JP7068646B2 - 表面被覆切削工具 - Google Patents

表面被覆切削工具 Download PDF

Info

Publication number
JP7068646B2
JP7068646B2 JP2018018809A JP2018018809A JP7068646B2 JP 7068646 B2 JP7068646 B2 JP 7068646B2 JP 2018018809 A JP2018018809 A JP 2018018809A JP 2018018809 A JP2018018809 A JP 2018018809A JP 7068646 B2 JP7068646 B2 JP 7068646B2
Authority
JP
Japan
Prior art keywords
composition
component
average
band
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018018809A
Other languages
English (en)
Other versions
JP2018144224A (ja
Inventor
強 大上
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2018144224A publication Critical patent/JP2018144224A/ja
Application granted granted Critical
Publication of JP7068646B2 publication Critical patent/JP7068646B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、合金鋼などの断続切削加工において、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮し、長期の使用にわたってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。
一般に、被覆工具として、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、前記被削材の面削加工や溝加工、肩加工などに用いられるエンドミル、前記被削材の歯形の歯切加工などに用いられるソリッドホブ、ピニオンカッタなどが知られている。
そして、被覆工具の切削性能改善を目的として、従来から、数多くの提案がなされている。
例えば、特許文献1に示すように、工具基体表面に、物理蒸着によって堆積された耐火性層を含むコーティングを含む被覆工具であって、 前記耐火性層がM1-xAlN(式中、x≧0.68であり、MがTi、CrまたはZrである)を含み、前記耐火性層が立方晶結晶相を含有し、少なくとも25GPaの硬度を有する厚膜、高硬度および低残留応力の耐摩耗性被覆工具が提案されている。
また、特許文献2には、工具基体表面にTiAlN層からなる硬質被覆層を被覆した被覆工具において、上記硬質被覆層が、層厚方向にそって、Al最高含有点(Ti最低含有点)とAl最低含有点(Ti最高含有点)とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、さらに、上記Al最高含有点が、組成式:(Ti1-XAl)N(ただし、原子比で、Xは0.70~0.95を示す)、上記Al最低含有点が、組成式:(Ti1-YAl )N(ただし、原子比で、Yは0.40~0.65を示す)、をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01~0.1μmである耐摩耗性にすぐれた被覆工具が提案されている。
特開2015-36189号公報 特開2003-211304号公報
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化・高能率化の傾向にあるが、上記従来の被覆工具においては、これを鋼や鋳鉄などの通常の切削条件での切削加工に用いた場合には、特段の問題は生じないが、これを、例えば、合金鋼等の断続切削加工のような、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷がかかる切削加工に用いた場合には、クラックの発生・伝播を十分に抑制することができず、また、摩耗進行も促進されるため、比較的短時間で使用寿命に至ることが現状である。
例えば、特許文献1に示される従来被覆工具においては、M1-xAlNの一つの形態であるTiAlN層は高硬度で耐摩耗性にすぐれる層であり、Al含有量が多いほど耐摩耗性にすぐれるが、その一方で、格子歪が大きくなるため、耐チッピング性が低下するという問題がある。
また、特許文献2に示される従来被覆工具においては、層厚方向に組成変化を形成することで高温硬さと耐熱性、靱性を両立せしめることができるが、層内の異方性によって、層厚に垂直方向のクラックの発生・伝播を十分に防止することはできないという問題がある。
そこで、本発明者等は、上述の観点から、合金鋼などの断続切削加工のような、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する切削加工条件下で、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を両立し得る被覆工具を開発すべく、硬質被覆層の成分組成、結晶構造および層構造等に着目し研究を行った結果、以下のような知見を得た。
すなわち、本発明者は、工具基体表面に、TiとAlの複合窒化物(以下、「TiAlN」で示す場合がある。)層からなる硬質被覆層を形成した被覆工具において、該層におけるAlのTiとAlとの合量に占める組成割合を比較的高くし、もって、硬質被覆層全体としての耐摩耗性を確保するとともに、該層内には、少なくとも、工具基体表面の法線とのなす角度が30度以下の方向に、Ti成分の組成が相対的に高い帯状領域(以下、「高Ti帯状領域」という場合がある。)を形成することによって、前記特許文献2に示されるような異方性を有する硬質被覆層によってもたらされる剥離発生という問題点を解消するとともに、靱性を有する高Ti帯状領域が切削加工時の衝撃的、断続的な負荷を吸収・緩和することによって、硬質被覆層中のクラックの発生・伝播を抑制し、これらを原因とするチッピング発生を抑制し得る、という知見を得た。
したがって、この知見に基づいて作成された被覆工具は、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する断続切削加工条件下で、すぐれた耐チッピング性と耐摩耗性を両立することができるのである。
本発明者は、上記知見を基にして、硬質被覆層に形成する高Ti帯状領域の工具基体の法線方向に対する角度について、更に研究を行ったところ、新たに、以下の知見を得た。
すなわち、TiAlN層からなる硬質被覆層を形成した被覆工具において、該層内に工具基体表面の法線とのなす角が35度以上70度以下の方向に高Ti帯状領域を形成することによっても、前記特許文献2に示されるような異方性を有する硬質被覆層によってもたらされる剥離発生という問題点を解消するとともに、靱性を有する高Ti帯状領域が切削加工時の衝撃的、断続的な負荷を吸収・緩和することによって、硬質被覆層中のクラックの発生・伝播を抑制し、これらを原因とするチッピング発生を抑制し得ることを知見した。さらに、該層内に工具基体表面の法線とのなす角が35度以上70度以下の方向に高Ti帯状領域を形成されることにより、硬質被覆層表面から基材方向に伸展するクラックの伝播を抑制することが分かった。
したがって、これら知見に基づいて作製された被覆工具も、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する断続切削加工条件下で、すぐれた耐チッピング性と耐摩耗性を両立することができるのである。
この発明は、上記の新たな知見に基づいてなされたものであって、
「(1)WC基超硬合金、TiCN基サーメットおよびcBN焼結体のいずれかからなる工具基体の表面に、0.5~8.0μmの平均層厚のTiとAlの複合窒化物層を少なくとも含む硬質被覆層が設けられた表面被覆切削工具において、
前記TiとAlの複合窒化物層は、その組成を、組成式:(TiAl1-x)Nで表した場合、0.10≦x≦0.35(ただし、xは原子比)を満足する平均組成を有し、
前記TiとAlの複合窒化物層中には、前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域が、少なくとも、工具基体表面の法線とのなす角度が35度以上70度以下の方向に存在していることを特徴とする表面被覆切削工具。
(2)前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域のTi成分の平均組成をYとした場合、前記TiとAlの複合窒化物層におけるTi成分の平均組成xと前記Yは、(x+0.01)≦Y≦(x+0.05)の関係を満足することを特徴とする上記(1)に記載の表面被覆切削工具。
(3)前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域の平均幅Wは、30~500nmであることを特徴とする上記(2)に記載の表面被覆切削工具。
(4)前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域が前記TiとAlの複合窒化物層の縦断面に占める、平均面積割合Stは3~50面積%であることを特徴とする上記(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(5)前記TiとAlの複合窒化物層は、立方晶構造の結晶粒と六方晶構造の結晶粒の混合組織からなり、前記TiとAlの複合窒化物層の縦断面に占める立方晶構造の結晶粒の平均面積割合Sは30面積%以上であることを特徴とする上記(1)乃至(4)のいずれかに記載の表面被覆切削工具。」
を特徴とするものである。
本発明の被覆工具は、硬質被覆層を構成するTiAlN層中に、TiAlN層のTi成分の平均組成xに比して、Ti成分の組成が相対的に高い高Ti帯状領域が、工具基体表面の法線とのなす角度が35度以上70度以下の方向に存在することによって、硬質被覆層の層厚方向に特性、特に靱性に富む高Ti帯状領域が連続して存在することとなり、これによって硬質被覆層全体の特性の異方性が解消されて耐剥離性が向上し、またさらに、靱性を有する高Ti帯状領域が切削加工時の衝撃的、断続的な負荷を吸収・緩和することによって、硬質被覆層中のクラックの発生・伝播が抑制され、さらに、これらを原因とするチッピング発生が抑制されることによって、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する断続切削加工条件に供された場合であっても、すぐれた耐チッピング性と耐摩耗性を両立することができる。
本発明被覆工具のTiAlN層の縦断面模式図を示す。 本発明被覆工具のTiAlN層を成膜するのに用いるアークイオンプレーティング(AIP)装置を示し、(a)は概略平面図、(b)は概略正面図である。
次に、本発明の被覆工具について、詳細に説明する。
TiAlN層の平均層厚:
硬質被覆層は、少なくともTiAlN層を含むが、該TiAlN層の平均層厚が0.5μm未満では、TiAlN層によって付与される長期の耐摩耗性向上効果が十分に得られず、一方、平均層厚が8.0μmを超えると、欠損やチッピングが発生しやすくなることがあるため、TiAlN層の平均層厚を0.5~8.0μmとする。
TiAlN層の平均組成:
TiAlN層を、
組成式:(TiAl1-x)N
で表した場合、0.10≦x≦0.35(ただし、xは原子比)を満足する平均組成を有することが必要である。
Ti成分の平均組成を表すxが0.10未満である場合には、六方晶構造のTiAlN結晶粒が形成されやすくなり、TiAlN層の硬度が低下し高速切削において十分な耐摩耗性を得ることができない。
一方、Ti成分の平均組成を表すxが0.35を超える場合には、Al成分の組成割合が減少するため、TiAlN層の高温硬さおよび高温耐酸化性が低下する。
したがって、Ti成分の平均組成xは、0.10≦x≦0.35とする。
なお、工具基体表面の汚染の影響などで不可避的に検出される炭素や酸素などの元素を除いてTi、Al、Nの含有割合の原子比を定量し、TiとAlとNの含有割合の原子比の合計に対するNの含有割合が0.45以上0.65以下の範囲であれば、上記xの範囲が満足される限り、同等の効果が得られ特に問題は無い。
TiAlN層中の立方晶構造の結晶粒の平均面積割合S:
本発明のTiAlN層では、Al成分の平均組成割合1-x(ただし、1-xは原子比)を0.65~0.90と高くしているため、TiAlN層は、立方晶構造の結晶粒と六方晶構造の結晶粒の混合組織からなるが、TiAlN層の縦断面に占める立方晶構造の結晶粒の平均面積割合S(面積%)は30面積%以上とすることが望ましい。
これは、立方晶構造の結晶粒の平均面積割合Sが30面積%未満では、相対的に、六方晶構造の結晶粒の面積割合が増加するためTiAlN層の硬さが低下し、その結果、耐摩耗性が低下することがあるためである。
なお、立方晶構造の結晶粒の平均面積割合Sは、例えば、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、TiAlN層の工具基体表面に垂直な方向の断面(縦断面)を測定することにより求めることができる。
高Ti帯状領域:
TiAlN層中に、Ti成分の平均組成xに比して、Ti成分の平均組成xが相対的に高い高Ti帯状領域は、次の(1)~(5)のとおりである。
(1)工具基体表面の法線とのなす角
本発明では、工具基体表面の法線とのなす角度が35度以上70度以下の方向となるように形成する(図1を参照)。
この角度範囲とした理由は、35度未満であると、高切込み等の切れ刃に高負荷が掛かる切削において硬質被覆層の表面のクラック発生・進展が生じやすく、一方、70度を超えると硬質被覆層が積層膜であるときと同様の層厚方向の剥離が生じやすくなるためである。
なお、本発明の知見に先行する知見において、30度以下であれば、層厚方向の異方性がないためTiAlN層の剥離が生じることはなく、しかも、高Ti帯状領域の存在によって靱性が向上し、切削加工時に断続的・衝撃的負荷が作用しても、TiAlN層のチッピング発生、欠損発生が抑制されることがわかっている。しかし、後述する切削試験2の結果が示すように、より高負荷の切削性能は、30度以下の範囲では、35度以上70度以下には及ばず、70度を超える範囲の切削条件よりもすぐれ、さらには、高Ti帯状組織の存在しないものよりも一層すぐれていることがわかった。
この角度の測定は、高Ti帯状領域の特定がなされた後に行うものであるから、後述する「高Ti帯状領域の特定」の欄で説明する。
(2)Ti成分の平均組成
高Ti帯状領域のTi成分の平均組成をYとした場合、TiとAlの複合窒化物層におけるTi成分の平均組成xとYは、(x+0.01)≦Y≦(x+0.05)の関係を満足することが好ましい。
これは、Yが(x+0.01)未満であると、TiAlN層全体に対して高Ti帯状領域の靱性が十分ではないため衝撃の吸収・緩和が不十分なときがあり、(x+0.05)を超えると、高Ti帯状領域が必要な硬度を得ることができず、TiAlN層全体の耐摩耗性が低下してしまうことがあるためである。
(3)平均幅W
高Ti帯状領域の幅とは、図1に示すように、高Ti帯状領域が傾斜している角度に対して垂直な方向における幅をいい、一例として、その平均幅Wは30~500nmであることが望ましい。
これは、前記Wが30nm未満では、TiAlN層が全体としてほぼ均質な組成となるため、靱性向上効果、衝撃の吸収・緩和効果を期待することができないことがあり、一方、前記Wが500nmを超えると、TiAlN層中に部分的な低硬度領域が形成され、偏摩耗発生等により耐摩耗性が低下することがあるという理由による。
なお、高Ti帯状領域の幅とは、後記するように、例えば、透過型電子顕微鏡(TEM)を用いたエネルギー分散型X線分析法(EDS)(以下、「TEM-EDS」という。)によりTiAlN層の縦断面のTi成分の組成を測定した場合に、Ti成分の平均組成Yが、前記した(x+0.01)≦Y≦(x+0.05)の関係を満たすTi帯状領域の幅である。
(4)平均面積割合St
高Ti帯状領域がTiAlN層に占める平均面積割合Stは、3~50面積%であることが望ましい。
これは、Stが3面積%未満の場合には、高Ti帯状領域を形成したことによる靱性向上効果、衝撃の吸収・緩和効果が少ないため、耐チッピング性の改善度合いが低いことがあり、一方、Stが50面積%を超える場合には、高Ti帯状領域が低硬度領域として形成され、その結果、偏摩耗発生等により耐摩耗性が低下することがある、という理由による。
(5)高Ti帯状領域の特定
少なくとも500nmの帯状の幅が入る視野で測定したTEM-EDSによる測定像において、基体表面の法線とのなす角が35度以上70度以下である直線上の複数の測定点におけるTi成分の組成Yが、所定のTiの濃度の高い領域、例えば、(x+0.01)以上(x+0.05)以下の範囲内(なお、xは、既述したTiAlN層全体におけるTi成分の平均組成)にあるか否かによって、該直線が高Ti帯状領域に属するか直線であるか否かを判定する。
ついで、前記直線が高Ti帯状領域に属する場合には、該直線に直交する方向にTi成分の組成を測定し、測定したTi成分の組成が、当該所定のTiの濃度の高い領域、例えば、(x+0.01)≦Y≦(x+0.05)の関係から外れる位置を、高Ti帯状領域の境界として特定する。
それから、前記で特定された高Ti帯状領域の複数位置においてTi成分の組成を測定し、これらを平均することによって、高Ti帯状領域におけるTi成分の平均組成Yを求めることができる。
また、前記で特定された高Ti帯状領域の輪郭を確定し、複数位置における幅を測定し、これらを平均することによって、高Ti帯状領域の平均幅Wを求めることができる。
そして、この確定された高Ti帯状領域の輪郭を、当該高Ti帯状領域の境界線として、工具基体表面の法線となす角度を測定し、この測定した角度を各高Ti帯状領域ごとに平均したものを工具基体の法線となす角とする。
結晶構造と面積割合の測定:
本発明のTiAlN層は、立方晶構造の結晶粒と六方晶構造の結晶粒の混合組織からなるが、結晶構造と面積割合は、例えば、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、TiAlN層の工具基体表面に垂直な方向の断面(縦断面)を測定することにより求めることができる。
より具体的に言えば、TiAlN層の工具基体表面に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体と水平方向に長さ100μm、工具基体表面と垂直な方向の断面に沿って層厚以下の距離の測定範囲内について0.01μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することで、立方晶構造の結晶粒の面積割合を測定することができる。
上記測定を5箇所の測定範囲で行い、これらの平均値として、立方晶構造の結晶粒の平均面積割合Sを算出する。なお、0.01μm/stepの間隔とした測定点は、より詳細には、測定範囲内を充填するように一辺が0.01μmの正三角形を配置して、その各々の正三角形の頂点を測定点としており、一つの測定点での測定結果はこの正三角形一つの面積の測定結果を代表する測定結果となっている。従って、上記に示したように、測定点数の割合から面積割合が求められる。
TiAlN層の成膜方法:
前記特徴を備える本発明のTiAlN層は、例えば、以下の方法によって成膜することができる。
図2(a)、(b)に、本発明のTiAlN層を成膜するための、アークイオンプレーティング(以下、「AIP」という)装置の概略図を示す。
図2(a)、(b)に示すAIP装置内に、所定組成のTi-Al合金ターゲットを配置するとともに、WC基超硬合金、TiCN基サーメットおよびcBN焼結体のいずれかからなる工具基体をAIP装置の回転テーブル上に載置し、工具基体に対するボンバード前処理および工具基体の温度(成膜温度)、Nガス圧、成膜時のバイアス電圧、バイアス電圧上昇速度を制御してアーク放電を発生させることにより、本発明のTiAlN層を成膜することができる。
特に、低バイアス電圧による処理から高バイアス電圧の処理に漸次変化させることで、自発的にTi成分の組成分布を形成させ、さらに、工具基体の温度(成膜温度)とNガス圧、バイアス電圧、バイアス電圧上昇速度の制御により、工具基体表面の法線とのなす角度が35度以上70度以下の方向に平行な結晶方位に沿う原子の積層関係を制御し、本発明に規定する高Ti帯状領域を形成することができる。
なお、本発明において、TiAlNを含む硬質被覆層と工具基体との間に、TiN等の介在層を設けたり、該硬質被覆層の表面にAl等の被覆層を更に設けてもよい。
次に、この発明の被覆工具を実施例により具体的に説明する。
なお、具体的な説明としては、WC基超硬合金を工具基体とする被覆工具について説明するが、TiCN基サーメットあるいはcBN焼結体を工具基体とする被覆工具についても同様である。
工具基体の作製:
原料粉末として、いずれも0.5~5μmの平均粒径を有する、Co粉末、TaC粉末、NbC粉末、VC粉末、Cr粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥し後、100MPaの圧力でプレス成形し、これらの圧粉成形体を焼結し、所定寸法となるように加工して、ISO規格SEEN1203AFENのインサート形状をもったWC基超硬合金工具基体1~2を製造した。
Figure 0007068646000001
前記の工具基体1~2のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示すAIP装置の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、AIP装置内に、所定組成のTi-Al合金ターゲット(カソード電極)を配置し、
まず、装置内を排気して真空に保持しながら、ヒータで工具基体を表2に示す温度に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に表2に示す直流バイアス電圧を印加し、かつ、Ti-Al合金ターゲット(カソード電極)に表2に示すアーク電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
ついで、装置内に反応ガスとして窒素ガスを導入して表2に示すNガス圧とすると共に、前記回転テーブル上で自転しながら回転する工具基体の温度を表2に示す温度範囲内に維持し、Ti-Al合金ターゲット(カソード電極)に表2に示すアーク電流を流してアーク放電を発生させ、表2に示す直流の低バイアス電圧を工具基体に対して表2に示す所定時間印加して、それから表2に示す上昇速度に沿うように、横軸を時間、縦軸をバイアス電圧(-V)としたグラフに表した際に直線状もしくは階段状に順次バイアス電圧を上昇させ、表2に示す直流の高バイアス電圧を印加して、TiAlN層を成膜することにより、表4に示す目標平均層厚、Ti成分の平均組成x、立方晶構造の結晶粒の平均面積割合S、所定の高Ti帯状領域(Ti成分の平均組成Y、平均幅W、平均面積割合St)を有する本発明被覆工具1~10(以下、本発明工具1~10という)をそれぞれ製造した。
比較の目的で、図2に示すAIP装置を用いて、表3に示すボンバード条件、同じく表3に示す成膜条件でTiAlN層を形成することにより、表5に示す比較例被覆工具1~13(以下、比較例工具1~13という)をそれぞれ製造した。
前記で作製した本発明工具1~10および比較例工具1~13のTiAlN層について、走査型電子顕微鏡を用いて断面測定し、5ヶ所の測定値の平均値から、平均層厚を算出した。
また、TiAlN層におけるTi成分の組成を、TEM-EDSにより3箇所の膜厚方向に0.4μm以上、基体表面に平行な方向に1μm以上の視野範囲で測定し、その測定値の平均値を、TiAlN層のTi成分の平均組成xとして求めた。
表4、表5に、それぞれの値を示す。
また、本発明工具1~10および比較例工具1~13のTiAlN層について、TEM-EDSにより、TiAlN層における高Ti帯状領域の存在の有無を確認するとともに、高Ti帯状領域が存在する場合には、該領域におけるTi成分の平均組成Y、該領域の平均幅W、該領域がTiAlN層の縦断面に占める平均面積割合Stを求めた。
具体的には、図1に示すようなTiAlN層の縦断面について、少なくとも500nmの帯状の幅が入る視野で測定したTEM-EDSによる測定像において、基体表面の法線とのなす角が35度以上70度以下である直線上の複数の測定点におけるTi成分の組成を測定し、該測定値が(x+0.01)以上(x+0.05)以下の範囲内にあるか否かによって、該直線が高Ti帯状領域に属するか直線であるか否かを判定する。
次に、前記直線が高Ti帯状領域に属する直線であると判定された場合には、該直線に直交する方向にTi成分の組成を測定し、測定したTi成分の組成が、(x+0.01)≦Y≦(x+0.05)の関係から外れる位置を、高Ti帯状領域の境界として特定する。
ついで、前記で特定された高Ti帯状領域の複数位置においてTi成分の組成を測定し、これらを平均することによって、高Ti帯状領域におけるTi成分の平均組成Yを求める。
つづいて、前記で特定された高Ti帯状領域の輪郭を確定し、複数位置における幅を測定し、これらを平均することによって、高Ti帯状領域の平均幅Wを求める。
さらに、前記で求めた高Ti帯状領域の輪郭から、測定視野の面積中に存在する高Ti帯状領域の合計面積を求めることにより、TiAlN層の縦断面に占める高Ti帯状領域の平均面積割合Stを算出する。
表4、表5に、それぞれの値を示す。
また、本発明工具1~10および比較例工具1~13のTiAlN層について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、TiAlN層全体に占める立方晶構造の結晶粒の平均面積割合Sを求めた。
具体的には、工具基体表面に垂直な方向のTiAlN層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体と水平方向に長さ100μm、工具基体表面と垂直な方向の断面に沿って層厚以下の距離の測定範囲内について0.01μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することで、立方晶構造の結晶粒の面積割合を測定した。
上記測定を5箇所の測定範囲で行い、これらの平均値として、TiAlN層全体に占める立方晶構造の結晶粒の平均面積割合Sを算出した。
表4、表5に、その値を示す。
Figure 0007068646000002
Figure 0007068646000003
Figure 0007068646000004
Figure 0007068646000005
次いで、本発明工具1~10および比較例工具1~13について、以下の条件で、高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
切削試験1
切削試験:乾式高速正面フライス、センターカット切削加工、
カッタ径: 125 mm、
被削材: JIS・SCM445幅100mm、長さ365mmのブロック材、
切削速度: 300 m/min、
切り込み: 2.5 mm、
一刃送り量: 0.25mm/刃、
切削時間: 9.5分、
表6に、試験結果を示す。
切削試験2
切削試験:乾式高速正面フライス、センターカット切削加工、
カッタ径: 125 mm、
被削材: JIS・SCM445幅100mm、長さ365mmのブロック材、
切削速度: 280 m/min、
切り込み: 2.8 mm、
一刃送り量: 0.3mm/刃、
切削時間: 8分
表7に、試験結果を示す。
Figure 0007068646000006
Figure 0007068646000007
表6および表7に示される結果から、本発明の被覆工具は、硬質被覆層としてTiAlN層を含み、該TiAlN層には、高Ti帯状領域が、工具基体表面の法線とのなす角度が35度以上70度以下の方向に存在していることから、これによって、靱性が向上し、かつ、層中の層厚方向の異方性がないために、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する合金鋼の断続切削加工において、すぐれた耐チッピング性と耐摩耗性を発揮する。
これに対して、TiAlN層中に、高Ti帯状領域が形成されていない比較例の被覆工具は、切削条件が余り厳しくない切削試験1の結果が示すように、また、高Ti帯状領域が形成されていたとしても工具基体表面の法線とのなす角度が35度以上70度以下にない比較例の被覆工具は、切削条件がより厳しい切削試験2の結果が示すように、比較的短時間で使用寿命に至ることが明らかである。
この発明の被覆工具は、合金鋼などの断続切削加工に供した場合に、すぐれた耐チッピング性とともに長期の使用に亘ってすぐれた耐摩耗性を発揮するものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

Claims (5)

  1. WC基超硬合金、TiCN基サーメットおよびcBN焼結体のいずれかからなる工具基体の表面に、0.5~8.0μmの平均層厚のTiとAlの複合窒化物層を少なくとも含む硬質被覆層が設けられた表面被覆切削工具において、
    前記TiとAlの複合窒化物層は、その組成を、組成式:(TiAl1-x)Nで表した場合、0.10≦x≦0.35(ただし、xは原子比)を満足する平均組成を有し、
    前記TiとAlの複合窒化物層中には、前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域が、少なくとも、工具基体表面の法線とのなす角度が35度以上70度以下の方向に存在していることを特徴とする表面被覆切削工具。
  2. 前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域のTi成分の平均組成をYとした場合、前記TiとAlの複合窒化物層におけるTi成分の平均組成xと前記Yは、(x+0.01)≦Y≦(x+0.05)の関係を満足することを特徴とする請求項1に記載の表面被覆切削工具。
  3. 前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域の平均幅Wは、30~500nmであることを特徴とする請求項2に記載の表面被覆切削工具。
  4. 前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域が前記TiとAlの複合窒化物層の縦断面に占める、平均面積割合Stは3~50面積%であることを特徴とする請求項1乃至3のいずれか一項に記載の表面被覆切削工具。
  5. 前記TiとAlの複合窒化物層は、立方晶構造の結晶粒と六方晶構造の結晶粒の混合組織からなり、前記TiとAlの複合窒化物層の縦断面に占める立方晶構造の結晶粒の平均面積割合Sは30面積%以上であることを特徴とする請求項1乃至4のいずれか一項に記載の表面被覆切削工具。
JP2018018809A 2017-03-08 2018-02-06 表面被覆切削工具 Active JP7068646B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017044405 2017-03-08
JP2017044405 2017-03-08

Publications (2)

Publication Number Publication Date
JP2018144224A JP2018144224A (ja) 2018-09-20
JP7068646B2 true JP7068646B2 (ja) 2022-05-17

Family

ID=63590425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018018809A Active JP7068646B2 (ja) 2017-03-08 2018-02-06 表面被覆切削工具

Country Status (1)

Country Link
JP (1) JP7068646B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7205709B2 (ja) * 2017-10-12 2023-01-17 三菱マテリアル株式会社 表面被覆切削工具
JP7132548B2 (ja) * 2019-01-31 2022-09-07 三菱マテリアル株式会社 表面被覆切削工具
JP7144747B2 (ja) * 2019-02-20 2022-09-30 三菱マテリアル株式会社 表面被覆切削工具
US20240117498A1 (en) * 2019-10-11 2024-04-11 Seco Tools Ab Coated cutting tool
WO2022239139A1 (ja) * 2021-05-12 2022-11-17 住友電工ハードメタル株式会社 切削工具

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211304A (ja) 2002-01-21 2003-07-29 Mitsubishi Materials Kobe Tools Corp 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
US20080317998A1 (en) 2006-01-13 2008-12-25 Wolfgang Eichmann Wear-resistant coating
US20090060669A1 (en) 2007-09-05 2009-03-05 Sandvik Intellectual Property Ab Coated drill and a method of making the same
JP2013139619A (ja) 2011-12-28 2013-07-18 Research Inst Of Industrial Science & Technology 硬質コーティング層とその形成方法
JP2015030061A (ja) 2013-08-02 2015-02-16 三菱マテリアル株式会社 耐チッピング性にすぐれた表面被覆切削工具
JP2015036189A (ja) 2013-08-16 2015-02-23 ケンナメタル インコーポレイテッドKennametal Inc. 低応力硬質コーティングおよびその適用
JP2016030319A (ja) 2014-07-30 2016-03-07 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2016064485A (ja) 2014-09-25 2016-04-28 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2016137549A (ja) 2015-01-28 2016-08-04 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2016221672A (ja) 2015-05-26 2016-12-28 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2017030076A (ja) 2015-07-30 2017-02-09 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211304A (ja) * 2012-03-30 2013-10-10 Hitachi Zosen Corp 3次元ヘテロ接合型cnt太陽電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211304A (ja) 2002-01-21 2003-07-29 Mitsubishi Materials Kobe Tools Corp 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
US20080317998A1 (en) 2006-01-13 2008-12-25 Wolfgang Eichmann Wear-resistant coating
US20090060669A1 (en) 2007-09-05 2009-03-05 Sandvik Intellectual Property Ab Coated drill and a method of making the same
JP2013139619A (ja) 2011-12-28 2013-07-18 Research Inst Of Industrial Science & Technology 硬質コーティング層とその形成方法
JP2015030061A (ja) 2013-08-02 2015-02-16 三菱マテリアル株式会社 耐チッピング性にすぐれた表面被覆切削工具
JP2015036189A (ja) 2013-08-16 2015-02-23 ケンナメタル インコーポレイテッドKennametal Inc. 低応力硬質コーティングおよびその適用
JP2016030319A (ja) 2014-07-30 2016-03-07 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2016064485A (ja) 2014-09-25 2016-04-28 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2016137549A (ja) 2015-01-28 2016-08-04 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2016221672A (ja) 2015-05-26 2016-12-28 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2017030076A (ja) 2015-07-30 2017-02-09 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Also Published As

Publication number Publication date
JP2018144224A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
JP7068646B2 (ja) 表面被覆切削工具
JP6677932B2 (ja) 強断続切削加工においてすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP5924507B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6481897B2 (ja) 表面被覆切削工具
JP6394898B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2015182746A1 (ja) 表面被覆切削工具
JP6296294B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6198176B2 (ja) 表面被覆切削工具
JP2016137549A (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2006198735A (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2017013223A (ja) 表面被覆切削工具
JP4946333B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP7021607B2 (ja) 硬質被覆層が優れた耐欠損性および耐チッピング性を発揮する表面被覆切削工具
JP2016165789A (ja) 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP6296295B2 (ja) 耐摩耗性にすぐれた表面被覆切削工具
JP7205709B2 (ja) 表面被覆切削工具
JP2018161736A (ja) 表面被覆切削工具
JP6931458B2 (ja) 硬質被覆層がすぐれた耐摩耗性と耐チッピング性を発揮する表面被覆切削工具
JP2006198740A (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4811787B2 (ja) 硬質被覆層の改質κ型酸化アルミニウム層が優れた粒界面強度を有する表面被覆サーメット製切削工具
JP6573171B2 (ja) 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP6555514B2 (ja) 表面被覆切削工具
JP7132548B2 (ja) 表面被覆切削工具
JP6191873B2 (ja) すぐれた耐チッピング性を有する表面被覆切削工具
JP7054473B2 (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220414

R150 Certificate of patent or registration of utility model

Ref document number: 7068646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150