WO2015182746A1 - 表面被覆切削工具 - Google Patents

表面被覆切削工具 Download PDF

Info

Publication number
WO2015182746A1
WO2015182746A1 PCT/JP2015/065558 JP2015065558W WO2015182746A1 WO 2015182746 A1 WO2015182746 A1 WO 2015182746A1 JP 2015065558 W JP2015065558 W JP 2015065558W WO 2015182746 A1 WO2015182746 A1 WO 2015182746A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
crystal
upper layer
crystal grains
lower layer
Prior art date
Application number
PCT/JP2015/065558
Other languages
English (en)
French (fr)
Inventor
正樹 奥出
健志 山口
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020167035485A priority Critical patent/KR20170012334A/ko
Priority to EP15799293.4A priority patent/EP3150309B1/en
Priority to US15/312,922 priority patent/US10456844B2/en
Priority to CN201580037433.7A priority patent/CN106536102B/zh
Publication of WO2015182746A1 publication Critical patent/WO2015182746A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) exhibiting excellent peeling resistance and chipping resistance over a long period of time, and in particular, cutting of various steels and cast irons at high speed, and Even when the cutting edge is subjected to high-feed, high-cut, high-speed intermittent heavy cutting conditions in which intermittent and impact loads are applied, the hard coating layer exhibits excellent peeling resistance and chipping resistance.
  • a coated tool exhibiting excellent peeling resistance and chipping resistance over a long period of time, and in particular, cutting of various steels and cast irons at high speed, and Even when the cutting edge is subjected to high-feed, high-cut, high-speed intermittent heavy cutting conditions in which intermittent and impact loads are applied, the hard coating layer exhibits excellent peeling resistance and chipping resistance.
  • a substrate hereinafter collectively referred to as a tool substrate
  • a substrate composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet.
  • WC tungsten carbide
  • TiCN titanium carbonitride
  • the lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO).
  • TiC Ti carbide
  • TiN nitride
  • TiCN carbonitride
  • TiCO carbon oxide
  • TiCNO carbonitride oxide
  • Al 2 O 3 layer aluminum oxide layer having an ⁇ -type crystal structure in a state where the upper layer is chemically vapor-deposited.
  • the conventional coated tool as described above exhibits excellent wear resistance in continuous cutting of, for example, various steels and cast irons.
  • this is used for high-speed interrupted cutting, There was a problem that peeling and chipping were likely to occur and the tool life was shortened. Therefore, various types of coating tools have been proposed in which the lower layer and the upper layer are improved in order to suppress peeling and chipping of the coating layer.
  • Patent Document 1 discloses a coating formed by vapor-depositing a hard coating layer composed of the following (a) and (b) on the surface of a tool base composed of a WC-based cemented carbide alloy or a TiCN-based cermet.
  • a tool is disclosed.
  • the lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and has an overall average of 3 to 20 ⁇ m.
  • a Ti compound layer having a layer thickness (B)
  • the upper layer has an average layer thickness of 1 to 15 ⁇ m, has an ⁇ -type crystal structure in a chemical vapor deposited state, and is within the measurement range of the surface polished surface using a field emission scanning electron microscope.
  • each crystal grain having a corundum type hexagonal crystal lattice which is present is irradiated with an electron beam, and the (0001) plane and (10-10) which are crystal planes of the crystal grain with respect to the normal line of the surface polished surface
  • the crystal grains have a corundum type hexagonal crystal structure in which constituent atoms composed of Al and oxygen are present at lattice points, and the measurement obtained as a result Based on the tilt angle, at the interface between adjacent crystal grains, each of the constituent atoms has a corresponding grain boundary composed of lattice points (constituent atom shared lattice points) that share one constituent atom between the crystal grains.
  • N N lattice points that do not share constituent atoms between the lattice points (however, N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is set to 28 in terms of distribution frequency) (Even numbers of 4, 8, 14, 24, and 26 do not exist), when the corresponding grain boundary composed of the constituent atomic lattice points existing is represented by ⁇ N + 1, the distribution ratio of each ⁇ N + 1 to the entire ⁇ N + 1
  • An aluminum oxide layer showing a constituent atom shared lattice point distribution graph in which the highest peak exists in ⁇ 3 and the distribution ratio of the ⁇ 3 to the entire ⁇ N + 1 is 60 to 80%. This coated tool is known to exhibit excellent chipping resistance in high-speed intermittent cutting.
  • Patent Document 2 discloses a coated tool in which a lower surface and an aluminum oxide layer are coated on the surface of a tool base, or an aluminum oxide layer is formed on a lower layer via an intermediate layer between the tool base and the lower layer. It has been proposed to improve the chipping resistance and crater wear resistance of the coated tool by setting the ⁇ 3-compatible grain boundary ratio of the aluminum oxide layer to 80% or more.
  • Patent Document 3 discloses a surface-coated cutting tool formed by vapor-depositing a hard coating layer in which a lower layer is a Ti compound layer and an upper layer is an ⁇ -type Al 2 O 3 layer, and Al 2 directly above the lower layer.
  • 30 to 70 area% of the O 3 crystal grains are (11-20) oriented Al 2 O 3 crystal grains, and 45 area% or more of the total Al 2 O 3 crystal grains of the upper layer are (0001) oriented Al 2 O 3 grains.
  • the outermost surface layer of the lower layer forms an oxygen-containing TiCN layer containing 0.5 to 3 atomic% of oxygen only over a depth region of up to 500 nm.
  • the value of the ratio between the number of oxygen-containing TiCN crystal grains in the outermost surface layer and the number of Al 2 O 3 crystal grains at the interface between the lower layer and the upper layer is set to 0.01 to 0.5.
  • the inventors have improved the adhesion between the lower layer made of the Ti compound layer and the upper layer made of the Al 2 O 3 layer, thereby preventing abnormal damage such as peeling and chipping.
  • intensive research was conducted to improve the abnormal damage resistance such as chipping and peeling and to increase the tool life.
  • each constituent atom shared lattice point occupies the total corresponding grain boundary length of the Al 2 O 3 layer.
  • the peeling resistance can be improved by increasing the proportion of grain boundaries having a ⁇ 3 constituent atom shared lattice point form continuous from the interface to the outermost surface of the upper layer.
  • the present invention has been completed as a result of repeated research based on the aforementioned knowledge, and has the following aspects.
  • a surface-coated cutting tool comprising a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet, and a hard coating layer deposited on the surface of the tool base,
  • the hard coating layer has a lower layer formed on the surface of the tool base and an upper layer formed on the lower layer,
  • the lower layer has a total average layer thickness of 3 to 20 ⁇ m and is composed of two or more layers of TiC, TiN, TiCN, TiCO, and TiCNO, at least one of which is composed of a TiCN layer.
  • the upper layer comprises an Al 2 O 3 layer having an average layer thickness of 2 to 20 ⁇ m and having an ⁇ -type crystal structure in a chemical vapor deposited state;
  • the upper layer Al 2 O 3 crystal grains are irradiated with an electron beam individually on the crystal grains existing within the measurement range of the cross-sectional polished surface.
  • each normal of the crystal lattice plane composed of corundum type hexagonal crystal lattice is measured, and from this measurement result, the crystal orientation relationship between adjacent crystal lattices is calculated, and the constituent atoms constituting the crystal lattice interface
  • N there are N non-shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 in terms of distribution frequency, 4, 8, 14, Even numbers 24 and 26 exist (1)
  • the existing constituent atom shared lattice point form is represented by ⁇ N + 1
  • the distribution ratio of each is calculated, and the correspondence composed of each constituent atom shared lattice point form occupying in all the corresponding grain boundary lengths within the range of ⁇ 3 to ⁇ 29
  • the highest peak is present in ⁇ 3 within the range of ⁇ 3 to ⁇ 29, and the distribution ratio of the ⁇ 3 in the range of ⁇ 3 to ⁇ 29 is 70% or more.
  • the outermost surface layer of the lower layer (a) is composed of a TiCN layer having a layer thickness of at least 500 nm, except for oxygen as an inevitable impurity, from the interface between the TiCN layer and the upper layer to 500 nm.
  • Oxygen is contained only in the depth region, and the average oxygen content contained in the depth region is 1 to 3 atoms of the total content of Ti, C, N, and O contained in the depth region.
  • (3) The Al 2 O 3 crystal grains of the upper layer have a corundum type hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface using a field emission scanning electron microscope and an electron beam backscattering diffraction apparatus. Each crystal grain is irradiated with an electron beam, and the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, with respect to the normal line on the surface of the tool base is in the range of 0 to 45 degrees.
  • Al 2 has the highest peak in the tilt angle section whose tilt angle with respect to the normal of the surface of the tool base is in the range of 0 to 10 degrees and the tilt angle is in the range of 0 to 10 degrees.
  • the distribution ratio of the ⁇ 3-compatible grain boundary in the upper layer of the hard coating layer is as high as 70% or more, and more than 60% of the ⁇ 3-compatible grain boundary in the upper layer is composed of the lower layer and the upper layer.
  • the outermost surface layer of the lower layer of the present invention is formed of a TiCN layer containing oxygen (hereinafter also referred to as an oxygen-containing TiCN layer).
  • the adhesion strength between the upper layer and the lower layer of the coated tool is improved, and the power ratio existing in the tilt angle section within the range of 0 to 10 degrees can be further increased, thereby further improving the wear resistance.
  • crystal grains having an aspect ratio of 5 or more exhibit an excellent wear resistance when the area ratio is 80% or more.
  • the wear resistance is further improved by the fact that the total of the frequencies existing in the tilt angle section within the range of 0 to 10 degrees of the Al 2 O 3 crystal grains of the upper layer is 70% or more of the entire frequencies.
  • the coated tool of the present invention it is possible to cut various steels and cast irons at high speed and with high feed, high cut, high-speed intermittent heavy cutting conditions in which an intermittent / impact load acts on the cutting edge. Even when performed, it does not cause abnormal damage such as peeling and chipping, and exhibits excellent wear resistance over a long period of use.
  • An example of a corresponding grain boundary distribution graph in the present coated tool is shown.
  • An example of the inclination angle number distribution graph in this invention coated tool is shown.
  • An example of a corresponding grain boundary distribution graph in a comparative example coated tool is shown.
  • An example of the inclination angle number distribution graph in a comparative example covering tool is shown.
  • (A) Lower layer The Ti compound layer (for example, TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer) constituting the lower layer basically exists as the lower layer of the Al 2 O 3 layer, and the Ti compound has excellent High temperature strength provides high temperature strength to the hard coating layer.
  • the Ti compound layer of the lower layer is in close contact with both the tool base surface and the upper layer made of the Al 2 O 3 layer, and has an action of maintaining the adhesion of the hard coating layer to the tool base.
  • the total average layer thickness of the lower Ti compound layer is less than 3 ⁇ m, the above-described effects cannot be sufficiently exhibited.
  • the total average layer thickness of the lower Ti compound layer exceeds 20 ⁇ m, it becomes easy to cause thermoplastic deformation particularly in high-speed heavy cutting and high-speed intermittent cutting with high heat generation, which causes uneven wear. From the above, the total average layer thickness of the lower Ti compound layer was determined to be 3 to 20 ⁇ m. The total average layer thickness of the lower Ti compound layer is preferably 5 to 15 ⁇ m, but is not limited thereto.
  • the outermost surface layer of the lower layer The lower layer (including the outermost surface layer of the lower layer) of the embodiment of the present invention can be formed under the same chemical vapor deposition conditions as in the conventional method.
  • the outermost surface layer of the lower layer is, for example, as follows: It is desirable to form. That is, first, using a normal chemical vapor deposition apparatus, various Ti compound layers consisting of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer are formed by vapor deposition (in addition, Of course, it is possible to form only the TiCN layer by vapor deposition).
  • reaction gas composition volume%): TiCl 4 2 to 10%, CH 3 CN 0.5 to 1.0%, N 2 25 to 60%, balance H 2 , Reaction atmosphere temperature: 750 to 930 ° C. Reaction atmosphere pressure: 5 to 15 kPa. That is, the lower layer in the embodiment of the present invention is formed by forming an oxygen-containing TiCN layer, which is the uppermost surface layer of the lower layer, after forming various Ti compound layers composed of one layer or two or more layers. It is preferable to include.
  • the average oxygen content contained in the depth region from the interface between the outermost surface of the lower layer and the upper layer to a maximum thickness of 500 nm in the layer thickness direction of the outermost surface layer of the lower layer is Ti, C, N, Since it can be 1 to 3 atomic% of the total content of O, the oxygen-containing TiCN layer containing oxygen having the above average oxygen content can be easily formed by vapor deposition.
  • oxygen of less than 0.5 atomic% is contained as an inevitable impurity. It is allowed to be done. For this reason, the term “does not contain oxygen” as defined in the present invention strictly means that the oxygen content is less than 0.5 atomic%.
  • the outermost surface layer of the lower layer composed of the oxygen-containing TiCN layer is provided with a layer thickness of at least 500 nm or more, for example, in order to form preferable Al 2 O 3 crystal grains thereon (see (c) below).
  • Oxygen contained in the depth region up to 500 nm in the layer thickness direction from the interface between the oxygen-containing TiCN layer and the upper layer is formed from 1 of the total content of Ti, C, N, and O. It is good also as 3 atomic%. Thereby, oxygen can be contained only in a depth region up to a maximum of 500 nm in the film thickness direction of the oxygen-containing TiCN layer.
  • the depth region of the oxygen-containing TiCN layer is limited as described above.
  • the structure of the outermost surface of the TiCN layer changes from a columnar structure to a granular structure. It is because it becomes easy to do. In addition, it becomes difficult to make the configuration of the constituent atomic shared lattice points of the Al 2 O 3 crystal grains immediately above the outermost surface layer of the lower layer desired.
  • the average oxygen content in the depth region of 500 nm is less than 1 atomic%, the degree of improvement in the adhesion strength of TiCN in the upper and lower layers tends to be low. In addition, it becomes difficult to obtain the configuration of constituent atomic shared lattice points of the Al 2 O 3 crystal grains immediately above the outermost surface layer of the lower layer.
  • the average oxygen content contained in the depth region up to 500 nm of the oxygen-containing TiCN layer is preferably 1.2 to 2.5 atomic%, but is not limited thereto.
  • the average oxygen content is determined from titanium (Ti) and carbon in the depth region up to 500 nm in the thickness direction of the TiCN layer from the interface between the TiCN layer and the upper layer constituting the outermost surface layer of the lower layer.
  • the lower layer of the embodiment of the present invention can be formed under the same chemical vapor deposition conditions as in the conventional method, but the above-mentioned oxygen-containing TiCN layer is formed as the outermost surface layer of the lower layer of the embodiment of the present invention. It is desirable to do.
  • (C) Al 2 O 3 crystal grains in the upper layer After the oxygen-containing TiCN layer (b) is deposited on the outermost surface layer of the lower layer, the upper Al 2 O 3 layer is formed under the following conditions. That is, the surface of the oxygen-containing TiCN layer formed in (b) is treated under the following conditions. ⁇ Lower surface treatment> Reaction gas composition (volume%): CO 2 ⁇ 10% , CO 2 2 ⁇ 10%, the remainder H 2, Atmospheric temperature: 900-950 ° C Atmospheric pressure: 5 to 15 kPa, Processing time: 20-60 min.
  • the upper layer of Al 2 O 3 is formed by vapor deposition, so that Al 2 O 3 crystal grains having a predetermined constituent atomic shared lattice point form are formed.
  • An upper layer is formed.
  • the Al 2 O 3 initial growth step is performed in order to reliably form a predetermined upper layer.
  • the target layer thickness of the upper layer is the sum of the film thicknesses formed in the Al 2 O 3 initial growth step and the Al 2 O 3 upper layer formation step.
  • Reaction gas composition (volume%): AlCl 3 0.5 to 3%, CO 2 1 to 5%, HCl 0.5 to 2.0%, balance H 2 , Atmospheric temperature: 950-1040 ° C, Atmospheric pressure: 5 to 15 kPa, Processing time: 10 to 120 min.
  • Reaction gas composition (volume%): AlCl 3 1 to 3%, CO 2 3 to 15%, HCl 1 to 3%, H 2 S 0.5 to 1.5%, balance H 2 , Reaction atmosphere temperature: 950 to 1040 ° C. Reaction atmosphere pressure: 5 to 15 kPa, Processing time: (until the target upper layer thickness is reached).
  • the layer thickness of the upper layer was determined to be 2 to 20 ⁇ m.
  • the thickness of the upper layer is preferably 3 to 15 ⁇ m, but is not limited thereto.
  • the processing time of the lower layer surface treatment process is set to 20 to 60 min. Thereby, the ratio of the ⁇ 3-corresponding grain boundary continuous from the interface between the lower layer and the upper layer to the outermost surface of the upper layer can be increased.
  • the atmospheric temperature of the lower layer surface treatment step is set to 900 to 950 ° C.
  • the treatment time of the lower layer surface treatment step is preferably 25 to 45 minutes, but is not limited thereto.
  • the reaction atmosphere temperature for the surface treatment of the lower layer is preferably 900 to 930 ° C., but is not limited thereto.
  • the addition amount of AlCl 3 is preferably 1.5 to 2.5%, and the addition amount of CO 2 is preferably 5 to 10%.
  • the addition amount of HCl is preferably 1.5 to 2.5%, and the addition amount of H 2 S is preferably 0.75 to 1.25%, but is not limited thereto. .
  • a corresponding grain boundary composed of a constituent atomic shared lattice point is formed by using a field emission scanning electron microscope and an electron beam backscatter diffraction apparatus.
  • the corresponding grain boundary distribution graph shows that the highest peak exists in ⁇ 3 in the range of ⁇ 3 to ⁇ 29, and the distribution ratio of ⁇ 3 is 70% or more of the distribution ratio in the range of ⁇ 3 to ⁇ 29.
  • the highest peak exists in ⁇ 3 within the range of ⁇ 3 to ⁇ 29, and the distribution ratio of ⁇ 3 is 70% or more of the distribution ratio in the range of ⁇ 3 to ⁇ 29. It becomes easy to become.
  • the highest peak does not exist in ⁇ 3, or when the distribution ratio of ⁇ 3 is less than 70%, the grain boundary strength of the Al 2 O 3 crystal grains is not sufficient, and chipping occurs when a high load is applied. The effect of suppressing the occurrence of defects is not sufficient.
  • the distribution ratio of ⁇ 3 within the range of ⁇ 3 to ⁇ 29 is 70% or more. It was determined.
  • the distribution ratio of ⁇ 3 in the range of ⁇ 3 to ⁇ 29 is preferably 75 to 90%, but is not limited to this.
  • the constituent atomic shared lattice point form of the upper layer can be measured by the following procedure.
  • N there are N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more in the crystal structure of the corundum hexagonal crystal lattice, When the upper limit is 28, there is no even number of 4, 8, 14, 24 and 26)
  • the existing constituent atom shared lattice point form is represented by ⁇ N + 1
  • the respective distribution ratios are calculated and ⁇ 3 to ⁇ 29
  • a corresponding grain boundary distribution graph showing each distribution ratio of ⁇ N + 1 in the total distribution ratio of the whole unit form of all grain boundary lengths in the range of is created.
  • the existence of the peak of ⁇ 3 and the distribution ratio of ⁇ 3 in the range of ⁇ 3 to ⁇ 29 can be obtained.
  • What distinguishes the corresponding grain boundary of ⁇ 29 or less from the corresponding grain boundary of ⁇ 31 or more is H.
  • the corresponding grain boundary of ⁇ -Al 2 O 3 has an upper limit of 28 as described in Grimmer et al. (Philosophy Magazine A, 1990, Vol. 61, No. 3,493-509). This is because it has been reported that the grain boundaries from ⁇ 3 to ⁇ 29 are the main corresponding grain boundaries.
  • the corresponding grain boundaries of ⁇ 3, ⁇ 7, ⁇ 11, ⁇ 17, ⁇ 19, ⁇ 21, ⁇ 23, and ⁇ 29 were identified by using the values of the angles formed between the crystal grains constituting the corresponding grain boundary shown in the paper.
  • 5 ° was used for the calculation.
  • the upper layer Al 2 O 3 crystal grain forming step (c) is used to deposit the upper layer Al 2 O 3 layer to form an interface between the lower layer and the upper layer.
  • the proportion of the grain boundary corresponding to ⁇ 3 can be set to 60% or more.
  • the grain boundary strength between the Al 2 O 3 crystal grain structures in the upper layer can be increased, and the chipping resistance of the Al 2 O 3 crystal grains can be further improved. High peeling resistance and chipping resistance can be exhibited.
  • the ratio of the ⁇ 3-compatible grain boundary continuous from the interface between the lower layer and the upper layer to the outermost surface of the upper layer is preferably 65 to 80%, but is not limited thereto.
  • the inclination angle number of the upper layer is adjusted.
  • the frequency ratio of Al 2 O 3 crystal grains having an inclination angle in the range of 0 to 10 degrees in the distribution graph can be 70% or more of the entire frequency.
  • Al 2 O 3 power ratio of crystal grains Al 2 O 3 crystal grains inclined angle frequency distribution and the inclination angle is in the range of 0 to 10 degrees of the upper layer can be obtained as follows. First, the crystal grains having a corundum type hexagonal crystal lattice existing within the measurement range of the cross-section polished surface including the upper layer of the coated tool are irradiated with an electron beam, and data relating to the orientation of the Al 2 O 3 crystal grains Get.
  • the inclination angle formed by the normal line of the (0001) plane of the Al 2 O 3 crystal grains obtained by the above-described procedure is the ratio of the CO 2 gas amount and the H 2 S gas amount to the AlCl 3 gas amount in the vapor deposition conditions.
  • the power ratio existing in the tilt angle section of 0 to 10 degrees in the tilt angle distribution graph is 60% or more of the entire power.
  • the (0001) oriented Al 2 O 3 crystal grains, that is, Al 2 O 3 crystal grains present in the tilt angle section with the tilt angle of 0 to 10 degrees formed by the normal line of the (0001) plane are shown in the tilt angle number distribution graph.
  • the Al 2 O 3 crystal grains of the upper layer with respect to the normal to the tool substrate surface, the inclination angle of the normal of the Al 2 O 3 crystal grains (0001) plane is 0 ⁇
  • the sum of the frequencies of the crystal grains within the range of 10 degrees was determined to be 70% or more of the entire frequencies in the tilt angle number distribution graph.
  • the frequency ratio of Al 2 O 3 crystal grains having an inclination angle in the range of 0 to 10 degrees in the inclination angle distribution graph of the upper layer is preferably 75 to 85% of the entire frequency, but is not limited thereto. None happen.
  • the aspect ratio of the upper layer Al 2 O 3 crystal grains is 5 or more by adjusting the addition amount of CO 2 and HCl among the film formation conditions of (c).
  • the area ratio of the crystal grains can be 80% or more.
  • the abrasion resistance of the upper layer can be further improved.
  • the area ratio of the crystal grains having an aspect ratio of 5 or more is less than 80%, although there is an effect of suppressing crack propagation in high-speed intermittent heavy cutting, improvement in high-temperature strength and high-temperature hardness cannot be expected.
  • the area ratio of crystal grains having an aspect ratio of 5 or more is desirably 80% or more.
  • the area ratio of crystal grains having an aspect ratio of 5 or more is preferably 85% or more, but is not limited thereto.
  • coated tool of the present invention will be specifically described based on examples. In particular, each layer constituting the hard coating layer of the coated tool of the present invention will be described in detail.
  • WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 ⁇ m were prepared. These raw material powders were blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, and dried under reduced pressure. Thereafter, the green compact was press-molded into a green compact having a predetermined shape at a pressure of 98 MPa, and the green compact was vacuum sintered by holding it at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, tool bases A to E made of WC-base cemented carbide having an insert shape of ISO standard CNMG120408 were manufactured.
  • ZrC powder ZrC powder
  • TaC powder NbC powder
  • Mo 2 C powder WC powder each having an average particle diameter of 0.5 to 2 ⁇ m.
  • Co powder and Ni powder were prepared. These raw material powders were blended in the blending composition shown in Table 2, wet-mixed with a ball mill for 24 hours, and dried. Thereafter, the green compact was press-molded into a green compact at a pressure of 98 MPa, and the green compact was sintered by being held at a temperature of 1500 ° C. for 1 hour in a nitrogen atmosphere of 1.3 kPa. After sintering, tool bases a to e made of TiCN base cermet having an insert shape of ISO standard CNMG120212 were prepared.
  • each of the tool bases A to E and the tool bases a to e was charged into a normal chemical vapor deposition apparatus, and the coated tools 1 to 13 of the present invention were manufactured according to the following procedure.
  • the oxygen-containing TiCN layer as the outermost surface layer of the lower layer (ie, from the interface between the uppermost surface layer of the lower layer and the upper layer, the outermost surface layer of the lower layer)
  • the target layer thickness shown in Table 8 shows the average oxygen content (O / (Ti + C + N + O) ⁇ 100) containing 1 to 3 atomic% of oxygen only in the depth region up to 500 nm in the film thickness direction of It formed so that it might become. Note that in the oxygen-containing TiCN layer type D in Table 4, no CO gas was added during 5 to 30 minutes before the end of the deposition time.
  • comparative example coated tools 1 to 13 shown in Table 9 are produced by performing the steps (c) and (d) under conditions that deviate from the production conditions of the inventive coated tools 1 to 13, respectively. did.
  • the TiCN layer constituting the outermost surface layer of the lower layer is in a depth region up to 500 nm in the layer thickness direction of the TiCN layer of the lower layer.
  • the average oxygen content was measured using an Auger electron spectrometer, and an electron beam having a diameter of 10 nm in a range corresponding to the thickness of the Ti carbide layer from the outermost surface of the Ti carbonitride layer on the cross-section polished surface of the coated tool.
  • the intensity of Ti, C, N, and O Auger peaks was measured, and the ratio of the O Auger peak intensity was calculated from the sum of the peak intensities.
  • the lower layer is formed on the surface of the tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet separately under the following conditions.
  • a TiCN layer was chemically deposited.
  • Reaction gas composition volume%): TiCl 4 2 to 10%, CH 3 CN 0.5 to 1.0%, N 2 25 to 60%, balance H 2 , Reaction atmosphere temperature: 750 to 930 ° C.
  • Reaction atmosphere pressure 5 to 15 kPa.
  • a TiCN layer (hereinafter referred to as inevitable oxygen-containing TiCN) that does not intentionally contain oxygen was formed with a layer thickness of 3 ⁇ m or more.
  • the oxygen content inevitably contained in the region deeper than 500 nm in the layer thickness direction from the surface of the inevitable oxygen-containing TiCN layer is Ti, C, N, contained in the depth region using an Auger electron spectrometer. It calculated
  • a value obtained by subtracting the inevitable oxygen content (that is, 0.5 atomic%) from the above-described average oxygen content was determined as the average oxygen content of the TiCN layer constituting the outermost surface layer of the lower layer. Tables 8 and 9 show these values.
  • FIG. 1 an example of the corresponding grain boundary distribution graph calculated
  • the upper layer Al 2 O 3 ⁇ 3-corresponding grain boundary continues from the interface between the lower layer and the upper layer to the outermost surface of the upper layer is determined using a field emission scanning electron microscope and electron beam backscatter diffraction. Observation was performed using an apparatus. The ratio of the grain boundary corresponding to ⁇ 3 from the interface between the lower layer and the upper layer to the outermost surface of the upper layer was determined by the following procedure. First, using a field emission scanning electron microscope and an electron beam backscatter diffraction device, the upper layer of the coated tool of the present invention is cross-polished (cross section perpendicular to the upper layer surface) at an incident angle of 70 degrees and 15 kV.
  • Each of the crystal grains having a corundum type hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface was irradiated at an interval of 0.1 ⁇ m / step with an electron beam having an acceleration voltage of 1 nA.
  • the measurement range was 50 ⁇ m in a direction parallel to the substrate surface and a region having the upper limit of the thickness of the Al 2 O 3 layer in the direction perpendicular to the substrate surface direction.
  • the length in the direction orthogonal to the substrate surface direction was at least 3 ⁇ m.
  • the upper Al 2 layer is separated from the interface between the lower layer and the upper layer.
  • the aspect ratio of the Al 2 O 3 crystal grains of the upper layer was determined by the following procedure. Using a field emission scanning electron microscope and an electron beam backscatter diffractometer, an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA with respect to the cross-section polished surface of the upper layer of the coated tool of the present invention. Then, each crystal grain having a corundum type hexagonal crystal lattice existing within the measurement range of the cross-section polished surface was irradiated at an interval of 0.1 ⁇ m / step.
  • the measurement range was 50 ⁇ m in a direction parallel to the substrate surface and a region having the upper limit of the thickness of the Al 2 O 3 layer in the direction perpendicular to the substrate surface direction.
  • the length in the direction orthogonal to the substrate surface direction was at least 2 ⁇ m.
  • the boundary between the measurement points adjacent to each other was defined as a crystal grain boundary. Further, a range surrounded by crystal grain boundaries and not divided by other crystal grain boundaries was specified as the same crystal grain.
  • the major axis is the direction perpendicular to the tool substrate surface direction
  • the minor axis is the direction parallel to the tool substrate surface direction
  • the lengths of the major axis and minor axis are determined.
  • the aspect ratio was calculated from The area ratio of crystal grains having an aspect ratio of 5 or more was determined by using a field emission scanning electron microscope on a mirror-polished cross section at an observation magnification of 2,000 times in the horizontal direction: 50 ⁇ m ⁇ longitudinal direction: It calculated by measuring the area
  • the frequency distribution of the inclination angle formed by the normal line of the (0001) plane of the Al 2 O 3 crystal grains is analyzed by a field emission scanning electron microscope and an electron beam backscatter diffraction by the following procedure. Measurement was performed using an apparatus. First, a measurement range (for example, 0.3 ⁇ m in the thickness direction of the upper layer ⁇ 50 ⁇ m in the direction parallel to the surface of the tool base) was set in the lens barrel of the field emission scanning electron microscope.
  • an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the cross-sectional polished surface with an irradiation current of 1 nA, and each crystal grain having a corundum type hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is zero.
  • Irradiation was performed at an interval of 1 ⁇ m / step.
  • the measurement range was an area having an upper limit of the thickness of the Al 2 O 3 layer in the direction perpendicular to the surface direction of the substrate and 50 ⁇ m along the surface of the substrate.
  • the length in the direction orthogonal to the substrate surface direction was at least 2 ⁇ m.
  • the inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the crystal grain was measured.
  • the measured inclination angles within the range of 0 to 45 degrees of the measured inclination angles are divided into pitches of 0.25 degrees and exist in each division. This is represented by an inclination angle frequency distribution graph obtained by summing up the frequencies.
  • the total of the frequencies existing in the tilt angle section of the Al 2 O 3 crystal grains having the tilt angle in the range of 0 to 10 degrees was determined as a frequency ratio in the entire frequency in the tilt angle frequency distribution graph.
  • required about the upper layer of this invention coated tool 1 is shown. From FIG. 2, it was found that the upper layer of the coated tool 1 of the present invention had a frequency ratio of Al 2 O 3 crystal grains existing in the inclination angle section of 0 to 10 degrees of 85%, which is 70% or more.
  • the frequency ratio of Al 2 O 3 crystal grains present in the tilt angle section was determined. Tables 8 and 9 show these values.
  • required about the upper layer of the comparative example coating tool 1 is shown in FIG. In FIG. 4, the inclination angle number distribution graph calculated
  • the upper layer of the coated tool of the present invention has the highest peak at ⁇ 3 within the range of ⁇ 3 to ⁇ 29 for all coated tools.
  • the distribution ratio of ⁇ 3 was 70% or more.
  • the ratio of the ⁇ 3-compatible grain boundary continuous from the interface between the lower layer and the upper layer to the outermost surface of the upper layer was 60% or more.
  • the highest peak does not exist in ⁇ 3 within the range of ⁇ 3 to ⁇ 29, or the distribution ratio of ⁇ 3 is less than 70%, or the upper layer from the interface between the lower layer and the upper layer.
  • the coated tool of the present invention is superior in toughness, hardness and strength of the upper layer, and is excellent in peeling resistance and chipping resistance.
  • the comparative coated tool is resistant to peeling and resistance under high-speed intermittent heavy cutting conditions. The chipping property was not sufficient.
  • the thicknesses of the constituent layers of the hard coating layers of the inventive coated tools 1 to 13 and comparative example coated tools 1 to 13 were measured using a scanning electron microscope (longitudinal section measurement). The average layer thickness (average value of 5-point measurement) substantially the same as the thickness was shown.
  • Cutting condition A Work material: JIS / SNCM439 lengthwise equidistant, 4 vertical grooves, Cutting speed: 350 m / min, Incision: 1.5mm, Feed: 0.35mm / rev, Cutting time: 5 minutes. (Normal cutting speed and feed amount are 250 m / min and 0.3 mm / rev, respectively)
  • Cutting condition B Work material: JIS / S45C lengthwise equidistant 4 grooved, Cutting speed: 350 m / min, Cutting depth: 3.0 mm, Feed: 0.3mm / rev, Cutting time: 5 minutes.
  • Cutting condition C Work material: JIS / FCD450 lengthwise equal 4 rods with flutes, Cutting speed: 350 m / min, Cutting depth: 2.0 mm Feed: 0.35mm / rev, Cutting time: 5 minutes.
  • the normal cutting speed refers to a cutting speed at which the efficiency (generally, the number of parts that can be processed before the tool life) is optimized when a conventional coated insert is used. If cutting is performed exceeding this speed, the tool life is extremely shortened, and the processing efficiency is lowered.
  • the coated tools 1 to 13 of the present invention have excellent high-temperature strength, high-temperature toughness and high-temperature hardness, so that no abnormal damage such as peeling and chipping occurs and long-term Excellent wear resistance over the use of
  • the comparative coated tools 1 to 13 in the high-speed intermittent heavy cutting, the service life was reached in a relatively short time due to occurrence of peeling and chipping of the hard coating layer.
  • the coated tool of the present invention is capable of high-speed intermittent heavy cutting in which intermittent and impact high loads act on the cutting blade as well as continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron. Even under such severe cutting conditions, the hard coating layer is not peeled off or chipped, and excellent cutting performance is exhibited over a long period of use. From this, the coated tool of this invention can respond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 本発明の表面被覆切削工具は、WC基超硬合金あるいはTiCN基サーメットからなる工具基体の表面に下部層と上部層からなる硬質被覆層を蒸着形成した表面被覆切削工具であって、(a)下部層は、少なくとも1層がTiCN層で構成したTi化合物層からなり、(b)上部層は、α型Al層からなり、(c)上部層全体のAl結晶粒について、構成原子共有格子点分布を測定した場合、Σ3に最高ピークが存在し、かつ、Σ3の分布割合は70%以上であり、(d)上部層のΣ3対応粒界のうち、下部層と上部層との界面から、上部層の最表面まで連続するΣ3対応粒界の割合が60%以上であり、また、好ましくは、下部層の最表面層は、酸素含有TiCN層で構成され、上部層のAl結晶粒について傾斜角度数分布を測定した場合、0~10度の傾斜角区分にあるAl結晶粒の度数割合は70%以上であり、さらに、アスペクト比が5以上である上部層のAl結晶粒の面積割合は80%以上である。

Description

表面被覆切削工具
 本発明は、長期に亘ってすぐれた耐剥離性と耐チッピング性を示す表面被覆切削工具(以下、被覆工具という)に関し、特に、各種の鋼や鋳鉄などの切削加工を、高速で、かつ、切刃に断続的・衝撃的負荷が作用する高送り、高切り込みの高速断続重切削条件で行った場合でも、硬質被覆層がすぐれた耐剥離性と耐チッピング性を発揮する。
 本願は、2014年5月30日に、日本に出願された特願2014-112772号、および2015年5月21日に、日本に出願された特願2015-104021号に基づき優先権を主張し、その内容をここに援用する。
 従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、以下の(a)および(b)で構成された硬質被覆層が蒸着形成された被覆工具が知られている。
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、Al層で示す)。
 しかし、前述したような従来の被覆工具は、例えば、各種の鋼や鋳鉄などの連続切削ではすぐれた耐摩耗性を発揮するが、これを、高速断続切削に用いた場合には、被覆層の剥離やチッピングが発生しやすく、工具寿命が短命になるという問題があった。
 そこで、被覆層の剥離、チッピングを抑制するために、下部層、上部層に改良を加えた各種の被覆工具が提案されている。
 例えば、特許文献1には、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、以下の(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具が開示されている。
(a)下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3~20μmの全体平均層厚を有するTi化合物層、
(b)上部層として、1~15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在するコランダム型六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)からなる対応粒界の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態からなる対応粒界をΣN+1で表した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60~80%である構成原子共有格子点分布グラフを示す酸化アルミニウム層。
 この被覆工具は、高速断続切削加工ですぐれた耐チッピング性を示すことが知られている。
 また、特許文献2には、工具基体の表面に、下部層と酸化アルミニウム層を被覆した被覆工具、あるいは、工具基体と下部層の間に中間層を介して、下部層上に酸化アルミニウム層を被覆した被覆工具において、該酸化アルミニウム層のΣ3対応粒界比率を80%以上とすることによって、耐チッピング性、耐クレーター摩耗性を改善することが提案されている。
 また、特許文献3には、下部層がTi化合物層、上部層がα型Al層からなる硬質被覆層を蒸着形成してなる表面被覆切削工具であって、下部層直上のAl結晶粒の30~70面積%は(11-20)配向Al結晶粒とし、上部層の全Al結晶粒の45面積%以上は、(0001)配向Al結晶粒とし、さらに好ましくは、下部層の最表面層は、500nmまでの深さ領域に亘ってのみ0.5~3原子%の酸素を含有する酸素含有TiCN層を形成し、また、下部層最表面層の酸素含有TiCN結晶粒数と、下部層と上部層の界面におけるAl結晶粒数との比の値を0.01~0.5としている。これにより、表面被覆切削工具の高速重切削、高速断続切削における耐剥離性、耐チッピング性を改善することが提案されている。
日本国特開2006-198735号公報(A) 国際公開第2013/038000号(A) 日本国特開2013-63504号公報(A)
 近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強い。これに伴い、切削加工は一段と高速化し、高切り込みや高送りなどの重切削、断続切削等で切刃に高負荷が作用する傾向にある。前述した従来の被覆工具を鋼や鋳鉄などの通常の条件での連続切削に用いた場合には問題はない。しかし、従来の被覆工具を、高速断続重切削条件で用いた場合には、硬質被覆層を構成するTi化合物層からなる下部層とAl層からなる上部層の密着強度が不十分であり、皮膜の靭性も十分ではない。
 そのため、上部層と下部層間での剥離、チッピング等の異常損傷が発生し、比較的短時間で工具寿命に至る。
 そこで、本発明者らは、前述のような観点から、Ti化合物層からなる下部層とAl層からなる上部層との密着性を改善することで、剥離、チッピング等の異常損傷の発生を防止するとともに、Al層の靭性を向上させることにより、チッピング、剥離等の耐異常損傷性の向上、及び工具寿命の長寿命化を図るべく鋭意研究を行った。その結果、Ti化合物層からなる下部層とAl層からなる上部層とを被覆形成した被覆工具において、Al層の全対応粒界長に占める各構成原子共有格子点からなる対応粒界長の割合が示された対応粒界分布グラフにおいて、Σ3からΣ29の範囲内でΣ3に最高ピークが存在し、Σ3対応粒界の分布割合を高めつつ、前記下部層と前記上部層との界面から、前記上部層の最表面まで連続するΣ3の構成原子共有格子点形態を有する粒界の割合を高めることで、耐剥離性の向上が図られることを見出した。
 本発明は、前述した知見に基づき、研究を重ねた結果、完成したものであって、以下のような態様を有する。
(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体と該工具基体の表面に蒸着形成された硬質被覆層を備える表面被覆切削工具であって、
 前記硬質被覆層は、工具基体の表面に形成された下部層と該下部層上に形成された上部層とを有し、
(a)前記下部層は、3~20μmの合計平均層厚を有し、TiC、TiN、TiCN、TiCO、TiCNOのうちの2層以上からなり、その内の少なくとも1層はTiCN層で構成したTi化合物層からなり、
(b)前記上部層は、2~20μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するAl層からなり、
(c)前記上部層のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、コランダム型六方晶結晶格子からなる結晶格子面のそれぞれの法線の方位を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(「構成原子共有格子点」という)からなる対応粒界の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、それぞれの分布割合を算出し、Σ3からΣ29の範囲内の全対応粒界長に占める各構成原子共有格子点形態からなる対応粒界の割合が示された対応粒界分布グラフにおいて、Σ3からΣ29の範囲内ではΣ3に最高ピークが存在し、かつ、Σ3からΣ29の範囲内に占める前記Σ3の分布割合が70%以上であり、
(d)前記上部層全体のAl結晶粒に分布しているΣ3の構成原子共有格子点形態を有する粒界のうち、前記下部層と前記上部層との界面から、前記上部層の最表面まで連続するΣ3の構成原子共有格子点形態を有する粒界の割合が60%以上である表面被覆切削工具。
(2)前記下部層(a)の最表面層が、少なくとも500nm以上の層厚を有するTiCN層からなり、不可避不純物としての酸素を除けば、前記TiCN層と前記上部層の界面から500nmまでの深さ領域にのみ酸素が含有されており、前記深さ領域に含有される平均酸素含有量は、前記深さ領域に含有されるTi,C,N,Oの合計含有量の1~3原子%である(1)に記載の表面被覆切削工具。
(3)前記上部層のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在するコランダム型六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を0~45度の範囲内で測定した場合、工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、その傾斜角が0~10度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の70%以上である(1)または(2)に記載の表面被覆切削工具。
(4)前記上部層のAl結晶粒のうち、アスペクト比が5以上である結晶粒が面積割合で80%以上である(1)乃至(3)のいずれかに記載の表面被覆切削工具。
 本発明の被覆工具によれば、硬質被覆層の上部層におけるΣ3対応粒界の分布割合は70%以上と高く、しかも、上部層におけるΣ3対応粒界の60%以上が、下部層と上部層との界面から、上部層の最表面まで連続して形成されている。これによって、前記被覆工具の上部層内部の結晶粒界強度が高められ、すぐれた耐剥離性、耐チッピング性を示す。
 これに加えて、本発明の下部層の最表面層は、酸素を含有するTiCN層(以下、酸素含有TiCN層ともいう)で形成されている。これによって、前記被覆工具の上部層と下部層の付着強度が向上するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数割合をさらに高めることができ、より一段と耐摩耗性を向上させることができる。
 さらに、上部層のAl結晶粒のうち、アスペクト比が5以上である結晶粒が面積割合で80%以上であることによって、すぐれた耐摩耗性を発揮する。また、上部層のAl結晶粒の0~10度の範囲内の傾斜角区分に存在する度数の合計が、度数全体の70%以上であることによって、一段と耐摩耗性が向上する。
 そのため、本発明の被覆工具によれば、各種の鋼や鋳鉄などの切削加工を高速で、かつ、切刃に断続的・衝撃的負荷が作用する高送り、高切り込みの高速断続重切削条件で行った場合でも、剥離、チッピング等の異常損傷の発生もなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する。
本発明被覆工具における、対応粒界分布グラフの一例を示す。 本発明被覆工具における、傾斜角度数分布グラフの一例を示す。 比較例被覆工具における、対応粒界分布グラフの一例を示す。 比較例被覆工具における、傾斜角度数分布グラフの一例を示す。
 ここで本発明の実施形態について詳細に説明する。
(a)下部層:
 下部層を構成するTi化合物層(例えば、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層)は、基本的にはAl層の下部層として存在し、Ti化合物が有するすぐれた高温強度によって、硬質被覆層に対して高温強度を与える。その他にも、下部層のTi化合物層は、工具基体表面、及びAl層からなる上部層のいずれにも密着し、硬質被覆層の工具基体に対する密着性を維持する作用を有する。しかしながら、下部層のTi化合物層の合計平均層厚が3μm未満である場合、前述した作用を十分に発揮させることができない。一方、下部層のTi化合物層の合計平均層厚が20μmを越える場合、特に高熱発生を伴う高速重切削・高速断続切削では熱塑性変形を起し易くなり、偏摩耗の原因となる。以上から、下部層のTi化合物層の合計平均層厚は3~20μmと定めた。上記下部層のTi化合物層の合計平均層厚は、好ましくは5~15μmであるが、これに限定されることはない。
(b)下部層の最表面層:
 本発明の実施形態の下部層(下部層の最表面層も含む)は、従来方法と同様な化学蒸着条件で成膜することができるが、下部層の最表面層は、例えば、以下のようにして形成することが望ましい。
 即ち、まず、通常の化学蒸着装置を使用して、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなる種々のTi化合物層を蒸着形成(なお、TiCN層のみを蒸着形成することも勿論可能である)する。その後、同じく通常の化学蒸着装置を使用して、以下の条件で化学蒸着し、下部層の最表面層として、酸素含有TiCN層を形成する。
 反応ガス組成(容量%):TiCl 2~10%、CHCN 0.5~1.0%、N 25~60%、残部H
 反応雰囲気温度:750~930℃、
 反応雰囲気圧力:5~15kPa。
 すなわち、本発明の実施形態における下部層は、1層または2層以上からなる種々のTi化合物層を形成した後に、上記条件により形成される、下部層の最表面層である酸素含有TiCN層を含むことが好ましい。また、下部層の最表面層の形成工程では、所定層厚を得るに必要とされる蒸着時間終了前の5分から30分の間で、全反応ガス量に対して1~5容量%のCOガスを添加して化学蒸着を行う。これにより、下部層の最表面と上部層との界面から、下部層の最表面層の層厚方向に最大500nmまでの深さ領域に含有される平均酸素含有量を、Ti、C、N、Oの合計含有量の1~3原子%とすることができるため、上記の平均酸素含有量の酸素を含有する酸素含有TiCN層を蒸着形成させやすくなる。なお、この下部層の最表面層と上部層との界面から、下部層の最表面層の膜厚方向に500nmを超える深さ領域には、不可避不純物として0.5原子%未満の酸素が含有されることが許容される。このため、本発明で定義される「酸素を含有しない」とは、厳密には酸素の含有量が0.5原子%未満であることを意味する。
 酸素含有TiCN層からなる前記下部層の最表面層は、例えば、その上に、好ましいAl結晶粒を形成するために(後記(c)参照)、少なくとも500nm以上の層厚をもたせて形成し、かつ、この酸素含有TiCN層と上部層との界面から、層厚方向に最大500nmまでの深さ領域に含有される酸素を、Ti、C、N、Oの合計含有量の1から3原子%としてもよい。これにより、前記酸素含有TiCN層の膜厚方向に最大500nmまでの深さ領域にのみ酸素を含有させることができる。
 ここで、酸素含有TiCN層の深さ領域を前述のように限定したのは、500nmより深い領域において酸素が含有されていると、TiCN層の最表面の組織形態が柱状組織から粒状組織に変化しやすくなるためである。また、下部層の最表面層直上のAl結晶粒の構成原子共有格子点形態を所望のものとしにくくなる。
 ただ、深さ領域500nmまでの平均酸素含有量が1原子%未満では、上部層と下部層のTiCNの付着強度の向上の度合いが低くなりやすくなる。また、下部層の最表面層直上のAl結晶粒の構成原子共有格子点形態を得にくくなる。一方、この深さ領域における平均酸素含有量が3原子%を超えると、下部層の最表面層直上の上部層のAlにおいて、Σ3からΣ29の範囲内に占めるΣ3の分布割合70%未満となり、上部層の高温硬さが低下しやすくなる。上記酸素含有TiCN層の500nmまでの深さ領域に含有される平均酸素含有量は、好ましくは1.2~2.5原子%であるが、これに限定されることはない。
 ここで、平均酸素含有量は、下部層の最表面層を構成する前記TiCN層と上部層との界面から、このTiCN層の層厚方向に500nmまでの深さ領域におけるチタン(Ti),炭素(C),窒素(N)及び酸素(O)の合計含有量に占める酸素(O)含有量を原子%(=O/(Ti+C+N+O)×100)で表したものをいう。
 本発明の実施形態の下部層は、従来方法と同様な化学蒸着条件で成膜することができるが、本発明の実施形態の下部層の最表面層としては、上記の酸素含有TiCN層を形成することが望ましい。
(c)上部層のAl結晶粒:
 下部層の最表面層に前記(b)の酸素含有TiCN層を蒸着形成した後、上部層のAl層を以下の条件で形成する。
 即ち、前記(b)で形成した酸素含有TiCN層の表面を、以下の条件で処理する。
<下部層表面処理>
 反応ガス組成(容量%):CO 2~10%、CO 2~10%、残部H
 雰囲気温度:900~950℃、
 雰囲気圧力:5~15kPa、
 処理時間:20~60min。
 次に、以下の蒸着条件で、Alの初期成長を行った後、Al上層を蒸着形成させることにより、所定の構成原子共有格子点形態を有するAl結晶粒からなる上部層が形成される。Al初期成長工程は、所定の上部層を確実に形成させるために行われる。なお、本発明の実施形態では、上部層の目標層厚をAl初期成長工程とAl上層形成工程で形成された膜厚の合計としている。
<Al初期成長>
 反応ガス組成(容量%):AlCl 0.5~3%、CO 1~5%、HCl 0.5~2.0%、残部H
 雰囲気温度:950~1040℃、
 雰囲気圧力:5~15kPa、
 処理時間:10~120min。
<Al上層形成>
 反応ガス組成(容量%):AlCl 1~3%、CO 3~15%、HCl 1~3%、HS 0.5~1.5%、残部H
 反応雰囲気温度:950~1040℃、
 反応雰囲気圧力:5~15kPa、
 処理時間:(目標とする上部層層厚になるまで)。
 なお、上部層全体の層厚が、2μm未満であると長期の使用に亘ってすぐれた高温強度および高温硬さを発揮することができず、一方、20μmを越えると、チッピングが発生し易くなることから、上部層の層厚は2~20μmと定めた。上記上部層の層厚は、好ましくは3~15μmであるが、これに限定されることはない。
 また、本発明の実施形態では、下部層表面処理工程の処理時間を20~60minに設定している。これにより、下部層と上部層との界面から、上部層の最表面まで連続するΣ3対応粒界の割合を高めることができる。また、下部層表面処理工程の雰囲気温度を900~950℃に設定している。これにより、下部層の最表面層と上部層界面の密着性が向上する。上記下部層表面処理工程の処理時間は、好ましくは25~45minであるが、これに限定されることはない。また、上記下部層の表面処理の反応雰囲気温度は、好ましくは900~930℃であるが、これに限定されることはない。
 なお、Al上層形成工程の反応ガスのうち、AlClの添加量は、好ましくは1.5~2.5%であり、COの添加量は、好ましくは5~10%であり、HClの添加量は、好ましくは1.5~2.5%であり、HSの添加量は、好ましくは0.75~1.25%であるが、これに限定されることはない。
 さらに、上部層を構成するα型の結晶構造を有するAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その構成原子共有格子点形態からなる対応粒界を詳細に解析すると、対応粒界分布グラフは、Σ3からΣ29の範囲内でΣ3に最高ピークが存在し、かつ、前記Σ3の分布割合がΣ3からΣ29の範囲内に占める分布割合の70%以上を占めるグラフを示す。
 また、本発明の実施形態では、前記(c)の成膜条件のうち、Al上層形成工程におけるCOとHSの添加量を調整している。これによって、上部層の対応粒界分布グラフにおいて、Σ3からΣ29の範囲内でΣ3に最高ピークが存在し、かつ、前記Σ3の分布割合がΣ3からΣ29の範囲内に占める分布割合の70%以上となりやすくなる。ここで、Σ3に最高ピークが存在しない場合、あるいは、Σ3の分布割合が70%未満であると、Al結晶粒の粒界強度が十分でなく、高負荷が作用した場合のチッピング、欠損等の発生を抑制する効果が十分でない。
 したがって、この発明の実施形態では、上部層の対応粒界分布グラフにおいて、Σ3からΣ29の範囲内でΣ3にピークが存在するとともに、Σ3からΣ29の範囲内に占めるΣ3の分布割合を70%以上と定めた。上記Σ3からΣ29の範囲内に占めるΣ3の分布割合は、好ましくは75~90%であるが、これに限定されることはない。
 上部層の構成原子共有格子点形態は、以下の手順で測定することができる。
 まず、被覆工具について、その縦断面(被覆工具表面に垂直な断面)を研磨面とする。
 次に、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、断面研磨面の測定範囲内に存在するコランダム型六方晶結晶格子を有する結晶粒個々に電子線を照射して、結晶格子面のそれぞれの法線の方位のなす角度を測定する。
 ついで、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子間で1つの構成原子を共有する格子点(「構成原子共有格子点」)の分布を算出する。
 そして、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方晶結晶格子の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、それぞれの分布割合を算出し、Σ3からΣ29の範囲内に占める全粒界長の単位形態全体の合計分布割合に占めるΣN+1のそれぞれの分布割合を示す対応粒界分布グラフ(図1参照)を作成する。これによって、Σ3のピークの存在、Σ3からΣ29の範囲内に占めるΣ3の分布割合を求めることができる。
 Σ29以下の対応粒界とΣ31以上の対応粒界を区別しているのは、H.Grimmerらの論文(Philosophical Magazine A,1990,Vol.61,No.3,493-509)にあるように、分布頻度の観点から、α―Alの対応粒界はNの上限を28としたΣ3からΣ29までの粒界が主な対応粒界であることが報告されているためである。Σ3、Σ7、Σ11、Σ17、Σ19、Σ21、Σ23、Σ29のそれぞれの対応粒界は上記論文に示された、対応粒界を構成する結晶粒間のなす角度の値を用いて同定した。また、隣接する結晶格子間で構成原子共有格子点間に構成原子を共有しない格子点がN個存在する構成原子共有格子点形態を満たすΣN+1の対応粒界から、結晶粒間のなす角度の値にどの程度の誤差Δθまでを許容できるかという基準として、Δθ=5°として計算を行った。
 また、本発明の実施形態では、前記(c)の上部層のAl結晶粒形成工程によって、上部層のAl層を蒸着形成することにより、下部層と上部層との界面から、上部層の最表面まで連続するΣ3対応粒界の割合を60%以上とすることできる。これにより、上部層内のAl結晶粒組織同士の粒界強度を高めることができ、よりAl結晶粒の耐チッピング性を高めることができるため、高速断続切削加工において、すぐれた耐剥離性、耐チッピング性を発揮することができる。上記下部層と上部層との界面から、上部層の最表面まで連続するΣ3対応粒界の割合は、好ましくは65~80%であるが、これに限定されることはない。
 また、本発明の実施形態では、前記(c)の成膜条件のうち、Al上層形成工程において、AlClとHSの添加量を調整することによって、上部層の傾斜角度数分布グラフにおける傾斜角が0~10度の範囲内にあるAl結晶粒の度数割合を、度数全体の70%以上とすることができる。
 そしてこれによって、上部層の高温硬さが向上し、耐摩耗性の向上に寄与する。
 上部層のAl結晶粒の傾斜角度数分布及び傾斜角が0~10度の範囲内にあるAl結晶粒の度数割合は、以下のようにして求めることができる。
 まず、被覆工具の上部層を含む断面研磨面の測定範囲内に存在するコランダム型六方晶結晶格子を有する結晶粒個々に電子線を照射し、前記Al結晶粒の配向性に関わるデータを得る。そして、このデータを基に、前記工具基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した場合、前記測定傾斜角のうちの0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分し、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わす。そして、その傾斜角が0~10度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計を、傾斜角度数分布グラフ(図2参照)における度数全体に占める度数割合として測定する。
 前述の手順で得られるAl結晶粒の(0001)面の法線がなす傾斜角は、前記蒸着条件のうちの、AlClガス量に対するCOガス量やHSガス量の比を相対的に多くすることによって、傾斜角度数分布グラフにおける0~10度の傾斜角区分に存在する度数割合が度数全体の60%以上という値を得ることができる。(0001)配向Al結晶粒、即ち、(0001)面の法線がなす傾斜角が0~10度の傾斜角区分に存在するAl結晶粒が、傾斜角度数分布グラフにおける度数全体の70%未満であると、高温強度および高温硬さが低下する。
 したがって、本発明の実施形態では、上部層のAl結晶粒について、工具基体表面の法線に対して、Al結晶粒の(0001)面の法線の傾斜角が0~10度の範囲内にある結晶粒の度数の合計を、傾斜角度数分布グラフにおける度数全体の70%以上と定めた。上記上部層の傾斜角度数分布グラフにおける傾斜角が0~10度の範囲内にあるAl結晶粒の度数割合は、好ましくは度数全体の75~85%であるが、これに限定されることはない。
 また、本発明の実施形態では、前記(c)の成膜条件のうち、COとHClの添加量を調整することによって、上部層のAl結晶粒のうち、アスペクト比が5以上である結晶粒の面積割合を80%以上とすることができる。これによって、上部層の耐摩耗性をより向上させることができる。アスペクト比が5以上である結晶粒の面積割合が80%未満であると、高速断続重切削加工におけるクラック伝搬抑制効果があるものの、高温強度および高温硬さの向上が望めない。このことから、アスペクト比が5以上である結晶粒の面積割合は80%以上とすることが望ましい。上記上部層のAl結晶粒のうち、アスペクト比が5以上である結晶粒の面積割合は、好ましくは85%以上であるが、これに限定されることはない。
 本発明の被覆工具を、実施例に基づいて具体的に説明する。特に、本発明の被覆工具の硬質被覆層を構成する各層について、詳細に説明する。
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、およびCo粉末を用意した。これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した。その後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持して真空焼結した。焼結後、ISO規格CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A~Eをそれぞれ製造した。
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、ZrC粉末、TaC粉末、NbC粉末、Mo2C粉末、WC粉末、Co粉末およびNi粉末を用意した。これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した。その後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持して焼結した。焼結後、ISO規格CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体a~eを作製した。
 ついで、これらの工具基体A~Eおよび工具基体a~eのそれぞれを、通常の化学蒸着装置に装入し、以下の手順で本発明被覆工具1~13をそれぞれ製造した。
(a)まず、表3に示される条件にて、表7に示される目標層厚となるように下部層のTi化合物層を蒸着形成した。
(b)次に、表4に示される条件にて、下部層の最表面層としての酸素含有TiCN層(即ち、下部層の最表面層と上部層との界面から、下部層の最表面層の膜厚方向に500nmまでの深さ領域にのみ、平均酸素含有量(O/(Ti+C+N+O)×100)が1から3原子%の酸素が含有される)を表8に示される目標層厚となるように形成した。なお、表4の酸素含有TiCN層種別Dでは、蒸着時間終了前の5~30分の間にCOガスを添加しなかった。
(c)次に、表5に示される条件にて、下部層の最表面のTiCN層にCOとCOの混合ガスによる酸化処理(下部層表面処理)を行った。なお、表5の下部層表面処理種別Dでは、反応雰囲気温度を変更した。
(d)次に、表6に示される初期成長条件にて、Alの初期成長を行い、同じく表6に示される上層形成条件による蒸着を表8に示される目標層厚となるまで行うことにより、本発明被覆工具1~13をそれぞれ製造した。なお、表6の初期成長条件の形式記号Dでは、反応ガス組成のうち、COの供給量を変更した。また、表6の上層形成条件の形式記号dでは、反応ガス組成のうち、CO及びHSの供給量を変更した。
 また、比較の目的で、前記本発明被覆工具1~13の製造条件から外れる条件で前記工程(c)、(d)を行うことにより、表9に示す比較例被覆工具1~13をそれぞれ製造した。
 ついで、本発明被覆工具1~13と比較例被覆工具1~13については、下部層の最表面層を構成するTiCN層について、下部層のTiCN層の層厚方向に500nmまでの深さ領域における平均酸素含有量(=O/(Ti+C+N+O)×100)、及び500nmを超える深さ領域における平均酸素含有量(=O/(Ti+C+N+O)×100)を測定した。平均酸素含有量は、オージェ電子分光分析器を用い、被覆工具の断面研磨面に下部層のTi炭窒化物層の最表面からTi炭化物層の膜厚相当の距離の範囲に直径10nmの電子線を照射させていき、Ti、C、N、Oのオージェピークの強度を測定し、それらのピーク強度の総和からOのオージェピーク強度の割合を算出して求めた。
 また、下部層のTiCN層に不可避的に含有する酸素含有量を求めるため、別途炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、以下の条件で下部層のTiCN層を化学蒸着した。
 反応ガス組成(容量%):TiCl 2~10%、CHCN 0.5~1.0%、N 25~60%、残部H
 反応雰囲気温度:750~930℃、
 反応雰囲気圧力:5~15kPa。 
 これにより、酸素を意図的に含有させないTiCN(以下、不可避酸素含有TiCNという)層を3μm以上の層厚で形成した。この不可避酸素含有TiCN層の表面から層厚方向に500nmより深い領域に不可避的に含まれる酸素含有量を、オージェ電子分光分析器を用いて前記深さ領域に含有されるTi、C、N、Oの合計含有量に対する割合から求めた。その結果、オージェ電子分光分析器の精度の範囲内で求められる不可避酸素含有量が0.5原子%未満であったことから、TiCN層に不可避的に含有する酸素含有量を0.5原子%と定めた。
 前述の平均酸素含有量から、不可避酸素含有量(すなわち、0.5原子%)を差し引いた値を下部層の最表面層を構成するTiCN層の平均酸素含有量として求めた。
 表8、9にこれらの値を示す。
 ついで、硬質被覆層の上部層のAlについて、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、Al結晶粒の結晶格子面のそれぞれの法線のなす角度を測定した。この測定結果から、隣接する結晶格子相互の結晶方位関係を算出することにより、上部層のAlの対応粒界分布を測定した。
 図1に、この測定により得られた本発明被覆工具1の上部層について求めた対応粒界分布グラフの一例を示す。
 図1から、本発明被覆工具1は、Σ3からΣ29の範囲内でΣ3に最高ピークが形成され、Σ3からΣ29の範囲内に占めるΣ3対応粒界の分布割合は89%となり、70%以上であることが分かった。
 また、上部層のAlのΣ3対応粒界が、下部層と上部層の界面から、上部層の最表面まで連続するか否かを、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて観察した。
 下部層と上部層の界面から上部層の最表面まで連続するΣ3対応粒界の割合は、以下の手順により求めた。
 まず、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、本発明被覆工具の上部層の断面研磨面(上部層表面に垂直な断面)に対して、70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在するコランダム型六方晶結晶格子を有する結晶粒個々に0.1μm/stepの間隔で照射した。測定範囲は、基体表面に平行な方向に50μm、基体表面方向に直交する方向に該Al層の層厚を上限とする領域とした。なお、前記基体表面方向に直交する方向の長さは、少なくとも3μmとした。電子線後方散乱回折装置を用いて、電子線を0.1μm/stepの間隔で照射して得られた電子線後方散乱回折像に基づき、結晶格子面のそれぞれの法線の方位のなす角度を測定した。
 ついで、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子間で1つの構成原子を共有する構成原子共有格子点からなる対応粒界マッピングを作成した。
 その中で、前記構成原子共有格子点間に構成原子を共有しない格子点が1個であるΣ3対応粒界の全粒界長のうち、下部層と上部層の界面から、上部層のAl結晶粒の最表面まで連続して存在しているΣ3粒界の粒界長の値を求め、Σ3対応粒界の全粒界長の値で除することで、下部層と上部層の界面から上部層の最表面まで連続するΣ3対応粒界の割合を算出した。
 この結果、例えば、本発明被覆工具1では、下部層と上部層の界面から、上部層の最表面まで連続するΣ3対応粒界は、全粒界長の60%以上であることが分かった。
 また、上部層のAl結晶粒のアスペクト比を、以下の手順により求めた。
 電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、本発明被覆工具の上部層の断面研磨面に対して、70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在するコランダム型六方晶結晶格子を有する結晶粒個々に0.1μm/stepの間隔で照射した。測定範囲は、基体表面に平行な方向に50μm、基体表面方向に直交する方向に該Al層の層厚を上限とする領域とした。なお、前記基体表面方向に直交する方向の長さは、少なくとも2μmとした。電子線後方散乱回折装置を用いて、電子線を0.1μm/stepの間隔で照射して得られた電子線後方散乱回折像に基づき、工具基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した。また、個々の結晶格子間の方位差(回転角)を個々の結晶格子のオイラー角の差から測定した。その際、隣接する測定点の結晶格子間の方位差(回転角)が5度以上である場合に、相互に隣接する測定点の境界を結晶粒界とした。さらに、結晶粒界に囲まれ、他の結晶粒界に分断されていない範囲を同一の結晶粒として特定した。特定した結晶粒各々について、工具基体表面方向に対して垂直な方向を長軸、工具基体表面方向に対して平行な方向を短軸とし、長軸および短軸の長さを求め、それらの比からアスペクト比を求めた。そのアスペクト比が5以上である結晶粒の面積割合は、鏡面研磨加工した断面を、電界放出型走査電子顕微鏡を用いて、観察倍率2,000倍で横方向:50μm×縦方向:上部層の膜厚相当の領域を測定することで算出した。
 さらに、上部層のAlについて、Al結晶粒の(0001)面の法線がなす傾斜角の度数分布を、以下の手順で電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて測定した。
 まず、上部層の断面研磨面の測定範囲(例えば、上部層の厚さ方向に0.3μm×工具基体表面と平行方向に50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットした。次に、断面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、断面研磨面の測定範囲内に存在するコランダム型六方晶結晶格子を有する結晶粒個々に0.1μm/stepの間隔で照射した。測定範囲は、基体表面に沿った方向に50μm、基体表面方向に直交する方向に該Al層の層厚を上限とする領域とした。なお、前記基体表面方向に直交する方向の長さは、少なくとも2μmとした。電子線後方散乱回折装置を用いて、電子線を0.1μm/stepの間隔で電子線を照射して得られた電子線後方散乱回折像に基づき、前記工具基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した。そして、測定された傾斜角(以下、「測定傾斜角」という)のうちの0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした。その後、その傾斜角が0~10度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計を傾斜角度数分布グラフにおける度数全体に占める度数割合として求めた。
 図2に、本発明被覆工具1の上部層について求めた傾斜角度数分布グラフを示す。
 図2から、本発明被覆工具1の上部層は、0~10度の傾斜角区分に存在するAl結晶粒の度数割合は85%となり、70%以上であることが分かった。
 また、比較例被覆工具の上部層についても、本発明被覆工具と同様にして、構成原子共有格子点分布グラフにおいてΣ3からΣ29の範囲内で最高ピークが存在する対応粒界、Σ3対応粒界の分布割合、下部層と上部層の界面から上部層の最表面まで連続するΣ3対応粒界の割合、アスペクト比、傾斜角度数分布グラフにおいて最高ピークが存在する傾斜角区分、及び0~10度の傾斜角区分に存在するAl結晶粒の度数割合を求めた。
 表8、表9にこれらの値を示す。
 また、図3に、比較例被覆工具1の上部層について求めた対応粒界分布グラフを示す。
 図4に、比較例被覆工具1の上部層について求めた傾斜角度数分布グラフを示す。
 図1、図2、表8、図3、図4、表9にも示されるように、本発明被覆工具の上部層は、全ての被覆工具について、Σ3からΣ29の範囲内でΣ3に最高ピークが存在するとともに、Σ3の分布割合が70%以上であった。さらに、下部層と上部層の界面から上部層の最表面まで連続するΣ3対応粒界の割合は60%以上であった。それに対して、比較例被覆工具では、Σ3からΣ29の範囲内でΣ3に最高ピークが存在しない、若しくは、Σ3の分布割合が70%未満である、または、下部層と上部層の界面から上部層の最表面まで連続するΣ3対応粒界の割合は60%未満であった。
 そのため、本発明被覆工具は、上部層の靭性、硬さ、強度にすぐれ、耐剥離性、耐チッピング性に優れているが、比較例被覆工具は、高速断続重切削条件では耐剥離性、耐チッピング性が十分ではなかった。
 なお、本発明被覆工具1~13、比較例被覆工具1~13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 つぎに、本発明被覆工具1~13、比較例被覆工具1~13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下に示す切削試験、ニッケルクロムモリブデン合金鋼の乾式高速断続切削試験(切削条件A)、乾式高速高切込断続切削試験(切削条件B)、ダクタイル鋳鉄の乾式高速断続切削試験(切削条件C)を実施し、切刃の逃げ面摩耗幅を測定した。
 切削条件A:
 被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り、
 切削速度:350m/min、
 切り込み:1.5mm、
 送り:0.35mm/rev、
 切削時間:5分。
(通常の切削速度、送り量はそれぞれ、250m/min、0.3mm/rev)
 切削条件B:
 被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り、
 切削速度:350m/min、
 切り込み:3.0mm、
 送り:0.3mm/rev、
 切削時間:5分。
(通常の切削速度、切込量、送り量はそれぞれ、200m/min、1.5mm、0.3mm/rev)
 切削条件C:
 被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り棒材、
 切削速度:350m/min、
 切り込み:2.0mm、
 送り:0.35mm/rev、
 切削時間:5分。
(通常の切削速度、切込量、送り量はそれぞれ250m/min、1.5mm、0.3mm/rev)
 表10にこの測定結果を示した。なお、上記通常の切削速度とは、従来被覆インサートを用いた場合の効率(一般には、工具寿命までに加工できる部品の数など)が最適となる切削速度をいう。この速度を超えて切削を行うと工具の寿命が極端に短くなり、加工の効率が低下する。
Figure JPOXMLDOC01-appb-T000010
 表10に示される結果から、本発明被覆工具1~13は、その上部層が、すぐれた高温強度、高温靭性と高温硬さを備えるため、剥離、チッピング等の異常損傷の発生もなく、長期の使用に亘ってすぐれた耐摩耗性を示した。
 これに対して、比較例被覆工具1~13では、高速断続重切削加工においては、硬質被覆層の剥離発生、チッピング発生により、比較的短時間で使用寿命に至った。
 前述のように、本発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、切刃に断続的・衝撃的高負荷が作用する高速断続重切削という厳しい切削条件下でも、硬質被覆層の剥離、チッピングが発生することはなく、長期の使用に亘ってすぐれた切削性能を発揮する。これより、本発明の被覆工具は、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できる。

Claims (4)

  1.  炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体と該工具基体の表面に蒸着形成された硬質被覆層を備える表面被覆切削工具であって、
     前記硬質被覆層は、工具基体の表面に形成された下部層と該下部層上に形成された上部層とを有し、
    (a)前記下部層は、3~20μmの合計平均層厚を有し、TiC、TiN、TiCN、TiCO、TiCNOのうちの2層以上からなり、その内の少なくとも1層はTiCN層で構成したTi化合物層からなり、
    (b)前記上部層は、2~20μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するAl層からなり、
    (c)前記上部層全体のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、コランダム型六方晶結晶格子からなる結晶格子面のそれぞれの法線の方位を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(「構成原子共有格子点」という)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、それぞれの分布割合を算出し、Σ3からΣ29の範囲内の全対応粒界長に占める各構成原子共有格子点形態からなる対応粒界の割合が示された対応粒界分布グラフにおいて、Σ3からΣ29の範囲内ではΣ3に最高ピークが存在し、かつ、Σ3からΣ29の範囲内に占める前記Σ3の分布割合が70%以上であり、
    (d)前記上部層全体のAl結晶粒に分布しているΣ3の構成原子共有格子点形態を有する粒界のうち、前記下部層と前記上部層との界面から、前記上部層の最表面まで連続するΣ3の構成原子共有格子点形態を有する粒界の割合が60%以上である表面被覆切削工具。
  2.  前記下部層(a)の最表面層が、少なくとも500nm以上の層厚を有するTiCN層からなり、不可避不純物としての酸素を除けば、前記TiCN層と前記上部層の界面から500nmまでの深さ領域にのみ酸素が含有されており、前記深さ領域に含有される平均酸素含有量は、前記深さ領域に含有されるTi,C,N,Oの合計含有量の1~3原子%である請求項1に記載の表面被覆切削工具。
  3.  前記上部層のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在するコランダム型六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を0~45度の範囲内で測定した場合、工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、その傾斜角が0~10度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の70%以上である請求項1または2に記載の表面被覆切削工具。
  4.  前記上部層のAl結晶粒のうち、アスペクト比が5以上である結晶粒が面積割合で80%以上である請求項1乃至3のいずれか一項に記載の表面被覆切削工具。
PCT/JP2015/065558 2014-05-30 2015-05-29 表面被覆切削工具 WO2015182746A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167035485A KR20170012334A (ko) 2014-05-30 2015-05-29 표면 피복 절삭 공구
EP15799293.4A EP3150309B1 (en) 2014-05-30 2015-05-29 Surface-coated cutting tool
US15/312,922 US10456844B2 (en) 2014-05-30 2015-05-29 Surface-coated cutting tool
CN201580037433.7A CN106536102B (zh) 2014-05-30 2015-05-29 表面包覆切削工具

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-112772 2014-05-30
JP2014112772 2014-05-30
JP2015-104021 2015-05-21
JP2015104021A JP6548072B2 (ja) 2014-05-30 2015-05-21 表面被覆切削工具

Publications (1)

Publication Number Publication Date
WO2015182746A1 true WO2015182746A1 (ja) 2015-12-03

Family

ID=54699066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065558 WO2015182746A1 (ja) 2014-05-30 2015-05-29 表面被覆切削工具

Country Status (6)

Country Link
US (1) US10456844B2 (ja)
EP (1) EP3150309B1 (ja)
JP (1) JP6548072B2 (ja)
KR (1) KR20170012334A (ja)
CN (1) CN106536102B (ja)
WO (1) WO2015182746A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061856A1 (ja) * 2016-09-30 2018-04-05 三菱マテリアル株式会社 表面被覆切削工具
JP2018058200A (ja) * 2016-09-30 2018-04-12 三菱マテリアル株式会社 表面被覆切削工具
EP3315632A1 (en) * 2016-10-19 2018-05-02 Tungaloy Corporation Coated cutting tool

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738556B2 (ja) * 2015-06-26 2020-08-12 三菱マテリアル株式会社 表面被覆切削工具
WO2017057273A1 (ja) * 2015-09-30 2017-04-06 日本碍子株式会社 静電チャック
JP6905807B2 (ja) * 2016-08-29 2021-07-21 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具
US10332929B2 (en) 2016-09-07 2019-06-25 Mei-Yen Lee Integrated sensing module and integrated sensing assembly using the same
US10417473B2 (en) 2016-09-07 2019-09-17 Mei-Yen Lee Optical imaging system with variable light field for biometrics application
JP6928220B2 (ja) * 2016-10-04 2021-09-01 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
US11286570B2 (en) * 2017-01-26 2022-03-29 Walter Ag Coated cutting tool
US11241743B2 (en) * 2017-06-29 2022-02-08 Kyocera Corporation Coated tool, cutting tool, and method for manufacturing machined product
JP7486045B2 (ja) * 2020-03-26 2024-05-17 三菱マテリアル株式会社 表面被覆切削工具
JP7167965B2 (ja) * 2020-07-08 2022-11-09 株式会社タンガロイ 被覆切削工具
JP7167966B2 (ja) * 2020-07-08 2022-11-09 株式会社タンガロイ 被覆切削工具
WO2024048757A1 (ja) * 2022-08-31 2024-03-07 京セラ株式会社 被覆工具および切削工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198735A (ja) * 2005-01-21 2006-08-03 Mitsubishi Materials Corp 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2006297579A (ja) * 2005-03-24 2006-11-02 Mitsubishi Materials Corp 高硬度鋼の高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2006326713A (ja) * 2005-05-24 2006-12-07 Mitsubishi Materials Corp 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
WO2013038000A1 (en) * 2011-09-16 2013-03-21 Walter Ag Grain boundary engineered alpha-alumina coated cutting tool
JP2013063504A (ja) * 2011-08-31 2013-04-11 Mitsubishi Materials Corp 表面被覆切削工具

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619866A (en) * 1980-07-28 1986-10-28 Santrade Limited Method of making a coated cemented carbide body and resulting body
JPH0818163B2 (ja) 1986-03-31 1996-02-28 京セラ株式会社 アルミナコ−テイング工具およびその製造方法
US5665431A (en) 1991-09-03 1997-09-09 Valenite Inc. Titanium carbonitride coated stratified substrate and cutting inserts made from the same
JP3230372B2 (ja) 1994-06-15 2001-11-19 三菱マテリアル株式会社 硬質被覆層がすぐれた層間密着性および耐欠損性を有する表面被覆炭化タングステン基超硬合金製切削工具
JP3808648B2 (ja) * 1998-11-25 2006-08-16 日立ツール株式会社 炭窒酸化チタン膜被覆工具
JP2004284003A (ja) * 2003-02-28 2004-10-14 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
SE526526C3 (sv) * 2003-04-01 2005-10-26 Sandvik Intellectual Property Sätt att belägga skär med A1203 samt ett med A1203 belagt skärverktyg
JP4518258B2 (ja) * 2004-08-11 2010-08-04 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
CN100496824C (zh) 2004-10-29 2009-06-10 住友电工硬质合金株式会社 表面被覆切削工具
DE102004063816B3 (de) 2004-12-30 2006-05-18 Walter Ag Al2O3-Multilagenplatte
AT503050B1 (de) 2005-11-17 2007-09-15 Boehlerit Gmbh & Co Kg Metallcarbonitridschicht
EP2085500B1 (en) * 2007-12-28 2013-02-13 Mitsubishi Materials Corporation Surface-coated cutting tool with hard coating layer having excellent abrasion resistance
JP5286930B2 (ja) * 2008-05-21 2013-09-11 三菱マテリアル株式会社 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2010106811A1 (ja) * 2009-03-18 2010-09-23 三菱マテリアル株式会社 表面被覆切削工具
JP5257184B2 (ja) * 2009-03-25 2013-08-07 三菱マテリアル株式会社 表面被覆切削工具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198735A (ja) * 2005-01-21 2006-08-03 Mitsubishi Materials Corp 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2006297579A (ja) * 2005-03-24 2006-11-02 Mitsubishi Materials Corp 高硬度鋼の高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2006326713A (ja) * 2005-05-24 2006-12-07 Mitsubishi Materials Corp 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2013063504A (ja) * 2011-08-31 2013-04-11 Mitsubishi Materials Corp 表面被覆切削工具
WO2013038000A1 (en) * 2011-09-16 2013-03-21 Walter Ag Grain boundary engineered alpha-alumina coated cutting tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150309A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061856A1 (ja) * 2016-09-30 2018-04-05 三菱マテリアル株式会社 表面被覆切削工具
JP2018058200A (ja) * 2016-09-30 2018-04-12 三菱マテリアル株式会社 表面被覆切削工具
JP7016462B2 (ja) 2016-09-30 2022-02-07 三菱マテリアル株式会社 表面被覆切削工具
EP3315632A1 (en) * 2016-10-19 2018-05-02 Tungaloy Corporation Coated cutting tool

Also Published As

Publication number Publication date
EP3150309A1 (en) 2017-04-05
US10456844B2 (en) 2019-10-29
EP3150309B1 (en) 2021-07-28
CN106536102B (zh) 2018-12-04
US20170182567A1 (en) 2017-06-29
KR20170012334A (ko) 2017-02-02
JP6548072B2 (ja) 2019-07-24
EP3150309A4 (en) 2018-01-17
CN106536102A (zh) 2017-03-22
JP2016005862A (ja) 2016-01-14

Similar Documents

Publication Publication Date Title
WO2015182746A1 (ja) 表面被覆切削工具
EP3103572B1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP5257535B2 (ja) 表面被覆切削工具
JP6738556B2 (ja) 表面被覆切削工具
US20170113285A1 (en) Surface-coated cutting tool and method for producing the same
JP6657594B2 (ja) 表面被覆切削工具
JP6296294B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP4822120B2 (ja) 硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP6233575B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2013188833A (ja) 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP2019005867A (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP4853121B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4474643B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2018144138A (ja) 硬質被覆層が優れた耐摩耗性と耐チッピング性を発揮する表面被覆切削工具
JP2008178943A (ja) 硬質被覆層が断続高送り切削加工ですぐれた耐摩耗性を発揮する表面被覆切削工具
JP5748125B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6555514B2 (ja) 表面被覆切削工具
JP7016462B2 (ja) 表面被覆切削工具
WO2016208663A1 (ja) 表面被覆切削工具
JP4474644B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2014136268A (ja) 重断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP4822119B2 (ja) 硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP4857950B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
WO2018061856A1 (ja) 表面被覆切削工具
JP5176797B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167035485

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015799293

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015799293

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15312922

Country of ref document: US