JP7060582B2 - 耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ及びマスターバッチ混合物、並びに、耐熱性製品 - Google Patents

耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ及びマスターバッチ混合物、並びに、耐熱性製品 Download PDF

Info

Publication number
JP7060582B2
JP7060582B2 JP2019509340A JP2019509340A JP7060582B2 JP 7060582 B2 JP7060582 B2 JP 7060582B2 JP 2019509340 A JP2019509340 A JP 2019509340A JP 2019509340 A JP2019509340 A JP 2019509340A JP 7060582 B2 JP7060582 B2 JP 7060582B2
Authority
JP
Japan
Prior art keywords
heat
mass
coupling agent
silane coupling
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019509340A
Other languages
English (en)
Other versions
JPWO2018180690A1 (ja
Inventor
雅己 西口
有史 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2018180690A1 publication Critical patent/JPWO2018180690A1/ja
Application granted granted Critical
Publication of JP7060582B2 publication Critical patent/JP7060582B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/18Plasticising macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • C08L23/286Chlorinated polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2323/28Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/22Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2423/28Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2427/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/22Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ及びマスターバッチ混合物、並びに、耐熱性製品に関する。
電気・電子機器分野や産業分野に使用される絶縁電線、ケーブル、コード、光ファイバー心線又は光ファイバーコード(光ファイバーケーブル)等の配線材には、難燃性、耐熱性、機械強度(例えば、引張強度および引張伸び)等種々の特性が要求されている。
このような配線材の被覆を形成する材料としては、ポリエチレン等のポリオレフィン樹脂が幅広く用いられている。
配線材の耐熱性等を高めるには、ポリオレフィン樹脂を架橋して、被覆をポリオレフィン樹脂の架橋物により形成することが効果的である。ポリオレフィン樹脂を架橋する方法として、例えば、電子線を照射して架橋させる電子線架橋法、また、成形後に熱を加えることにより有機過酸化物等を分解させて架橋反応させる架橋法やシラン架橋法等の化学架橋法が挙げられる。
ここで、シラン架橋法とは、不飽和基を有するシランカップリング剤をグラフト反応させたシラングラフト樹脂について、シラノール縮合触媒の存在下に前記シラングラフト樹脂を水分と接触させて、架橋させる方法である。
上記の架橋法のなかでも、特にシラン架橋法は特殊な設備を要しないことが多いため、他の架橋法に対して工業的製造上の優位性が高い。
ポリオレフィン樹脂のシラン架橋法としては、特許文献1に、ポリオレフィン系樹脂と無水マレイン酸系樹脂とに、シランカップリング剤で表面処理した無機フィラー、シランカップリング剤、有機過酸化物及び架橋触媒をニーダーにて十分に溶融混練した後に、単軸押出機にて成形する方法が提案されている。
特開2001-101928号公報
特許文献1に記載されたシラン架橋法では、ニーダー等での溶融混練中にポリオレフィン系樹脂が架橋してしまうことがある。また、無機フィラーを表面処理しているシランカップリング剤以外のシランカップリング剤が揮発し、又は互いに縮合することがある。そのため、目的のシラングラフト樹脂を調製することができない場合がある、また、調製できたとしても所望の耐熱性を有する架橋成形体(架橋被膜)を得ることができないことがある。更には、シランカップリング剤同士の縮合反応により、架橋成形体の外観が悪化することもある。
上述の配線材は、巻回状ないしは屈曲状(湾曲状)に配線されることが多く、このような配線状態に追従する柔軟性が求められる。柔軟性が十分ではないと、配線作業中又はその後に導体と被覆とが剥離し、場合によっては配線材を所定の状態に巻回し又は屈曲できない等の問題が生じる。一方、ポリオレフィン樹脂をシラン架橋して得られる、従来の架橋成形体は、主として、耐熱性等の向上を目的とするものであり、柔軟性についてまでは要求性能が厳しくなかった。
配線材の材料として、ポリオレフィン樹脂の他に、塩素化ポリエチレン樹脂、ポリ塩化ビニル又はクロロプレンゴム等の塩素含有樹脂も、特性ないしは性能の点から、広く用いられている。このような塩素含有樹脂の架橋成形体に可塑剤を含有すると、架橋成形体に柔軟性を付与することができる。しかし、強度が低下する。また、耐熱性等の向上を目的として塩素含有樹脂を架橋すると、柔軟性が低下する傾向にある。
このような塩素含有樹脂を架橋する場合、従来、有機過酸化物を用いた化学架橋法や電子線架橋法が採用されている。シラン架橋法により、塩素含有樹脂をシラン架橋させることは、上記のポリオレフィン樹脂をシラン架橋させることよりも難しいためである。ただ単に、上述のシラン架橋法に、塩素含有樹脂、有機過酸化物、不飽和基を有するシランカップリング剤を供しても、塩素含有樹脂の架橋成形体を得ることはできない。
塩素含有樹脂の架橋には、上述の高い優位性を示すシラン架橋法を適用できなかった。
本発明は、上記の問題点を解決し、機械強度と柔軟性とを兼ね備えた耐熱性塩素含有架橋樹脂成形体及びその製造方法を提供することを、課題とする。
また、本発明は、この耐熱性塩素含有架橋樹脂成形体を形成可能な、シランマスターバッチ及びマスターバッチ混合物を提供することを、課題とする。
更に、本発明は、上記の耐熱性塩素含有架橋樹脂成形体を含む耐熱性製品を提供することを、課題とする。
本発明者らは、シラン架橋法を研究を重ね、ベース樹脂と無機フィラーとシランカップリング剤とを特定の割合にて溶融混合して調製したシランマスターバッチと、シラノール縮合触媒とを特定の混合態様で混合する特定の製造方法を行うに当たり、ベース樹脂として塩素化ポリエチレンとポリ塩化ビニルと5~55質量%の可塑剤とを用いると、機械強度と柔軟性とをバランスよく兼ね備えた耐熱性塩素含有架橋樹脂成形体を製造できることを見出した。本発明者らはこの知見に基づき更に研究を重ね、本発明をなすに至った。
すなわち、本発明の課題は以下の手段によって達成された。
(1)塩素化ポリエチレンとポリ塩化ビニルと可塑剤とを含有するベース樹脂100質量部に対して、有機過酸化物0.003~0.3質量部と、無機フィラー0.5~400質量部と、前記ベース樹脂にグラフト反応しうるグラフト反応部位を有するシランカップリング剤2質量部を越え15.0質量部以下とを、前記有機過酸化物の分解温度以上の温度で溶融混合して、前記グラフト反応させる工程(a)と、
前記工程(a)で得られたシランマスターバッチとシラノール縮合触媒とを混合した後に成形する工程(b)と、
前記工程(b)で得られた成形体を水分と接触させてシラン架橋させる工程(c)と、
を有し、
かつ、前記工程(a)において、前記ベース樹脂と前記シランカップリング剤とを反応させる際に前記ベース樹脂の全部又は一部を使用し、前記シランカップリング剤との反応時に使用するベース樹脂100質量%中に可塑剤を5~55質量%含有する、耐熱性塩素含有架橋樹脂成形体の製造方法。
(2)前記可塑剤が、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ポリエステル系可塑剤、アジピン酸エステル系可塑剤、若しくはピロメリット酸エステル系可塑剤又はこれらの組合せを含む(1)に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(3)前記可塑剤が、フタル酸エステル系可塑剤、若しくはトリメリット酸エステル系可塑剤又はこれらの組合せを含む(1)又は(2)に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(4)前記可塑剤が、前記シランカップリング剤との反応時に使用するベース樹脂100質量%中に、5~40質量%含有されている(1)~(3)のいずれか1つに記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(5)前記ベース樹脂の一部を前記工程(a)において溶融混合し、前記ベース樹脂の残部を前記工程(b)において混合する、(1)~(4)のいずれか1つに記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(6)前記工程(a)の溶融混合及び前記工程(b)の混合の少なくとも一方をハイドロタルサイトの存在下で行う(1)~(5)のいずれか1つに記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(7)前記塩素化ポリエチレンと前記ポリ塩化ビニルの、前記シランカップリング剤との反応時に使用するベース樹脂中の含有率の比率(塩素化ポリエチレンの含有率:ポリ塩化ビニルの含有率)を質量比で95:5~10:90とする(1)~(6)のいずれか1つに記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(8)前記有機過酸化物の含有量が、0.005~0.3質量部である(1)~(7)のいずれか1つに記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(9)前記シランカップリング剤の含有量が、3~12.0質量部である(1)~(8)のいずれか1つに記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(10)前記シランカップリング剤の含有量が、4~12.0質量部である(1)~(9)のいずれか1つに記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(11)前記シランカップリング剤が、ビニルトリメトキシシラン又はビニルトリエトキシシランを含む(1)~(10)のいずれか1つに記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(12)前記無機フィラーが、ハイドロタルサイト、シリカ、ベーマイト、クレー、タルク、水酸化アルミニウム、水酸化マグネシウム、若しくは炭酸カルシウム又はこれらの組合せを含む(1)~(11)のいずれか1つに記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(13)前記工程(a)における溶融混合が、密閉型のミキサーを用いて行われる(1)~(12)のいずれか1つに記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
(14)塩素化ポリエチレンとポリ塩化ビニルと可塑剤とを含有するベース樹脂100質量部に対して、有機過酸化物0.003~0.3質量部と、無機フィラー0.5~400質量部と、前記ベース樹脂にグラフト反応しうるグラフト反応部位を有するシランカップリング剤2質量部を越え15.0質量部以下と、シラノール縮合触媒とを混合してなるマスターバッチ混合物の製造に用いられるシランマスターバッチであって、
前記ベース樹脂の全部又は一部100質量%中に可塑剤を5~55質量%含有し、
前記ベース樹脂の全部又は一部、前記有機過酸化物、前記無機フィラー及び前記シランカップリング剤を前記有機過酸化物の分解温度以上の温度で溶融混合して、前記グラフト反応させてなるシランマスターバッチ。
(15)(14)に記載のシランマスターバッチとシラノール縮合触媒とを含有するマスターバッチ混合物。
(16)(15)に記載のマスターバッチ混合物を用いた耐熱性塩素含有架橋樹脂成形体。
(17)(1)~(13)のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法により製造された耐熱性塩素含有架橋樹脂成形体。
(18)前記ベース樹脂が、シラノール結合を介して前記無機フィラーと架橋してなる(17)に記載の耐熱性塩素含有架橋樹脂成形体。
(19)塩素化ポリエチレン、ポリ塩化ビニル及び可塑剤5~50質量%を含有するベース樹脂構成成分と、無機フィラー構成成分と、シランカップリング剤構成成分とを構成成分とする硬化物を含む耐熱性塩素含有架橋樹脂成形体であって、
前記無機フィラー構成成分及び前記シランカップリング剤構成成分の含有量が、それぞれ、前記ベース樹脂構成成分100質量部に対して、0.5~400質量部、及び2質量部を越え15.0質量部以下であり、
前記硬化物が、前記塩素化ポリエチレン構成成分又は前記ポリ塩化ビニル構成成分と前記無機フィラー構成成分とが前記シランカップリング剤構成成分により結合してなる無機フィラー硬化物と、前記塩素化ポリエチレン構成成分又は前記ポリ塩化ビニル構成成分が前記シランカップリング剤構成成分により架橋してなる塩素含有樹脂硬化物とを含む、耐熱性塩素含有架橋樹脂成形体。
(20)(16)~(19)のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体を含む耐熱性製品。
(21)前記耐熱性塩素含有架橋樹脂成形体が、電線又は光ファイバーケーブルの被覆である(20)に記載の耐熱性製品。
本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本発明は、機械強度と柔軟性とを兼ね備えた耐熱性塩素含有架橋樹脂成形体及びその製造方法を提供できる。また、本発明は、この耐熱性塩素含有架橋樹脂成形体を形成可能な、シランマスターバッチ及びマスターバッチ混合物を提供できる。更には、上記耐熱性塩素含有架橋樹脂成形体を含む耐熱性製品を提供できる。
本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
まず、本発明に用いる各成分について説明する。
〈ベース樹脂〉
本発明に用いられるベース樹脂は、塩素含有樹脂のうち、塩素化ポリエチレンとポリ塩化ビニルとを含む。これらの樹脂としては、後述する有機過酸化物から発生したラジカルの存在下において、シランカップリング剤のグラフト反応しうる部位(グラフト反応部位という。)とグラフト反応可能な部位を主鎖中又はその末端に有する重合体の樹脂を用いる。このグラフト反応可能な部位としては、例えば、炭素鎖の不飽和結合部位、水素原子を有する炭素原子等が挙げられる。ベース樹脂として塩素化ポリエチレンとポリ塩化ビニルとを含有すると、可塑剤を後述する含有率で含有していても、本発明のシラン架橋法に適用することができる。その結果、これらの塩素含有樹脂をシラン架橋させることができ、得られる耐熱性塩素含有架橋樹脂成形体に優れた耐熱性を付与できる。加えて、機械強度と柔軟性とをバランスよく付与することができる。更に、好ましくは、耐油性又は耐候性を示し、外観、又は、耐寒性(例えば、低温環境下において被覆にクラックや割れが発生しにくい特性、耐摩耗性等を含む特性)、を付与することもできる。
塩素化ポリエチレンとしては、ポリエチレン主鎖に結合する水素原子が塩素原子で置換されているポリエチレンであれば特に限定されず、例えば、エチレン(共)重合体を塩素化して得られるもの等が挙げられる。塩素化ポリエチレンは、塩素含有量が20質量%以上のものが好ましく、より好ましくは25質量%以上のもの、更に好ましくは30質量%以上のものである。塩素含有量が高いと、ゴム弾性(柔軟性)に更に優れた耐熱性塩素含有架橋樹脂成形体とすることができ、更には耐油性及び耐候性にも優れる。塩素含有量の上限は、塩素化する前のポリエチレンが有する、塩素原子で置換可能な水素原子のすべてを塩素原子で置換した場合の質量割合となり、塩素化する前のポリエチレンの分子量、塩素原子で置換可能な水素原子の数等により、一義的に決定できない。例えば、75質量%程度である。塩素含有量は、塩素化ポリエチレン全量に対する塩素原子の質量割合をいい、JIS K 7229に記載の電位差滴定法により、定量できる。
ポリ塩化ビニルとしては、塩化ビニルの重合体(単独重合体又は共重合体)であれば、特に限定されない。
塩素化ポリエチレンとポリ塩化ビニルとを併用すると、シランカップリング剤の含有量を増やしても、耐熱性塩素含有架橋性樹脂組成物の押出外観特性を維持できる。そのため、良好な外観を有する耐熱性塩素含有架橋樹脂成形体を得ることが可能となる。
ポリ塩化ビニルの分子量としては、特に限定されず、好ましくは400~3000、更に好ましくは700~2600、更に好ましくは700~1500である。分子量が400~3000であると、耐熱性塩素含有架橋樹脂成形体に強固な強度を付与できる。更には、成形時の外観が良好となり、また、この成形体に優れた耐油性を付与できる。
本発明においては、ポリ塩化ビニルの一部又は全部に、ポリ塩化ビニルと他のポリマーの共重合体を使用することもできる。
本発明において、ベース樹脂は、更に、特定量の可塑剤を含有する。本発明のシラン架橋法において塩素化ポリエチレン及びポリ塩化ビニルと可塑剤とを併用することにより、強度を損なうことなく、高い柔軟性を示す耐熱性塩素含有架橋樹脂成形体を得ることができる。
可塑剤としては、塩素含有樹脂に通常用いられる各種可塑剤を特に限定されることなく、用いることができる。例えば、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤(好ましくは、トリメリット酸トリアルキル(アルキル基の炭素数8~10))、アジピン酸エステル系可塑剤、ピロメリット酸エステル系可塑剤等の低分子可塑剤、ポリエステル系可塑剤、酢酸ビニル系共重合体、(メタ)アクリル酸エステル共重合体等の高分子可塑剤等が挙げられる。
なかでも、押し出し負荷を抑える点から、低分子可塑剤が好ましい。より好ましくは、可塑効果の点から、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ポリエステル系可塑剤、アジピン酸エステル系可塑剤、若しくはピロメリット酸エステル系可塑剤又はこれらの組合せであり、更に好ましくは、可塑効果と架橋安定性の点から、フタル酸エステル系可塑剤若しくはトリメリット酸エステル系可塑剤、又はこれらの組合せである。
本発明に用いる可塑剤は、1種でもよく、2種以上でもよい。
本発明において、ベース樹脂は、更に他の樹脂を含有していてもよい。
他の樹脂としては、塩素化ポリエチレン及びポリ塩化ビニル以外の樹脂であれば特に限定されないが、相溶性の観点から、ポリウレタンやエチレン酢酸ビニル共重合体、エチレンアルキル酸エステル共重合体、ポリスチレン、ポリスチレン系エラストマー、ポリエステル、ポリエステル系エラストマーなどが好ましい。その他本発明の効果を損なわない範囲で各種樹脂を含有していてもよい。
ベース樹脂(後述するキャリア樹脂を用いる場合には、キャリア樹脂を含む)においては、塩素化ポリエチレン、ポリ塩化ビニル及び可塑剤、必要により含有される他の樹脂の含有率の総計が100質量%となるように、各成分の含有率が適宜に決定され、好ましくは下記範囲内から選択される。
ベース樹脂中の、可塑剤の含有率は、前記シランカップリング剤とベース樹脂成分との反応時に後述する特定量を満たしていれば特に限定されない。例えば、5~55質量%が好ましく、5~50質量%がより好ましく、5~40質量%が更に好ましく、15を越え40質量%がより更に好ましく、20~40質量%が特に好ましい。可塑剤を特定量使用することにより、耐熱性塩素含有架橋樹脂成形体に機械強度と柔軟性を付与できる。
可塑剤の含有率は、上記範囲を満たし、更にポリ塩化ビニルの含有率以下であることが好ましい。
ベース樹脂中の、塩素化ポリエチレンの含有率は、特に限定されないが、10~90質量%が好ましく、15~85質量%がより好ましく、20~85質量%が更に好ましい。塩素化ポリエチレンの含有率が10~90質量%の範囲にあると、耐熱性に優れたものとなる。また、耐熱性塩素含有架橋樹脂成形体の外観にも優れる。更には、塩素化ポリエチレン本来の難燃性、耐油性又は耐候性等を付与することができる。
ベース樹脂中の、ポリ塩化ビニルの含有率は、特には限定されないが、3~80質量%が好ましく、15~65質量%がより好ましく、25~60質量%が更に好ましい。ポリ塩化ビニルの含有率が3~80質量%の範囲にあると、塩素含有樹脂をシラン架橋させることができ、耐熱性に優れた耐熱性塩素含有架橋樹脂成形体を得ることができる。また、引張伸びに優れた耐熱性塩素含有架橋樹脂成形体とできる。ポリ塩化ビニルの含有率の上限については、耐熱性及び外観の点から、75質量%以下が更に好ましく、60質量%以下が特に好ましく、更に、耐熱性、外観及び耐油性の点から50質量%以下が最も好ましい。
本発明において、ポリ塩化ビニルの含有率は、上記範囲内に設定されるが、詳細には、好ましくは3~45質量%である低含有率の態様と、好ましくは45質量%を越え80質量%である高含有率の態様とに分けることができる。上記低含有率の態様においては、上記理由から、10~45質量%がより好ましく、15~45質量%が更に好ましい。上記高含有率の態様においては、上記理由から、45質量%を越え75質量%以下がより好ましく、45質量%を越え65質量%以下が更に好ましい。また、この態様の上限値は上記の上限値を採ることもできる。
他の樹脂の含有率は、特に限定されないが、0~45質量%が好ましく、0~25質量%がより好ましい。
〈有機過酸化物〉
有機過酸化物は、少なくとも熱分解によりラジカルを発生して、触媒として、シランカップリング剤の樹脂成分へのラジカル反応によるグラフト反応(シランカップリング剤のグラフト反応部位とベース樹脂のグラフト反応可能な部位との結合反応)を生起させる働きをする。特にシランカップリング剤のグラフト反応部位が例えばエチレン性不飽和基を含む場合、エチレン性不飽和基と樹脂成分とのラジカル反応(樹脂成分からの水素ラジカルの引き抜き反応を含む)によるグラフト反応を生起させる働きをする。
有機過酸化物としては、ラジカルを発生させるものであれば、特に制限はなく、通常のものを用いることができる。例えば、一般式:R-OO-R、R-OO-C(=O)R、RC(=O)-OO(C=O)Rで表される化合物が好ましい。ここで、R~Rは各々独立にアルキル基、アリール基又はアシル基を表す。各化合物のR~Rのうち、いずれもアルキル基であるもの、又は、いずれかがアルキル基で残りがアシル基であるものが好ましい。
このような有機過酸化物としては、例えば、ジクミルパーオキサイド(DCP)、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキシン-3、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシイソプロピルカーボネート、ジアセチルパーオキサイド、ラウロイルパーオキサイド、tert-ブチルクミルパーオキサイド等を挙げることができる。これらのうち、臭気性、着色性、スコーチ安定性の点で、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキシン-3が好ましい。
有機過酸化物の分解温度は、80~195℃が好ましく、125~180℃が特に好ましい。
本発明において、有機過酸化物の分解温度とは、単一組成の有機過酸化物を加熱したとき、ある一定の温度又は温度域でそれ自身が2種類以上の化合物に分解反応を起こす温度を意味する。具体的には、DSC法等の熱分析により、窒素ガス雰囲気下で5℃/分の昇温速度で、室温から加熱したとき、吸熱又は発熱を開始する温度をいう。
〈無機フィラー〉
本発明において、無機フィラーは、その表面に、シランカップリング剤のシラノール基等の反応部位と水素結合若しくは共有結合等、又は分子間結合により、化学結合しうる部位を有するものであれば特に制限なく用いることができる。この無機フィラーにおける、シランカップリング剤の反応部位と化学結合しうる部位としては、OH基(水酸基、含水若しくは結晶水の水分子、カルボキシ基等のOH基)、アミノ基、SH基等が挙げられる。
無機フィラーとしては、特に限定されず、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム(好ましくはベーマイト)、窒化アルミニウム、ほう酸アルミニウムウイスカ、水和ケイ酸アルミニウム、水和ケイ酸マグネシウム、塩基性炭酸マグネシウム、ハイドロタルサイト、タルク等の水酸基あるいは結晶水を有する化合物のような金属水和物が挙げられる。また、窒化ほう素、シリカ(結晶質シリカ、非晶質シリカ等)、カーボン、クレー、酸化亜鉛、酸化錫、酸化チタン、酸化モリブデン、三酸化アンチモン、シリコーン化合物、石英、ほう酸亜鉛、ホワイトカーボン、硼酸亜鉛、ヒドロキシスズ酸亜鉛、スズ酸亜鉛等が挙げられる。
無機フィラーは、シランカップリング剤等で表面処理した表面処理無機フィラーを使用することができる。例えば、シランカップリング剤表面処理無機フィラーとして、キスマ5L、キスマ5P(いずれも商品名、水酸化マグネシウム、協和化学工業社製等)等が挙げられる。シランカップリング剤による無機フィラーの表面処理量は、特に限定されないが、例えば、3質量%以下である。
これらの無機フィラーのうち、ハイドロタルサイト、シリカ、ベーマイト、クレー、タルク、水酸化アルミニウム、水酸化マグネシウム、若しくは炭酸カルシウム又はこれらの組合せが好ましい。
無機フィラーは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
無機フィラーが粉体である場合、無機フィラーの平均粒径は、0.2~10μmが好ましく、0.3~8μmがより好ましく、0.4~5μmが更に好ましく、0.4~3μmが特に好ましい。平均粒径が上記範囲内にあると、シランカップリング剤の保持効果が高く、耐熱性に優れたものとなる。また、シランカップリング剤との混合時に無機フィラーが2次凝集しにくく、外観に優れたものとなる。平均粒径は、無機フィラーをアルコールや水で分散させて、レーザ回折/散乱式粒子径分布測定装置等の光学式粒径測定器によって求められる。
〈シランカップリング剤〉
本発明に用いられるシランカップリング剤は、有機過酸化物の分解により生じたラジカルの存在下でベース樹脂、特に塩素含有樹脂にグラフト反応しうるグラフト反応部位(基又は原子)と、無機フィラーの化学結合しうる部位と反応し、シラノール縮合可能な反応部位(加水分解して生成する部位を含む。例えばシリルエステル基等)とを、少なくとも有するものであればよい。このようなシランカップリング剤として、従来、シラン架橋法に使用されているシランカップリング剤が挙げられる。
シランカップリング剤としては、例えば下記の一般式(1)で表される化合物を用いることができる。
Figure 0007060582000001
一般式(1)中、Ra11はエチレン性不飽和基を含有する基、Rb11は脂肪族炭化水素基、水素原子又はY13である。Y11、Y12及びY13は加水分解しうる有機基である。Y11、Y12及びY13は互いに同じでも異なっていてもよい。
a11は、グラフト反応部位であり、エチレン性不飽和基を含有する基が好ましい。エチレン性不飽和基を含有する基としては、例えば、ビニル基、(メタ)アクリロイルオキシアルキレン基、p-スチリル基を挙げることができる。なかでも、ビニル基が好ましい。
b11は、脂肪族炭化水素基、水素原子又は後述のY13を示す。脂肪族炭化水素基としては、脂肪族不飽和炭化水素基を除く炭素数1~8の1価の脂肪族炭化水素基が挙げられる。Rb11は、好ましくは後述のY13である。
11、Y12及びY13は、シラノール縮合可能な反応部位(加水分解しうる有機基)を示す。例えば、炭素数1~6のアルコキシ基、炭素数6~10のアリールオキシ基、炭素数1~4のアシルオキシ基が挙げられ、アルコキシ基が好ましい。加水分解しうる有機基としては、具体的には例えば、メトキシ、エトキシ、ブトキシ、アシルオキシ等を挙げることができる。このなかでも、シランカップリング剤の反応性の点から、メトキシ又はエトキシが更に好ましい。
シランカップリング剤としては、好ましくは、加水分解速度の速いシランカップリング剤であり、より好ましくは、Rb11がY13であり、かつY11、Y12及びY13が互いに同じであるシランカップリング剤、又は、Y11、Y12及びY13の少なくとも1つがメトキシ基であるシランカップリング剤である。
シランカップリング剤としては、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルジメトキシエトキシシラン、ビニルジメトキシブトキシシラン、ビニルジエトキシブトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ビニルトリアセトキシシラン等のビニルシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン等の(メタ)アクリロキシシランを挙げることができる。
上記シランカップリング剤のなかでも、末端にビニル基とアルコキシ基を有するシランカップリング剤が更に好ましく、ビニルトリメトキシシラン又はビニルトリエトキシシランが特に好ましい。
シランカップリング剤は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。また、そのままで用いても、溶媒等で希釈して用いてもよい。
〈シラノール縮合触媒〉
シラノール縮合触媒は、ベース樹脂にグラフトしたシランカップリング剤を水分の存在下で縮合反応させる働きがある。このシラノール縮合触媒の働きに基づき、シランカップリング剤を介して、ベース樹脂同士が架橋される。その結果、優れた耐熱性を有する耐熱性塩素含有架橋樹脂成形体が得られる。
本発明に用いられるシラノール縮合触媒としては、有機スズ化合物、金属石けん、白金化合物等が挙げられる。一般的なシラノール縮合触媒としては、例えば、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジブチルスズジオクチエート、ジブチルスズジアセテート、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸ナトリウム、ナフテン酸鉛、硫酸鉛、硫酸亜鉛、有機白金化合物等が用いられる。これらのなかでも、特に好ましくは、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジブチルスズジオクチエート、ジブチルスズジアセテート等の有機スズ化合物である。
〈キャリア樹脂〉
シラノール縮合触媒は、所望により樹脂に混合されて、用いられる。このような樹脂(キャリア樹脂ともいう)としては、特に限定されないが、ベース樹脂で説明した各樹脂又はゴムを用いることができる。
キャリア樹脂は、シランマスターバッチとの相溶性の兼ね合いで、シランマスターバッチに使用されている樹脂成分の1種類又は2種類以上の樹脂成分を含有していることが好ましい。
〈添加剤〉
耐熱性塩素含有架橋樹脂成形体等は、電線、電気ケーブル、電気コード、シート、発泡体、チューブ、パイプにおいて、一般的に使用されている各種の添加剤を本発明の効果を損なわない範囲で含有してもよい。このような添加剤として、例えば、架橋助剤、酸化防止剤、滑剤、金属不活性剤、又は、充填剤(難燃(助)剤を含む。)等が挙げられる。
架橋助剤とは、有機過酸化物の存在下において、ベース樹脂との間に部分架橋構造を形成するものをいう。例えば、ポリプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート等の(メタ)アクリレート系化合物、トリアリルシアヌレート等のアリル系化合物、マレイミド系化合物、ジビニル系化合物等の多官能性化合物が挙げられる。
酸化防止剤としては、特に限定されないが、例えば、アミン酸化防止剤、フェノール酸化防止剤又は硫黄酸化防止剤等が挙げられる。アミン酸化防止剤としては、例えば、4,4’-ジオクチルジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等が挙げられる。フェノール酸化防止剤としては、例えば、ペンタエリスリチル-テトラキス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。硫黄酸化防止剤としては、例えば、ビス(2-メチル-4-(3-n-アルキルチオプロピオニルオキシ)-5-tert-ブチルフェニル)スルフィド、2-メルカプトベンズイミダゾール及びその亜鉛塩、ペンタエリスリトール-テトラキス(3-ラウリル-チオプロピオネート)等が挙げられる。酸化防止剤は、ベース樹脂100質量部に対して、好ましくは0.1~15.0質量部、更に好ましくは0.1~10質量部で加えることができる。
金属不活性剤としては、N,N’-ビス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル)ヒドラジン、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、2,2’-オキサミドビス(エチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)等が挙げられる。
難燃(助)剤、充填剤としては、カーボン、クレー、酸化亜鉛、酸化錫、酸化チタン、酸化マグネシウム、酸化モリブデン、三酸化アンチモン、シリコーン化合物、石英、タルク、炭酸カルシウム、炭酸マグネシウム、ほう酸亜鉛、ホワイトカーボン等が挙げられる。これらの充填剤はフィラーとしてシランカップリング剤を混合させる際に使用してもよいし、キャリア樹脂に加えてもよい。
滑剤としては、炭化水素系、シロキサン系、脂肪酸系、脂肪酸アミド系、エステル系、アルコール系、金属石けん系等が挙げられる。これらの滑剤はキャリア樹脂に加えた方がよい。
〈耐熱性塩素含有架橋樹脂成形体の製造方法〉
次に、本発明の製造方法を具体的に説明する。
本発明の耐熱性塩素含有架橋樹脂成形体の製造方法は、下記工程(a)~工程(c)を有する。
本発明のシランマスターバッチは下記工程(a)により製造され、本発明のマスターバッチ混合物は下記工程(a)及び工程(b)により製造される。
工程(a):塩素化ポリエチレンとポリ塩化ビニルと可塑剤とを含有するベース樹脂100質量部に対して、有機過酸化物0.003~0.3質量部と、無機フィラー0.5~400質量部と、前記ベース樹脂にグラフト反応しうるグラフト反応部位を有するシランカップリング剤2質量部を越え15.0質量部以下とを、前記有機過酸化物の分解温度以上の温度で溶融混合(溶融混練、混練りともいう)して、前記グラフト反応させる工程
工程(b):工程(a)で得られたシランマスターバッチとシラノール縮合触媒とを混合した後に成形する工程
工程(c):工程(b)で得られた成形体を水分と接触させてシラン架橋させる工程
上記工程(a)において、前記ベース樹脂(グラフト反応部位)と前記シランカップリング剤とを反応させる際に前記ベース樹脂の全部又は一部を使用し、前記シランカップリング剤との反応時に使用するベース樹脂100質量%中に可塑剤を5~55質量%含有する。
ここで、混合するとは、均一な混合物を得ることをいう。
前記シランカップリング剤との反応時に使用する(上記全部又は一部の)ベース樹脂100質量%中(すなわち、工程(a)で用いるベース樹脂全量中)の可塑剤の含有率は、5~50質量%がより好ましく、5~40質量%が更に好ましく、15を越え40質量%がより更に好ましく、20~40質量%が特に好ましい。可塑剤の含有率が少なすぎると、十分な柔軟性を付与できず、強度と両立できないことがある。また、耐熱性塩素含有架橋樹脂成形体の耐寒性が低下する傾向がある。可塑剤の含有率が多すぎると、耐熱性塩素含有架橋樹脂成形体の強度が低下して、柔軟性と両立できないことがある。
前記シランカップリング剤との反応時に使用するベース樹脂中の、塩素化ポリエチレンとポリ塩化ビニルとの、含有率の比率(塩素化ポリエチレンの含有率:ポリ塩化ビニルの含有率)は、塩素化ポリエチレンの含有率とポリ塩化ビニルの含有率との合計を100としたときに、質量比で95:5~10:90が好ましく、85:15~15:85が好ましく、80:20~30:70がより好ましい。上記含有率の比率が95:5~10:90であると、ベース樹脂を架橋させることができ、耐熱性に優れたものとなる。また、引張伸びに優れた耐熱性塩素含有架橋樹脂成形体とできる。
工程(a)において、有機過酸化物の配合量は、ベース樹脂100質量部に対して、0.003~0.3質量部であり、0.005~0.3質量部が好ましく、0.005~0.1質量部がより好ましい。有機過酸化物の配合量が0.003質量部未満では、シランカップリング剤のグラフト反応が進行せず、未反応のシランカップリング剤同士が縮合又は未反応のシランカップリング剤が揮発して、耐熱性又は強度を十分に得ることができないことがある。一方、0.3質量部を越えると、副反応によって樹脂成分が直接的に架橋する。そのため、柔軟性が低下する。更には、機械強度に劣る場合がある。また、架橋した樹脂成分同士がブツを形成し、耐熱性塩素含有架橋樹脂成形体に外観不良が生じることがある。また、押し出し性に優れたシランマスターバッチ等が得られないことがある。すなわち、有機過酸化物の配合量をこの範囲内にすることにより、適切な範囲でグラフト反応を行うことができ、耐熱性塩素含有架橋樹脂成形体に十分な柔軟性を付与できる。更にはブツも発生することなく押し出し性に優れたシランマスターバッチ等を得ることができる。
無機フィラーの配合量は、ベース樹脂100質量部に対して、0.5~400質量部であり、30~280質量部が好ましい。無機フィラーの配合量が0.5質量部未満では、シランカップリング剤のグラフト反応が不均一となり、耐熱性塩素含有架橋樹脂成形体に優れた耐熱性又は強度を付与できないことがある。更には耐熱性塩素含有架橋樹脂成形体の外観が低下することがある。一方、400質量部を越えると、耐熱性、更には外観が低下することがある。また、成形時や溶融混合時の負荷が非常に大きくなり、2次成形が難しくなることがある。
シランカップリング剤の配合量は、ベース樹脂100質量部に対して、2.0質量部を越え15.0質量部以下である。シランカップリング剤の配合量が2.0質量部以下では、架橋反応が十分に進行せず、優れた耐熱性又は強度を発揮しないことがある。また、シラノール縮合触媒とともに成形する際に、外観不良やブツを生じ、また押出機を止めた際にブツが多く生じることがある。一方、15.0質量部を越えると、それ以上の無機フィラー表面にシランカップリング剤が吸着しきれず、シランカップリング剤は溶融混合中に揮発してしまい、経済的でない。更に、吸着しないシランカップリング剤が縮合してしまい、耐熱性塩素含有架橋樹脂成形体に架橋ゲルブツや焼けが生じて外観が悪化するおそれがある。
上記観点により、このシランカップリング剤の配合量は、ベース樹脂100質量部に対して、3~12.0質量部が好ましく、4~12.0質量部がより好ましい。
引張伸びの観点からは、有機過酸化物0.05~0.4質量部、及びシランカップリング剤3~8質量部が好ましい。
押出外観の観点からは、有機過酸化物0.05~0.2質量部、及びシランカップリング剤3~12質量部が好ましい。
シラノール縮合触媒の配合量は、特に限定されず、ベース樹脂100質量部に対して、好ましくは0.0001~0.5質量部、より好ましくは0.001~0.2質量部である。シラノール縮合触媒の配合量が0.0001~0.5質量部であると、シランカップリング剤の縮合反応による架橋反応がほぼ均一に進みやすく、耐熱性塩素含有架橋樹脂成形体の耐熱性、外観及び物性が優れ、生産性も向上する。すなわち、シラノール縮合触媒の配合量が少なすぎると、シランカップリング剤の縮合反応による架橋が進みにくくなり、耐熱性塩素含有架橋樹脂成形体の耐熱性が向上せずに生産性が低下することがある。また架橋が不均一になることがある。一方、多すぎると、耐熱性塩素含有架橋樹脂成形体(樹脂)の柔軟性等の物性が低下することがある。また、シラノール縮合反応が非常に速く進行し、部分的なゲル化が生じて、外観が低下することがある。
本発明において、「ベース樹脂に対して、有機過酸化物、無機フィラー及びシランカップリング剤を溶融混合する」とは、溶融混合する際の混合順を特定するものではなく、どのような順で混合してもよいことを意味する。工程(a)における混合順は特に限定されない。本発明においては、無機フィラーは、シランカップリング剤と混合して用いることが好ましい。すなわち、本発明においては、上記各成分を、下記工程(a-1)及び(a-2)により、(溶融)混合することが好ましい。
工程(a-1):少なくとも無機フィラー及びシランカップリング剤を混合して混合物を調製する工程
工程(a-2):工程(a-1)で得られた混合物と、ベース樹脂の全部又は一部とを、有機過酸化物の存在下で有機過酸化物の分解温度以上の温度において、溶融混合する工程
上記工程(a-2)においては、「ベース樹脂の全量(100質量部)が配合される態様」と、「ベース樹脂の一部が配合される態様」とを含む。工程(a-2)において、ベース樹脂の一部が配合される場合、ベース樹脂の残部は、好ましくは工程(b)で配合される。
工程(a-2)でベース樹脂の一部を配合する場合、工程(a)及び工程(b)におけるベース樹脂の配合量100質量部は、工程(a-2)及び工程(b)で混合されるベース樹脂の合計量である。
ここで、工程(b)でベース樹脂の残部が配合される場合、ベース樹脂は、工程(a-2)において、好ましくは55~99質量%、より好ましくは60~95質量%が配合され、工程(b)において、好ましくは1~45質量%、より好ましくは5~40質量%が配合される。
工程(a-2)においてベース樹脂の一部を配合する場合、可塑剤は、工程(a-2)で用いるベース樹脂中の可塑剤の含有率が5~55質量%を満たすように配合される。また、可塑剤は、工程(a-2)において上記含有率を満たすように配合されていれば、工程(b)に用いるベース樹脂の残部に更に含有されていてもよい。
本発明においては、シランカップリング剤は、上記のように、無機フィラーと前混合等されることが好ましい(工程(a-1))。
無機フィラーとシランカップリング剤を混合する方法としては、特に限定されないが、湿式処理、乾式処理等の混合方法が挙げられる。具体的には、アルコールや水等の溶媒に無機フィラーを分散させた状態でシランカップリング剤を加える湿式処理、無処理の無機フィラー中に、又は予めステアリン酸やオレイン酸、リン酸エステル若しくは一部をシランカップリング剤で表面処理した無機フィラー中に、シランカップリング剤を、加熱又は非加熱で加え混合する乾式処理、及び、その両方が挙げられる。本発明においては、無機フィラー、好ましくは乾燥させた無機フィラー中にシランカップリング剤を、加熱又は非加熱で加え混合する乾式処理が好ましい。
このようにして前混合されたシランカップリング剤は、無機フィラーの表面を取り囲むように存在し、その一部又は全部が無機フィラーに吸着又は結合する。これにより、後の溶融混合の際にシランカップリング剤の揮発を低減できる。また、無機フィラーに吸着又は結合しないシランカップリング剤が縮合して溶融混合が困難になることも防止できる。更に、押出成形の際に所望の形状を得ることもできる。
このような混合方法として、好ましくは、有機過酸化物の分解温度未満の温度、好ましくは室温(25℃)で無機フィラーとシランカップリング剤を、数分~数時間程度、乾式又は湿式で混合(分散)した後に、この混合物と樹脂とを、有機過酸化物の存在下で、溶融混合させる方法が挙げられる。この混合は、好ましくは、バンバリーミキサーやニーダー等のミキサー型混合機で行われる。このようにすると、樹脂成分同士の過剰な架橋反応を防止することができ、柔軟性又は外観が優れたものとなる。
この混合方法においては、上記分解温度未満の温度が保持されている限り、樹脂が存在していてもよい。この場合、樹脂とともに金属酸化物及びシランカップリング剤を上記温度で混合(工程(a-1))した後に溶融混合することが好ましい。
有機過酸化物を混合する方法としては、特に限定されず、上記混合物とベース樹脂とを溶融混合する際に、存在していればよい。有機過酸化物は、例えば、無機フィラー等と同時に混合されても、また無機フィラーとシランカップリング剤との混合段階のいずれにおいて混合されてもよく、無機フィラーとシランカップリング剤との混合物に混合されてもよい。例えば、有機過酸化物は、シランカップリング剤と混合した後に無機フィラーと混合されてもよいし、シランカップリング剤と分けて別々に無機フィラーに混合されてもよい。生産条件によっては、シランカップリング剤のみを無機フィラーに混合し、次いで有機過酸化物を混合してもよい。
また、有機過酸化物は、他の成分と混合させたものでもよいし、単体でもよい。
無機フィラーとシランカップリング剤との混合方法において、湿式混合では、シランカップリング剤と無機フィラーとの結合力が強くなるため、シランカップリング剤の揮発を効果的に抑えることができるが、シラノール縮合反応が進みにくくなることがある。一方、乾式混合では、シランカップリング剤が揮発しやすいが、無機フィラーとシランカップリング剤の結合力が比較的弱くなるため、効率的にシラノール縮合反応が進みやすくなる。
本発明の製造方法においては、次いで、得られた混合物とベース樹脂の全部又は一部と、工程(a-1)で混合されていない残余の成分とを、有機過酸化物の存在下で有機過酸化物の分解温度以上の温度に加熱しながら、溶融混合する(工程(a-2))。
工程(a-2)において、上記成分を溶融混合する温度は、有機過酸化物の分解温度以上、好ましくは有機過酸化物の分解温度+(25~110)℃の温度である。この分解温度は樹脂成分が溶融してから設定することが好ましい。上記混合温度であれば、上記成分が溶融し、有機過酸化物が分解、作用して必要なシラングラフト反応が工程(a-2)において十分に進行する。その他の条件、例えば混合時間は適宜設定することができる。
混合方法としては、ゴム、プラスチック等で通常用いられる方法であれば、特に限定されない。混合装置は、例えば無機フィラーの配合量に応じて適宜に選択される。混合装置として、一軸押出機、二軸押出機、ロール、バンバリーミキサー又は各種のニーダー等が用いられる。樹脂成分の分散性、及び架橋反応の安定性の面で、バンバリーミキサー又は各種のニーダー等であって、密閉型のものが好ましい。
また、通常、このような無機フィラーが、ベース樹脂100質量部に対して100質量部を超える量で混合される場合、連続混合機、加圧式ニーダー、バンバリーミキサー等で、かつ密閉型のミキサーで溶融混合するのがよい。
ベース樹脂の混合方法は、特に限定されない。例えば、ベース樹脂をそのまま混合してもよく、各成分、例えば塩素化ポリエチレン又はポリ塩化ビニル等の樹脂成分、可塑剤それぞれを別々に混合してもよい。
本発明において、上記各成分を一度に溶融混合する場合、溶融混合の条件は、特に限定されないが、工程(a-2)の条件を採用できる。
この場合、溶融混合時にシランカップリング剤の一部又は全部が無機フィラーに吸着又は結合する。
工程(a)、特に工程(a-2)においては、ベース樹脂として可塑剤を、上述の含有率を満たす量で、用いる。
工程(a)、特に工程(a-2)においては、シラノール縮合触媒を実質的に混合せずに上述の各成分を溶融混合することが好ましい。これにより、シランカップリング剤の縮合反応を抑えることができ、溶融混合しやすく、また押出成形の際に所望の形状を得ることができる。ここで、「実質的に混合せず」とは、不可避的に存在するシラノール縮合触媒をも排除するものではなく、シランカップリング剤のシラノール縮合による上述の問題が生じない程度に存在していてもよいことを意味する。例えば、工程(a-2)において、シラノール縮合触媒は、ベース樹脂100質量部に対して0.01質量部以下であれば、存在していてもよい。
工程(a)においては、上記成分の他に用いることができる他の樹脂や上記添加物の配合量は、本発明の目的を損なわない範囲で、適宜に設定される。
工程(a)において、上記添加剤、特に酸化防止剤や金属不活性剤は、いずれの工程で又は成分に混合されてもよいが、無機フィラーに混合されたシランカップリング剤の樹脂へのグラフト反応を阻害しない点で、キャリア樹脂に混合されるのがよい。
工程(a)、特に工程(a-2)において、架橋助剤は実質的に混合されないことが好ましい。架橋助剤が実質的に混合されないと、溶融混合中に有機過酸化物により樹脂成分同士の架橋反応が生じにくく、柔軟性又は外観が優れたものになる。また、シランカップリング剤の樹脂へのグラフト反応が生じにくく、耐熱性又は強度が優れたものになる。ここで、実質的に混合されないとは、不可避的に存在する架橋助剤をも排除するものではなく、上述の問題が生じない程度に存在していてもよいことを意味する。
このようにして、工程(a)を行い、有機過酸化物から発生したラジカルによって、シランカップリング剤のグラフト反応部位とベース樹脂のグラフト反応可能な部位とをグラフト反応させ、マスターバッチ混合物の製造に用いられるシランマスターバッチ(シランMBともいう)が調製される。このシランMBは、後述の工程(b)により成形可能な程度にシランカップリング剤がベース樹脂にグラフトしたシラン架橋性樹脂を含有している。
本発明の製造方法において、次いで、工程(a)で得られたシランMBとシラノール縮合触媒とを混合した後に成形する工程(b)を行う。
工程(b)においては、上記工程(a-2)でベース樹脂の一部を溶融混合した場合、ベース樹脂の残部とシラノール縮合触媒とを溶融混合し、触媒マスターバッチ(触媒MBともいう)を調製して、用いることが好ましい。なお、ベース樹脂の残部に加えて他の樹脂を用いることもできる。工程(b)の混合においては、上述のように、ベース樹脂の残部として、ポリ塩化ビニル、塩素化ポリエチレン及び可塑剤の少なくとも1種を用いることができる。
キャリア樹脂としての上記ベース樹脂の残部とシラノール縮合触媒との混合割合は、特に限定されないが、好ましくはキャリア樹脂の量はベース樹脂100質量%中、3~45質量%に設定される。
混合は、均一に混合できる方法であればよく、ベース樹脂の溶融下で行う混合(溶融混合)が挙げられる。溶融混合は上記工程(a-2)の溶融混合と同様に行うことができる。例えば、混合温度は、80~250℃、より好ましくは100~240℃で行うことができる。その他の条件、例えば混合時間は適宜設定することができる。
このようにして調製される触媒MBは、シラノール縮合触媒及びキャリア樹脂、所望により添加されるフィラーの混合物である。
一方、工程(a-2)でベース樹脂の全部を溶融混合する場合、工程(b)では、シラノール縮合触媒そのもの、又は、他の樹脂とシラノール縮合触媒との混合物を用いる。他の樹脂とシラノール縮合触媒との混合方法は、上記触媒MBと同様である。
他の樹脂の配合量は、工程(a-2)においてグラフト反応を促進させることができる上、成形中にブツが生じにくい点で、ベース樹脂100質量部に対して、好ましくは1~60質量部、より好ましくは2~50質量部、更に好ましくは2~40質量部である。
本発明の製造方法においては、シランMBと、シラノール縮合触媒(シラノール縮合触媒そのもの、準備した触媒MB、又は、シラノール縮合触媒と他の樹脂との混合物)とを混合する。
混合方法は、上述のように均一な混合物を得ることができれば、どのような混合方法でもよい。例えば、混合は、工程(a-2)の溶融混合と基本的に同様である。DSC等で融点が測定できない樹脂成分、例えばエラストマーもあるが、少なくともベース樹脂が溶融する温度で溶融混合する。溶融温度は、ベース樹脂又はキャリア樹脂の溶融温度に応じて適宜に選択され、例えば、好ましくは80~250℃、より好ましくは100~240℃である。その他の条件、例えば混合時間は適宜設定することができる。
工程(b)においては、シラノール縮合反応を避けるため、シランMBとシラノール縮合触媒が混合された状態で高温状態に長時間保持されないことが好ましい。
工程(b)においては、シランMBとシラノール縮合触媒とを混合すればよく、シランMBと触媒MBとを溶融混合するのが好ましい。
本発明においては、シランMBとシラノール縮合触媒とを溶融混合する前に、ドライブレンドすることができる。ドライブレンドの方法及び条件は、特に限定されず、例えば、工程(a-1)での乾式混合及びその条件が挙げられる。このドライブレンドにより、シランMBとシラノール縮合触媒とを含有するマスターバッチ混合物が得られる。
工程(b)において、無機フィラーを用いてもよい。この場合、無機フィラーの配合量は、特には限定されないが、キャリア樹脂100質量部に対し、350質量部以下が好ましい。無機フィラーの配合量が多すぎるとシラノール縮合触媒が分散しにくく、架橋が進行しにくくなるためである。一方、無機フィラーの配合量が少なすぎると、耐熱性塩素含有架橋樹脂成形体の架橋度が低下して、十分な耐熱性が得られない場合がある。
上記工程(a)及び(b)において、工程(a)の溶融混合及び工程(b)の混合の少なくとも一方の混合をハイドロタルサイトの存在下で行うことが好ましい。工程(a)の溶融混合及び工程(b)の混合のいずれか一方をハイドロタルサイトの存在下で行う態様と、工程(a)の溶融混合及び工程(b)の混合の両方をハイドロタルサイトの存在下で行う態様とが挙げられる。なかでも、少なくとも工程(a)の溶融混合をハイドロタルサイトの存在下で行う態様がより好ましい。ハイドロタルサイトの存在下で混合を行うことにより、ポリ塩化ビニルの分解によって生じた塩化物をトラップし、塩化水素及びその他塩素系化合物の発生を抑えることができる。更に、成形体が電線である場合には電線の代替腐食を抑制することができ、また、成形体に使用される金属、あるいは周囲の金属の腐食を抑制することができる。混合をハイドロタルサイトの存在下で行うとは、ハイドロタルサイトを無機フィラーの1種として用いることを意味する。
工程(a)及び工程(b)の混合をハイドロタルサイトの存在下で行う場合、各工程におけるハイドロタルサイトの配合量は、上記無機フィラーの配合量の範囲内で適宜に設定される。例えば、工程(a)におけるハイドロタルサイトの配合量は、ベース樹脂100質量部に対して、0.3~18質量部が好ましく、1~10質量部がより好ましい。工程(b)におけるハイドロタルサイトの配合量は、ベース樹脂100質量部に対して、0.3~15質量部が好ましく、1~10質量部がより好ましい。
本発明において、上記工程(a)及び工程(b)の混合は、同時又は連続して行うことができる。
工程(b)においては、このようにして得られた混合物を成形する。
この成形工程は、混合物を成形できればよく、本発明の耐熱性製品の形態に応じて、適宜に成形方法及び成形条件が選択される。成形方法は、押出機を用いた押出成形、射出成形機を用いた押出成形、その他の成形機を用いた成形が挙げられる。押出成形は、本発明の耐熱性製品が電線又は光ファイバーケーブルである場合に、好ましい。
工程(b)において、成形工程は、上記混合工程と同時に又は連続して、行うことができる。すなわち、混合工程における溶融混合の一実施態様として、溶融成形の際、例えば押出成形の際に、又は、その直前に、成形原料を溶融混合する態様が挙げられる。例えば、ドライブレンド等のペレット同士を常温又は高温で混ぜ合わせて成形機に導入(溶融混合)してもよいし、混ぜ合わせた後に溶融混合し、再度ペレット化をして成形機に導入してもよい。より具体的には、シランMBとシラノール縮合触媒との混合物(成形材料)を被覆装置内で溶融混合し、次いで、導体等の外周面に押出被覆して、所望の形状に成形する一連の工程を採用できる。
このようにして、シランマスターバッチとシラノール縮合触媒とをドライブレンドしてマスターバッチ混合物を調製し、マスターバッチ混合物を成型機に導入して成形した、耐熱性塩素含有架橋性樹脂組成物の成形体が得られる。
ここで、マスターバッチ混合物の溶融混合物は、架橋方法の異なるシラン架橋性樹脂を含有する。このシラン架橋性樹脂において、シランカップリング剤の反応部位は、無機フィラーと結合又は吸着していてもよいが、後述するようにシラノール縮合していない。したがって、シラン架橋性樹脂は、無機フィラーと結合又は吸着したシランカップリング剤がベース樹脂、特に塩素化ポリエチレンやポリ塩化ビニルに、グラフトした架橋性樹脂と、無機フィラーと結合又は吸着していないシランカップリング剤がベース樹脂にグラフトした架橋性樹脂とを少なくとも含む。また、シラン架橋性樹脂は、無機フィラーが結合又は吸着したシランカップリング剤と、無機フィラーが結合又は吸着していないシランカップリング剤とを有していてもよい。更に、シランカップリング剤と未反応の樹脂成分を含んでいてもよい。
上記のように、シラン架橋性樹脂は、シランカップリング剤がシラノール縮合していない未架橋体である。実際的には、工程(b)で溶融混合されると、一部架橋(部分架橋)は避けられないが、得られる耐熱性塩素含有架橋性樹脂組成物について、少なくとも成形時の成形性が保持されたものとする。
工程(b)により得られる成形体は、上記混合物と同様に、一部架橋は避けられないが、工程(b)で成形可能な成形性を保持する部分架橋状態にある。したがって、この発明の耐熱性塩素含有架橋樹脂成形体は、工程(c)を実施することによって、架橋又は最終架橋された成形体とされる。
また、工程(b)により得られる成形体は、粘着性が小さく、互いに接触した状態にあっても、粘着しにくい特性(耐粘着性)を有する。
本発明の耐熱性塩素含有架橋樹脂成形体の製造方法においては、工程(b)で得られた成形体を水と接触させる工程(c)を行う。これにより、シランカップリング剤の反応部位が加水分解されてシラノールとなり、成形体中に存在するシラノール縮合触媒によりシラノールの水酸基同士が縮合して架橋反応が起こる。こうして、シランカップリング剤がシラノール縮合して架橋した耐熱性塩素含有架橋樹脂成形体を得ることができる。
工程(c)における水の量及び接触時の温度は、シラン架橋(縮合)するのに十分な量及び温度であれば特に限定されない。
この工程(c)の処理自体は、通常の方法によって行うことができる。シランカップリング剤同士の縮合は、常温で保管するだけで進行する。特にベース樹脂としてポリ塩化ビニルを含有する耐熱性塩素含有架橋性樹脂組成物は、上述のように、このシラン架橋(縮合)が速やかに進行する。したがって、工程(c)において、成形体を水に積極的に接触させる必要はない。
この架橋反応を促進させるために、成形体を水分と接触させることもできる。例えば、温水への浸水、湿熱槽への投入、高温の水蒸気への暴露等の積極的に水に接触させる方法を採用できる。また、その際に水分を内部に浸透させるために圧力をかけてもよい。
このようにして、本発明の耐熱性塩素含有架橋樹脂成形体の製造方法が実施され、耐熱性塩素含有架橋樹脂成形体が製造される。
耐熱性塩素含有架橋樹脂成形体は、上述の耐熱性塩素含有架橋性樹脂組成物の硬化物を含んでいる。したがって、耐熱性塩素含有架橋樹脂成形体は、上述のシラン架橋性樹脂を架橋したシラン架橋樹脂を含んでいる。このシラン架橋樹脂は、(シラン架橋性)樹脂がシラノール結合(シロキサン結合)を介して縮合した樹脂である。
耐熱性塩素含有架橋樹脂成形体の一形態は、上記シラン架橋樹脂と無機フィラーとを含有する。ここで、無機フィラーはシラン架橋樹脂のシランカップリング剤に結合していてもよい。したがって、ベース樹脂が、シラノール結合を介して無機フィラーと架橋(結合)してなる態様を含む。具体的には、シラン架橋樹脂は、ベース樹脂がシランカップリング剤により無機フィラーに結合又は吸着して、無機フィラー及びシランカップリング剤を介して結合(架橋)した架橋樹脂と、ベース樹脂にグラフトしたシランカップリング剤の反応部位が加水分解して互いにシラノール縮合反応することにより、シランカップリング剤を介して架橋した架橋樹脂とを少なくとも含む。また、シラン架橋樹脂は、無機フィラー及びシランカップリング剤を介した結合(架橋)と、シランカップリング剤を介した架橋とが混在していてもよい。更に、シランカップリング剤と未反応の樹脂成分及び/又は架橋していないシラン架橋性樹脂を含んでいてもよい。
上記硬化物は、構成成分及び部分構造に着目して以下のように表現することもできる。すなわち、この硬化物は、塩素化ポリエチレン、ポリ塩化ビニル及び可塑剤を含有するベース樹脂構成成分と、無機フィラー構成成分と、シランカップリング剤構成成分とを構成成分とする。この硬化物における無機フィラー構成成分及びシランカップリング剤構成成分の含有量は、通常、上記配合量と同義であり、好ましい範囲も同じである。
この硬化物の一態様は、シランカップリング剤構成成分からなる架橋部と、無機フィラー構成成分と結合したシランカップリング剤構成成分からなるグラフト部とを有する。上記架橋部は、ベース樹脂にグラフトしたシランカップリング剤の反応部位が加水分解して互いにシラノール縮合反応してなる上記架橋樹脂における、シランカップリング剤構成成分がベース樹脂同士を架橋している部分構造をいう。また、上記グラフト部は、ベース樹脂がシランカップリング剤により無機フィラーに結合又は吸着してなる上記架橋樹脂における、無機フィラー構成成分と結合したシランカップリング剤構成成分がベース樹脂にグラフト結合している部分構造をいう。グラフト部は、1つの無機フィラー構成成分に結合した複数のシランカップリング剤構成成分が複数のベース樹脂にグラフト結合して、複数のベース樹脂を架橋している部分構造を含む。このグラフト部は、ベース樹脂と無機フィラーとをシラノール結合を介して結合してなる部分構造であることが好ましい。
上記硬化物の一態様は、具体的には、塩素化ポリエチレン構成成分又はポリ塩化ビニル構成成分と無機フィラー構成成分とがシランカップリング剤構成成分により結合してなる無機フィラー硬化物と、塩素化ポリエチレン構成成分又はポリ塩化ビニル構成成分がシランカップリング剤構成成分により架橋してなる塩素含有樹脂硬化物とを少なくとも含む。無機フィラー硬化物は、1つの無機フィラー構成成分と、1つ又は複数の塩素化ポリエチレン構成成分又はポリ塩化ビニル構成成分とが、複数又は1つのシランカップリング剤構成成分により結合してなる無機フィラー硬化物を含む。
硬化物は、無機フィラー硬化物と塩素含有樹脂硬化物が更に架橋したものも含む。
上記無機フィラー硬化物は上述のグラフト部を有しており、上記塩素含有樹脂硬化物は上述の架橋部を有している。
上記本発明の製造方法は、以下のように、表現できる。
下記工程(A)、工程(B)及び工程(C)を有する耐熱性塩素含有架橋樹脂成形体の製造方法であって、工程(A)が下記工程(A1)~工程(A4)を有する耐熱性塩素含有架橋樹脂成形体の製造方法。
工程(A):塩素化ポリエチレンとポリ塩化ビニルと可塑剤とを含有するベース樹脂100質量部に対して、有機過酸化物0.003~0.3質量部と、無機フィラー0.5~400質量部と、シランカップリング剤2質量部を越え15.0質量部以下と、シラノール縮合触媒とを混合して混合物を得る工程
工程(B):工程(A)で得られた混合物を成形して成形体を得る工程
工程(C):工程(B)で得られた成形体を水と接触させて耐熱性塩素含有架橋樹脂成形体を得る工程
工程(A1):少なくとも無機フィラー及びシランカップリング剤を混合する工程
工程(A2):工程(A1)で得られた混合物とベース樹脂の全部又は一部を有機過酸化物の存在下で有機過酸化物の分解温度以上の温度で溶融混合して、ベース樹脂にシランカップリング剤をグラフト反応させることにより、反応組成物を得る工程
工程(A3):シラノール縮合触媒とキャリア樹脂としてベース樹脂と異なる樹脂又はベース樹脂の残部とを混合する工程
工程(A4):工程(A2)で得られた溶融混合物としての反応組成物と、工程(A3)で得られた混合物とを混合する工程
上記方法において、工程(A)は、上記工程(a)及び工程(b)の混合までに対応し、工程(B)は上記工程(b)の成形工程に対応し、工程(C)は上記工程(c)に対応する。また、工程(A1)は上記工程(a-1)に、工程(A2)は上記工程(a-2)に、工程(A3)及び工程(A4)は上記工程(b)の混合までに、それぞれ、対応する。
また、上記方法において、工程(A2)で使用されるベース樹脂の全部又は一部は、これを100質量%とした際に、可塑剤を5~55質量%含む。
本発明の製造方法における反応機構の詳細についてはまだ定かではないが、以下のように考えられる。
まず、耐熱性塩素含有架橋樹脂成形体における、耐熱性及び強度の発現、更には好ましく奏される(押出)外観不良の改善効果及び物性低下防止効果について、説明する。
一般に、ベース樹脂、特に塩素化ポリエチレン及びポリ塩化ビニル、に対して有機過酸化物を加えると急激にラジカルが発生し、ベース樹脂同士の架橋反応や分解反応が生じやすくなる。これにより、得られる耐熱性塩素含有架橋樹脂成形体には、ブツが発生し、物性が低下する。
しかし、本発明においては、ベース樹脂との溶融混合前及び/又は溶融混合時に、無機フィラー及びシランカップリング剤を混合する。具体的には、工程(a)において、シランカップリング剤を多く配合し、更にそのシランカップリング剤を無機フィラーとシラノール結合や水素結合、分子間結合によって予め結合させる。特に工程(a)の好ましい形態においては、この結合を生じる処理と溶融混合処理とを別に行う。これにより、溶融混合時のシランカップリング剤の揮発を抑えることができる。また、シランカップリング剤同士の縮合反応を抑えることができる。そのため、シランカップリング剤のグラフト反応部位と、ベース樹脂、特に塩素化ポリエチレン及びポリ塩化ビニル、とがグラフト反応する機会が増やされているものと考えられる。この保持されたシランカップリング剤とベース樹脂に生じるラジカルの結合反応は、上記ベース樹脂同士の架橋反応や分解反応よりも、優勢になると考えられる。
更に、本発明では、工程(a)において、塩素化ポリエチレンとポリ塩化ビニルとを含有するベース樹脂を用いる。
塩素化ポリエチレンは、有機過酸化物によって比較的架橋反応をしやすいが、ポリ塩化ビニルは架橋反応よりもむしろ分解反応が支配的となる。したがって、工程(a)において、大量のシランカップリング剤が存在するなかで、有機過酸化物を分解させると、塩素化ポリエチレンとポリ塩化ビニルとが共存することにより、上述した、シランカップリング剤のグラフト反応と、ポリ塩化ビニルの分解反応が支配的となり、塩素化ポリエチレンやポリ塩化ビニルの架橋反応を十分に抑えることができる。したがって、この副反応による架橋分やゲル分の発生を防止できる。
このように、本発明においては、ベース樹脂へのシラン架橋反応が可能となり、更に、本反応中(工程(a))においてベース樹脂、特に塩素化ポリエチレンの架橋反応が生じにくい。また、シランカップリング剤同士の縮合を抑えることができる。そのため、ブツの発生や物性の低下が生じにくく、外観の良好な耐熱性塩素含有架橋樹脂成形体を得ることが可能となる。
工程(a)において、これらが溶融混合される際に、無機フィラーと弱い結合(水素結合による相互作用、イオン、部分電荷若しくは双極子間での相互作用、吸着による作用等)で結合又は吸着したシランカップリング剤は、無機フィラーから脱離し、結果的にベース樹脂にグラフト反応する。このようにしてグラフト反応したシランカップリング剤は、その後、シラノール縮合可能な反応部位が縮合反応(架橋反応)して、シラノール縮合を介して架橋したベース樹脂を形成する。この架橋反応により得られた耐熱性塩素含有架橋樹脂成形体の耐熱性は高くなり、例えば高温でも溶融しない耐熱性塩素含有架橋樹脂成形体を得ることが可能となる。
一方、無機フィラーと強い結合(無機フィラー表面の水酸基等との化学結合等)で結合したシランカップリング剤は、このシラノール縮合触媒による水存在下での縮合反応が生じにくく、無機フィラーとの結合が保持される。そのため、シランカップリング剤を介した樹脂と無機フィラーの結合(架橋)が生じる。これによりベース樹脂と無機フィラーの密着性が強固になり、強度が高い耐熱性塩素含有架橋樹脂成形体を得ることが可能となる。特に、1つの無機フィラー粒子表面に複数のシランカップリング剤が複数結合すると、強度の更なる向上が期待できる。更には、耐摩耗性が良好で傷つきにくい成形体が得られる。
これらのシラングラフト樹脂を、シラノール縮合触媒とともに成形し、次いで水分と接触させることで、耐熱性と強度とを高い水準で両立する耐熱性塩素含有架橋樹脂成形体を得ることが可能となると推定される。また、この耐熱性塩素含有架橋樹脂成形体は外観にも優れたものとなる。
本発明においては、ベース樹脂100質量部に対して、有機過酸化物を0.003質量部以上、好ましくは0.005質量部以上、また0.3質量部以下、好ましくは0.1質量部以下の割合で混合し、更に、シランカップリング剤を、2質量部を越え15.0質量部以下の割合で無機フィラーの存在下に混合することにより、耐熱性の高い耐熱性塩素含有架橋樹脂成形体を得ることができる。
次に、耐熱性塩素含有架橋樹脂成形体における、柔軟性の改善について、説明する。
本発明においては、ベース樹脂として塩素化ポリエチレンとポリ塩化ビニルと可塑剤とを、工程(a)においてシランカップリング剤とベース樹脂成分との反応時に、用いる。これにより、上述のように、有機過酸化物による、塩素化ポリエチレンとポリ塩化ビニルとの反応性の相違により、シランカップリング剤のグラフト反応を遅く、しかも均一にすることができる。更には、副反応である塩素化ポリエチレン同士の架橋反応を大幅に抑制することができる。
このようにグラフト反応の遅延化及び均一化により、塩素含有樹脂のシラン架橋が可能となり、可塑剤を含有していても、上述のようにして得られる強固な強度を維持できる。また、上記副反応の抑制と可塑剤の含有により、柔軟性を発揮すると考えられる。
本発明においては、ベース樹脂に、塩素化ポリエチレン及びポリ塩化ビニルを含有している。そのため、耐熱性塩素含有架橋樹脂成形体は、耐候性及び耐油性に優れたものとなりうる。また、ベース樹脂は上記樹脂に加えて可塑剤を含有している。そのため、耐熱性塩素含有架橋樹脂成形体は、優れた耐寒性を有しうる。また、本発明においては、上述の優れた特性を有する耐熱性塩素含有架橋樹脂成形体を、化学架橋機や電子線架橋機等の特殊な機械を使用することなく、生産性よく製造できる。
本発明の製造方法は、耐熱性が要求される製品(半製品、部品、部材も含む。)、更には、強度、引張伸び、柔軟性、耐候性、耐油性、耐寒性及び難燃性の少なくとも1つの特性が要求される製品(半製品、部品、部材も含む。)、ゴム材料等の製品の構成部品又はその部材の製造に適用することができる。したがって、本発明の耐熱性製品は、耐熱性を有し、必要により上記の特性を有する製品とされる。このとき、耐熱性製品は、耐熱性塩素含有架橋樹脂成形体を含む製品でもよく、耐熱性塩素含有架橋樹脂成形体のみからなる製品でもよい。
本発明の耐熱性製品として、例えば、耐熱性難燃絶縁電線等の電線、耐熱難燃ケーブル又は光ファイバーケーブルの被覆材料、ゴム代替電線・ケーブルの材料、その他、耐熱難燃電線部品、難燃耐熱シート、難燃耐熱フィルム等が挙げられる。また、電源プラグ、コネクター、スリーブ、ボックス、テープ基材、チューブ、シート、パッキン、クッション材、防震材、電気・電子機器の内部配線及び外部配線に使用される配線材、特に電線や光ファイバーケーブルが挙げられる。
本発明の製造方法は、上記製品のなかでも、特に電線及び光ファイバーケーブルの製造に好適に適用され、これらの被覆(絶縁体、シース)を形成することができる。
本発明の耐熱性製品が電線又は光ファイバーケーブル等の押出成形品である場合、好ましくは、成形材料を押出機(押出被覆装置)内で溶融混合して耐熱性塩素含有架橋性樹脂組成物を調製しながら、この耐熱性塩素含有架橋性樹脂組成物を導体等の外周に押し出して、導体等を被覆する等により、製造できる。
このような耐熱性製品は、無機フィラーを大量に加えても耐熱性塩素含有架橋性樹脂組成物を電子線架橋機等の特殊な機械を使用することなく汎用の押出被覆装置を用いて、導体の周囲に、又は抗張力繊維を縦添え若しくは撚り合わせた導体の周囲に押出被覆することにより、成形することができる。例えば、導体としては軟銅の単線又は撚り線等を用いることができる。また、導体としては裸線の他に、錫メッキしたものやエナメル被覆絶縁層を有するものを用いることもできる。導体の周りに形成される絶縁層(本発明の耐熱性塩素含有架橋性樹脂組成物からなる被覆層)の肉厚は特に限定しないが、通常、0.15~5mm程度である。
以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されない。
表1において、各例の配合量に関する数値は特に断らない限り質量部を表し、配合量に関する欄が空欄である場合、当該成分の配合量が0質量部であることを示す。
表1中に示す各化合物の詳細を以下に示す。
塩素化ポリエチレンの塩素含有量は上記測定方法による。
〈樹脂成分〉
(塩素化ポリエチレン)
「エラスレン401A」(商品名、昭和電工社製、塩素含有量40質量%)
「エラスレン402NA-X5」(商品名、昭和電工社製、塩素含有量40質量%)
「エラスレン351A」(商品名、昭和電工社製、塩素含有量35質量%)
「エラスレン301A」(商品名、昭和電工社製、塩素含有量30質量%)
(ポリ塩化ビニル)
「ZEST 1400」(商品名、新第一塩ビ社製)
「ZEST 1000」(商品名、新第一塩ビ社製)
(クロロプレンゴム)
「スカイプレンE-33」(商品名、東ソー社製、塩素含有量40質量%)
(その他の樹脂)
「ハイトレル2401」(商品名、東レ・デュポン社製、ポリエステル系エラストマー)
(可塑剤)
「アデカサイザーC-9N」(商品名、ADECA社製、トリメリット酸エステル系可塑剤)
「アデカサイザーPN-650」(商品名、ADECA社製、ポリエステル系可塑剤)
「シェルDL911P」(商品名、シェル化学社製、フタル酸エステル系可塑剤)
〈有機過酸化物〉
「パーヘキサ25B」(商品名、日本油脂社製、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、分解温度149℃)
「パークミルD」(日油社製、ジクミルパーオキサイド、分解温度151℃)
〈無機フィラー〉
「DHT-4A」(商品名、協和化学工業社製、ハイドロタルサイト)
「キスマ5L」(商品名、協和化学工業社製、シランカップリング剤前処理水酸化マグネシウム)
「クリスタライト5X」(商品名、龍森社製、結晶質シリカ)
「ソフトン2200」(商品名、備北粉化工業社製、炭酸カルシウム)
「アエロジル200」(商品名、日本アエロジル社製、親水性フュームドシリカ、非結晶質シリカ)
〈シランカップリング剤〉
「KBM-1003」(商品名、信越化学工業社製、ビニルトリメトキシシラン)
〈シラノール縮合触媒〉
「アデカスタブOT-1」(商品名、ADEKA社製、ジオクチルスズジラウレート)
〈酸化防止剤〉
「イルガノックス1010」(商品名、BASF社製、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート])
(実施例及び比較例)
実施例及び比較例において、ベース樹脂の一部を触媒MBのキャリア樹脂として用いた。
まず、無機フィラーとシランカップリング剤とを、表1に示す質量比で、東洋精機製10Lヘンシェルミキサーに投入し、室温(25℃)で30分間混合して、粉体混合物を得た。次に、このようにして得られた粉体混合物と、表1のベース樹脂欄に示す各成分及び有機過酸化物とを、表1に示す質量比で、日本ロール製2Lバンバリーミキサー内に投入し、有機過酸化物の分解温度以上の温度、具体的には190℃において10分溶融混合した後、材料排出温度190℃で排出し、シランMBを得た。得られたシランMBは、ベース樹脂にシランカップリング剤がグラフト反応したシラン架橋性樹脂を含有している。
一方、キャリア樹脂とシラノール縮合触媒と酸化防止剤とを、表1に示す質量比で、150~170℃でバンバリーミキサーにて溶融混合し、材料排出温度170~180℃で排出して、触媒MBを得た。この触媒MBは、キャリア樹脂及びシラノール縮合触媒の混合物である。
次いで、シランMBと触媒MBを密閉型のリボンブレンダーに投入し、室温(25℃)で5分間ドライブレンドしてドライブレンド物(マスターバッチ混合物)を得た。このとき、シランMBと触媒MBとの混合比は、表1に示す質量比である。
次いで、得られたドライブレンド物を、L/D(スクリュー有効長Lと直径Dとの比)=24、スクリュー直径30mmのスクリューを備えた押出機(圧縮部スクリュー温度170℃、ヘッド温度200℃)に導入した。この押出機内でドライブレンド物を溶融混合しながら、1/0.8TA導体の外側に肉厚1mmで被覆し、外径2.8mmの被覆導体を得た。
上記ドライブレンド物を押出機内で押出成形前に溶融混合することにより、耐熱性塩素含有架橋性樹脂組成物が調製される。この耐熱性塩素含有架橋性樹脂組成物は、シランMBと触媒MBとの溶融混合物であって、上述のシラン架橋性樹脂を含有している。
このようにして得られた被覆導体を胴径250mmのボビンに100m巻き取った。この状態で、温度40℃、相対湿度95%の雰囲気に1週間放置して、被覆導体(耐熱性塩素含有架橋性樹脂組成物の成形体)を水と接触させた。こうして、上記導体の外周面に、耐熱性塩素含有架橋樹脂成形体からなる被覆層を有する電線を製造した。
被覆層としての耐熱性塩素含有架橋樹脂成形体は、上述の硬化物を含み、上述のシラン架橋樹脂を有している。
製造した各電線について、下記試験をし、その結果を表1に示した。
〈耐熱性試験〉
耐熱性試験として、各電線において、UL1581に基づいて、測定温度200℃、加熱及び加圧時間30分、荷重5Nで、加熱変形試験を行った。
本試験において、変形率が40%以下である場合を「A」、40%を越え50%以下である場合を「B」、50%を越える場合を「C」とした。本試験は、「B」以上が合格である。
〈柔軟性試験〉
柔軟性試験はJIS K7215に基づき、タイプAデュロメータを用い、デュロメータ硬さを測定した。デュロメータ硬さは60以上、95以下が合格範囲である。
デュロメータ硬さは90以下が好ましく、更に82以下が好ましい。
〈引張強度及び引張伸び試験〉
各電線から導体を抜き取って作製した管状片を用いて、JIS C 3005に基づき、標線間20mm、引張速度200mm/分で引張試験を行い、引張強度(MPa)及び引張伸び(%)を測定した。
本試験において、引張強度が10MPa以上である場合を合格とし、14MPa以上が好ましい。また、引張伸びは、100%以上である場合を合格とし、150%以上が好ましい。
〈耐寒性試験〉
耐寒性試験1
耐寒性試験として低温巻付け試験(低温性試験)をJIS C 3005に準じて行った。
電線と、電線の自己径と同じ外径のマンドレルとを-15℃の恒温槽中に4時間放置した。次いで、恒温槽の中で電線をマンドレルの周りに6ターン巻付けた。巻付け後、常温(25℃)に戻して、電線(被覆層)の外観を確認した。
本試験において、被覆層にクラック又は割れのないものを「A」、被覆にクラック又は割れのあるものを「D」とした。
本試験は、参考試験であり、評価「A」が合格レベルである。
耐寒性試験2
恒温槽の温度を-25℃にした以外は、耐寒性試験1と同様にして耐寒性試験2を行った。
〈押出外観試験〉
押出外観試験は、被覆導体を製造する際に、被覆導体の外観を観察して評価した。
本試験において、被覆導体の外観にブツがなく電線形状に成形できたものを「A」、被覆導体の外観にブツはないものの表面が少し肌荒れしたものを「B」、ブツの発生を確認できたが外観に問題がない程度であり、電線形状に成形できたものを「C」、著しく外観不良が発生して電線形状に成形できなかったものを「D」とした。
本試験は、参考試験であり、評価「C」以上が合格レベルである。
Figure 0007060582000002
表1の結果から、以下のことが分かる。
比較例は、強度、柔軟性及び耐熱性のいずれかに劣るものであった。シランMBにポリ塩化ビニルを含有しないベース樹脂を用いた比較例1は、引張伸びが小さく機械強度に劣った。シランMBに可塑剤の含有率の多すぎるベース樹脂を用いた比較例2は、耐熱性、柔軟性及び機械強度(引張強度)に劣った。シランMBに塩素化ポリエチレンを含有しないベース樹脂を用いた比較例3は、耐熱性に劣った。シランMBに可塑剤の含有量の少なすぎるベース樹脂を用いた比較例4は、デュロメータ硬さが大きく柔軟性に劣った。有機過酸化物の含有量が少なすぎる比較例5は、耐熱性に劣った。有機過酸化物の含有量の多すぎるシランMBを用いた比較例6は、引張強度及び引張伸びが小さく記載特性に劣った。
これに対して、実施例は、強度、柔軟性及び耐熱性がいずれも合格しており、強度と柔軟性とを兼ね備えた耐熱性塩素含有架橋樹脂成形体を製造することができる。
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
本願は、2017年3月27日に日本国で特許出願された特願2017-61904に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (20)

  1. 下記工程(a)、工程(b)及び工程(c)を有する耐熱性塩素含有架橋樹脂成形体の製造方法であって、
    工程(a):塩素化ポリエチレンとポリ塩化ビニルと可塑剤とを含有するベース樹脂100質量部に対して、有機過酸化物0.003~0.3質量部と、無機フィラー0.5~400質量部と、前記ベース樹脂にグラフト反応しうるグラフト反応部位を有するシランカップリング剤2質量部を越え15.0質量部以下とを、前記有機過酸化物の分解温度以上の温度で溶融混合して、前記グラフト反応させる工程
    工程(b):前記工程(a)で得られたシランマスターバッチとシラノール縮合触媒とを混合した後に成形する工程
    工程(c):前記工程(b)で得られた成形体を水分と接触させてシラン架橋させる工程
    前記工程(a)が下記工程(a-1)と工程(a-2)とを有し、
    工程(a-1):少なくとも前記無機フィラー及び前記シランカップリング剤を混合して混合物を調製する工程
    工程(a-2):工程(a-1)で得られた混合物と、前記ベース樹脂の全部又は一部とを、有機過酸化物の存在下で有機過酸化物の分解温度以上の温度において、溶融混合して、前記ベース樹脂と前記シランカップリング剤とをグラフト反応させる工程
    前記工程(a-2)において、前記シランカップリング剤とのグラフト反応時に使用するベース樹脂100質量%中に塩素化ポリエチレン、ポリ塩化ビニル及び可塑剤5~55質量%含有する、耐熱性塩素含有架橋樹脂成形体の製造方法。
  2. 前記可塑剤が、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ポリエステル系可塑剤、アジピン酸エステル系可塑剤、若しくはピロメリット酸エステル系可塑剤又はこれらの組合せを含む請求項1に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  3. 前記可塑剤が、フタル酸エステル系可塑剤、若しくはトリメリット酸エステル系可塑剤又はこれらの組合せを含む請求項1又は2に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  4. 前記可塑剤が、前記シランカップリング剤とのグラフト反応時に使用するベース樹脂100質量%中に、5~40質量%含有されている請求項1~3のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  5. 前記ベース樹脂の一部を前記工程(a-2)において溶融混合し、前記ベース樹脂の残部を前記工程(b)において混合する、請求項1~4のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  6. 前記工程(a-2)の溶融混合及び前記工程(b)の混合の少なくとも一方をハイドロタルサイトの存在下で行う請求項1~5のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  7. 前記塩素化ポリエチレンと前記ポリ塩化ビニルの、前記シランカップリング剤とのグラフト反応時に使用するベース樹脂中の含有率の比率(塩素化ポリエチレンの含有率:ポリ塩化ビニルの含有率)を質量比で95:5~10:90とする請求項1~6のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  8. 前記有機過酸化物の含有量が、0.005~0.3質量部である請求項1~7のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  9. 前記シランカップリング剤の含有量が、3~12.0質量部である請求項1~8のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  10. 前記シランカップリング剤の含有量が、4~12.0質量部である請求項1~9のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  11. 前記シランカップリング剤が、ビニルトリメトキシシラン又はビニルトリエトキシシランを含む請求項1~10のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  12. 前記無機フィラーが、ハイドロタルサイト、シリカ、ベーマイト、クレー、タルク、水酸化アルミニウム、水酸化マグネシウム、若しくは炭酸カルシウム又はこれらの組合せを含む請求項1~11のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  13. 前記工程(a-2)における溶融混合が、密閉型のミキサーを用いて行われる請求項1~12のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法。
  14. 塩素化ポリエチレンとポリ塩化ビニルと可塑剤とを含有するベース樹脂100質量部に対して、有機過酸化物0.003~0.3質量部と、無機フィラー0.5~400質量部と、前記ベース樹脂にグラフト反応しうるグラフト反応部位を有するシランカップリング剤2質量部を越え15.0質量部以下と、シラノール縮合触媒とを混合してなるマスターバッチ混合物の製造に用いられるシランマスターバッチであって、
    前記ベース樹脂の全部又は一部100質量%中に可塑剤を5~55質量%、前記塩素化ポリエチレン、及び前記ポリ塩化ビニルを含有し、
    少なくとも前記無機フィラー及び前記シランカップリング剤を混合した混合物と、前記ベース樹脂の全部又は一部とを、前記有機過酸化物の分解温度以上の温度で溶融混合して、前記ベース樹脂と前記シランカップリング剤とをグラフト反応させてなるシランマスターバッチ。
  15. 請求項14に記載のシランマスターバッチとシラノール縮合触媒とを含有するマスターバッチ混合物。
  16. 請求項15に記載のマスターバッチ混合物を用いた耐熱性塩素含有架橋樹脂成形体。
  17. 請求項1~13のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体の製造方法により製造された耐熱性塩素含有架橋樹脂成形体。
  18. 前記ベース樹脂が、シラノール結合を介して前記無機フィラーと架橋してなる請求項17に記載の耐熱性塩素含有架橋樹脂成形体。
  19. 請求項16~18のいずれか1項に記載の耐熱性塩素含有架橋樹脂成形体を含む耐熱性製品。
  20. 前記耐熱性塩素含有架橋樹脂成形体が、電線又は光ファイバーケーブルの被覆である請求項19に記載の耐熱性製品。
JP2019509340A 2017-03-27 2018-03-19 耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ及びマスターバッチ混合物、並びに、耐熱性製品 Active JP7060582B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017061904 2017-03-27
JP2017061904 2017-03-27
PCT/JP2018/010767 WO2018180690A1 (ja) 2017-03-27 2018-03-19 耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ及びマスターバッチ混合物、並びに、耐熱性製品

Publications (2)

Publication Number Publication Date
JPWO2018180690A1 JPWO2018180690A1 (ja) 2020-02-06
JP7060582B2 true JP7060582B2 (ja) 2022-04-26

Family

ID=63675728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019509340A Active JP7060582B2 (ja) 2017-03-27 2018-03-19 耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ及びマスターバッチ混合物、並びに、耐熱性製品

Country Status (3)

Country Link
US (1) US11472932B2 (ja)
JP (1) JP7060582B2 (ja)
WO (1) WO2018180690A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724559A (zh) * 2020-12-30 2021-04-30 威海市泓淋电力技术股份有限公司 高能电子束辐照交联环保无锑聚氯乙烯电缆料的制备方法
CN116239847A (zh) * 2023-02-08 2023-06-09 昆山申氏达电子有限公司 一种用于线缆外表皮抗拉伸性好的树脂及其成型方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285275A (ja) 2003-03-24 2004-10-14 Hirakawa Hewtech Corp ポリ塩化ビニル樹脂組成物、絶縁電線、ケーブル及びそれらの製造方法
JP2011207973A (ja) 2010-03-29 2011-10-20 Hitachi Cable Ltd 再生塩化ビニル樹脂組成物用pvcマスターバッチ、塩化ビニル樹脂組成物及び電線・ケーブル並びに再生塩化ビニル樹脂組成物の製造方法及び電線・ケーブルの製造方法
JP2015143299A (ja) 2014-01-31 2015-08-06 矢崎総業株式会社 ポリ塩化ビニル樹脂組成物及び絶縁被覆電線

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003981A (en) * 1956-01-09 1961-10-10 Minnesota Mining & Mfg Epoxidized polyene polymers
JPS5725347A (en) * 1980-07-22 1982-02-10 Toagosei Chem Ind Co Ltd Vinyl chloride resin composition
JPS61123665A (ja) * 1984-11-19 1986-06-11 Matsushita Electric Ind Co Ltd 導電性樹脂組成物の製造方法
JPH05242737A (ja) * 1992-02-25 1993-09-21 Hitachi Cable Ltd 塩素化ポリエチレンシースケーブル
JPH06168629A (ja) * 1992-11-27 1994-06-14 Hitachi Cable Ltd 電線・ケーブル
JP3036405B2 (ja) * 1995-06-14 2000-04-24 三菱化学エムケーブイ株式会社 塩化ビニル系樹脂組成物
JP2001101928A (ja) 1999-09-29 2001-04-13 Yazaki Corp 難燃性樹脂組成物
KR102283213B1 (ko) * 2014-02-21 2021-07-29 도쿄 오카 고교 가부시키가이샤 카본 블랙 분산액

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285275A (ja) 2003-03-24 2004-10-14 Hirakawa Hewtech Corp ポリ塩化ビニル樹脂組成物、絶縁電線、ケーブル及びそれらの製造方法
JP2011207973A (ja) 2010-03-29 2011-10-20 Hitachi Cable Ltd 再生塩化ビニル樹脂組成物用pvcマスターバッチ、塩化ビニル樹脂組成物及び電線・ケーブル並びに再生塩化ビニル樹脂組成物の製造方法及び電線・ケーブルの製造方法
JP2015143299A (ja) 2014-01-31 2015-08-06 矢崎総業株式会社 ポリ塩化ビニル樹脂組成物及び絶縁被覆電線

Also Published As

Publication number Publication date
US20200017642A1 (en) 2020-01-16
JPWO2018180690A1 (ja) 2020-02-06
US11472932B2 (en) 2022-10-18
WO2018180690A1 (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
US11242453B2 (en) Heat-resistant chlorine-containing crosslinked resin formed body and method for producing the same, silane master batch, master batch mixture and formed body thereof, and heat-resistant product
JP6858139B2 (ja) 耐熱性架橋フッ素ゴム成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、耐熱性製品
JP6623260B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP5343327B2 (ja) 難燃性シラン架橋オレフィン系樹脂の製造方法および絶縁電線ならびに絶縁電線の製造方法
JP6706854B2 (ja) 耐熱性架橋樹脂成形体及びその製造方法、並びに、耐熱性製品
JP6407339B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6706855B2 (ja) 耐熱性塩素含有架橋樹脂成形体及びその製造方法、並びに、耐熱性製品
JP7060582B2 (ja) 耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ及びマスターバッチ混合物、並びに、耐熱性製品
JP6706858B2 (ja) 耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、耐熱性製品
JP2017141386A (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、シランマスターバッチ及び耐熱性製品
JP6582012B2 (ja) 耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ及びマスターバッチ混合物、並びに、耐熱性製品
JP7316753B2 (ja) 耐熱性シラン架橋樹脂成形体の製造方法
JP6639937B2 (ja) 耐熱性シラン架橋熱可塑性エラストマー成形体の製造方法、シランマスターバッチ、並びに、耐熱性製品
JP6567589B2 (ja) 塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、成形品
JP2021155589A (ja) 架橋フッ素ゴム組成物、並びに、これを用いた配線材及びその製造方法
JP2020143184A (ja) シラン架橋樹脂成形体の製造方法及びシラン架橋樹脂成形体
JP6782222B2 (ja) シラン架橋アクリルゴム成形体及びその製造方法、シラン架橋性アクリルゴム組成物、並びに耐油性製品
JP7214677B2 (ja) 架橋フッ素ゴム組成物、並びに、これを用いた配線材及びその製造方法
JP7203782B2 (ja) 耐熱性架橋フッ素ゴム成形体及びその製造方法、並びに、耐熱性製品
JP6895920B2 (ja) 耐熱性シラン架橋ポリオレフィン樹脂成形体の製造方法、シラン架橋性ポリオレフィン樹脂組成物、耐熱性シラン架橋ポリオレフィン樹脂成形体、耐熱性製品、電線及び光ファイバケーブル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220414

R151 Written notification of patent or utility model registration

Ref document number: 7060582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151