JP7052999B2 - 熱交換器、電子機器、および熱交換器の製造方法 - Google Patents

熱交換器、電子機器、および熱交換器の製造方法 Download PDF

Info

Publication number
JP7052999B2
JP7052999B2 JP2017250480A JP2017250480A JP7052999B2 JP 7052999 B2 JP7052999 B2 JP 7052999B2 JP 2017250480 A JP2017250480 A JP 2017250480A JP 2017250480 A JP2017250480 A JP 2017250480A JP 7052999 B2 JP7052999 B2 JP 7052999B2
Authority
JP
Japan
Prior art keywords
evaporator
working fluid
wick
gas phase
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017250480A
Other languages
English (en)
Other versions
JP2019116990A (ja
Inventor
方星 長野
紀志 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai National Higher Education and Research System NUC
Original Assignee
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai National Higher Education and Research System NUC filed Critical Tokai National Higher Education and Research System NUC
Priority to JP2017250480A priority Critical patent/JP7052999B2/ja
Publication of JP2019116990A publication Critical patent/JP2019116990A/ja
Application granted granted Critical
Publication of JP7052999B2 publication Critical patent/JP7052999B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、熱交換器、電子機器、および熱交換器の製造方法に関する。
熱交換器としての一例として、下記のループヒートパイプ等(下記特許文献1および2参照)が知られている。
特許文献1には、ループ型ヒートパイプが開示されている。このループ型ヒートパイプは、設置角度の如何に関わらず効率的に発熱部品を冷却するべく、蒸発部、凝縮部、及び液戻り管の内部にそれぞれ設けられるとともに、毛細管力を生じさせるウィックを有する。
また、特許文献2には、ミニループヒートパイプ用蒸発器が開示されている。このミニループヒートパイプ用蒸発器は、管状体と、上部、側部、及び下部ウィックと、液注入手段と蒸気流路手段とを備える。そして、管状体は、扁平な円筒状で内部に液をためることのできる空間を有する。また、上部ウィック,上部円周ウィック、下部ウィックは、前記管状体上部内面に沿って、側部に円周に沿って、及び内側に液を溜めうる空間部を形成するために管状体下部内面に沿って施されている。
特開2008-215702号公報 特開2005-233480号公報
ところで、蒸発器における蒸発体の内部においては、作動流体が液相から気相へと蒸発する。この蒸発した気相の作動流体が、蒸発体から予め定めた方向に流出しないと、蒸発器における熱交換効率が低下し得る。
本発明は、上記課題を解決するためになされたものであり、気相の作動流体が蒸発体から予め定めた方向以外に流出することを抑制した熱交換器などを提供することを目的とする。
上記目的を達成するため、上記課題を解決する手段として、以下に記載の発明が挙げられる。すなわち、請求項1に記載の発明は、外部から熱を吸収して作動流体を液相から気相へと蒸発させる蒸発器を有し、当該蒸発器から導かれた気相の作動流体を凝縮させ液相の作動流体として当該蒸発器に環流させる熱交換器において、前記蒸発器は、液相の作動流体が収容される液溜め部と、当該液溜め部内に設けられ当該液溜め部に収容された液相の作動流体を毛細管力により移動させながら気相へと蒸発させる蒸発体を有し、前記蒸発体は、前記蒸発体の外周に形成され、当該蒸発体の内部に液相の作動流体を流入させる流入部と、前記蒸発体の外周で前記液溜め部に収容された液相の作動流体と対向する位置に形成され、当該蒸発体の内部から当該液溜め部に気相の作動流体が流出することを抑制する抑制部と、前記蒸発体の外周に形成され、当該蒸発体の内部から気相の作動流体を流出させる流出部とを有することを特徴とする熱交換器である。
請求項2に記載の発明は、前記蒸発器は、気相の作動流体を流出させる流出口を有し、前記抑制部は、前記蒸発体の内部において前記流出口に向かう作動流体の移動方向に沿う当該蒸発体の側面に形成されていることを特徴とする請求項1記載の熱交換器である。
請求項3に記載の発明は、前記抑制部は、前記側面全体を覆うことを特徴とする請求項2記載の熱交換器である。
請求項4に記載の発明は、前記蒸発体は、内部に多数の孔を有する多孔質体であり、前記抑制部は、前記蒸発体の内部と比較して空孔率が小さいことを特徴とする請求項1乃至3のいずれか1項記載の熱交換器である。
請求項5に記載の発明は、前記抑制部は、前記蒸発器の内面における前記流出部と対向する対向面に固定されることを特徴とする請求項1乃至4のいずれか1項記載の熱交換器である。
請求項6に記載の発明は、前記蒸発器は、内面に気相の作動流体が流れる凹部が形成され、前記蒸発体は、前記内面における前記凹部を覆う位置に設けられ、前記抑制部は、前記凹部を覆う位置に設けられた前記蒸発体において当該凹部よりも外周側に設けられることを特徴とする請求項1乃至5のいずれか1項記載の熱交換器である。
請求項7に記載の発明は、前記蒸発体は、平板状に形成され、前記蒸発器は、前記蒸発体を支持する支持面を有し、前記抑制部は、前記蒸発体における前記支持面によって支持される被支持面から立ち上がる当該蒸発体の立上面に形成されることを特徴とする請求項1乃至6のいずれか1項記載の熱交換器である。
請求項8に記載の発明は、前記蒸発体は、複数の多孔質層により形成され、前記抑制部は、前記複数の多孔質層の積載方向に沿う前記蒸発体の側面に形成されることを特徴とする請求項1乃至7のいずれか1項記載の熱交換器である。
請求項9に記載の発明は、筺体と、前記筺体の内部に収容される発熱部品と、前記発熱部品から熱を吸収し作動流体を液相から気相へと蒸発させ蒸気管を介して流出させる蒸発器を備え、当該蒸発器から導かれた気相の作動流体を凝縮させ液相の作動流体として液管を介して当該蒸発器に環流させる熱交換器とを備える電子機器において、前記蒸発器は、平板状に形成され、液相の作動流体を収容し、気相の作動流体を流出させる流出口を有する蒸発器筺体と、平板状に形成され、前記蒸発器筺体の内部に設けられ、液相の作動流体を毛細管力により移動させながら気相へと蒸発させる蒸発体とを備え、前記蒸発体は、前記蒸発体の外周に形成され、当該蒸発体の内部に液相の作動流体を流入させる流入部と、前記蒸発体の外周で前記蒸発器筺体内に収容された液相の作動流体と対向し、当該蒸発体の内部において前記流出口に向かう作動流体の移動方向に沿う当該蒸発体の側面全体に形成され、当該蒸発体の内部から当該蒸発器筺体内に気相の作動流体が流出することを抑制し、かつ前記蒸発器筺体に対する当該蒸発体の内面における前記流出口が形成された面に固定される固定部と、前記蒸発体の外周に形成され、当該蒸発体の内部から気相の作動流体を流出させる流出部とを有することを特徴とする電子機器である。
請求項10に記載の発明は、外部から熱を吸収して作動流体を液相から気相へと蒸発させる蒸発器を有し、当該蒸発器から導かれた気相の作動流体を凝縮させ液相の作動流体として当該蒸発器に環流させる熱交換器の製造方法において、液相の作動流体を毛細管力により移動させながら気相へと蒸発させる蒸発体を形成する工程と、液相の作動流体および前記蒸発体を内部に収容する蒸発器筺体を構成する底部および覆い部を形成する工程と、前記底部における予め定めた位置で前記蒸発器筺体の内部となる位置に前記蒸発体を配置する工程と、前記底部に配置された前記蒸発体の外周、当該蒸発体の内部から当該液溜め部に気相の作動流体が流出することを抑制し、かつ当該底部に対する当該蒸発体の位置を固定する固定部を形成する工程と、前記蒸発体が固定された前記底部に対して前記蒸発器筺体の前記覆い部を固定する工程とを有することを特徴とする熱交換器の製造方法である。
請求項1記載の発明によれば、気相の作動流体が蒸発体から予め定めた方向以外に流出することを抑制した熱交換器を提供することができる。
請求項2記載の発明によれば、熱交換効率の低下を抑制することができる。
請求項3記載の発明によれば、熱交換効率の低下を抑制することができる。
請求項4記載の発明によれば、蒸発体内部における作動流体の移動が妨げられることを抑制できる。
請求項5記載の発明によれば、蒸発器の製造工程における作業効率を向上させることができる。
請求項6記載の発明によれば、凹部内の気相の作動流体が蒸発体の外周から流出することを抑制することができる。
請求項7記載の発明によれば、熱交換効率の低下を抑制しつつ、蒸発器の厚さを低減することができる。
請求項8記載の発明によれば、多孔質層同士の間から気相の作動流体が流出することを抑制することができる。
請求項9記載の発明によれば、気相の作動流体が蒸発体から予め定めた方向以外に流出することを抑制した熱交換器を有する電子機器を提供することができる。
請求項10記載の発明によれば、気相の作動流体が蒸発体から予め定めた方向以外に流出することを抑制した熱交換器を提供することができる。
本実施の形態に係るループ型ヒートパイプを示す概略構成図である。 本実施の形態に係る蒸発器を示す概略構成図である。 筺体およびウィックの構成を説明する図である。 図2の矢印IVからみたウィックの平面図である。 ウィックの封止領域を説明する図である。 ループ型ヒートパイプの製造方法を示すフローチャートである。 (a)はウィックにおけるリーク試験を説明する図であり、(b)はリーク試験において観察された結果を説明する図である。 (a)および(b)はウィックを説明する図である。 (a)は蒸発器を示す概略構成図であり、(b)はウィックを示す概略構成図である。 ループ型ヒートパイプを備える携帯電話を説明する図である。
以下、添付図面を参照して、本実施の形態について詳細に説明する。
<ループ型ヒートパイプ100の構成>
図1は、本実施の形態に係るループ型ヒートパイプ100を示す概略構成図である。
まず、図1を参照して、本実施の形態が適用されるループ型ヒートパイプ100の構成を説明する。
本実施の形態が適用されるループ型ヒートパイプ100は、例えば携帯電話(スマートフォン)やタブレット型端末など電子機器等の筺体の内部に備えられる図示しない発熱体(発熱部品、例えばコンピュータのCPU)を、外部から動力を供給せずに冷却するべく、環状に構成された装置内で作動流体を循環させるよう構成されている。
詳細に説明すると、ループ型ヒートパイプ100は、作動流体が気化する際の潜熱を利用して発熱体(図示せず)を冷却するため作動流体を蒸発させる蒸発器101と、この蒸発器101で気化された作動流体を放熱して液化する凝縮器(Condenser)107とを有する。また、ループ型ヒートパイプ100は、蒸発器101で気化された作動流体を凝縮器107まで送る蒸気管(Vapor Line)105と、凝縮器107で液化された作動流体を蒸発器101まで送る液管(Liquid Line)109とを備えている。そして、本発明のループ型ヒートパイプ100内には液相および気相の間で相変化する作動流体が充填されている。なお、作動流体としては、例えば、水、アルコール、アンモニア等が用いられる。
<ループ型ヒートパイプ100の動作>
次に、図1を参照して、熱交換器の一例であるループ型ヒートパイプ100内の動作を説明する。
まず、発熱体(図示せず)において発生する熱は、蒸発器101に伝達される(矢印H1参照)。蒸発器101において熱を吸収した作動流体は気化し、蒸気管105を通って(矢印A1参照)、凝縮器107へ送られる(矢印A2参照)。凝縮器107へ送られた作動流体は、熱を放出して(矢印H2参照)液化する。そして、液化した作動流体は、液管109を通って(矢印A3参照)、再び蒸発器101へと送られる(矢印A4参照)。
<蒸発器101の構成>
図2は、本実施の形態に係る蒸発器101を示す概略構成図である。
次に、図2を参照して、本実施の形態が適用される蒸発器101の構成を説明する。
図2に示すように、蒸発器101は、電子機器(図示せず)の内部に備えられ、発熱体(図示せず)からの熱を受ける筺体110と、筺体110の内部に設けられるウィック130とを有する。
なお、詳細は後述するが、本実施の形態に係る筺体110およびウィック130は、概形が平板状である。また、この筺体110は、蒸気管105および液管109が接続される。さらに、筺体110には作動流体が充填されている。
また、筺体110の内部において、ウィック130よりも液管109側の空間(図中上側の空間)は液相の作動流体が収容される液溜め部150として機能する。また、詳細は後述するが、筺体110内部のウィック130が搭載される面(上面111T)には、蒸気溝118および集約領域119が形成されている。したがって、ウィック130は、筺体110の内部を、液溜め部150と、蒸気溝118および集約領域119内の空間との2つの空間に区画する。
<蒸発器101の動作>
次に、図1および図2を参照しながら蒸発器101内の動作について説明する。
液溜め部150に収容された液相の作動流体は、ウィック130に浸透する。そして、液相の作動流体は、ウィック130の毛細管力によりウィック130内を移動しながら、発熱体(図示せず)の熱により加熱され気化する。この気化した作動流体は、蒸気管105側へと移動した後(矢印C4およびC5参照)、蒸気管105から流出し(矢印A1参照)、凝縮器107(図1参照)へと送られる。
一方、凝縮器107(図1参照)で液化した作動流体は、液管109を介して筺体110内へと流入する(矢印A4参照)。筺体110内へ流入した作動流体は、液溜め部150を経てウィック130に浸透する。
このように、ウィック130の外周面において作動流体の流れが途切れることなく、上記のサイクルが繰り返される。そして、発熱体(図示せず)において発生した熱が、蒸発器101から凝縮器107(図1参照)へと輸送される。
なお、以下の説明においては、蒸発器101(筺体110)の平面視長手方向、より具体的には、筺体110内部において液管109側から蒸気管105側に向けて作動流体が移送される方向を、単に移送方向ということがある(図2参照)。また、蒸発器101における位置を説明する際に、移送方向における蒸気管105側を単に下流側ということがあり、液管109側を単に上流側ということがある。
また、図2に示すように、平板状の部材である筺体110の厚み方向を、単に厚み方向ということがある。また、移送方向および厚み方向と交差する方向、すなわち筺体110の幅方向を、単に幅方向ということがある。
<筺体110の構成>
図3は、筺体110およびウィック130の構成を説明する図である。より具体的には、図3は図2のIII-IIIにおける断面図である。
次に、図2および図3を参照しながら、筺体110について説明をする。
図2に示すように、筺体(蒸発器筺体)110は、概形が略直方体状(板状)で中空の部材である。筺体110の内部には、略直方体状の空間が形成される。この筺体110は、例えばアルミなどの金属や樹脂などにより形成される。
また、筺体110は、厚み方向と交差する向きに設けられた板状部材である底部111と、底部111の幅方向両端部から厚み方向に延びる第1側部112および第2側部113と、底部111の移送方向下流側の端部から厚み方向に延びる下流側部114と、底部111の移送方向上流側の端部から厚み方向に延びる上流側部115と、厚み方向に空間を隔てて底部111と対向して設けられる天部116とを有する。言い替えると、底部111、第1側部112、第2側部113、下流側部114、上流側部115、および天部116によって、筺体110の内部空間が覆われた構成となる。
ここで、底部111は、貫通孔である流出口121を有する。この流出口121は、蒸気管105と内部が連続するように設けられる。また、図示の例における流出口121は、上流側部115の幅方向中央であって集約領域119(後述)に設けられている。
また、上流側部115は、貫通孔である流入口123を有する。この流入口123は、液管109と内部が連続するように設けられる。なお、流入口123は、筺体110内の液溜め部150に向けて開口する。また、図示の例における流入口123は、上流側部115の幅方向中央および厚み方向中央に設けられている。
付言すると、この筺体110は、例えば、板面の一辺が10mm乃至400mm程度であり、かつ厚みが2mm乃至20mm程度の寸法で構成される。また、筺体110は、板面の一辺に対する厚みの割合が、例えば0.5~20%程度の寸法で構成される。
<底部111の構成>
次に、図2および図3を参照しながら、底部111の構成について詳細に説明をする。
図2に示すように、底部111は、平板状(厚みが薄い略直方体)の部材である。図示の例の底部111は、平面視略長方形である。この底部111は、筺体110内側の面である上面(支持面)111Tに、蒸気溝118および集約領域119が形成されている。
ここで、蒸気溝118は、上面111Tにおいて移送方向に延びる凹部、すなわち溝である。図示の例においては、複数の蒸気溝118が幅方向に予め定められた間隔で並んで形成されている。なお、この蒸気溝118の長手方向(移送方向)と交差する面における断面形状は、略長方形である(図3参照)。なお、蒸気溝118の幅W1(後述する図5参照)は、例えば0.2mm乃至3mm程度である。
集約領域119は、平面視略長方形であり、長手方向が幅方向に沿う凹部である。この集約領域119は、蒸気溝118よりも移送方向下流側において、蒸気溝118と連続して設けられる。また、図示の例における集約領域119の中央部には、流出口121が形成されている。さらに、集約領域119の蒸気溝118とは反対側の隅部は湾曲部119Aにより形成されている。なお、集約領域119の幅W2(後述する図4参照)は、例えば4mm乃至280mm程度である。
ここで、底部111の上面111Tに、蒸気溝118および集約領域119が形成されていることにより、ウィック130と底部111の上面111Tとの間に、空間が形成される。この空間は、ウィック130で気化した作動流体の流路として機能する。
<ウィック130の構成>
図4は、図2の矢印IVからみたウィック130の平面図である。
次に、図2乃至図4を参照しながら、ウィック130の構成について説明をする。
図2に示すように、蒸発体の一例であるウィック130は平板状(厚みが薄い略直方体)の部材である。図示の例のウィック130は、平面視略長方形である。
ウィック130は、多孔質金属(ポーラスメタル)などの多孔質体により形成される。このウィック130は、作動流体に毛細管力を発生させ、結果として作動流体を移動させる。
ウィック130の実効空孔径は、0.1~20μmである。また、ウィック130の空孔率は、25~70%である。なお、実効空孔径および空孔率の測定法は特に限定されない。例えば、水中含侵法による見かけ密度測定、水銀圧入法による気孔径分布測定、あるいはX線CTによる気孔観察などにより測定してもよい。また、ウィック130は、上述の金属製の多孔質体に限定されるものではなく、ポリテトラフルオロエチレン(PTFE)などの樹脂製の多孔質体、セラミック多孔質体、ガラス多孔質体、多孔質繊維など、その内部に多数の孔、すなわち空隙130P(後述)が形成された材料であればよい。また、ウィック130として、熱伝導率が低い材質を用いると、蒸発器101における熱リークを低減することができる。なお、熱リークをより低減したい場合、一般的に熱伝導率が金属よりも低い非金属製の材料を用いることが好ましい。
付言すると、このウィック130は、例えば、一辺が5mm乃至300mm程度であり、かつ厚みが1mm乃至10mm程度の寸法で構成される。また、ウィック130は、板面の一辺に対する厚みの割合が、例えば0.3~20%程度の寸法で構成される。
以下の説明においては、図示の例におけるウィック130が有する外周面を、第1側面132、第2側面133、下流面134、上流面135、天面136、および底面137と呼ぶ。さらに説明をすると、ウィック130が筺体110の内部に配置された状態において、第1側部112と対向する面を第1側面132とする。同様に、第2側部113と対向する面を第2側面133、下流側部114と対向する面を下流面134、上流側部115と対向する面を上流面135、天部116と対向する面を天面136、底部111と対向する面を底面137とする。
また、以下の説明においては、第1側面132、第2側面133、下流面134、および上流面135を、単にウィック130の側面ということがある。なお、ウィック130の側面は蒸発体の立上面の一例であり、底面137は被支持面の一例である。
さて、ウィック130は、筺体110の内部において、底部111(上面111T)の中央部に設けられる。ここで、ウィック130は、底部111の上面111Tよりも小さな寸法である。したがって、筺体110の内面とウィック130の側面とは離間している。具体的には、筺体110の第1側部112とウィック130の第1側面132との間には空間が形成されている。同様に、筺体110の第2側部113およびウィック130の第2側面133、筺体110の下流側部114およびウィック130の下流面134、筺体110の上流側部115およびウィック130の上流面135、筺体110の天部116およびウィック130の天面136のそれぞれの間には空間が形成されている。一方、筺体110の底部111とウィック130の底面137は、互いに接触して配置されている。なお、筺体110の内面とウィック130の側面とが離間していることにより、ウィック130の寸法精度が低い場合であっても、筺体110内部にウィック130を確実に収容し得る。
また、図4に示すように、ウィック130は、底部111における蒸気溝118および集約領域119が形成されている領域よりも大きな寸法である。言い替えると、ウィック130は、蒸気溝118および集約領域119が形成されている領域よりも、移送方向および幅方向の長さが長い。そして、ウィック130は、蒸気溝118および集約領域119を覆う位置で底部111に対して固定される。
また、詳細は後述するが、ウィック130は、第1側面132と、第2側面133、下流面134、および上流面135の各々から所定の幅で封止領域130Aを有する。すなわち、ウィック130は、図4に示すように平面視したウィック130の外周部に封止領域130Aを有する。この封止領域130Aは、底部111における蒸気溝118および集約領域119が形成されている領域を囲う位置に設けられる。
<ウィック130における作動流体の流れ>
次に、図2乃至図4を参照しながら、ウィック130における作動流体の流れについて詳細に説明する。
まず、図3に示すように、液溜め部150内の液相の作動流体は、天面136からウィック130内部に浸透する(矢印C1参照)。そして、ウィック130に浸透した作動流体は、ウィック130の毛細管力により、ウィック130厚み方向に浸透する(流れる)。言い替えると、ウィック130の厚み方向に沿う方向が作動流体の移動方向(予め定めた方向)となる。そして、発熱体(図示せず)の熱により加熱され気化した作動流体は、一部が厚み方向に流れ(矢印C2参照)ながら、蒸気溝118内へ流れ出る(矢印C3参照)。
そして、図4に示すように、蒸気溝118内へ流れ出た気相の作動流体は、移送方向下流側に向かう(矢印C4参照)。さらに、気相の作動流体は、複数設けられる蒸気溝118の各々から集約領域119に一度集約された後に、流出口121へと向かう(矢印C5参照)。そして、気相の作動流体は、流出口121を介して蒸気管105へと流出する(図2の矢印A1参照)。
ここで、本実施の形態においては、筺体110の底部111とウィック130の底面137との界面に、蒸気溝118および集約領域119が形成されている。この蒸気溝118および集約領域119がウィック130で気化した作動流体の流路として機能することにより、作動流体の圧力損失(圧力抵抗、輸送抵抗)が低減される。したがって、ループ型ヒートパイプ100における熱交換効率の低下が抑制される。
<封止領域130A>
図5は、ウィック130の封止領域130Aを説明する図である。より具体的には、図5は図3の領域V内の拡大図である。
次に、図3乃至図5を参照しながら、ウィック130の封止領域130Aについて説明をする。
抑制部および固定部の一例である封止領域130Aは、気相の作動流体がウィック130内部から流出することを抑制する領域である。すなわち、封止領域130Aは、気相の作動流体がウィック130から予め定めた方向以外に流出することを抑制する。そして、ウィック130の側面(外周)は、封止領域130Aが形成されていることにより封止された状態となる。この封止領域130Aにおいては、ウィック130における封止領域130A以外の領域、すなわちウィック130の中央部と比較して、気相の作動流体の移動抵抗が大きい。図示の例の封止領域130Aは、ウィック130の封止領域130A以外の領域と比較して、空孔率が小さい。なお、気相の作動流体の流出を抑制することには、気相の作動流体の流出がない、すなわち気相の作動流体の流出を禁止することや、ウィック130の封止領域130A以外の領域と比較して気相の作動流体が流出し難い、すなわち気相の作動流体の流出を許容することを含む。なお、ウィック130の外周とは、ウィック130の外側の部分をいう。さらに説明をすると、ウィック130の外周とは、ウィック130の外側の面であってもよいし、ウィック130をとりまくウィック130以外の部分(領域)であってもよい。
ここで、ウィック130は、上述のように多孔質材料であり、製造上のばらつきによって空隙130Pの分布に偏りが生じることがある。言い替えると、空隙130Pの細孔径の分布ムラが発生することがある。例えば、ウィック130の厚み方向には細孔径が小さい空隙130Pが並び、ウィック130の厚み方向と直交する方向(平面方向)には細孔径が大きい空隙130Pが並ぶことがある。あるいは、平面方向に多数の空隙130Pが並ぶことがある。このようなウィック130を用いた場合、気相の作動流体(気泡)がウィック130の側面から流出し得る。すなわち、気相の作動流体が液溜め部150内に流出(逆流)することがある。このような気相の作動流体の流出は、熱交換効率を低下させる。そこで、本実施の形態においては、封止領域130Aを設け、ウィック130における側面側の空隙130Pを小さくする(潰す)。
図示の例における封止領域130Aは、ウィック130の一部を加工することにより形成される。例えば、ウィック130の側面およびその周辺に加熱処理を施すことで、封止領域130Aが形成される。具体的には、ウィック130における側面を、電気加熱(抵抗加熱)、レーザー光加熱などで温度上昇させ、ウィック130を溶融させた後に固化させることで、封止領域130Aが形成される。溶融にともない空隙130Pの体積(容積)が小さくなり、結果として封止領域130Aの空隙率が他の領域よりも小さくなる。なお、空隙130Pの体積が小さくなることには、空隙130Pの体積がゼロとなる、すなわち空隙130Pが消滅することを含む。
なお、図示の例における封止領域130Aは、ウィック130の外周部においてウィック130の厚み方向全体に形成されている。言い替えると、封止領域130Aは、第1側面132と、第2側面133、下流面134、および上流面135各々の面全体を覆う。さらに言い替えると、ウィック130内部から流出口121に向かう厚み方向に沿うウィックの側面に封止領域130Aが形成される。
付言すると、封止領域130Aは、天面136の中央部には設けられていない。言い替えると、封止領域130Aは天面136全体を覆うようには設けられていない。このことにより、液相の作動流体が天面136からウィック130内に浸透する流路が確保される。
また、封止領域130Aは、底面137の中央部には設けられていない。言い替えると、封止領域130Aは底面137全体を覆うようには設けられていない。このことにより、気相の作動流体がウィック130内から底面137を介して流出する流路が確保される。なお、天面136の中央部は流入部の一例であり、底面137の中央部は流出部の一例である。
さて、上記のように、封止領域130Aは、一旦成形されたウィック130の一部を加工することで形成される。ここで、ウィック130の側面を封止するため、図示の例とは異なり、例えばウィック130とは別体のシール部材や枠体などを、ウィック130の側面に嵌め合わせる(組み合わせる)構成が採用され得る。このような構成と比較して、ウィック130の一部を加工して封止領域130Aを形成すると、別部材との嵌め合いがないため、ウィック130の寸法精度が低くてもよい。また、例えばこれらのシール部材や枠体を別体として設ける場合と比較して、ウィック130自体に封止領域130Aを設けると、蒸発器101をコンパクトにすることが可能である。
なお、封止領域130Aを形成する加熱処理としては、例えば溶接を用いてもよい。さらに説明をすると、ウィック130および底部111を厚み方向に挟み込んでシーム溶接を施すことで、封止領域130Aが形成され得る。
ここで、上述のように封止領域130Aは底部111における蒸気溝118および集約領域119が形成されている領域を囲う位置に設けられる。さらに説明をすると、図5に示すように、封止領域130Aは蒸気溝118よりも外側(液溜め部150側)に設けられる。図示の例では、封止領域130Aおよび蒸気溝118(集約領域119)の幅方向における距離L1を0mmよりも大きくすることで、封止領域130Aが蒸気溝118(集約領域119)の開口部118Aを覆うことが抑制される。このことにより、気相の作動流体が蒸気溝118(集約領域119)へ流れ出る流路が確保される。
また、図示の例においては、封止領域130Aの幅L2は3~20mmであり、好ましくは5~10mmである。例えば、封止領域130Aの幅L2が20mmよりも大きくなると、ウィック130を厚み方向に移動する作動流体の流路面積が小さくなり、作動流体の移動が妨げられ得る。また、封止領域130Aの幅L2が3mmよりも小さくなると、気相の作動流体がウィック130の側面から流出し得る。
<ループ型ヒートパイプ100の製造方法>
図6は、ループ型ヒートパイプ100の製造方法を示すフローチャートである。
次に、図2および図6を参照して、本実施の形態におけるループ型ヒートパイプ100の動作を説明する。
まず、ウィック130を形成する(ステップ601)。次に、筺体110を構成する部材を形成する(ステップ602)。図示の例においては、第1側部112、第2側部113、下流側部114、上流側部115、および天部116からなる覆い部と、底部111とをそれぞれ形成する。なお、底部111の上面111Tには、蒸気溝118および集約領域119が形成される。
次に、底部111における所定の位置、すなわち蒸気溝118および集約領域119を覆う位置にウィック130を配置(搭載)する(ステップ603)。
そして、ウィック130の外周面に封止領域130Aを形成する(ステップ604)。このとき、ウィック130とともに底部111を加熱することにより、底部111に対するウィック130の位置が固定される。
次に、ウィック130が供えられた底部111に対して覆い部を固定することで、筺体110を形成する(ステップ605)。
そして、形成された筺体110に対して、蒸気管105、凝縮器107および液管109を固定する(ステップ606)。
さて、上記のように、ウィック130を筺体110の底部111に配置した後に封止領域130Aを形成することにより、ウィック130の外周部(封止領域130A)および底部111の一部(図5、加熱領域111A参照)が溶融し固化する。そして、加熱領域111Aおよび封止領域130Aにより、ウィック130が筺体110の底部111に対して固定される。すなわち、封止領域130Aを形成することにともない、空隙130Pが小さくなり、かつウィック130および底部111が互いに接合される。なお、ウィック130および底部111が一体となることにより、蒸発器101製造の後工程における作業効率が向上し得る。また、ここでは便宜上、加熱領域111Aと封止領域130Aとを区別して説明したが、加熱領域111Aと封止領域130Aとは溶融および固化にともない一体となる部分(領域)である。
さて、封止領域130Aの構成は、ウィック130の側面が封止されていれば特に限定されない。例えば、上記の例とは異なり、封止領域130Aによってウィック130を底部111に固定しなくてもよい。さらに説明をすると、例えば底部111に対するウィック130の固定は、別の部材や構造により実行されてもよい。具体的には、筺体110の天部116がウィック130の天面136を押圧する構成であってもよい。あるいは天部116などに設けられた部材(凸部)などが天面136を押圧する構成であってもよい。すなわち、ウィック130が筺体110の底部111以外の部分と接触することで固定されてもよい。付言すると、ウィック130を底部111に固定した上で、さらにウィック130が筺体110の底部111以外の部分と接触してもよい。
<リーク試験>
図7(a)はウィック130におけるリーク試験を説明する図であり、図7(b)はリーク試験において観察された結果を説明する図である。
次に、図7(a)および(b)を参照しながら、ウィック130におけるリーク試験について説明をする。すなわち、ウィック130に形成された封止領域130Aにより、気相の作動流体がウィック130の側面から流出(漏れ、リーク)することが抑制されるかの試験について説明をする。
図7に示すように、このリーク試験においては、液相の作動流体を収容する容器500と、窒素ガスを供給するボンベ501と、供給される窒素ガスの流量を制御するレギュレータ502と、供給される窒素ガスの圧力を示す圧力計503と、ウィック130へ窒素ガスを供給する供給管504と、窒素ガスを装置外へ排出するドレイン505とを用いる。
本リーク試験は、以下の手順により行う。まず、ウィック130に封止領域130Aを形成することでウィック130を底部111に接合し固定したものを試験体510とする。そして、この試験体510を容器500内の作動流体に沈め、ウィック130内に作動液を十分に吸収させる。この状態において、底部111の流出口121から気相の作動流体の代替である窒素ガスを供給する。図示の例においては、ボンベ501からレギュレータ502を用いて、ウィック130内に一定の割合で封入する。そして、ウィック130の外周部から窒素ガスがリークしていないか確認を行う。
ここで、ウィック130前後の圧力差がウィック130に作用するキャピラリー圧を超えると、ウィック130内に吸収されている液相の作動流体はウィック130外に放出される。そのため、ウィック130でドライアウトが発生し蒸発器101は停止する。そこで、リーク試験においては、キャピラリー圧に達したときのウィック130の外周部からのリークの有無を確認することにより、封止領域130Aの気密性を検証することができる。
本リーク試験では、ウィック130のキャピラリー圧まで窒素ガスを一定の割合で増加させ、その圧力上昇過程においてウィック130の外周部でのリークの有無の確認を行った。
そして、図7(b)に示すように、ウィック130のキャピラリー圧に達したときにおける封止領域130A近傍のウィック130の表面から、多数の窒素ガス気泡Arが放出されている様子は確認できた。一方で、封止領域130A近傍のウィック130内部から湧き出た窒素ガス気泡Asが封止領域130A上に確認されたものの、封止領域130A外周から窒素ガスがリークしていないことが確かめられた。
<他の実施形態1>
図8(a)はウィック230を説明する図であり、図8(b)はウィック330を説明する図である。
次に、図8(a)および(b)を参照しながら、他の実施の形態1におけるウィック230、330の構成について説明をする。なお、図8(a)および(b)は、上記図5に対応する図であり、図5に示すウィック130および底部111と同一の部分には同一の符号をつけ、その詳細な説明は省略する。
まず、図8(a)に示すように、ウィック230は、厚みが薄い薄板状の多孔質層であるウィック片231を積層して形成される。このように積層されたウィック230は、層間に間隙232が形成され得る。この間隙232を介して、気相の作動流体がウィック230の側面から流出(抜け)し得る。このウィック230の側面からの気相の作動流体の抜けが、封止領域230Aによって抑制され得る。
ここで、ウィック230の外周部を溶融させた後に固化させることで、封止領域230Aが形成される。この封止領域230Aが形成されることにより、ウィック片231同士の固定がより強固となる。すなわち、ウィック片231が剥がれることが抑制され得る。言い替えると、ウィック230の耐久性が向上する。また、上記図5などに示す実施形態と同様に、封止領域230Aを形成することにより、ウィック230が底部111に固定され、蒸発器101製造の後工程における作業効率が向上し得る。
さて、上記図5などに示す実施形態においては、ウィック130の一部を加工することにより封止領域130Aを形成することを説明したが、これに限定されない。図8(b)に示すウィック330のように、ウィック本体331とは別体の封止部材332により、ウィック本体331の側面を封止してもよい。例えば、ロウ付け、接着剤など他の材質や手法を用いて、ウィック本体331の側面を封止してもよい。さらに説明をすると、例えば接着剤などの樹脂をウィック本体331の側面に塗布する構成であってもよい。また、例えば接着剤などの樹脂をウィック本体331の側面から浸透させ、空隙130Pの体積を小さくする構成であってもよい。
<他の実施形態2>
図9(a)は蒸発器401を示す概略構成図であり、図9(b)はウィック430を示す概略構成図である。
次に、図9(a)および(b)を参照しながら、他の実施の形態2における蒸発器401およびウィック430の構成について説明をする。なお、図9(a)および(b)は、上記図1乃至5に示す蒸発器101(ウィック130)と同一の部分には同一の符号をつけ、その詳細な説明は省略する。
上記図1乃至5に示す実施形態においては、筺体110の底部111に、蒸気溝118、集約領域119、および流出口121を設け、これらを覆う位置にウィック130を設けることを説明したが、これに限定されない。
例えば、図9(a)に示す蒸発器401が有する筺体410のように、筺体410の移送方向の下流側側面に流出口421を設けてもよい。
ここで、図9(b)に示すように、ウィック430は、第1側面432、第2側面433、下流面434、上流面435、天面436、および底面437を有する。そして、ウィック430は、上記図1乃至5に示す実施形態とは異なり、下流面434および上流面435、すなわち移送方向の上流側の側面および下流側の側面以外は、筺体410の内周面と接触して設けられている。そして、ウィック430は、筺体410の内部を2つの空間に区画する。ここで、区画された2つの空間のうち、ウィック130よりも液管109側の空間は、液相の作動流体が収容される液溜め部450として機能する。
また、ウィック430は、厚み方向の一方側の面、より具体的には、厚み方向において発熱体(図示せず)が設けられる側(図中上側)の面である天面436に、気相の作動流体を流すウィック溝431が設けられている。図示のウィック溝431は、移送方向および幅方向に沿って複数設けられている。
また、図9(b)に示すように、ウィック430は、第1側面432および第2側面433、すなわち幅方向の両側の側面に沿って封止領域430Aを有する。すなわち、ウィック430においては、幅方向両側の側面が封止される一方で、移送方向の両側の側面(下流面434および上流面435)、厚み方向の両側の側面(天面436および底面437)は封止されない。
このように構成された蒸発器401においては、液管109から液溜め部450に流入した作動流体が、ウィック430に浸透する。そして、発熱体(図示せず)の熱により加熱され気化した作動流体は、一部がウィック溝431を流れながら(矢印C11参照)、流出口421を介して蒸気管105へと流れ出る。そして、ウィック430においては、第1側面432および第2側面433に封止領域430Aを有することから、気相の作動流体が第1側面432および第2側面433から流出することが抑制される。
なお、図示の例とは異なり、第1側面432および第2側面433に加えて、下流面434に封止領域430Aを設けてもよい。さらに、下流面434に替えて、あるいは下流面434とともに、天面436および底面437に封止領域430Aを設けてもよい。
<電子機器>
図10は、ループ型ヒートパイプ100を備える携帯電話1000を説明する図である。
次に、図10を参照しながら、ループ型ヒートパイプ100を備える電子機器の一例である携帯電話1000について説明をする。
図10に示すように、ループ型ヒートパイプ100は、携帯電話1000などの電子機器に設けられる。図示の携帯電話1000は、所謂スマートフォンであり、中央演算処理装置(CPU)1001と、この中央演算処理装置1001を冷却するループ型ヒートパイプ100と、これらを内部に収容する筺体1003とを備える。そして、発熱部品の一例である中央演算処理装置1001が発生させる熱が、蒸発器101に伝達されるとともに、凝縮器107にて放出される。なお、図示の例における凝縮器107は、放熱面積を確保するため、複数の折り返し部を有して構成される。
図示の例のように、携帯電話1000内に設けられる蒸発器101を平板状に形成することにより、携帯電話1000の厚みが抑制され得る。
なお、ここでは電子機器の一例として、携帯電話1000を用いて説明をしたが、パーソナルコンピュータやタブレット型端末、プロジェクタなどに上記ループ型ヒートパイプ100を設けてもよい。また、自動車や人工衛星などの種々の他の装置にもループ型ヒートパイプ100を設け得る。
<変形例>
さて、上記の説明においては、筺体110およびウィック130は、概形が平板状であることを説明したが、これに限定されない。すなわち、蒸気溝118および集約領域119が形成される筺体110の内周面(底部111の上面111T)と、ウィック130がともに合致する形状であれば円筒状など他の形状であってもよい。
また、蒸気溝118および集約領域119が形成される筺体110と、ウィック130とが、同じ曲率を有するように加工し、筺体110およびウィック130の接合面も接合法に適した粗さに仕上げた後、筺体110およびウィック130を接合してもよい。
また、上記の説明においては、筺体110に蒸気溝118および集約領域119が設けられることを説明したが、これに限定されない。例えば、ウィック130に蒸気溝118および集約領域119を設けてもよい。あるいは、筺体110およびウィック130の両者に凹部を形成することで、蒸気溝118および集約領域119を構成してもよい。
また、上記説明においては、封止領域130Aは、ウィック130などの外周部においてウィック130の厚み方向全体に形成されていることを説明したが、これに限定されない。封止領域130Aをウィック130の側面の一部、例えばウィック130における厚み方向における流出口121側および/または移送方向の下流側の側面にのみ封止領域130Aを設けてもよい。あるいは、第1側面132、第2側面133、下流面134、および上流面135のうちの一部にのみ封止領域130Aを設けてもよい。
さて、上記では種々の実施形態および変形例を説明したが、これらの実施形態や変形例同士を組み合わせて構成してももちろんよい。
また、本開示は上記の実施形態に何ら限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の形態で実施することができる。
100…ループ型ヒートパイプ、101…蒸発器、105…蒸気管、107…凝縮器、109…液管、110…筺体、111…底部、118…蒸気溝、119…集約領域、130…ウィック、130A…封止領域

Claims (10)

  1. 外部から熱を吸収して作動流体を液相から気相へと蒸発させる蒸発器を有し、当該蒸発器から導かれた気相の作動流体を凝縮させ液相の作動流体として当該蒸発器に環流させる熱交換器において、
    前記蒸発器は、液相の作動流体が収容される液溜め部と、当該液溜め部内に設けられ当該液溜め部に収容された液相の作動流体を毛細管力により移動させながら気相へと蒸発させる蒸発体を有し、
    前記蒸発体は、
    前記蒸発体の外周に形成され、当該蒸発体の内部に液相の作動流体を流入させる流入部と、
    前記蒸発体の外周で前記液溜め部に収容された液相の作動流体と対向する位置に形成され、当該蒸発体の内部から当該液溜め部に気相の作動流体が流出することを抑制する抑制部と、
    前記蒸発体の外周に形成され、当該蒸発体の内部から気相の作動流体を流出させる流出部と
    を有する
    ことを特徴とする熱交換器。
  2. 前記蒸発器は、気相の作動流体を流出させる流出口を有し、
    前記抑制部は、前記蒸発体の内部において前記流出口に向かう作動流体の移動方向に沿う当該蒸発体の側面に形成されていることを特徴とする請求項1記載の熱交換器。
  3. 前記抑制部は、前記側面全体を覆うことを特徴とする請求項2記載の熱交換器。
  4. 前記蒸発体は、内部に多数の孔を有する多孔質体であり、
    前記抑制部は、前記蒸発体の内部と比較して空孔率が小さい
    ことを特徴とする請求項1乃至3のいずれか1項記載の熱交換器。
  5. 前記抑制部は、前記蒸発器の内面における前記流出部と対向する対向面に固定されることを特徴とする請求項1乃至4のいずれか1項記載の熱交換器。
  6. 前記蒸発器は、内面に気相の作動流体が流れる凹部が形成され、
    前記蒸発体は、前記内面における前記凹部を覆う位置に設けられ、
    前記抑制部は、前記凹部を覆う位置に設けられた前記蒸発体において当該凹部よりも外周側に設けられる
    ことを特徴とする請求項1乃至5のいずれか1項記載の熱交換器。
  7. 前記蒸発体は、平板状に形成され、
    前記蒸発器は、前記蒸発体を支持する支持面を有し、
    前記抑制部は、前記蒸発体における前記支持面によって支持される被支持面から立ち上がる当該蒸発体の立上面に形成される
    ことを特徴とする請求項1乃至6のいずれか1項記載の熱交換器。
  8. 前記蒸発体は、複数の多孔質層により形成され、
    前記抑制部は、前記複数の多孔質層の積載方向に沿う前記蒸発体の側面に形成されることを特徴とする請求項1乃至7のいずれか1項記載の熱交換器。
  9. 筺体と、
    前記筺体の内部に収容される発熱部品と、
    前記発熱部品から熱を吸収し作動流体を液相から気相へと蒸発させ蒸気管を介して流出させる蒸発器を備え、当該蒸発器から導かれた気相の作動流体を凝縮させ液相の作動流体として液管を介して当該蒸発器に環流させる熱交換器と
    を備える電子機器において、
    前記蒸発器は、
    平板状に形成され、液相の作動流体を収容し、気相の作動流体を流出させる流出口を有する蒸発器筺体と、
    平板状に形成され、前記蒸発器筺体の内部に設けられ、液相の作動流体を毛細管力により移動させながら気相へと蒸発させる蒸発体と
    を備え、
    前記蒸発体は、
    前記蒸発体の外周に形成され、当該蒸発体の内部に液相の作動流体を流入させる流入部と、
    前記蒸発体の外周で前記蒸発器筺体内に収容された液相の作動流体と対向し、前記蒸発体の内部において前記流出口に向かう作動流体の移動方向に沿う当該蒸発体の側面全体に形成され、当該蒸発体の内部から当該蒸発器筺体内に気相の作動流体が流出することを抑制し、かつ前記蒸発器筺体の内面における前記流出口が形成された面に固定される固定部と、
    前記蒸発体の外周に形成され、当該蒸発体の内部から気相の作動流体を流出させる流出部と
    を有する
    ことを特徴とする電子機器。
  10. 外部から熱を吸収して作動流体を液相から気相へと蒸発させる蒸発器を有し、当該蒸発器から導かれた気相の作動流体を凝縮させ液相の作動流体として当該蒸発器に環流させる熱交換器の製造方法において、
    液相の作動流体を毛細管力により移動させながら気相へと蒸発させる蒸発体を形成する工程と、
    液相の作動流体および前記蒸発体を内部に収容する蒸発器筺体を構成する底部および覆い部を形成する工程と、
    前記底部における予め定めた位置で前記蒸発器筺体の内部となる位置に前記蒸発体を配置する工程と、
    前記底部に配置された前記蒸発体の外周、当該蒸発体の内部から当該液溜め部に気相の作動流体が流出することを抑制し、かつ当該底部に対する当該蒸発体の位置を固定する固定部を形成する工程と、
    前記蒸発体が固定された前記底部に対して前記蒸発器筺体の前記覆い部を固定する工程と
    を有することを特徴とする熱交換器の製造方法。
JP2017250480A 2017-12-27 2017-12-27 熱交換器、電子機器、および熱交換器の製造方法 Active JP7052999B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250480A JP7052999B2 (ja) 2017-12-27 2017-12-27 熱交換器、電子機器、および熱交換器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250480A JP7052999B2 (ja) 2017-12-27 2017-12-27 熱交換器、電子機器、および熱交換器の製造方法

Publications (2)

Publication Number Publication Date
JP2019116990A JP2019116990A (ja) 2019-07-18
JP7052999B2 true JP7052999B2 (ja) 2022-04-12

Family

ID=67305215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250480A Active JP7052999B2 (ja) 2017-12-27 2017-12-27 熱交換器、電子機器、および熱交換器の製造方法

Country Status (1)

Country Link
JP (1) JP7052999B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7072547B2 (ja) * 2019-09-10 2022-05-20 古河電気工業株式会社 冷却装置および冷却装置を用いた冷却システム
KR20210037187A (ko) * 2019-09-27 2021-04-06 서강대학교산학협력단 이중 다공 구조를 이용한 공랭식 상변화 방열판
JP7330502B2 (ja) * 2019-10-23 2023-08-22 国立大学法人東海国立大学機構 熱交換器、装置、および温度制御方法
JP6998979B2 (ja) * 2020-01-31 2022-01-18 古河電気工業株式会社 ベーパーチャンバ
TWI725733B (zh) * 2020-02-11 2021-04-21 友達光電股份有限公司 顯示器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153423A (ja) 2006-12-18 2008-07-03 Yaskawa Electric Corp ベーパチャンバおよびそれを用いた電子装置
JP2012193912A (ja) 2011-03-17 2012-10-11 Fujitsu Ltd ループ型ヒートパイプ
JP2013257129A (ja) 2012-05-14 2013-12-26 Fujitsu Ltd 冷却装置
JP2015087089A (ja) 2013-11-01 2015-05-07 富士通株式会社 ループ型ヒートパイプ及び電子機器。
WO2016051569A1 (ja) 2014-10-02 2016-04-07 富士通株式会社 蒸発器、冷却装置及び電子装置
JP2016211767A (ja) 2015-05-01 2016-12-15 国立大学法人名古屋大学 熱交換器、蒸発体、および電子機器
JP2018170317A (ja) 2017-03-29 2018-11-01 国立大学法人名古屋大学 電子機器、熱交換器および蒸発体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450148B2 (ja) * 1997-03-07 2003-09-22 三菱電機株式会社 ループ型ヒートパイプ
EP2157391A4 (en) * 2007-06-15 2011-07-27 Asahi Kasei Fibers Corp HEAT TRANSFER DEVICE ACCORDING TO TYPE OF LOOP HEATING EAR
JP2013243249A (ja) * 2012-05-21 2013-12-05 Denso Corp 沸騰冷却用伝熱面および沸騰冷却装置
JP2014062658A (ja) * 2012-09-20 2014-04-10 Fujitsu Ltd 冷却モジュール及びループ型ヒートパイプ
WO2015104842A1 (ja) * 2014-01-10 2015-07-16 富士通株式会社 冷却装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153423A (ja) 2006-12-18 2008-07-03 Yaskawa Electric Corp ベーパチャンバおよびそれを用いた電子装置
JP2012193912A (ja) 2011-03-17 2012-10-11 Fujitsu Ltd ループ型ヒートパイプ
JP2013257129A (ja) 2012-05-14 2013-12-26 Fujitsu Ltd 冷却装置
JP2015087089A (ja) 2013-11-01 2015-05-07 富士通株式会社 ループ型ヒートパイプ及び電子機器。
WO2016051569A1 (ja) 2014-10-02 2016-04-07 富士通株式会社 蒸発器、冷却装置及び電子装置
JP2016211767A (ja) 2015-05-01 2016-12-15 国立大学法人名古屋大学 熱交換器、蒸発体、および電子機器
JP2018170317A (ja) 2017-03-29 2018-11-01 国立大学法人名古屋大学 電子機器、熱交換器および蒸発体

Also Published As

Publication number Publication date
JP2019116990A (ja) 2019-07-18

Similar Documents

Publication Publication Date Title
JP7052999B2 (ja) 熱交換器、電子機器、および熱交換器の製造方法
JP4627212B2 (ja) ループ型ヒートパイプを備えた冷却装置
US6330907B1 (en) Evaporator and loop-type heat pipe using the same
JP7204374B2 (ja) ループ型ヒートパイプ及びその製造方法
US8739405B2 (en) Method of manufacturing an evaporator for looped heat pipe
JP7146524B2 (ja) ループ型ヒートパイプ及びその製造方法
JP6805438B2 (ja) 熱交換器、蒸発体、および装置
WO2016121778A1 (ja) 蓄熱容器及び蓄熱容器を備えた蓄熱装置
EP3951864A1 (en) Heat dissipation apparatus, circuit board, and electronic device
JP7267625B2 (ja) 装置、熱交換器、および蒸発体収容器
JP6433848B2 (ja) 熱交換器、蒸発体、および電子機器
TWI769428B (zh) 散熱裝置及散熱裝置的製造方法
JP5304479B2 (ja) 熱輸送デバイス、電子機器
KR101329886B1 (ko) 상변화 열전달 시스템용 증발기
JP7517672B2 (ja) 装置、熱交換器、および蒸発器
CN106352725A (zh) 一种结构热控一体化散热装置及加工方法
JP6960651B2 (ja) 電子機器、熱交換器および蒸発体
JP2010078259A (ja) マイクロループヒートパイプ用蒸発器
JP2008116180A (ja) 沸騰冷却装置及びその装置の製造方法
JP7340709B1 (ja) ヒートシンク
JP6230020B2 (ja) ループ型ヒートパイプ及びループ型ヒートパイプの製造方法
JP2021099169A (ja) 装置、熱交換器、および蒸発器
US12041710B2 (en) Heat dissipation apparatus, circuit board, and electronic device
JP7458243B2 (ja) 熱輸送デバイス
JP7476913B2 (ja) ポンプ、ヒートパイプ

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7052999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150