JP7049684B2 - 圧力式流量制御装置および流量制御方法 - Google Patents
圧力式流量制御装置および流量制御方法 Download PDFInfo
- Publication number
- JP7049684B2 JP7049684B2 JP2019509372A JP2019509372A JP7049684B2 JP 7049684 B2 JP7049684 B2 JP 7049684B2 JP 2019509372 A JP2019509372 A JP 2019509372A JP 2019509372 A JP2019509372 A JP 2019509372A JP 7049684 B2 JP7049684 B2 JP 7049684B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- pressure
- control valve
- control
- throttle portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000011144 upstream manufacturing Methods 0.000 claims description 72
- 238000012545 processing Methods 0.000 claims description 20
- 239000012530 fluid Substances 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 9
- 239000007789 gas Substances 0.000 description 33
- 230000006870 function Effects 0.000 description 22
- 230000004043 responsiveness Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000004092 self-diagnosis Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
- G05D7/0629—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
- G05D7/0635—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
- G01F1/363—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/001—Means for regulating or setting the meter for a predetermined quantity
- G01F15/003—Means for regulating or setting the meter for a predetermined quantity using electromagnetic, electric or electronic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/005—Valves
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
- G01F1/40—Details of construction of the flow constriction devices
- G01F1/42—Orifices or nozzles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Electromagnetism (AREA)
- Flow Control (AREA)
Description
本発明は、圧力式流量制御装置および流量制御方法に関し、特に、小流量側への制御流量の変更を適切に行うように構成された圧力式流量制御装置および流量制御方法に関する。
半導体製造装置や化学プラントにおいて、原料ガスやエッチングガス等の流体の流れを制御するための種々のタイプの流量計や流量制御装置が利用されている。このなかで圧力式流量制御装置は、例えばピエゾ素子駆動型のコントロール弁と絞り部(オリフィスプレートや臨界ノズル)とを組み合せた比較的簡単な機構によって各種流体の流量を高精度に制御することができる。
圧力式流量制御装置には、臨界膨張条件P1/P2≧約2(P1:絞り部上流側のガス圧力(上流圧力)、P2:絞り部下流側のガス圧力(下流圧力))を満足するとき、流量は下流圧力P2によらず上流圧力P1によって決まるという原理を利用して流量制御を行っているものがある。この種の圧力式流量制御装置では、圧力センサとコントロール弁とを用いて上流圧力P1を制御するだけで、絞り部下流側に流れるガスの流量を高精度に制御することができる。また、絞り部の下流側にも圧力センサを設ける圧力式流量制御装置が知られている。下流圧力センサを備える場合、上流圧力P1と下流圧力P2との差が小さく臨界膨張条件を満足しない場合であっても流量を算出することができる。
圧力式流量制御装置では、上流圧力センサが出力する上流圧力P1が、所望流量に適合する圧力値となるように、コントロール弁をフィードバック制御することによって、流量の制御を行う。
しかし、例えば100%流量から5%流量などに制御流量を小流量側に変更する場合、上流圧力P1を急速に低下させるためにコントロール弁が閉止し、その後もコントロール弁の閉止状態が継続する場合があることが本発明者によってわかった。このようにコントロール弁が閉止状態になっても上流圧力P1が目標圧力値より高い状態が継続すると、フィードバック制御器による操作信号が弁閉方向へと遷移し続けるにも関わらず、操作信号の変化が上流圧力P1へなんら影響を与えない状態が発生する。このため、その後に所望流量(例えば5%流量)を得るためにコントロール弁を再度開いたとしても、コントロール弁への操作信号を戻すために時間的な遅れが生じ、フィードバック制御器が線形な制御対象に対して本来想定するよりも大きなアンダーシュートが発生する。
一方、上流圧力P1の急激な変動を避けるために、連続的に一定速度で流量目標値を遷移させるようにして(ランプ制御)、コントロール弁を一定速度で徐々に閉じることが考えられる。しかし、この場合に、上記のアンダーシュートを防止しようとすると、流量目標値の遷移に比較的長い時間を要することとになり、応答性が悪化するという問題があることがわかった。
近年、流量制御装置は、例えばALD(Atomic Layer Deposition)などに適用することが求められ、このような用途では、高速な(周期が非常に短い)パルス的なガス供給を行う必要がある。したがって、圧力式流量制御装置においても、良好な応答性で流量を制御することが求められてきており、従来の圧力式流量制御装置は、このような用途への適用が困難な場合があった。
なお、特許文献1には、オーバーシュートやアンダーシュートを防止するために、最初は急速に弁を開閉し、途中からはゆっくりと弁を開閉する動作が記載されている。ただし、特許文献1は、圧力式流量制御装置のように上流圧力P1に基づいてコントロール弁を制御する方式については言及しておらず、圧力式流量制御装置における実際のコントロール弁の制御をどのように行うかを開示するものではない。
本発明は、上記課題を鑑みてなされたものであり、アンダーシュートの発生を抑制しながら、応答性良く流量制御を行うことが可能な圧力式流量制御装置および流量制御方法を提供することをその主たる目的とする。
本発明の実施形態による圧力式流量制御装置は、絞り部と、前記絞り部の上流側に設けられたコントロール弁と、前記絞り部と前記コントロール弁との間の圧力を検出する上流圧力センサと、前記コントロール弁および前記上流圧力センサに接続された演算処理回路とを備え、前記上流圧力センサの出力に基づいて前記コントロール弁の制御を行うことによって流量制御するように構成された圧力式流量制御装置であって、前記演算処理回路は、前記絞り部を流れる流体の流量を低下させるために前記コントロール弁を閉じる動作を行うとき、前記絞り部からガスが流出するときの圧力降下特性データよりも緩やかな指数関数を目標値とするフィードバック制御によって前記コントロール弁を閉じる動作を行うように構成されている。
ある実施形態において、前記圧力降下特性データは、時間t、初期圧力P0としたときにY(t)=P0・exp(-t/τ)で表される時定数τの指数関数的減衰を示すデータであり、前記コントロール弁を閉じる動作は、P(t)=(P0-Px)・exp(-t/τ’)+Pxに従って低下する上流圧力の前記目標値P(t)に適合するように前記コントロール弁をフィードバック制御することによって実行され、ここで、Pxは目標収束値であり、前記P(t)における時定数τ’が、前記Y(t)における時定数τよりも大きい。
ある実施形態において、前記圧力降下特性データは、時間t、初期圧力P0としたときにY(t)=P0・exp(-t/τ)で表される時定数τの指数関数的減衰を示すデータであり、前記コントロール弁を閉じる動作は、P(t)=max(P0・exp(-t/τ’),Px)に従って低下する上流圧力の前記目標値P(t)に適合するように前記コントロール弁をフィードバック制御することによって実行され、ここで、Pxは目標収束値であり、前記P(t)における時定数τ’が、前記Y(t)における時定数τよりも大きい。
ある実施形態において、前記P(t)の時定数τ’として、所定時間までの時定数と、前記所定時間の後の時定数とで異なる値が用いられる。
本発明の実施形態による流量制御方法は、絞り部と、前記絞り部の上流側に設けられたコントロール弁と、前記絞り部と前記コントロール弁との間の圧力を検出する上流圧力センサとを備える圧力式流量制御装置において行われる流量制御方法であって、前記絞り部からガスが流出するときの圧力降下特性データよりも緩やかな指数関数に従うように流量目標値を設定するステップと、設定された流量目標値に従って前記コントロール弁をフィードバック制御することによって流量を低下させるステップとを包含する。
本発明の実施形態による流量制御方法は、複数の圧力式流量御装置において行われる流量制御方法であって、前記複数の圧力式流量制御装置のそれぞれは、絞り部と、前記絞り部の上流側に設けられたコントロール弁と、前記絞り部と前記コントロール弁との間の圧力を検出する上流圧力センサとを備え、上記の流量制御方法によって流量制御が行われるよう構成されており、前記複数の圧力式流量制御装置のそれぞれで測定した圧力降下特性データを比較して、最も緩やかな圧力降下特性データを判定するステップと、前記最も緩やかな圧力降下特性データよりも緩やかな指数関数に従う共通の流量目標値を用いて、前記複数の圧力式流量制御装置のそれぞれで流量を低下させるステップとを包含する。
本発明の実施形態によれば、小流量側への流量変更時の圧力式流量制御装置の流量制御動作を適切に行うことができる。
以下、図面を参照しながら本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。
図1は、本発明の実施形態による圧力式流量制御装置8の構成を示す図である。流量制御装置8は、流体Gが通過する流路(ガス供給路)1に介在する絞り部2(例えばオリフィスプレート)と、絞り部2の上流側に設けられた上流圧力センサ3および温度センサ5と、絞り部2の下流側に設けられた下流圧力センサ4と、上流圧力センサ3の上流側に設けられたコントロール弁6とを備えている。
上流圧力センサ3は、コントロール弁6と絞り部2との間の流体圧力である上流圧力P1を測定することができ、下流圧力センサ4は、絞り部2と下流弁9との間の流体圧力である下流圧力P2を測定することができる。
流量制御装置8はまた、上流圧力センサ3および下流圧力センサ4の出力などに基づいてコントロール弁6の開閉動作を制御する演算処理回路7を備えている。演算処理回路7は、外部制御装置12から受け取った設定流量と、上流および下流圧力センサ3、4の出力から演算により求めた演算流量とを比較し、演算流量が設定流量に近づくようにコントロール弁6を制御する。
流量制御装置8は、図示する態様とは異なり、下流圧力センサ4を備えていなくてもよい。この場合、演算処理回路7は、上流圧力センサ3の出力などに基づいて流量を演算するように構成される。また、演算処理回路7は、好適な態様において、温度センサ5が検出した流体温度に基づいて演算流量を補正するように構成されている。
流量制御装置8は、コントロール弁6の上流側に、ガス供給圧を測定するための流入側圧力センサ(図示せず)を備えていてもよい。流入側圧力センサは、接続されたガス供給装置(例えば原料気化器)から供給されるガスの圧力を測定することができ、ガス供給量またはガス供給圧を制御するために用いることができる。
絞り部2としては、オリフィスプレートなどのオリフィス部材の他に臨界ノズルまたは音速ノズルを用いることもできる。オリフィスまたはノズルの口径は、例えば10μm~500μmに設定される。下流弁9としては、例えば、電磁弁によって圧縮空気の供給が制御される公知の空気駆動弁(Air Operated Valve)等を用いることができる。また、オリフィス部材の近傍に開閉弁を配置した構成を有するオリフィス内蔵弁が従来より知られており、オリフィス内蔵弁を、絞り部2および下流弁9を一体化した構成として流量制御装置8に組み込むこともできる。
流量制御装置8の流路1は、配管によって構成されていてもよいし、金属製ブロックに形成した流路孔によって構成されていてもよい。上流および下流圧力センサ3、4は、例えばシリコン単結晶のセンサチップとダイヤフラムとを内蔵するものであってよい。コントロール弁6は、例えば、金属製ダイヤフラム弁体を含む弁機構を、圧電アクチュエータなどの駆動機構を用いて開閉するように構成された圧電素子駆動式ダイヤフラム弁であってよい。
流量制御装置8を含む流体供給系において、コントロール弁6の上流側は、材料ガス、エッチングガスまたはキャリアガスなどのガス供給源に接続され、絞り部2の下流側は、下流弁9を介して半導体製造装置のプロセスチャンバ10に接続される。プロセスチャンバ10には真空ポンプ11が接続されており、典型的には、ガス供給時にプロセスチャンバ10の内部が真空引きされる。
以上に説明した流量制御装置8は、圧力式流量制御装置であり、臨界膨張条件P1/P2≧約2(アルゴンガスの場合)を満たすとき、流量は上流圧力P1によって決まるという原理を利用して流量制御を行っている。臨界膨張条件を満たすとき、絞り部2の下流側の流量Qは、Q=K1・P1(K1は流体の種類と流体温度に依存する定数)によって与えられ、流量Qは上流圧力センサ3によって測定される上流圧力P1に比例する。また、下流圧力センサ4を備える場合、上流圧力P1と下流圧力P2との差が小さく、上記の臨界膨張条件を満足しない場合であっても流量を算出することができ、各圧力センサ3、4によって測定された上流圧力P1および下流圧力P2に基づいて、計算式Q=K2・P2m(P1-P2)n(ここでK2は流体の種類と流体温度に依存する定数、m、nは実際の流量を元に導出される指数)から流量Qを算出することができる。
流量制御を行うために、外部制御装置12において設定された設定流量が、外部制御装置12から演算処理回路7に送られる。演算処理回路7は、上流圧力センサ3の出力などに基づいて、臨界膨張条件または非臨界膨張条件における流量計算式を用いて流量を上記のQ=K1・P1またはQ=K2・P2m(P1-P2)nから流量Qの測定値である演算流量を随時算出し、絞り部2を通過する流体の流量が設定流量に近づくように(すなわち、演算流量と設定流量との差が0に近づくように)コントロール弁6をフィードバック制御する。演算流量は、外部制御装置12に出力され、流量出力値として表示されてもよい。
演算処理回路7は、典型的には流量制御装置8に内蔵されたものであるが、流量制御装置8の外部に設けられたものであってもよい。演算処理回路7は、典型的には、CPU、ROMやRAMなどのメモリ(記憶装置)M、A/Dコンバータ等を内蔵しており、後述する流量制御動作を実行するように構成されたコンピュータプログラムを含んでいてよい。演算処理回路7は、ハードウェアおよびソフトウェアの組み合わせによって実現され得る。
演算処理回路7は、コンピュータ等の外部装置と情報を交換するためのインターフェイスを備えていてもよく、これにより、外部装置からROMへのプログラム及びデータの書込みなどを行うことができる。演算処理回路7の構成要素(CPUなど)は、すべてが装置内に一体的に設けられている必要はなく、CPUなどの一部の構成要素を別の場所(装置外)に配置し、バスで相互に接続する構成としても良い。その際、装置内と装置外とを、有線だけでなく無線で通信するようにしても良い。
以下、制御流量を小流量側に変更する場合(流量立ち下げ時)における流量制御装置8の動作を説明する。以下、設定流量・演算流量・目標流量 等の流量値はすべて、所定の流量値を100%とした比率で表記する。また、臨界膨張条件の成り立つ時は流量と上流圧力が比例することを加味して、流量値が100%の時の上流圧力を100%として比率で表記する。
演算処理回路7は、例えば、図2(a)および(b)に示すように設定流量を100%から5%に変化させる信号(実線で示す外部流量設定信号A1)を受け取ったとき、これに対応して流量を低下させるために、破線で示す流量目標値A2(または上流圧力目標値)を設定して、フィードバック制御によりコントロール弁6を閉じる動作を行う。コントロール弁6の駆動電圧は、上流圧力センサ3の出力から求められる演算流量と、設定された流量目標値A2との差が0となるように随時変動する。
このとき、本実施形態の演算処理回路7は、図2(a)に示す比較例のようにランプ制御により流量目標値A2を低下させてコントロール弁6を閉じる動作を行うのではなく、図2(b)に示す実施例のように所定の指数関数に従って流量目標値A2を低下させることにより、すなわち、一次遅れ制御によりコントロール弁6を閉じる動作を行う。
また、図2(b)に示す流量目標値A2に用いる所定の指数関数としては、予め測定によって得られた上流圧力P1の圧力降下特性データY(t)と比較して、これよりも緩やかな(すなわち、傾きが小さい)指数関数が用いられる。
より具体的に説明すると、圧力降下特性データY(t)が、初期圧力をP0としてY(t)=P0・exp(-t/τ)で表される時定数τの指数関数によって与えられているとき、本実施形態では、例えばP(t)=(P0-Px)・exp(-t/τ’)+Px(ここで、Pxは、流量目標収束値に対応する圧力)に従う上流圧力目標値P(t)に適合するようにコントロール弁6をフィードバック制御し、このときのP(t)における時定数τ’が、Y(t)における時定数τよりも大きくなるように、すなわち、τ<τ’に設定する。これは、フィードバック制御器の目標値入力段に例えばG(s)=1/(s+τ)で表わされるフィルタを追加(ここでsは複素数であり、G(s)は伝達関数である)したことに相当し、実装が容易である。これにより、圧力降下特性データY(t)よりも緩やかかつ高速に流量目標収束値に収束する関数としてP(t)を用いることで、流量目標値をアンダーシュートを抑えてかつ高速に低下させることができる。
また、図2(b)にA3として破線で示すように、P2(t)=max(P0・exp(-t/τ’),Px) (ただしτ<τ’)を上流圧力の目標値として用いても良い。この式を用いた場合、P0・exp(-t/τ’)とPxとの大きい方が目標値に設定されるので、目標値がPxを下回ることがなく、アンダーシュートを防ぎつつ、流量立ち上がり時に同じ式を用いても不要な遅れが発生せず、流量目標収束値が大きい場合であっても最も応答が速い制御を実現することができる。
ここで、上記の圧力降下特性データY(t)について説明する。圧力降下特性データは、例えば、ガスが流れている状態からコントロール弁6を急速に閉じたときに生じる上流圧力P1の降下特性を示すデータである。また、圧力降下特性データY(t)は、好適には、下流圧力P2が上流圧力P1に対して十分小さい状態に維持され、臨界膨張条件を満足する範囲内で取得されたデータである。臨界膨張条件が満たされている間は流量が上流圧力に比例するため、上流圧力P1は圧力0に向かって指数減衰する。
圧力降下特性データY(t)は、例えば、初期制御圧力が100%の状態でコントロール弁を閉じ、その後流量が低下する過程で上流圧力センサ3を用いて、経過時間に対応する圧力を20点測定し、時間の関数として圧力をプロットすることによって得ることができる。なお、圧力降下特性データY(t)を得るときの初期制御圧力は100%に限られず、十分な測定サンプル数を得ることが可能であれば100%以下であってもよい。また、測定サンプル数についても20点に限らず、十分な精度が得られるのであれば、より少ないサンプル数(例えば3点)であってもよい。もちろん、20点を超えていてもよい。
圧力式流量制御装置8では、コントロール弁6を急速に閉じた場合にも、ガス流量が瞬時に0まで低下するわけではなく、上流圧力P1の低下を伴いながら減衰するようにして流量が低下する。これは、コントロール弁6と絞り部2との間に溜まっていたガスが絞り部2を介して流出するため、絞り部2の特性の影響を受けるようにして流量が低下するためである。
圧力降下特性データY(t)の時定数τは、例えば、コントロール弁6と絞り部2との間の流路容積、オリフィス断面積などに依存して決まり、上記のようにしてコントロール弁6を閉じたときの上流圧力P1を上流圧力センサ3を用いて測定することによって、機器ごとに得ることが可能である。圧力降下特性データY(t)は、その機器における、最大圧力減少速度を示すデータと考えることができる。
このため、圧力式流量制御装置8においては、コントロール弁6の遮断速度を如何に高めたとしても、圧力降下特性データY(t)よりも急速に流量または上流圧力を低下させることは不可能である。また、圧力降下特性データよりも急速に低下する目標値を設定したときには、上流圧力P1を低下させようとしてコントロール弁6の閉止状態が継続することになる。そして、このような無制御状態(目標値が圧力降下特性データを下回っているために、コントロール弁6が閉止した状態)が続くと、コントロール弁6へのフィードバック制御器からの指示値の電圧が弁閉方向へと遷移し続けるにも関わらず、コントロール弁6は閉止状態で変化がない状況が発生し、特に低設定流量において、アンダーシュートが発生する原因となる。
以上の点を考慮して、本実施形態では、小流量側への流量変更を行うときには、圧力降下特性データY(t)と比較して、これよりも緩やかな指数関数に従うように流量目標値(または上流圧力目標値)P(t)を設定し、コントロール弁6の閉止状態が生じないようにしている。ここで、緩やかとは、P(t1)=Y(t2)を満たすt1,t2に対し、|dP(t1)/dt|<|dY(t2)/dt|を満たすことを意味する。これによってアンダーシュートの発生を抑制することができる。
また、上記のように圧力降下特性データY(t)は、厳密には機器ごとに異なるデータである。ただし、同じ設計(同じコントロール弁-絞り部間容積、同じオリフィス径)で作製された圧力式流量制御装置では、ほとんど同じ特性データとなることが分かっている。したがって、同設計の圧力式流量制御装置については、共通の圧力降下特性データY(t)を用いることも可能である。
一方で、機器ごとの特性差を吸収できるマージンを確保するように圧力降下特性データY(t)に対して十分に緩やかな指数関数を目標値として用いることによって、複数の同設計機器に対して同じ指数関数制御を適用することも可能である。ただし、マージンを多くとればとるほど、応答性が低下するので、上記の指数関数は、圧力降下特性データY(t)から乖離しすぎないように設定されることが好ましい。マージンの大きさは、アンダーシュートの発生具合や、求められる応答性を考慮して適宜選定されてよいが、上流圧力目標値P(t)の時定数τ’が、圧力降下特性データY(t)の時定数τに対して、例えば100~150%(より具体的には105~130%)に設定される。
また、上記のように、複数の圧力式流量制御装置に対して同じ共通の指数関数制御を用いる場合、各圧力式流量制御装置において圧力降下特性データY(t)を予めそれぞれ取得しておき、得られた圧力降下特性データY(t)のうちの最も緩やかな圧力降下特性データY(t)を基準として、共通の目標値P(t)を設定するようにしてもよい。共通の目標値P(t)は、上記の最も緩やかな圧力降下特性データY(t)よりも緩やかな指数関数に設定され、複数の圧力式流量制御装置の全体に対して圧力降下特性データY(t)よりも緩やかに設定される。したがって、複数の圧力式流量制御装置の全てにおいて、共通の目標値P(t)が支配的になり、アンダーシュートの発生が防止されとともに、装置間の応答性の差をなくすことができ、複数の圧力式流量制御装置において同等の流量制御を行うことが可能になる。
図3は、複数の圧力降下特性データY1(t)、Y2(t)に対して設定された目標圧力P(t)を示す。図3からわかるように、最も緩やかな圧力降下特性データY2(t)よりも緩やかな目標上昇圧力P(t)に設定することによって、複数の圧力式流量制御装置において、同等の流量制御を行うことが可能になる。なお、図3中のsetで示す実線のグラフは、外部装置から入力された設定信号を示す。
また、上記には同設計の圧力式流量制御装置に対して共通の目標値P(t)を用いる態様を説明したが、例えば、オリフィス径が異なる複数の圧力式流量制御装置や、オリフィス径が異なる複数の流路を備えた単一の圧力式流量制御装置に対して、共通の目標値P(t)を用いて流量制御を行ってもよい。この場合にも、最も緩やかな圧力降下特性データY(t)を基準として、これよりも緩やかな共通の目標値P(t)に設定すればよい。これにより、アンダーシュートの発生を防止しながら同等の圧力降下特性にしたがう制御を行うことが可能になる。
図4は、図2(a)に示した比較例のようにランプ制御により流量を100%から5%に低下させたときと、図2(b)に示した実施例のように流量を低下させたときとの実際の流量の変化を示す図である。図4において、実線F0は、外部装置から入力された流量設定信号を示し、破線F1は実施例に従って流量を低下させた場合を示し、一点鎖線F2は、比較例に従って流量を低下させた場合を示す。
図4の破線F1からわかるように、圧力降下特性データY(t)に基づいて設定された指数関数的流量目標値を用いて制御を行うことによって、応答性が良好なままで、一点鎖線F2に示されるようなアンダーシュートの発生を防止することができる。
また、上記のように、圧力降下特性データY(t)よりも緩やかな指数関数を用いて流量制御を行うことによって、同設計の圧力式流量制御装置における、機器ごとの特性差(機差)を出現させることなく、いずれの機器においても、同等の流量低下制御が行えることできる。これは、圧力降下特性データY(t)は、機器ごとに異なっており、従来の制御では、圧力降下特性データY(t)が流量に支配的となって流量制御が行われていたために機差が出現していたのに対して、本実施形態によれば、流量目標値の指数関数が流量に支配的になるため、いずれの機器でも同等の流量制御を行うことが可能になったためである。このように、本実施形態によれば、特に小流量側への流量変更時の応答性の機差を抑制する効果が得られることも明らかになった。
なお、半導体製造装置のプロセス終了時(プロセスチャンバへのガス供給停止時)やメンテナンスモードにおいて、自己診断機能を実行することができるように構成された圧力式流量制御装置が知られており、自己診断の方法としては、コントロール弁を開状態から閉状態に変化させたときの圧力降下特性を用いるものが知られている(例えば、特許文献2)。
本実施形態の圧力式流量制御装置8も、自己診断機能を備えていてよく、この自己診断機能を利用して上流圧力P1の測定により圧力降下特性データY(t)を取得し、取得した圧力降下特性データY(t)を用いて、これよりも緩やかな指数関数に従うように立下り期間の流量目標値を設定するようにしてもよい。
また、圧力降下特性データY(t)は、通常、フローファクタと同様に、ガスの種類ごとに異なるものである。ここで、フローファクタとは、流体の種類によって異なる、ガス圧力と流れやすさとの関係を示す指標である。フローファクタが小さいガスの場合、圧力降下特性データは下側にずれる(すなわち、圧力降下が生じやすくなる)。したがって、特定ガス(例えば窒素ガス)により予め測定された圧力降下特性データを用いて、フローファクタを考慮した対象ガスの圧力降下特性データを求めるとともに、これを用いて対象ガスの流量目標値を設定するようにしてもよい。なお、窒素のフローファクタを1としたときの比フローファクタは、例えば、Ar=約0.887、He=約2.81、H2=約3.74、O2=約0.935、N2O=約0.765、NH3=1.236であり、ガスの種類によって様々な値を取ることが知られている。
ガス種ごとの流量制御の方法については、例えば特許文献2に記載のようにしてガス種ごとにフローファクタを用いて圧力降下特性データを得るとともに、これよりも緩やかな指数関数に従うように流量目標値を設定することによって、任意のガス種に対して、アンダーシュートを生じさせない好適な流量低下動作を行うことが可能である。
以上、本発明の実施形態について説明したが種々の改変が可能である。例えば、目標圧力P(t)の時定数τ’として、所定時間までの時定数と、所定時間後の時定数とで異なる値が用いられてもよい。この時の目標圧力P(t)の変化を図5に示す。この場合、所定時間(図5に示す例では200ms)経過後の時定数を比較的大きく設定することによって、高い応答性を維持したまま、アンダーシュートの発生をより効果的に防止し得る。
本発明の実施形態による圧力式流量制御装置または流量制御方法によれば、アンダーシュートの発生を抑制しながら応答性良く流量を低下させることができる。また、小流量側への流量変更時の応答性の機差をなくすことができる。
1 流路
2 絞り部
3 上流圧力センサ
4 下流圧力センサ
5 温度センサ
6 コントロール弁
7 演算処理回路
8 圧力式流量制御装置
9 下流弁
10 プロセスチャンバ
11 真空ポンプ
12 外部制御装置
2 絞り部
3 上流圧力センサ
4 下流圧力センサ
5 温度センサ
6 コントロール弁
7 演算処理回路
8 圧力式流量制御装置
9 下流弁
10 プロセスチャンバ
11 真空ポンプ
12 外部制御装置
Claims (6)
- 絞り部と、前記絞り部の上流側に設けられたコントロール弁と、前記絞り部と前記コントロール弁との間の圧力を検出する上流圧力センサと、前記コントロール弁および前記上流圧力センサに接続された演算処理回路とを備え、前記上流圧力センサの出力に基づいて前記コントロール弁の制御を行うことによって流量制御するように構成された圧力式流量制御装置であって、
前記演算処理回路は、前記絞り部を流れる流体の流量を低下させるために前記コントロール弁を閉じる動作を行うとき、前記絞り部からガスが流出するときの圧力降下特性データよりも緩やかな指数関数を目標値とするフィードバック制御によって前記コントロール弁を閉じる動作を行う、圧力式流量制御装置。 - 前記圧力降下特性データは、時間t、初期圧力P0としたときにY(t)=P0・exp(-t/τ)で表される時定数τの指数関数的減衰を示すデータであり、前記コントロール弁を閉じる動作は、P(t)=(P0-Px)・exp(-t/τ’)+Pxに従って低下する上流圧力の前記目標値P(t)に適合するように前記コントロール弁をフィードバック制御することによって実行され、ここで、Pxは目標収束値であり、前記P(t)における時定数τ’が、前記Y(t)における時定数τよりも大きい、請求項1に記載の圧力式流量制御装置。
- 前記圧力降下特性データは、時間t、初期圧力P0としたときにY(t)=P0・exp(-t/τ)で表される時定数τの指数関数的減衰を示すデータであり、前記コントロール弁を閉じる動作は、P(t)=max(P0・exp(-t/τ’),Px)に従って低下する上流圧力の前記目標値P(t)に適合するように前記コントロール弁をフィードバック制御することによって実行され、ここで、Pxは目標収束値であり、前記P(t)における時定数τ’が、前記Y(t)における時定数τよりも大きい、請求項1に記載の圧力式流量制御装置。
- 前記P(t)の時定数τ’として、所定時間までの時定数と、前記所定時間後の時定数とで異なる値が用いられる、請求項2または3に記載の圧力式流量制御装置。
- 絞り部と、前記絞り部の上流側に設けられたコントロール弁と、前記絞り部と前記コントロール弁との間の圧力を検出する上流圧力センサとを備える圧力式流量制御装置において行われる流量制御方法であって、
前記絞り部からガスが流出するときの圧力降下特性データよりも緩やかな指数関数に従うように流量目標値を設定するステップと、
設定された流量目標値に従って前記コントロール弁をフィードバック制御することによって流量を低下させるステップと
を包含する、流量制御方法。 - 複数の圧力式流量御装置において行われる流量制御方法であって、
前記複数の圧力式流量制御装置のそれぞれは、絞り部と、前記絞り部の上流側に設けられたコントロール弁と、前記絞り部と前記コントロール弁との間の圧力を検出する上流圧力センサとを備え、請求項5に記載の流量制御方法によって流量制御が行われるよう構成されており、
前記複数の圧力式流量制御装置のそれぞれで測定した圧力降下特性データを比較して、最も緩やかな圧力降下特性データを判定するステップと、
前記最も緩やかな圧力降下特性データよりも緩やかな指数関数に従う共通の流量目標値を用いて、前記複数の圧力式流量制御装置のそれぞれで流量を低下させるステップと
を包含する、流量制御方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017064014 | 2017-03-28 | ||
JP2017064014 | 2017-03-28 | ||
PCT/JP2018/010944 WO2018180745A1 (ja) | 2017-03-28 | 2018-03-20 | 圧力式流量制御装置および流量制御方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018180745A1 JPWO2018180745A1 (ja) | 2020-02-06 |
JP7049684B2 true JP7049684B2 (ja) | 2022-04-07 |
Family
ID=63675913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019509372A Active JP7049684B2 (ja) | 2017-03-28 | 2018-03-20 | 圧力式流量制御装置および流量制御方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11416011B2 (ja) |
JP (1) | JP7049684B2 (ja) |
KR (1) | KR102250967B1 (ja) |
CN (1) | CN110431508A (ja) |
TW (1) | TWI667562B (ja) |
WO (1) | WO2018180745A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108369425B (zh) * | 2015-12-25 | 2021-03-02 | 株式会社富士金 | 流量控制装置以及使用流量控制装置的异常检测方法 |
JP6786096B2 (ja) * | 2016-07-28 | 2020-11-18 | 株式会社フジキン | 圧力式流量制御装置 |
JP7216425B2 (ja) * | 2017-11-30 | 2023-02-01 | 株式会社フジキン | 流量制御装置 |
KR102343611B1 (ko) * | 2017-11-30 | 2021-12-27 | 가부시키가이샤 후지킨 | 유량 제어 장치의 자기 진단 방법 |
JP6609728B1 (ja) * | 2018-12-12 | 2019-11-20 | 株式会社アルバック | 圧力測定システム |
JP7232506B2 (ja) * | 2018-12-27 | 2023-03-03 | 株式会社フジキン | 流量圧力制御装置 |
US11404290B2 (en) * | 2019-04-05 | 2022-08-02 | Mks Instruments, Inc. | Method and apparatus for pulse gas delivery |
KR20240052061A (ko) * | 2019-04-25 | 2024-04-22 | 가부시키가이샤 후지킨 | 유량 제어 장치 |
TWI755704B (zh) * | 2019-05-14 | 2022-02-21 | 日商富士金股份有限公司 | 流量控制裝置、流量控制方法、流量控制裝置的控制程式 |
JP7390544B2 (ja) * | 2019-05-17 | 2023-12-04 | パナソニックIpマネジメント株式会社 | ガス保安装置 |
WO2021176864A1 (ja) * | 2020-03-05 | 2021-09-10 | 株式会社フジキン | 流量制御装置および流量制御方法 |
JP7429464B2 (ja) * | 2020-06-29 | 2024-02-08 | 株式会社フジキン | 流体制御装置、流体供給システムおよび流体供給方法 |
CN116057293A (zh) * | 2020-07-30 | 2023-05-02 | 发那科株式会社 | 加压流体供给系统 |
TWI785608B (zh) * | 2021-05-12 | 2022-12-01 | 復盛股份有限公司 | 流體機械及其控制方法 |
KR20230000975A (ko) * | 2021-06-25 | 2023-01-03 | 가부시키가이샤 호리바 에스텍 | 유체 제어 장치, 유체 제어 시스템, 유체 제어 장치용 프로그램 및 유체 제어 방법 |
US12000723B2 (en) | 2022-02-18 | 2024-06-04 | Mks Instruments, Inc. | Method and apparatus for pressure based mass flow control |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000122725A (ja) | 1998-10-19 | 2000-04-28 | Ckd Corp | ガス供給制御装置 |
US6422256B1 (en) | 1998-10-08 | 2002-07-23 | Mott Metallurgical Corporation | Fluid flow controlling |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS601749B2 (ja) | 1977-06-17 | 1985-01-17 | ティーディーケイ株式会社 | マグネトロン発振装置 |
SU1160374A1 (ru) * | 1984-01-13 | 1985-06-07 | Gaft Yakov Z | Регул тор расхода |
JPH05241666A (ja) | 1992-03-03 | 1993-09-21 | Matsushita Electric Ind Co Ltd | 流量制御装置 |
JP3424758B2 (ja) * | 1992-04-15 | 2003-07-07 | 日立金属株式会社 | 高速応答回路の付いたマスフローコントローラ及びその制御方法 |
CA2231947C (en) * | 1998-03-12 | 2006-05-30 | Lloyd G. Alexander | Method of determining fluid inflow rates |
KR100348853B1 (ko) * | 1998-08-24 | 2002-08-17 | 가부시키가이샤 후지킨 | 압력식 유량제어장치에 있어서의 막힘 검출방법 및 그검출장치 |
JP3546153B2 (ja) | 1998-08-24 | 2004-07-21 | 忠弘 大見 | 圧力式流量制御装置におけるオリフィス目詰検出方法およびその検出装置 |
US6848458B1 (en) * | 2002-02-05 | 2005-02-01 | Novellus Systems, Inc. | Apparatus and methods for processing semiconductor substrates using supercritical fluids |
US7543596B2 (en) * | 2002-07-19 | 2009-06-09 | Entegris, Inc. | Liquid flow controller and precision dispense apparatus and system |
US7216019B2 (en) * | 2004-07-08 | 2007-05-08 | Celerity, Inc. | Method and system for a mass flow controller with reduced pressure sensitivity |
EP1993633B1 (en) * | 2006-02-09 | 2016-11-09 | Deka Products Limited Partnership | Pumping fluid delivery systems and methods using force application assembly |
CN101025235A (zh) * | 2006-02-24 | 2007-08-29 | 罗伯特·博世有限公司 | 方向阀或流量控制阀 |
US9958302B2 (en) * | 2011-08-20 | 2018-05-01 | Reno Technologies, Inc. | Flow control system, method, and apparatus |
WO2013134136A1 (en) * | 2012-03-07 | 2013-09-12 | Illinois Tool Works Inc. | System and method for improving the accuracy of a rate of decay (rod) measurement in a mass flow controller |
EP2806271B1 (de) * | 2013-05-24 | 2017-04-26 | Mems Ag | Verfahren und Messvorrichtung zur Bestimmung von physikalischen Gaseigenschaften |
US10114389B2 (en) * | 2013-06-28 | 2018-10-30 | Applied Materials, Inc. | Method and system for controlling a flow ratio controller using feedback |
CN105659177B (zh) * | 2013-10-31 | 2018-07-10 | 株式会社富士金 | 压力式流量控制装置 |
CN103883510B (zh) * | 2014-04-17 | 2016-04-13 | 哈尔滨工业大学 | 一种配流盘压力缓冲槽流量压力特性测试实验装置 |
EP3204832B1 (en) * | 2014-10-06 | 2022-11-30 | Fisher Controls International Llc | Cut-off transition for control valve positioners |
JP2018520415A (ja) * | 2015-05-12 | 2018-07-26 | モエン インコーポレーテッド | 予測アルゴリズムを用いた下流流体の温度制御システム及び方法 |
CN108351240B (zh) * | 2015-08-31 | 2020-10-20 | Mks 仪器公司 | 在非临界流量条件下基于压力的流量控制的方法和装置 |
-
2018
- 2018-03-20 JP JP2019509372A patent/JP7049684B2/ja active Active
- 2018-03-20 WO PCT/JP2018/010944 patent/WO2018180745A1/ja active Application Filing
- 2018-03-20 US US16/499,174 patent/US11416011B2/en active Active
- 2018-03-20 CN CN201880018971.5A patent/CN110431508A/zh active Pending
- 2018-03-20 KR KR1020197027045A patent/KR102250967B1/ko active IP Right Grant
- 2018-03-26 TW TW107110227A patent/TWI667562B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6422256B1 (en) | 1998-10-08 | 2002-07-23 | Mott Metallurgical Corporation | Fluid flow controlling |
JP2000122725A (ja) | 1998-10-19 | 2000-04-28 | Ckd Corp | ガス供給制御装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2018180745A1 (ja) | 2018-10-04 |
TWI667562B (zh) | 2019-08-01 |
KR20190119099A (ko) | 2019-10-21 |
KR102250967B1 (ko) | 2021-05-12 |
CN110431508A (zh) | 2019-11-08 |
JPWO2018180745A1 (ja) | 2020-02-06 |
US20200033895A1 (en) | 2020-01-30 |
TW201841090A (zh) | 2018-11-16 |
US11416011B2 (en) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7049684B2 (ja) | 圧力式流量制御装置および流量制御方法 | |
TWI420568B (zh) | 流量比率控制裝置 | |
JP6795832B2 (ja) | 流量制御機器、流量制御機器の流量校正方法、流量測定機器および流量測定機器を用いた流量測定方法 | |
TWI709013B (zh) | 流量控制裝置及流量控制方法 | |
JP7369456B2 (ja) | 流量制御方法および流量制御装置 | |
JP7157476B2 (ja) | 流量制御方法および流量制御装置 | |
JP7148302B2 (ja) | 流量制御装置 | |
JP6220699B2 (ja) | 流量制御装置及び流量制御装置用プログラム | |
JP7111408B2 (ja) | 流量制御装置の異常検知方法および流量監視方法 | |
JP6929566B2 (ja) | 流量測定方法および流量測定装置 | |
JP7197943B2 (ja) | 流量制御装置および流量制御方法 | |
TWI770792B (zh) | 流量控制裝置以及流量控制方法 | |
JP7495732B2 (ja) | 流量制御装置 | |
JP2023034564A (ja) | 流量制御装置および流量制御方法 | |
JP2023034565A (ja) | 流量制御装置および流量制御方法 | |
CN118786400A (zh) | 流量控制装置的排气结构、排气方法以及具备其的气体供给系统和气体供给方法 | |
TW202230067A (zh) | 壓力控制系統、壓力控制方法及壓力控制程序 | |
JP2023018246A (ja) | 圧力式流量制御装置 | |
JP2022115176A (ja) | 流量制御装置および流量制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7049684 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |