JP7077013B2 - 三次元情報処理部、三次元情報処理部を備える装置、無人航空機、報知装置、三次元情報処理部を用いた移動体制御方法および移動体制御処理用プログラム - Google Patents

三次元情報処理部、三次元情報処理部を備える装置、無人航空機、報知装置、三次元情報処理部を用いた移動体制御方法および移動体制御処理用プログラム Download PDF

Info

Publication number
JP7077013B2
JP7077013B2 JP2017251465A JP2017251465A JP7077013B2 JP 7077013 B2 JP7077013 B2 JP 7077013B2 JP 2017251465 A JP2017251465 A JP 2017251465A JP 2017251465 A JP2017251465 A JP 2017251465A JP 7077013 B2 JP7077013 B2 JP 7077013B2
Authority
JP
Japan
Prior art keywords
unit
laser
unmanned aerial
control
aerial vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017251465A
Other languages
English (en)
Other versions
JP2019117127A (ja
Inventor
信幸 西田
康司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2017251465A priority Critical patent/JP7077013B2/ja
Priority to EP18211854.7A priority patent/EP3506042B1/en
Priority to US16/232,153 priority patent/US11822351B2/en
Publication of JP2019117127A publication Critical patent/JP2019117127A/ja
Application granted granted Critical
Publication of JP7077013B2 publication Critical patent/JP7077013B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、対象の位置および点群データを用いた移動体の制御技術に関する。
測量装置として、測距光を用いて特定の点の位置を精密に測定する自動視準追尾(モータドライブ)TS(トータルステーション)が知られている(例えば、特許文献1を参照)。また、対象物(ターゲット)の点群データを得る装置として、レーザースキャナが知られている(例えば、特許文献2を参照)。そして、TSで飛行するUAV(Unmanned Aerial Vehicle)を追尾し、TSが備えるレーザー測距機能を用いてUAVの位置を特定する方法がある(例えば、特許文献3を参照)。
特開2009-229192号公報 特開2010-151682号公報 US2014/0210663号公報
UAV、ドローンおよびクアッドコプター等の無人航空機は、カメラ等の撮影機材を備えることで、画像および動画撮影のみに留まらず、撮影された画像データおよび動画データを用いた橋梁やトンネル等の構造物の点検にも利用される。
無人航空機による構造物の点検は、撮影の解像度を一定に保つため、点検対象である構造物から一定の距離を保って無人航空機を飛行させる場合が多い。この場合、無人航空機を構造物の側面から一定の距離を飛行させる制御技術が求められる。通常、この無人航空機の飛行制御には、航法衛星からの航法信号から得られる位置情報を用いた飛行制御技術が用いられている。
しかし、橋梁の下側やトンネル内部では航法信号の受信ができない場合がある。そこで本発明は、航法信号を用いずとも無人航空機の飛行制御が可能な技術として、三次元座標情報を有する点群データを用いた無人航空機の飛行制御技術の提供を目的とする。
本発明は、レーザー光を用いて測位を行う機能を有するトータルステーションと鉛直面に沿ったレーザースキャンを行うレーザースキャナを複合化した測量装置を用いた無人航空機の飛行制御方法であって、前記レーザー光を用いた測位を行う機能における前記レーザー光の光軸は前記鉛直面に含まれ、ターゲットを搭載した前記無人航空機の前記ターゲットを前記トータルステーションにより測位すると同時に、前記レーザースキャナにより前記鉛直面に沿ったレーザースキャンを行うステップと、前記レーザースキャンによって得た点群データに基づき、前記無人航空機の上方向および下方向に存在する物体を検出するステップと、前記無人航空機の前記上方向および前記下方向に存在する前記物体に基づき、鉛直方向における前記無人航空機の移動可能な区間を算出するステップとを有する無人航空機の飛行制御方法である。
本発明は、レーザー光を用いて測位を行う機能を有するトータルステーションと鉛直面に沿ったレーザースキャンを行うレーザースキャナを複合化した測量装置を用いた無人航空機の飛行制御用プログラムであって、前記レーザー光を用いた測位を行う機能における前記レーザー光の光軸は前記鉛直面に含まれ、コンピュータにターゲットを搭載した前記無人航空機の前記ターゲットを前記トータルステーションにより測位すると同時に、前記レーザースキャナにより前記鉛直面に沿ったレーザースキャンを行うステップと、前記レーザースキャンによって得た点群データに基づき、前記無人航空機の上方向および下方向に存在する物体を検出するステップと、前記無人航空機の前記上方向および前記下方向に存在する前記物体に基づき、鉛直方向における前記無人航空機の移動可能な区間を算出するステップとを実行させる無人航空機の飛行制御用プログラムである。
本発明によれば、レーザースキャナを備えるTSによって得られる三次元座標情報を有する点群データにより、航法衛星からの航法信号が受信できない場所であっても、無人航空機を飛行制御できる技術が得られる。例えば、航法衛星からの航法信号が受信できず、かつ地面から天井までの高さが一定でないトンネル内部において無人航空機を飛行させる場合であっても、天井または地面から一定の距離を保ったまま、無人航空機を飛行させることが可能となる。
実施形態の概念図である。 TSの斜視図である。 TSの正面図である。 TSのブロック図である。 TSに備えられる三次元情報処理部のブロック図である。 処理の一例を示すフローチャートである。 イメージセンサを利用した実施形態の一例を示す概念図である。 TSに備えられるレーザースキャナのスキャン範囲を示す概念図である。 イメージセンサを利用した実施形態の一例を示す概念図である。
(概要)
本発明は、飛行する無人航空機(UAV、ドローンおよびクアッドコプター等)を測位することによって得られる位置データおよびスキャン(走査)することによって得られる点群データを用いて、無人航空機の飛行制御を行うものである。本実施形態は、制御する対象をUAVとし、制御対象のUAVがレーザースキャナ(または、レーザースキャナ機能)を備えたTSにより、測位(測距および測角)およびスキャンされることによって、飛行の制御が行われるものである。
図1は、本実施形態の概念図である。図1には、レーザースキャナ機能を有するTS100、構造物の下を飛行するUAV200が示されている。UAV200は、TS100により適時測位およびスキャンされることで制御される。
(TSの構成)
図2には、図1に示すTS100の斜視図が示され、図3には、正面図が示されている。TS100は、ターゲット(または、ターゲットに備えられる反射プリズム)を探索する探索用レーザースキャン機能、および探索したターゲット(ターゲットに備えられる反射プリズム)を自動視準するための機構を備える。
この自動視準のための機構は、追尾光の送受信部を構成する追尾光受光部104、追尾光受光部105、追尾光を用いた視準を行うためのモータ駆動機構を構成する水平回転駆動部108と鉛直回転駆動部109、自動追尾の制御を行う自動視準制御部301(本実施形態では、TS100の演算制御部113が備える三次元情報処理部300に含まれる。)を有する。なお、TS100が自動視準機能を有することで、オペレータがターゲットを視準する作業を大幅に削減できる。
また、TS100は、測距用レーザー光を用いてターゲットまでの距離を測距するレーザー測距機能、レーザー測距されたターゲットの方向(水平角と鉛直角(仰角または俯角))を計測する機能、ターゲットまでの距離と方向からターゲットの三次元位置(座標)を算出する機能(測位機能)、点群データを得るためのレーザースキャン機能を有する。上記の測位機能は、TS本来のターゲットの位置を精密に測定する機能(TS機能)である。
図2に示すようにTS100は、TS本体20とレーザースキャナ部101を結合(複合化)した構造を有している。TS100は、本体部11を有している。本体部11は、台座12に水平回転が可能な状態で保持されている。台座12は図示しない三脚の上部に固定される。本体部11は、Y軸の方向から見て上方に向かって延在する2つの延在部を有する略コの字形状を有し、この2つの延在部の間に可動部13が鉛直角(仰角および俯角)の制御が可能な状態で保持されている。
本体部11は、台座12に対して電動で回転する。すなわち、本体部11は、モータにより台座12に対する水平回転角の角度制御が行われる。また、可動部13は、モータにより鉛直角の角度制御が行なわれる。この水平回転角と鉛直角の角度制御のための駆動は、本体部11に内蔵された水平回転駆動部108および鉛直回転駆動部109(図4のブロック図を参照)により行われる。なお、水平回転駆動部108および鉛直回転駆動部109についての説明は後述する。
本体部11には、水平回転角制御ダイヤル14aと鉛直角制御ダイヤル14bが配置されている。水平回転角制御ダイヤル14aを操作することで、本体部11(可動部13)の水平回転角の調整が行なわれ、鉛直角制御ダイヤル14bを操作することで、可動部13の鉛直角の調整が行なわれる。
可動部13の上部には、大凡の照準を付ける角筒状の照準器15aが配置されている。また、可動部13には、照準器15aよりも視野が狭い光学式の照準器15bと、より精密な視準が可能な望遠鏡16が配置されている。
照準器15bと望遠鏡16が捉えた像は、接眼部17を覗くことで視認できる。望遠鏡16は、測距用のレーザー光と測距対象(例えばターゲットとなる専用の反射プリズム)を追尾および捕捉するための追尾光の光学系を兼ねている。測距光と追尾光の光軸は、望遠鏡16の光軸と一致するように光学系の設計が行なわれている。この部分の構造は、市販されているTSと同じである。
本体部11には、ディスプレイ18と19が取り付けられている。ディスプレイ18は、後述する操作部111と一体化されている。ディスプレイ18と19には、TS100の操作に必要な各種の情報や測量データ等が表示される。前後に2つディスプレイがあるのは、本体部11を回転させなくても前後のいずれの側からでもディスプレイを視認できるようにするためである。なお、説明したTSの詳細な構造については、例えば特開2009-229192号公報、特開2012―202821号公報に記載されている。
本体部11の上部には、レーザースキャナ部101が固定されている。レーザースキャナ部101は、第1の塔部21と第2の塔部22を有している。第1の塔部21と第2の塔部22は、結合部23で結合され、結合部の上方の空間(第1の塔部21と第2の塔部22の間の空間)は、スキャンレーザー光を透過する部材で構成された保護ケース24で覆われている。保護ケース24の内側には、第1の塔部21からX軸方向に突出した回転部25が配置されている。回転部25の先端は、斜めに切り落とされた形状を有し、その先端部には、斜めミラー26が固定されている。
回転部25は、第1の塔部21に納められたモータにより駆動され、X軸を回転軸として回転する。第1の塔部21には、上記のモータに加え、このモータを駆動する駆動回路と、その制御回路が納められている。なお、回転部25は、第1の塔部21からY軸方向に突出させる構造とすれば、Y軸を回転軸として回転させることもできる。
第2の塔部22の内部には、レーザースキャン光(レーザースキャン用のパルスレーザー光)を発光するための発光部、対象物から反射してきたスキャン光を受光する受光部、発光部と受光部に関係する光学系が納められている。レーザースキャン光は、第2の塔部22の内部から斜めミラー26に向けて照射され、そこで反射され、透明なケース24を介して外部に照射される。また、対象物から反射したスキャン光は、照射光と逆の経路を辿り、第1の塔部22内部の受光部で受光される。
スキャン光の発光タイミングと受光タイミング、さらにその際の回転部25の角度位置と本体部11の水平回転角により、スキャン点(スキャン光の反射点)の測位が行なわれる。
レーザースキャン用のパルスレーザー光は、回転部25の回転軸の延在方向に出射され、斜めミラー26で直角に反射される。斜めミラー26で反射されたパルスレーザー光は、透明な保護ケース24から外部に向かって間欠的に出射される。この際、回転部25が回転することで、図2のY-Z面に沿った鉛直面をスキャン面としたレーザースキャンが行われる。また、上記のスキャン面に望遠鏡16から出射される測距光(TS本体20の測距光)の光軸が含まれるように全体の構造が決められている。ここで、本体部11を水平回転(Z軸回りの回転)させながら上記のパルスレーザー光の出射を行うことで、周囲全体(あるいは必要とする範囲)のレーザースキャンが行なわれる。なお、複数条のパルスレーザー光を同時に出射する形態も可能である。
本体部11を水平回転(Z軸回りの回転)させることは、上述の本体部11を台座12に対して電動で回転させる機構を利用して行う。レーザースキャンのみが目的ならば、本体部11の回転機構とは別にレーザースキャナ部101のみを回転させる専用の機構を備えることで行ってもよい。
なお、レーザースキャナに係る技術については、特開2010-151682号公報、特開2008-268004号公報、米国特許第8767190号公報等に記載されている。また、レーザースキャナとして、米国公開公報US2015/0293224号公報に記載されているような、スキャンを電子式に行う形態ものも採用可能である。
図4は、TS100のブロック図である。TS100は、レーザースキャナ部101、記憶部102、測距部103、追尾光発光部104、追尾光受光部105、水平角検出部106、鉛直角検出部107、水平回転駆動部108、鉛直回転駆動部109、表示部110、操作部111、通信部112、演算制御部113を備えている。
レーザースキャナ部101は、パルスレーザー光を測定対象物に対してスキャン(走査)し、その反射光を検出することで、測定対象物の概形を三次元座標を有する点群データとして得る。すなわち、レーザースキャナ部101は、市販されている三次元レーザースキャナと同様の機能を備える。なお、点群データに付与される三次元座標の座標系は、後述する測距部103、水平角検出部106および鉛直角検出部107によって得られる座標を扱う座標系と同じものが用いられる。記憶部102は、TS100の動作に必要な制御プログラム、各種のデータ、測量結果等を記憶する。
測距部103は、測距用レーザー光を用いたターゲットまでの距離の計測を行う。測距部103は、測距用レーザー光の発光素子、照射光学系、受光光学系、受光素子、測距演算部、測距基準光の光路を備えている。対象物までの距離は、対象物から反射された測距光と基準光の位相差から算出される。距離の算出方法は、通常のレーザー測距と同じである。
追尾光発光部104および追尾光受光部105は、三角錐型または扇形ビームを有した探索用レーザー光を用いた反射プリズムの探索を行う。反射プリズムは、探索対象(視準目標)に備えられ、反射プリズムが探索およびレーザー照射対象となることで、探索対象(視準目標)の自動視準が行われる。すなわち、追尾光発光部104が発光した探索用レーザー光を反射プリズムに照射し、その反射光を追尾光受光部105の受光素子の中心に位置するよう制御することで、視準目標を追尾する。この制御は、三次元情報処理部300に含まれる自動視準制御部301で行なわれる。
水平角検出部106および鉛直角検出部107は、測距部103が測距したターゲットの水平方向角と鉛直方向角(仰角および俯角)を計測する。測距部103、追尾光発光部104および追尾光受光部105の光学系を備えた筐体部分は、水平回転および仰角(俯角)制御が可能であり、水平方向角と鉛直方向角は、エンコーダにより計測される。このエンコーダの出力が水平角検出部106および鉛直角検出部107で検出され、水平方向角と鉛直方向角(仰角および俯角)の計測が行われる。
水平回転駆動部108および鉛直回転駆動部109は、測距部103、追尾光発光部104および追尾光受光部105の光学系を備えた筐体部分の水平回転および仰角制御(および俯角制御)を行うモータ、該モータの駆動回路、該駆動回路の制御回路を含む。なお、この筐体部分と一緒にレーザースキャナ部101も水平回転する構造とされている。
表示部110は、TS100を扱うオペレータ等に対して、その処理結果等を視覚的に認識できる状態、例えば、GUI(Graphical User Interface)等の技術により、情報の提供または表示を行う。なお、前述のディスプレイ18と19はこれに該当する。操作部111は、テンキーや十字操作ボタン等が配され、TS100に係る各種の操作やデータの入力が行なわれる。また、表示部110および操作部111は、オペレータが情報表示画面をタッチすることで動作するタッチパネル方式を採用することによって、一体化可能である。
通信部112は、UAV200の操作情報や各種データの送受信を行う。そして、通信部112は、無線通信機能を備え、この機能により、UAV200やUAV200の操作端末(地上でUAV200の操作を行う者が操作するコントローラ)との間でUAV200の制御信号の送受信を行う。さらに、レーザースキャナ部101によって得られた点群データやその点群データから作成されたデータの情報を他の機器(例えば、TS100とは別個のコンピュータなどの外部情報処理装置)へ送受信も可能である。
通信部112は、無線通信機能の他に有線通信機能や光通信機能を備えることもできる。例えば、有線通信機能や光通信機能を用いて、レーザースキャナ部101によって得られた点群データやその点群データから作成されたデータの情報の通信を行う。
演算制御部113は、後述する三次元情報処理部300を備えていることに加えて、TS100の各種動作制御に係わる演算処理および記憶部102に記憶するデータの管理の制御を行う。演算制御部113は、例えば、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)に代表されるPLD(Programmable Logic Device)などの電子回路により構成される。また、一部の機能を専用のハードウェアで構成し、他の一部を汎用のマイコンにより構成することも可能である。
演算制御部113の各機能部を専用のハードウェアで構成するのか、CPUにおけるプログラムの実行によりソフトウェア的に構成するのかは、要求される演算速度、コスト、消費電力等を勘案して決定される。なお、機能部を専用のハードウェアで構成することとソフトウェア的に構成することは、特定の機能を実現するという観点からは、等価である。当然のごとく、各機能部を装置として実現することも等価である。
なお、本発明の利用においてTS100は、測量機能とレーザースキャナ機能を有しているものならば、TS等をはじめとする測量装置にも限定されず、他の装置へ代用可能である。例えば、上述の二つの機能を有するカメラや携帯端末等での代用が可能である。
(UAVの構成)
UAV200は、空中を飛行する無人航空機であって、TS100によって自動視準および自動追尾されるために反射プリズム201を備える。さらに、UAV200は飛行制御信号受信のため、通信機能を備える。この通信機能によって、UAV200は、外部から送信される操作指令を制御信号として受信し、飛行制御される。なお、UAV200が備える通信機能は、TS100や他の通信装置との間の信号や情報の送受信も可能としてもよい。
(三次元情報処理部の構成)
図5は、三次元情報処理部300のブロック図である。三次元情報処理部300は、本発明における処理を司る部分であって、自動視準制御部301、測位部302、スキャン制御部303、区間算出部304、制御対象位置算出部305、制御動作決定部306、制御信号生成部307を備える。
自動視準制御部301は、各機能部または各装置を機能または動作させることにより、対象を追尾する。例えば、TS100の追尾光発光部104および追尾光受光部105を機能させ、UAV200を追尾する。
測位部302は、各機能部または各装置を機能または動作させることにより、対象の三次元座標を得る。例えば、自動視準制御部301の制御によって追尾されているUAV200に対して、TS100の測距部103、水平角検出部106および鉛直角検出部107を機能させ、TS100を基準としたUAV200の三次元座標を得る。
スキャン制御部303は、レーザースキャン機能部またはレーザースキャナ装置を機能または動作させることにより、対象の点群データを得る。なお、得られた点群データには、測位部302で得られる三次元座標データが付与される。例えば、TS100のレーザースキャナ部101を機能させ、三次元座標情報を有する点群データを得る。
区間算出部304は、スキャン制御部303によって得られた三次元座標情報を有する点群データから制御対象のスキャン(走査)方向に存在する物体間の距離を算出する。物体間の距離は、制御対象が移動可能な区間となる。制御対象が移動可能な区間の算出は、点群データの中で、制御対象(制御対象に備えられる反射プリズム)のスキャン方向線上(鉛直線上および水平線上等)を横切る前後の2点の点群データ(もしくは、その近傍点の集まりの座標平均地点)を制御対象のスキャン方向線上に存在する物体として抽出し、その2点のスキャン方向の座標差から計算できる。
区間算出部304は、スキャンを行った範囲で抽出できた点群データが無かった場合は、スキャンを行った範囲に障害となる物体はないと判定し、スキャンを行った全範囲を制御対象が移動可能な区間と仮定して処理する。例えば、図2のY-Z面に沿った鉛直面をスキャン面としたレーザースキャンを0~Lの範囲で行う場合、すなわち、Yをパラメータとして、Y=0~Lの範囲でレーザースキャンを行う場合、障害物と推定される点群データが抽出されなかったときは、Y=0~Lの範囲を制御対象が移動可能な区間とする。
制御対象位置算出部305は、区間算出部304によって算出された制御対象の移動可能な区間における制御対象(制御対象に備えられる反射プリズム)の位置を算出する。算出される制御対象の位置は、区間算出部304によって算出された区間に対して、絶対値として算出してもよいし、相対値として算出してもよい。
制御動作決定部306は、制御対象位置算出部305によって算出された空間における位置情報と設定された制御方法に基づき、制御対象に行わせる動作を決定する。ここで、設定される制御方法としては、例えば、空間内の中央に制御対象を位置させる方法や空間の端から一定の距離を確保できる地点に制御対象を位置させる方法がある。設定される制御方法は、本発明実施時の状況等によって、任意に制御内容を設定変更可能である。
制御動作決定部306で行う処理の一例としては、構造物Aと構造物Bの間の10mの空間をUAV200が飛行しており、UAV200の位置が構造物Aから1mかつ構造物Bから9mの位置であって、設定された制御方法が空間の中央に制御対象を位置させるものであるならば、構造物B方向へ4m移動させることを決定する処理となる。
制御信号生成部307は、制御動作決定部306において決定された動作を制御対象に行わせるため、制御信号を生成する。本実施形態ならば、生成された制御信号は、TS100の通信部112によって送信されることで、UAV200の制御に利用される。
制御信号生成部307が生成する制御信号は、制御動作決定部306が制御対象に行わせる制御動作を特になしと決定した場合、制御が必要ないため信号自体を生成しないとしてもよいが、制御対象位置算出部305の処理結果のみを付与した信号としてもよい。
さらに、制御信号生成部307が生成する制御信号は、制御対象を直接制御する信号に限られず、区間算出部304、制御対象位置算出部305および制御動作決定部306において算出された値または算出された値から導かれる情報を制御対象となる無人航空機の操作装置に表示または発音させることで、オペレータ等を介して、間接的に制御を行ってもよい。
間接的な制御の例としては、制御対象となる無人航空機の操作装置に、制御対象から障害物となりうる物体までの距離を表示または発音させたり、障害物となりうる物体との距離が近づいてきた場合は警告文や警報音を出力させたりすることが挙げられる。したがって、本実施形態に用いるUAV200は、予め定めた飛行ルートを自律飛行するものであってもよいし、オペレータの操縦による飛行制御であってもよい。
スキャン制御部303において得られた点群データや、制御動作決定部306において用いられる制御方法の設定データは、三次元情報処理部300内に備えられる記憶部(図示省略)に記憶してもよいし、三次元情報処理部300が備えられる装置の記憶部(本実施形態ならば、TS100の記憶部102)や三次元情報処理部300と通信可能な装置の記憶部に記憶させてもよい。
(処理の一例)
本実施形態における処理の一例を図6に示す。ここで示す処理では、TS100のレーザースキャナ部101は、UAV200に対して鉛直方向にスキャン(図2のY-Z面内でのスキャン)を行うものとして説明する。
まず、UAV200に備えられる反射プリズムに対して、TS100により自動視準を行い、UAV200の飛行に合わせてTS100が自動追尾を行えるようにする。TS100がUAV200を自動追尾できていることで、次のステップで行う測位が可能となる(ステップS101)。
次に、制御対象であるUAV200を自動追尾しながら測位を行い、UAV200の三次元座標データを得る(ステップS102)。そして、制御対象であるUAV200の鉛直方向について、スキャンを行うことで、スキャン範囲の点群データを得る(ステップS103)。
ステップS103の処理で得た点群データから、スキャン方向上に存在する物体に該当するデータをUAV200の鉛直上方向と鉛直下方向で1点ずつ抽出し、この2点のスキャン方向の座標差からUAV200の移動可能区間を算出する(ステップS104)。次に、ステップS102とステップS104の結果を用いて、ステップS104で算出されたUAV200の移動可能区間におけるUAV200の位置を算出する(ステップS105)。
ステップS105で算出された移動可能区間におけるUAV200の位置と予め設定されたUAV200の制御方法とを照合することで、UAV200に対する制御内容(動作内容)を決定する(ステップS106)。ステップS106において決定した制御内容をUAV200に行わせる制御信号を生成する(ステップS107)。なお、ステップS106において、UAV200に対して、特に制御が必要なしと判断される場合は、制御信号の生成を行わなくてもよいし、動作の制限がない旨の信号を送信してもよい。
ステップS102~ステップS107までの処理は、UAV200の飛行終了まで繰り返し行われる。ステップS102~ステップS107までの処理は数秒ごとに行い、UAV200の飛行を随時制御する(ステップS108)。そして、処理はUAV200の飛行終了に伴い終了となる。
ステップS108におけるUAV200の飛行終了の判断は、UAV200を操作するオペレータによるものでもよいし、ステップS102におけるUAV200の三次元座標データの変化が一定時間なかったことをもって判断する機能部(例えば、三次元情報処理部300に備えられる、図示しない処理終了判定部)によって行ってもよい。処理終了判定部は、オペレータの判断を受け付ける機能部を備えることで、自己の判断に加え、オペレータの判断も利用し、制御対象であるUAV200の飛行終了を判定できる。
本実施形態の処理として上述したステップS108のように、三次元情報処理部300は数秒以下のオーダーで、ステップS102~ステップS107までの処理を繰り返す。この際、点群データの処理による演算量の増加が懸念される。この対応としては、予めUAV200が飛行する範囲について、事前に点群データを取得しておくことが考えられる。
この場合は、ステップS103において得られた点群データは優先的にステップS106の決定に利用するものとし、事前に取得したデータはステップS103において得られた点群データの補完データとして利用することで、三次元情報処理部300がステップS102~ステップS107までの処理を繰り返す頻度を下げることができる。また、更なる効果として、UAV200の追尾と同時に取得できない範囲の障害物の点群データをUAV200の制御に用いることができる。
上述の処理ステップS103およびステップS104においては、Y―Z面内のみにスキャンを行い、Y―Z面内に存在する物体を検出している。TS100から見た鉛直面(Y-Z面)のみを対象として物体を検知する方法は制御対象の安全面には劣るが、点群データの処理のための演算量を抑えられる利点がある。つまり、制御対象の安全と点群データの処理量はトレードオフの関係がある。安全面を重視するかは、本発明の利用者ごとの要求(ニーズ)によるため、点群データの収集範囲を可変とすることで、本発明の汎用性が増す。そこで、後述する変形例においては、点群データの収集量を増やすことで、制御対象の安全面を向上させる方法を示す。
(具体例)
例えば、図1において、構造物が橋梁であり、橋梁の下をくぐってUAV200を飛行させる場合を考える。この場合、レーザースキャンによって鉛直方向における移動可能距離を求め、その方向での比率が特定の値となる高度でUAV200が飛行するように飛行制御が行われる。例えば、鉛直方向におけるUAV200の地表からの距離と橋梁までの距離とが1:1となるように飛行制御が行われる。この場合、橋梁の下において、地表と橋梁の中間地点の高度で飛行するようにUAV200の飛行制御が行われる。
すなわち、橋梁の三次元構造がレーザースキャナ部101で取得され、同時にUAV200の三次元位置がTS100でリアルタイムに測位されるので、橋梁との干渉を避けたUAV200の飛行制御が可能となる。
また、構造物内部や建築物内部等の広さが有限な空間においても、本発明の利用は可能である。例えば、トンネルの内部において、UAV200を飛行させる場合に、高低角方向のレーザースキャンを行うことで、トンネルの路面と天井の三次元座標を取得し、且つ、TS100によりUAV200を捕捉し、その測位を行うことで、トンネルの路面(底面)と天井の間の所定の位置(例えば、路面から4m上で、天井面から2m下の高度)を保ってUAV200を飛行させることができる。
また、以上の場合において、UAV200の追尾および測位と同時に高低角方向のレーザースキャンを行いつつ、更に予め取得しておいたレーザースキャン点群のデータを併用することで、UAV200の追尾と同時に取得できない範囲の障害物の位置データを参照し、UAV200の飛行制御ができる。
例えば、上記のトンネルの内部において、UAV200を飛行させる場合ならば、トンネル内の高度の制御は、リアルタイムで取得するレーザースキャンデータを用い、トンネルの側壁との干渉を避ける飛行制御を予め取得しておいたレーザースキャンデータを用いて行う例が挙げられる。
(変形例1)
上述の処理の一例(ステップS101~ステップS108)のステップS103における点群データの取得範囲を回転部25の回転方向と同一方向に対してではなく、回転部25の回転方向ではない方向に広げた場合のステップS106における制御方法を示す。
ここで、鉛直方向のスキャン範囲はY~Yとし、水平方向のスキャン範囲はX~Xとする。さらに、回転部25の回転方向を鉛直方向として、水平方向に広がったスキャン範囲分であるX~Xの範囲に対して、n条のパルスレーザー光により、Y~Yの範囲をスキャンした点群データの集合をn個取得したとする。すなわち、Xの値が異なる、Y―Z面にスキャンを行った点群データの集合をn個取得したこととなる。
この場合の制御は、取得した点群データの集合n個の中で、最も条件が厳しいUAV200の移動可能区間を設定するならば、安全面を重視したUAV200の飛行制御となり、最も条件が緩いUAV200の移動可能区間を設定するならば、飛行の実施を重視したUAV200の飛行制御となる。
なお、回転部25の回転方向ではない方向のスキャン範囲X~Xは、回転部25の回転方向と同一方向のスキャン範囲Y~Yと比較して、小さい値でよい。そのため、回転部25の回転方向がUAV200に対して鉛直ならば、スキャン範囲を水平方向に広げるのは、TS100の本体部11またはレーザースキャナ部101をZ軸を中心として回転させる機構を用いれば足りる。TS100がZ軸を中心とした回転が可能な機構を有すれば、本変形例で示した方法と上述の処理の一例(ステップS101~ステップS108)で示した方法を本発明の利用者の要求に応じて、使い分けることができる。
また、鉛直方向と水平方向の二つの方向をスキャンするには、後述する変形例2にて示す、UAV200に対して鉛直方向にスキャンするTS100とUAV200に対して水平方向にスキャンするTS100を組み合わせる方法で行ってもよい。
(変形例2)
上述の実施形態では、レーザースキャナによるスキャン方向(回転部25の回転方向)をUAV200に対して鉛直方向としたが、UAV200に対して水平方向とすることもできる。水平方向のレーザースキャンは、レーザースキャン部101における鉛直面でのレーザースキャンを行いつつ、同時にTS本体20を往復水平回転(水方向における揺動回転)させることで実現できる。
この例では、高低角方向と同時に水平方向のレーザースキャンが行われる。ここで、TS100の左右の往復回転(揺動)により水平方向のスキャンを行う場合、UAV200の反射プリズムのロックが間欠的となる。しかしながら、左右のスキャン範囲を狭めることで、UAV200の追尾を実質的に途切れなく行うことができる。
例えば、TS100を左右に往復回転させつつ(揺動させつつ)水平方向のスキャンを行う場合のスキャン範囲として、1秒間に1回以上UAV200の反射プリズムを追尾範囲に捉えることができる条件が挙げられる。この場合、UAV200の追尾を実質的に途切れることなく行える。
なお、UAV200の反射プリズムを捉える頻度(回数/秒)が多い程、追尾精度が高くなるが、TS100の機械的な動作速度や追尾および測位に係る演算速度によりその上限が律速される。この処理によれば、UAV200を実質的に追尾しつつ、且つ、UAV200の左右方向における周囲のレーザースキャンデータが取得できる。
また、スキャン方向の変更は、TS100が備える回転部25の構造を変えることで実現することもできる。スキャン方向を変更することで、任意の方向において、TS100の本体部11またはレーザースキャナ部101を回転させる等することによって得られる点群データ量以上のデータを取得できるようになり、結果として、任意の方向の物体をより検知しやすくなる。そして、UAV200に対して鉛直方向にスキャンするTS100とUAV200に対して水平方向にスキャンするTS100を組み合わせることで、鉛直方向と水平方向の両方向からデータを基に、UAV200の制御をすることもできる。
(変形例3)
本発明の技術は、TSの測量対象物(ターゲット)追尾イメージセンサを用いて、実施することもできる。この場合の実施形態を二例示す。
(変形例3‐1)
通常、イメージセンサの撮像画面の中心(X, Y)に制御目標位置P(X, Y)を固定した上で、センサ上の反射プリズム201の位置を測定し、反射プリズム201に対応するプリズム像が上記の中心(X, Y)に来るようにフィードバック制御することで、UAV200に備えられる反射プリズム201を追尾することができる。
しかし、本変形例は、図2におけるZ軸を回転軸としたTS100の揺動回転に対応するため、追尾中に制御目標位置P(X, Y)を中心(X, Y)に固定せず、制御目標位置P(X, Y)のX成分(水平方向の成分)を時間と共に変化させる。図7は、追尾イメージセンサのX方向で左端X、右端Xと設定し、追尾の制御目標位置P(X, Y)のX成分を時間と共に動かす場合の追尾イメージセンサ画面を示す図である。
この場合、追尾イメージセンサ画面上のプリズム像は、TS100がZ軸を中心とする左右の振れを振幅Aとした、時間tを変数とする正弦波関数Asin(ωt)(ω:角速度)に基づく移動をX=X~Xの間で行う。つまり、時間tに依存する振幅Aの変化が、X~Xの間におけるプリズム像の移動として検出される。これによって、プリズム像は、追尾イメージセンサ画面上を左右に動き、TS100がZ軸を中心とした左右の振幅をしていようとも、反射プリズム201、ひいては反射プリズム201が備えられるUAV200の動きを追尾することができる。以上のTS100の揺動回転の制御に係る演算は、演算制御部113で行われ、その駆動は、水平回転駆動部108が行う。
また、上記の左右の揺動を行いつつ、レーザースキャナ部101による鉛直面内のレーザースキャン(高低角方向におけるレーザースキャン)を行うことで、上記のX~Xの間に対応する左右の範囲へのレーザースキャンが可能となる。つまり、UAV200を追尾および測位を継続しつつ、左右は限定された範囲であるが、上下左右のレーザースキャンが可能となる。
例えば、TS100の本体部20が少し左に回転し、追尾イメージセンサの撮像画面に設定された右端(XR,YC)の位置に反射プリズム201のプリズム像がきた場合を考える。この場合、TS100から反射プリズム201までの距離は、TS100の測距機能により計測される。これは、測距光がある程度の広がりを持って照射され、そこから反射された反射光が測距部103で検出されるからである。また、スキャン光がX~Xの間に対応する左右の範囲を揺動する際に、測距光は動作に合わせて揺動し間欠的にプリズムに照射されるが、この場合も測距は可能である。
ところで、上記の際、TS100の本体部20が少し左に回転しているので、水平方向におけるTS100の光軸は反射プリズム201から少しずれている。よって、この場合、水平角検出部106の検出値を用いて反射プリズム201の位置を計算すると、誤差が生じる。
しかしながら、イメージセンサの撮像画面中におけるプリズム像の画面位置の撮像画像中心からのX方向における画素の数を数えることで、TS100の光軸に対するTS100から見た反射プリズム201の水平方向における方向を算出できる。
よって、測距部103で計測したTS100から反射プリズム201までの距離と、追尾用のイメージセンサの撮像画像に基づく反射プリズム201の方向とから、反射プリズム201の三次元位置を計算できる。
このように、左右揺動してのレーザースキャンを行うに際して、反射プリズム201がTS100の光軸からずれても、追尾画像中で反射プリズム201を追尾している限り、反射プリズム201の三次元測位を継続して行える。このため、UAV200の追尾と測位の処理を継続しつつ、UAV200の移動可能な範囲の設定を上下方向に加えて左右方向に拡張することできる。
なお、上述した反射プリズム201までの距離と追尾イメージセンサ画像に基づく、反射プリズム201の位置の算出に係る処理は、測位部302で行われる。
図8は、TS100に備えられるレーザースキャナ部101によるスキャン範囲を示した図である。図8に示すように、レーザースキャンは、奥行き方向(図8におけるY軸方向)にも行われる。そのため、この技術によれば、UAV200の追尾および測位を継続して行いつつ、UAV200を中心とした三次元の範囲における障害物の検出や移動可能範囲の設定が可能となる。この例によれば、UAV200の左右の空間に対するレーザースキャンが行われるので、例えば、UAV200を壁面に沿って飛行させる場合の制御を高い精度で行える。
(変形例3‐2)
図9には、イメージセンサを用いた本変形例の一例を概念図として示す。図9に示すように、上述の処理の一例(ステップS101~ステップS108)のステップS104によって算出されるUAV200の鉛直方向の移動可能区間を追尾イメージセンサのY軸のスケールと同一とし、UAV200の水平方向の移動可能区間を追尾イメージセンサのX軸のスケールと同一とすれば、追尾イメージセンサで表示される画面がUAV200の移動可能区間となる。さらに、ステップS105によって算出される移動可能区間におけるUAV200の位置の算出結果を追尾イメージセンサの画面上に照合し、UAV200を追尾および制御することができる。
この変形例の場合において、回転部25の回転方向ではない方向のスキャン範囲をスキャンするには、TS100の本体部11またはレーザースキャナ部101がZ軸を中心として回転させる機構を用いてもよいし、UAV200に対して鉛直方向にスキャンするTS100とUAV200に対して水平方向にスキャンするTS100を組み合わせることで行ってもよい。
なお、TS等の測量機器に用いられるイメージセンサに係る技術については、特開2013-134220号公報に記載されている。
(変形例4)
本変形例では、本発明の実施現場全体を予め測位およびスキャンすることで三次元座標情報を有する点群データを取得しておく場合の実施形態の一例を示す。この場合、TS100がUAV200を自動追尾しながら、測位することで得られるUAV200の三次元位置情報(座標)を予め取得した点群データに照合し、UAV200と障害となる物体との距離を算出することで、UAV200を障害となる物体から一定距離を保ったまま飛行させることができる。
なお、本変形例では、本発明の実施現場全体の点群データが予め得られているため、UAV200と障害となる物体との距離は鉛直方向および水平方向に限定されずに算出が可能である。
(汎用性)
三次元情報処理部300が行う処理(上述の処理の一例のステップS101~ステップS103)は、TS100の演算制御部113を介してTS100の各機能を動作させればよいため、演算制御部113と三次元情報処理部300の間で信号の送受信が行えるのならば、三次元情報処理部300は、図4に示すような演算制御部113に備えられることに限定されず、TS100等の測量機器に備えられることにも限定されない。つまり、三次元情報処理部300を別個の装置としてもよい。例えば、三次元情報処理部300を別個の装置として、市販されている三次元レーザースキャナ装置およびTSとを組み合わせて、本発明を実施することが考えられる。
本発明の技術は、無人航空機以外の移動体に対しても利用可能である。例えば、道路を走行する車両に対して利用する場合は、中央分離帯や縁石などの道路上の構造物から一定の距離を保って、走行させる制御が可能である。また、レーザースキャナを用いた車両の制御では、制御対象にレーザースキャナを備えることが一般的ではあるが、本発明ならば、車両に備えられることに限られない。
(優位性)
本発明の優位性は、被制御対象となる移動体の周囲の情報を被制御対象の移動時に点群データとして取得することで、移動体の移動開始前には予測し得なかった障害物を回避することが可能となる。
本発明は、移動体の制御技術に利用可能である。
11…本体部、12…台座、13…可動部、14a…水平回転角制御ダイヤル、14b…鉛直回転角制御ダイヤル、15a…照準器、15b…照準器、16…望遠鏡、17…接眼部、18…ディスプレイ、19…ディスプレイ、20…TS本体、21…塔部、22…塔部、23…結合部、24…保護ケース、25…回転部、26…斜めミラー、100…(レーザースキャナ付き)TS、101…レーザースキャナ部、102…記憶部、103…測距部、104…追尾光発光部、105…追尾光受光部、106…水平角検出部、107…鉛直角検出部、108…水平回転駆動部、109…鉛直回転駆動部、110…表示部、111…操作部、112…通信部、113…演算制御部、200…UAV、201…反射プリズム、300…三次元情報処理部、301…自動視準制御部、302…測位部、303…スキャン制御部、304…区間算出部、305…制御対象位置算出部、306…制御動作決定部、307…制御信号生成部。

Claims (2)

  1. レーザー光を用いて測位を行う機能を有するトータルステーションと鉛直面に沿ったレーザースキャンを行うレーザースキャナを複合化した測量装置を用いた無人航空機の飛行制御方法であって、
    前記レーザー光を用いた測位を行う機能における前記レーザー光の光軸は前記鉛直面に含まれ、
    ターゲットを搭載した前記無人航空機の前記ターゲットを前記トータルステーションにより測位すると同時に、前記レーザースキャナにより前記鉛直面に沿ったレーザースキャンを行うステップと、
    前記レーザースキャンによって得た点群データに基づき、前記無人航空機の上方向および下方向に存在する物体を検出するステップと、
    前記無人航空機の前記上方向および前記下方向に存在する前記物体に基づき、鉛直方向における前記無人航空機の移動可能な区間を算出するステップと
    を有する無人航空機の飛行制御方法。
  2. レーザー光を用いて測位を行う機能を有するトータルステーションと鉛直面に沿ったレーザースキャンを行うレーザースキャナを複合化した測量装置を用いた無人航空機の飛行制御用プログラムであって、
    前記レーザー光を用いた測位を行う機能における前記レーザー光の光軸は前記鉛直面に含まれ、
    コンピュータに
    ターゲットを搭載した前記無人航空機の前記ターゲットを前記トータルステーションにより測位すると同時に、前記レーザースキャナにより前記鉛直面に沿ったレーザースキャンを行うステップと、
    前記レーザースキャンによって得た点群データに基づき、前記無人航空機の上方向および下方向に存在する物体を検出するステップと、
    前記無人航空機の前記上方向および前記下方向に存在する前記物体に基づき、鉛直方向における前記無人航空機の移動可能な区間を算出するステップと
    を実行させる無人航空機の飛行制御用プログラム。
JP2017251465A 2017-12-27 2017-12-27 三次元情報処理部、三次元情報処理部を備える装置、無人航空機、報知装置、三次元情報処理部を用いた移動体制御方法および移動体制御処理用プログラム Active JP7077013B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017251465A JP7077013B2 (ja) 2017-12-27 2017-12-27 三次元情報処理部、三次元情報処理部を備える装置、無人航空機、報知装置、三次元情報処理部を用いた移動体制御方法および移動体制御処理用プログラム
EP18211854.7A EP3506042B1 (en) 2017-12-27 2018-12-12 Three-dimensional information processing unit, apparatus having three-dimensional information processing unit, unmanned aerial vehicle, informing device, method and program for controlling mobile body using three-dimensional information processing unit
US16/232,153 US11822351B2 (en) 2017-12-27 2018-12-26 Three-dimensional information processing unit, apparatus having three-dimensional information processing unit, unmanned aerial vehicle, informing device, method and program for controlling mobile body using three-dimensional information processing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017251465A JP7077013B2 (ja) 2017-12-27 2017-12-27 三次元情報処理部、三次元情報処理部を備える装置、無人航空機、報知装置、三次元情報処理部を用いた移動体制御方法および移動体制御処理用プログラム

Publications (2)

Publication Number Publication Date
JP2019117127A JP2019117127A (ja) 2019-07-18
JP7077013B2 true JP7077013B2 (ja) 2022-05-30

Family

ID=64901832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017251465A Active JP7077013B2 (ja) 2017-12-27 2017-12-27 三次元情報処理部、三次元情報処理部を備える装置、無人航空機、報知装置、三次元情報処理部を用いた移動体制御方法および移動体制御処理用プログラム

Country Status (3)

Country Link
US (1) US11822351B2 (ja)
EP (1) EP3506042B1 (ja)
JP (1) JP7077013B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220404837A1 (en) * 2019-11-20 2022-12-22 Nec Corporation Moving body control system, moving body control apparatus, and moving body control method
WO2021168854A1 (zh) * 2020-02-29 2021-09-02 华为技术有限公司 可行驶区域检测的方法和装置
WO2021232359A1 (zh) * 2020-05-21 2021-11-25 深圳市大疆创新科技有限公司 控制方法、控制装置、可移动平台与计算机可读存储介质
CN111854756B (zh) * 2020-06-30 2023-08-29 同济大学 一种基于单线激光的引水涵洞内无人机定位方法
JP2022023592A (ja) 2020-07-27 2022-02-08 株式会社トプコン 測量システム、測量方法および測量用プログラム
CN112212834A (zh) * 2020-09-25 2021-01-12 黄山联合应用技术研究院 一种空间全息信息采集系统与数据梳理方法
CN112379386B (zh) * 2020-09-30 2024-01-02 中国人民解放军陆军炮兵防空兵学院 一种无人蜂群目标空间位置分布探测系统及方法
JP7434131B2 (ja) 2020-10-14 2024-02-20 株式会社日立製作所 駐機支援システム
CN112230664B (zh) * 2020-10-29 2023-06-13 深圳市普渡科技有限公司 自动回充方法及系统
JP7141443B2 (ja) * 2020-12-25 2022-09-22 楽天グループ株式会社 無人飛行装置
KR102399998B1 (ko) * 2021-01-25 2022-05-19 한국도로공사 교량 하면 영상취득장치 및 방법
JP2022152629A (ja) * 2021-03-29 2022-10-12 株式会社トプコン 測量システム及び点群データ取得方法及び点群データ取得プログラム
CN113055543B (zh) * 2021-03-31 2022-08-19 上海市东方医院(同济大学附属东方医院) 移动医院数字孪生指挥沙盘构建方法
JPWO2023276454A1 (ja) * 2021-06-29 2023-01-05
CN113865579A (zh) * 2021-08-06 2021-12-31 湖南大学 无人机位姿参数的测量系统及方法
CN114071112B (zh) * 2021-10-18 2023-09-01 北京魔鬼鱼科技有限公司 车辆点云识别成像方法及系统
CN114167900B (zh) * 2021-11-19 2023-06-30 北京环境特性研究所 一种基于无人机和差分gps的光电跟踪系统标校方法及装置
CN115420244B (zh) * 2022-08-31 2023-06-23 南京航空航天大学 一种用于飞机整体油箱三维激光测量的标靶工装

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015001450A (ja) 2013-06-14 2015-01-05 株式会社トプコン 飛行体誘導システム及び飛行体誘導方法
US20150042977A1 (en) 2012-01-30 2015-02-12 Hexagon Technology Center Gmbh Measurement system with a measuring device and a scanning module
US20160253808A1 (en) 2015-02-26 2016-09-01 Hexagon Technology Center Gmbh Determination of object data by template-based uav control
JP2017144784A (ja) 2016-02-15 2017-08-24 株式会社トプコン 飛行計画作成方法及び飛行体誘導システム
JP2017151008A (ja) 2016-02-26 2017-08-31 株式会社トプコン 飛行体追尾方法及び飛行体画像取得方法及び飛行体表示方法及び飛行体誘導システム
JP2017223540A (ja) 2016-06-15 2017-12-21 株式会社トプコン 測量システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196929A (en) * 1989-07-05 1993-03-23 Olympus Optical Co., Ltd. Display system of camera having tracking apparatus
JP3621123B2 (ja) * 1993-12-28 2005-02-16 株式会社トプコン 測量機
AU1241000A (en) 1998-10-27 2000-05-15 Clinical Micro Sensors, Inc. Detection of target analytes using particles and electrodes
JP5263804B2 (ja) 2007-04-20 2013-08-14 株式会社トプコン 多点測定方法及び測量装置
JP5124319B2 (ja) 2008-03-21 2013-01-23 株式会社トプコン 測量機、測量システム、測定対象の検出方法、および測定対象の検出プログラム
JP5688876B2 (ja) 2008-12-25 2015-03-25 株式会社トプコン レーザスキャナ測定システムの較正方法
WO2011146523A2 (en) 2010-05-17 2011-11-24 Velodyne Acoustics, Inc. High definition lidar system
JP5725922B2 (ja) 2011-03-25 2015-05-27 株式会社トプコン 測量システム及びこの測量システムに用いる測量用ポール及びこの測量システムに用いる携帯型無線送受信装置
EP2511658A1 (de) 2011-04-14 2012-10-17 Hexagon Technology Center GmbH Vermessungssystem und Verfahren zur Neupunktbestimmung
US9758239B2 (en) * 2011-04-14 2017-09-12 Hexagon Technology Center Gmbh System and method for controlling an unmanned air vehicle
JP5937821B2 (ja) 2011-12-27 2016-06-22 株式会社トプコン 測量機
US10132928B2 (en) 2013-05-09 2018-11-20 Quanergy Systems, Inc. Solid state optical phased array lidar and method of using same
US20150029322A1 (en) 2013-07-23 2015-01-29 Qualcomm Incorporated Method and computations for calculating an optical axis vector of an imaged eye
US9098754B1 (en) 2014-04-25 2015-08-04 Google Inc. Methods and systems for object detection using laser point clouds
CN103941748B (zh) * 2014-04-29 2016-05-25 百度在线网络技术(北京)有限公司 自主导航方法及系统和地图建模方法及系统
EP3265885A4 (en) * 2015-03-03 2018-08-29 Prenav Inc. Scanning environments and tracking unmanned aerial vehicles
US20160349746A1 (en) * 2015-05-29 2016-12-01 Faro Technologies, Inc. Unmanned aerial vehicle having a projector and being tracked by a laser tracker
JP6570918B2 (ja) * 2015-08-19 2019-09-04 オリンパス株式会社 撮像装置、撮像方法
CN205103998U (zh) * 2015-11-17 2016-03-23 中科宇图天下科技有限公司 一种基于无人机LiDAR技术的山洪风险分析系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150042977A1 (en) 2012-01-30 2015-02-12 Hexagon Technology Center Gmbh Measurement system with a measuring device and a scanning module
JP2015001450A (ja) 2013-06-14 2015-01-05 株式会社トプコン 飛行体誘導システム及び飛行体誘導方法
US20160253808A1 (en) 2015-02-26 2016-09-01 Hexagon Technology Center Gmbh Determination of object data by template-based uav control
JP2017144784A (ja) 2016-02-15 2017-08-24 株式会社トプコン 飛行計画作成方法及び飛行体誘導システム
JP2017151008A (ja) 2016-02-26 2017-08-31 株式会社トプコン 飛行体追尾方法及び飛行体画像取得方法及び飛行体表示方法及び飛行体誘導システム
JP2017223540A (ja) 2016-06-15 2017-12-21 株式会社トプコン 測量システム

Also Published As

Publication number Publication date
EP3506042B1 (en) 2021-09-15
US11822351B2 (en) 2023-11-21
US20200026310A1 (en) 2020-01-23
JP2019117127A (ja) 2019-07-18
EP3506042A1 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP7077013B2 (ja) 三次元情報処理部、三次元情報処理部を備える装置、無人航空機、報知装置、三次元情報処理部を用いた移動体制御方法および移動体制御処理用プログラム
JP6796975B2 (ja) Uav測定装置及びuav測定システム
US10048063B2 (en) Measuring instrument and surveying system
US10983196B2 (en) Laser scanner and surveying system
US11402506B2 (en) Laser measuring method and laser measuring instrument
KR101553998B1 (ko) 무인 항공기를 제어하기 위한 시스템 및 방법
CA2805701C (en) Laser scanning apparatus and method of use
EP3514489B1 (en) Surveying device and surveying method
JP2017144784A (ja) 飛行計画作成方法及び飛行体誘導システム
JP2017151008A (ja) 飛行体追尾方法及び飛行体画像取得方法及び飛行体表示方法及び飛行体誘導システム
JP6302660B2 (ja) 情報取得システム、無人飛行体制御装置
CA2867562A1 (en) Three-dimensional measuring method and surveying system
JP6823482B2 (ja) 三次元位置計測システム,三次元位置計測方法,および計測モジュール
JP7313955B2 (ja) 測量装置、測量方法および測量用プログラム
JP7378545B2 (ja) ターゲット装置および測量方法
JP7060377B2 (ja) 測量装置、測量用制御装置、測量制御方法および測量制御処理用プログラム
JP2022149716A (ja) 測量システム
KR102416330B1 (ko) 드론시스템을 이용한 원격 좌표측정 시스템
JP6749191B2 (ja) スキャナ装置および測量装置
EP4239372A1 (en) System and method of combining three dimensional data
WO2023190301A1 (ja) 測量システム
JP2019219206A (ja) 測定システム
JP2023048409A (ja) 測量システム
JP2022173672A (ja) 測量システム
JP2022149715A (ja) ポール装置及び測量システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7077013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150