービームを回転するので、断面の放射分布が照射される堆積材料23の厚みに応じて必要な放射に近接に合致しうるように整列が変更される
レーザービームは、複数の異なる方法によって回転してもよい。レーザービームの断面形状が回転されてもよく、および/または形状内のエネルギー分布が回転されてもよい。例えば、基板に入射するレーザービームの断面形状を回転するために、デジタルミラーデバイスなどの第1ミラー14の位置および反射率を変えるようにコントローラー17が使用され得る。デジタルミラーデバイスは、ミラーアレイを構成する複数の小さなミラーを有し、それぞれのミラーがレーザービームの少なくとも一部を偏向するように個別にコントロールされてもよい。複数のミラーは、レーザービームの反射、ひいてはレーザービームの断面におけるエネルギー分布の反射をコントロールするのに使用され得る。コントローラー17は、デジタルミラーデバイスに使われるそれぞれのミラーをコントロールするのに任意で使用される。
本方法はさらに、例えば図9に示す装置を使用して、レーザービームがマスクを通過する工程を有してもよい。図9に示すマスク28は、レーザービームを成形するのに使用される。マスク28は、アパーチャーを有し得る。また、マスク28はコントローラー17によってコントロールされ、基板に対するレーザービームの配向を変えるように回転され得る。このようなマスクは、図1に示すデジタルミラーデバイスに追加してまたは代わりに使用され得る。
代替的にまたは追加的に、デジタルミラーデバイスおよび/またはマスクの代わりにまたは追加してレーザービーム形状を変更および/または回転するように、空間光変調器が使用され得る。代替的にまたは追加的に、ダブプリズムを使用され得る。空間光変調器、デジタルミラーデバイス、ダブプリズム、および/またはマスクはそれぞれ装置の一部を構成してもよく、またコントローラー17によってコントロールされ得る。
基板上のレーザービームを回転することは、基板の表面上の堆積材料23を照射する間、レーザービームがより正確にコントロールできることを意味する。このように、基板表面上でパスに沿って堆積材料23を有していない箇所をレーザービームが照射する可能性は低くなり、上述の利点を有する。レーザービームは使用中に、つまり堆積材料23に向けられている間に回転されて、レーザービームとパスとを整列させてもよい。
レーザービームは、基板の表面上の堆積材料23のパスに沿って移動するように向けられる。基板の表面上のパスは、異なる方向に伸びる直線部分および/または曲線部分を有する。例えば、導電トラックが形成されるパスは、幅狭の電気接続を形成するのに使用される複雑なパターンの一部(例えば、タッチパネルの端部に沿った箇所、またはタッチパネルの1以上の角部を囲む箇所)を成してもよい。レーザービームは、レーザービームがパスの直線部分および曲線部分に沿って移動する場合、レーザービームの選択された配向が実質的にパスに整列するように、上述のとおり回転され。曲線部分は、2つの直線部分間の角部であってよい。このように、照射される堆積材料23のプロファイルを有するパスに入射するレーザービームの断面形状の整列を維持するために、パスの直線部分および角部部分に沿ってレーザービームが移動するにつれて、レーザービームのエネルギー分布の断面は回転(または、ステアリング)され得る。
1レーザービームはパスの第1部に沿って移動し、必要に応じて回転および/またはそのエネルギー分布が必要に応じて変更され、そしてパスの第2部に沿って移動し得る。
上述の通り、パスは基板11の表面21に形成された溝20を有し得る。基板11は、事前に形成された溝20を有し得る。あるいは、本方法は基板11の表面21に溝20を形成する工程をさらに有し得る。溝20は公知の方法で形成され得る。例えば、溝20はパスに沿って基板11の上面を、例えばレーザーアブレーション法によって取り除くことで形成され得る。あるいは、溝20は基板上の一部の領域を除いて基板の上面にさらなる層を追加することによって、一部の領域において追加層を有さないことで溝20を形成してもよい。装置は、例えばさらなる層および/またはさらなるレーザーによって基板11の表面21に溝を切り出す手段などの、溝形成手段を有してもよい。
本方法は、堆積材料23を事前に有している基板11を準備する工程を有してもよい。本方法はさらに、基板に材料を堆積させる工程を有してもよい。本方法は、基板上のパスに沿って材料を堆積させる工程を有してもよい。あるいは、本方法は、基板の表面に材料を堆積させ、所望の領域、つまりパス内にない余剰の堆積材料を取り除く工程を有してもよい。一つの実施形態によると、装置はこれらの方法のいずれかを使って、基板11の表面21上のパスに沿って、基板11上に材料を堆積する堆積手段を有する。材料を堆積させる工程は、例えば材料の小滴を基板11の表面21上に放出する、および/または材料流を1以上のノズルから放出する、ように構成されたノズルを使用して実行されてもよい。このように、装置はノズルを有してもよく、装置はノズルを有するインクジェットプリンターであってもよく、または装置はノズルを有するインクジェットプリンターを有してもよい。あるいは、堆積手段はスクリーンプリンターを有してもよい。これらの実施形態のいずれかによって堆積される材料は粒子を有してよく、粒子は任意で母材中に保持されてもよい。
上述した通り、レーザービームはパスに沿って移動するように向けられる。つまり、レーザービームと基板11とは互いに連動して移動することを意味する。この移動は、基板11に対するレーザービームの並進または回転であってもよい。基板11は、固定のレーザービームに対して動くようにコントロールされてもよい。あるいは、レーザービームは、固定の基板11に対して動くようにコントロールされてもよい。さらに、レーザービームおよび基板のいずれも、互いに連動してそれぞれの位置を変えるように動くようにコントロールされてもよい。
上述の実施形態によるコントローラー17は、装置の複数の部品をコントロールするのに使用される単一のコントローラーであってよい。あるいは、コントローラーは、それぞれが装置の少なくとも1つの部品をコントロールするように構成された複数のコントローラーユニットを有してもよい。コントローラーは、必要な制御信号を送るように適合またはプログラムされた、例えばマイクロプロセッサーまたはコンピューターなどの処理手段を有してもよい。好ましい実施形態によると、堆積材料23および/または基板11に使用される材料の変形例は既知であり、コントローラーの一部として、または組み込まれた状態で、使用されるプロセッサに保存されることで、パスに向けられるレーザービームの選択された配向および任意の変形例をコントロールする。
向手段の一部として設けられる複数のミラーは限定されない。例えば、図1は第1ミラー14および第2ミラー15を示し、図は追加ミラー29を示す。ただし、レーザービームを偏向するのに使用されるミラーの数は限定されておらず、適切な数が使用され得る。さらに、ビームを向けるおよび/または成形するように構成されたデバイスの数は限定されておらず、適切な数が使用され得る。
上述の実施形態のいずれにおいても、レーザービームの光軸が実質的に基板の表面に直交する状態で、レーザービームがパスに沿って移動し得る。このように、基板の表面に入射するレーザービームの断面は、光軸に直交するレーザービームの断面であってよい。

Claims (28)

  1. 基板の表面上に導電トラックを形成する方法であって、前記基板は、前記基板の表面上のパスに沿って堆積材料を含み、前記パスが前記基板の上面に所定のパターンで形成され、前記パスが、異なる方向に伸びる直線部分および曲線部分を含み、前記方法は、
    前記基板を準備する工程と、
    光軸と、前記表面に入射するレーザービームの断面領域におけるエネルギー分布と、を有し、前記エネルギー分布が前記表面において前記光軸に対して非円形対称であるレーザービームを発生する工程と、
    前記堆積材料を照射するために前記パスに沿って移動し、前記パスに沿って前記導電トラックを設けるように前記レーザービームを向ける工程と、を含み、
    前記レーザービームは、前記パスの前記直線部分および前記曲線部分に追従するように構成され、前記断面領域における前記エネルギー分布の選択された配向は、前記レーザービームの移動方向に整列され、前記レーザービームの断面領域におけるエネルギー分布が、前記選択される配向と移動方向との整列が維持されるように前記基板に対して光軸を中心に回転し、
    前記表面に入射する断面領域の形状および前記表面に入射する断面領域におけるレーザービームのエネルギー分布は、前記ビームがパスに沿って移動する際に、前記堆積材料が前記基板の表面における前記断面領域の下において受けるのに望ましい照射量に応じて適合される、方法。
  2. 前記レーザービームの断面領域におけるエネルギー分布は、移動方向に対して対称である、請求項1に記載の方法。
  3. 前記レーザービームの断面領域におけるエネルギー分布の選択される配向は、前記レーザービームの移動方向に伸長される、請求項1または2に記載の方法。
  4. 前記表面に入射するレーザービームの断面領域の幅は、前記パスの幅に相当するように配置される、請求項1~3のいずれか一項に記載の方法。
  5. 前記表面に入射するレーザービームの断面領域におけるエネルギー分布が光軸に対して非円形対称となるように、前記光軸に対して円形対称のエネルギー分布を有する第1レーザービームを修正する工程をさらに含む、請求項1~4のいずれか一項に記載の方法。
  6. 前記第1レーザービームが非円形のアパーチャーを通過することによって修正される、請求項5に記載の方法。
  7. 前記表面に入射するレーザービームの断面領域が主軸および副軸を有し、前記主軸は前記副軸に直交し、前記主軸に沿ったエネルギー分布の強度変化は、ガウス型プロファイルを有し、前記副軸における前記エネルギー分布の強度変化はガウス型プロファイルを有する方法であって、前記主軸が移動方向に整列し、前記副軸のガウス型プロファイルの両側がトランケートされ、トランケートされたプロファイルの幅がパスの幅に相当するように、前記エネルギー分布の配向が選択される、請求項5または6に記載の方法。
  8. 前記表面に入射するレーザービームの断面領域が主軸および副軸を有し、前記主軸は前記副軸に直交し、前記主軸に沿ったエネルギー分布の強度変化は、スロープ型プロファイルを有し、前記副軸に沿ったエネルギー分布の強度変化はシルクハット型プロファイルを有する方法であって、前記主軸が移動方向に整列し、前記シルクハット型プロファイルの幅がパスの幅に相当するように、前記エネルギー分布の配向が選択される、請求項1~6のいずれか一項に記載の方法。
  9. 前記基板の表面上のパスに沿って、前記基板上に前記材料を堆積する工程をさらに含む、請求項1~8のいずれか一項に記載の方法。
  10. 前記堆積材料が、母材中に保持された粒子を含む、請求項1~9のいずれか一項に記載の方法。
  11. 前記粒子が金属粒子である、請求項10に記載の方法。
  12. 前記基板の表面において、前記堆積材料が前記基板の断面において異なる厚みを有する、請求項1~11のいずれか一項に記載の方法。
  13. 前記パスが、前記基板の断面において、前記基板の表面に形成された溝を含む、請求項12に記載の方法。
  14. 前記基板の表面に入射するレーザービームの断面領域におけるエネルギー分布は、前記堆積材料の肉厚領域が肉薄領域よりも多くの放射を受けるように、前記堆積材料の厚みに応じて適合される、請求項1~13のいずれか一項に記載の方法。
  15. 前記基板の表面に入射するレーザービームの断面領域におけるエネルギー分布は、前記基板の表面および/または前記基板の下地層を形成する材料に応じて適合される、請求項1~14のいずれか一項に記載の方法。
  16. 基板の表面上に導電トラックを形成する装置であって、前記基板は、前記基板の表面上のパスに沿って堆積材料を含み、前記パスが前記基板の上面に所定のパターンで形成され、前記パスが、異なる方向に伸びる直線部分および曲線部分を含み、前記装置は、
    前記基板を支持する支持体と、
    光軸と、前記表面に入射するレーザービームの断面領域におけるエネルギー分布とを有し、前記表面においてエネルギー分布が光軸に対して非円形対称である前記レーザービームを提供するように構成されるレーザービーム源と、
    前記パスに沿って移動する前記レーザービームを向けることで、前記堆積材料を照射して前記パスに沿った導電トラックを設けるように構成される指向手段を含み、
    前記レーザービームは、前記パスの前記直線部分および前記曲線部分に追従するように構成され、前記断面領域におけるエネルギー分布の選択された配向は、前記レーザービームの移動方向に整列され、前記指向手段が、前記レーザービームの断面領域におけるエネルギー分布を、前記選択された配向と前記移動方向との整列を維持するように、前記基板に対して光軸を中心に回転し、
    前記表面に入射する断面領域の形状および前記表面に入射する断面領域におけるレーザービームのエネルギー分布は、前記ビームがパスに沿って移動する際に、前記堆積材料が前記基板の表面における前記断面領域の下において受けるのに望ましい照射量に応じて適合される、装置。
  17. 前記装置は、前記表面に入射する断面領域の形状が適合され、移動方向に対して対称となるように構成される、請求項16に記載の装置。
  18. 前記指向手段が、前記レーザービームが通過するマスクを含み、前記マスクが、前記レーザービームのエネルギー分布が前記光軸に対して回転するように配置される、請求項16または17に記載の装置。
  19. 前記指向手段が、前記レーザービームを反射するように配置された光学素子を含み、前記光学素子が、前記レーザービームのエネルギー分布が光軸に対して回転するように構成される、請求項16~18のいずれか一項に記載の装置。
  20. 前記表面に入射するレーザービームの断面領域の幅は、前記パスの幅に相当するように配置される、請求項16~19のいずれか一項に記載の装置。
  21. 前記表面に入射するレーザービームの断面領域におけるエネルギー分布が、光軸に対して非円形対称となるように、光軸に対して円形対称のエネルギー分布を有する第1レーザービームを修正するように構成されるプロファイル化手段をさらに含む、請求項16~20のいずれか一項に記載の装置。
  22. 前記プロファイル化手段は、非円形のアパーチャーを含む、請求項21に記載の装置。
  23. 前記表面に入射する前記レーザービームの断面領域が主軸および副軸を有し、前記主軸は前記副軸に直交し、前記主軸に沿ったエネルギー分布の強度変化はガウス型プロファイルを有し、前記副軸における前記エネルギー分布の強度変化はガウス型プロファイルを有する方法であって、前記主軸が前記移動方向に整列し、前記副軸のガウス型プロファイルの両側がトランケートされ、トランケートされたプロファイルが前記パスの幅に相当するように、前記エネルギー分布の配向が選択される、請求項21または22に記載の装置。
  24. 前記表面に入射するレーザービームの断面領域が主軸および副軸を有し、前記主軸は前記副軸に直交し、前記主軸に沿ったエネルギー分布の強度変化はスロープ型プロファイルを有し、前記副軸に沿ったエネルギー分布の強度変化はシルクハット型プロファイルを有する方法であって、前記主軸が移動方向に整列し、前記シルクハット型プロファイルの幅が前記パスの幅に相当するように、前記エネルギー分布の配向が選択される、請求項21または22に記載の装置。
  25. 前記基板の表面上の前記パスに沿って、前記基板上に材料を堆積するように構成される堆積ユニットをさらに含む、請求項16~24のいずれか一項に記載の装置。
  26. 前記堆積ユニットは、前記材料を堆積するためのノズルを含む、請求項25に記載の装置。
  27. 前記ノズルが、インクジェットプリンターの一部である、請求項26に記載の装置。
  28. 前記堆積ユニットがスクリーンプリンターを含む、請求項25に記載の装置。
JP2018509591A 2015-08-18 2016-08-03 導電トラックの形成方法および装置 Active JP7079727B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1514655.8A GB2541412B (en) 2015-08-18 2015-08-18 Method and Apparatus for Forming a Conductive Track
GB1514655.8 2015-08-18
PCT/GB2016/052387 WO2017029472A1 (en) 2015-08-18 2016-08-03 Method and apparatus for forming a conductive track

Publications (3)

Publication Number Publication Date
JP2018525838A JP2018525838A (ja) 2018-09-06
JP2018525838A5 JP2018525838A5 (ja) 2019-09-12
JP7079727B2 true JP7079727B2 (ja) 2022-06-02

Family

ID=54258784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018509591A Active JP7079727B2 (ja) 2015-08-18 2016-08-03 導電トラックの形成方法および装置

Country Status (8)

Country Link
US (1) US10882136B2 (ja)
EP (1) EP3337636B1 (ja)
JP (1) JP7079727B2 (ja)
KR (1) KR102563985B1 (ja)
CN (1) CN107921582B (ja)
GB (1) GB2541412B (ja)
TW (1) TWI694881B (ja)
WO (1) WO2017029472A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6955932B2 (ja) * 2017-08-25 2021-10-27 株式会社ディスコ レーザービームプロファイラユニット及びレーザー加工装置
EP3624571A1 (en) * 2018-09-14 2020-03-18 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A process for the manufacturing of printed conductive tracks on an object and 3d printed electronics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020140A1 (ja) 2002-08-30 2004-03-11 Sumitomo Heavy Industries, Ltd. レーザ加工方法及び加工装置
JP2006032916A (ja) 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd 配線基板、及び半導体装置、並びにその作製方法
JP2010145562A (ja) 2008-12-17 2010-07-01 Panasonic Corp パターン形成方法
JP2011194413A (ja) 2010-03-17 2011-10-06 Sony Corp 表面超微細凹凸構造を有する成形品の製造方法
JP2011249357A (ja) 2010-05-21 2011-12-08 Panasonic Electric Works Co Ltd 回路基板および回路基板の製造方法
WO2016075822A1 (ja) 2014-11-14 2016-05-19 富士機械製造株式会社 配線基板作製方法および配線基板作製装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2220502A (en) * 1988-07-09 1990-01-10 Exitech Ltd Excimer laser beam homogenizer system
JP3149450B2 (ja) * 1991-04-04 2001-03-26 セイコーエプソン株式会社 薄膜トランジスタの製造方法及び製造装置
US6331692B1 (en) 1996-10-12 2001-12-18 Volker Krause Diode laser, laser optics, device for laser treatment of a workpiece, process for a laser treatment of workpiece
JP3436858B2 (ja) * 1997-02-27 2003-08-18 シャープ株式会社 薄膜太陽電池の製造方法
US6431695B1 (en) 1998-06-18 2002-08-13 3M Innovative Properties Company Microstructure liquid dispenser
JP4663047B2 (ja) 1998-07-13 2011-03-30 株式会社半導体エネルギー研究所 レーザー照射装置及び半導体装置の作製方法
US6750423B2 (en) * 2001-10-25 2004-06-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US20060003262A1 (en) * 2004-06-30 2006-01-05 Eastman Kodak Company Forming electrical conductors on a substrate
JP2006038999A (ja) * 2004-07-23 2006-02-09 Sumitomo Electric Ind Ltd レーザ照射を用いた導電性回路形成方法と導電性回路
US7772523B2 (en) * 2004-07-30 2010-08-10 Semiconductor Energy Laboratory Co., Ltd Laser irradiation apparatus and laser irradiation method
US7722422B2 (en) 2007-05-21 2010-05-25 Global Oled Technology Llc Device and method for improved power distribution for a transparent electrode
JP4601679B2 (ja) * 2008-02-21 2010-12-22 三洋電機株式会社 太陽電池モジュール
DE102008019636A1 (de) * 2008-04-18 2009-10-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bauteil mit Schweißnaht und Verfahren zur Herstellung einer Schweißnaht
KR20100080120A (ko) * 2008-12-31 2010-07-08 한국생산기술연구원 인쇄회로 소결방법
GB0900036D0 (en) * 2009-01-03 2009-02-11 M Solv Ltd Method and apparatus for forming grooves with complex shape in the surface of apolymer
GB2474665B (en) * 2009-10-22 2011-10-12 M Solv Ltd Method and apparatus for dividing thin film device into separate cells
KR101114256B1 (ko) * 2010-07-14 2012-03-05 한국과학기술원 패턴 제조 방법
KR101247619B1 (ko) * 2011-08-29 2013-04-01 한국과학기술원 금속 나노입자 극미세 레이저 소결 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020140A1 (ja) 2002-08-30 2004-03-11 Sumitomo Heavy Industries, Ltd. レーザ加工方法及び加工装置
JP2006032916A (ja) 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd 配線基板、及び半導体装置、並びにその作製方法
JP2010145562A (ja) 2008-12-17 2010-07-01 Panasonic Corp パターン形成方法
JP2011194413A (ja) 2010-03-17 2011-10-06 Sony Corp 表面超微細凹凸構造を有する成形品の製造方法
JP2011249357A (ja) 2010-05-21 2011-12-08 Panasonic Electric Works Co Ltd 回路基板および回路基板の製造方法
WO2016075822A1 (ja) 2014-11-14 2016-05-19 富士機械製造株式会社 配線基板作製方法および配線基板作製装置

Also Published As

Publication number Publication date
GB2541412B (en) 2018-08-01
GB201514655D0 (en) 2015-09-30
KR102563985B1 (ko) 2023-08-04
CN107921582A (zh) 2018-04-17
EP3337636B1 (en) 2023-06-07
CN107921582B (zh) 2020-02-07
US10882136B2 (en) 2021-01-05
GB2541412A (en) 2017-02-22
TW201718151A (zh) 2017-06-01
KR20180040594A (ko) 2018-04-20
TWI694881B (zh) 2020-06-01
EP3337636A1 (en) 2018-06-27
US20180236601A1 (en) 2018-08-23
WO2017029472A1 (en) 2017-02-23
JP2018525838A (ja) 2018-09-06

Similar Documents

Publication Publication Date Title
JP7282797B2 (ja) 付加製造システム及び方法
US11090866B2 (en) Apparatus and method for manufacturing stereoscopic shape using laser and powder
US11820119B2 (en) Laser lift off systems and methods that overlap irradiation zones to provide multiple pulses of laser irradiation per location at an interface between layers to be separated
JP6600351B2 (ja) Liftプリント・システム
US20110266264A1 (en) Method and apparatus for forming grooves in the surface of a polymer layer
TWI236429B (en) Functional material fixing method, functional material fixing device, device fabrication method, electro optical device, and electronic equipment
US20150048075A1 (en) Curing System
CA2951744A1 (en) 3d printing device for producing a spatially extended product
JP2013521131A (ja) レーザ加工の方法および装置
CN1326392A (zh) 激光烧蚀特征形成装置
US20170173875A1 (en) 3D printing device for producing a spatially extended product
JP7079727B2 (ja) 導電トラックの形成方法および装置
JP2016518523A (ja) 構造体を基板上に作成する方法および装置
JP2018525838A5 (ja)
KR20190017234A (ko) 레이저 패터닝 장치 및 방법
CN111684550A (zh) 嵌入式电阻的直接印刷
KR20200046056A (ko) 개선된 열처리 장치
JP2010145562A (ja) パターン形成方法
TW202202257A (zh) 錫膏之雷射列印

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220322

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7079727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350