JP7037277B2 - 観察装置 - Google Patents

観察装置 Download PDF

Info

Publication number
JP7037277B2
JP7037277B2 JP2017037920A JP2017037920A JP7037277B2 JP 7037277 B2 JP7037277 B2 JP 7037277B2 JP 2017037920 A JP2017037920 A JP 2017037920A JP 2017037920 A JP2017037920 A JP 2017037920A JP 7037277 B2 JP7037277 B2 JP 7037277B2
Authority
JP
Japan
Prior art keywords
light
optical system
objective lens
sample
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017037920A
Other languages
English (en)
Other versions
JP2018146602A (ja
Inventor
将人 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2017037920A priority Critical patent/JP7037277B2/ja
Priority to US15/904,499 priority patent/US10401292B2/en
Publication of JP2018146602A publication Critical patent/JP2018146602A/ja
Application granted granted Critical
Publication of JP7037277B2 publication Critical patent/JP7037277B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0068Optical details of the image generation arrangements using polarisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0088Inverse microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/10Condensers affording dark-field illumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6478Special lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous
    • G01N2201/0683Brewster plate; polarisation controlling elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0048Scanning details, e.g. scanning stages scanning mirrors, e.g. rotating or galvanomirrors, MEMS mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • G02B21/0084Details of detection or image processing, including general computer control time-scale detection, e.g. strobed, ultra-fast, heterodyne detection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、観察装置に関するものである。
従来、マイクロプレートの複数の小さなウェル内に培養液とともに収容された細胞を生きたまま観察する場合に、ウェル内の培養液の液面が表面張力によって湾曲してレンズ効果を起こしてしまう不都合を防止するために、液面の屈折力をキャンセルするマイクロレンズアレイからなる蓋を配置して観察する方法が知られている(例えば、特許文献1参照。)。
特開2000-4871号公報
しかしながら、特許文献1の方法では、マイクロレンズアレイによって照明光が集光されるため各ウェルの端部に照明光が届きにくくなり、ウェルの中央近傍の細胞のみしか観察できないという不都合がある。また、液面の高さや湾曲状態はウェル毎に異なる場合があるので、このような場合にはマイクロレンズアレイにより液面の屈折力をキャンセルする効果がウェル毎にばらつくという不都合もある。
本発明は上述した事情に鑑みてなされたものであって、マイクロプレートの各ウェル内で培養されている細胞を、培養液の液面の高さや湾曲状態にかかわらず簡易かつ鮮明に観察することができる観察装置を提供することを目的としている。
上記目的を達成するために、本発明は以下の手段を提供する。
本発明の一態様は、光源からの照明光を透明な標本に照射する照明光学系と、前記標本からの観察光を集光する対物レンズと、該対物レンズにより集光された前記観察光を検出する検出光学系と、前記標本を挟んで前記対物レンズと反対側に配置され、複数の微小な反射要素を配列してなる再帰性反射部材とを備え、前記検出光学系が、前記観察光を撮像する撮像素子を備え、重力方向において、前記標本よりも下側に前記対物レンズおよび前記照明光学系が配置され、前記標本が、培養液と共に容器に収容され、前記照明光が、前記培養液液面および前記標本を透過し、前記再帰性反射部材で反射され、再び前記培養液液面および前記標本を透過する観察装置を提供する。
本態様によれば、光源から発せられた照明光が照明光学系によって標本に照射されると、その少なくとも一部が標本を透過し、標本を挟んで対物レンズとは反対側に配置された再帰性反射部材に入射する。再帰性反射部材は、複数の微小な反射要素を配列して構成されているので、入射した光をほとんどシフトさせることなく入射方向と全く同一の方向に反射する。これにより、標本には該標本を透過した照明光の射出方向と全く同一の方向から照明光が再度入射する。そして、標本からの観察光が対物レンズにより集光され、検出光学系により検出される。これにより、検出された観察光により標本の観察を行うことができる。
この場合において、再帰性反射部材が入射した光をほとんどシフトさせることなく入射方向と全く同一の方向に反射するので、マイクロプレートの各ウェル内の培養液の液面の高さおよび屈折力がウェル毎に異なっていても、各ウェルに均一な照明光を再帰性反射部材側からも入射させることができる。これにより、マイクロプレートの各ウェル内で培養されている細胞を、培養液の液面の高さや湾曲状態にかかわらず簡易かつ鮮明に観察することができる。また、対物レンズおよび照明光学系が標本よりも重力方向下側に配置されているので、マイクロプレートの各ウェル内の培養液の液面が表面張力によって湾曲してレンズ効果を起こしてしまう不都合を防止することができる。
上記態様においては、前記照明光学系が、前記対物レンズを経由せずに前記標本に前記照明光を照射する暗視野照明光学系であってもよい。
このようにすることで、暗視野照明光学系からなる照明光学系により、対物レンズを経由せずに標本に照明光が照射され、標本における散乱光が対物レンズにおいて集光されて検出光学系により検出される。
これにより、標本の暗視野像を観察することができる。この場合において、標本における散乱は、光源側から入射した照明光に対する後方散乱および再帰性反射部材側から入射した照明光に対する前方散乱の両方が検出される。後方散乱よりも前方散乱の方が明るく観察できる。すなわち、標本に対して光源と同じ側に検出光学系を配置して、反対側の設置スペースを縮小しながら、透過観察と同様の前方散乱による明るい観察光を観察することができる。
また、上記態様においては、前記照明光学系が、前記対物レンズを経由せずに前記標本に前記照明光を照射して蛍光を発生させる励起照明光学系であってもよい。
このようにすることで、励起照明光学系からなる照明光学系により、対物レンズを経由せずに標本に照明光が照射され、標本において発生した蛍光が対物レンズにおいて集光されて検出光学系により検出される。
これにより、標本の蛍光像を観察することができる。この場合において、標本には光源側から照明光が入射した後、再帰性反射部材において反射した光も標本に入射する。これにより、明るい蛍光像を観察することができる。
また、上記態様においては、前記照明光学系が、前記対物レンズを経由して前記標本に前記照明光を照射してもよい。
このようにすることで、同軸落射観察を行うことができる。例えば、標本からの反射光または透過光を観察する明視野観察を行う場合には、光源から対物レンズを経由して標本に照射された照明光の標本における反射光および標本を透過して再帰性反射部材において反射した照明光が標本を透過した透過光を対物レンズによって集光して検出光学系により検出することができる。標本の落射明視野像と透過明視野像の両方を観察することができるとともに、標本の透過率に応じて見え方の異なる明視野像を観察することができる。
また、上記態様においては、前記照明光学系が、前記対物レンズの瞳位置に光学的に共役な位置に配置された開口を備え、前記検出光学系が、前記対物レンズの瞳位置または該瞳位置に光学的に共役な位置に配置され前記開口の形状に対応する形状を有する位相膜を備えていてもよい。
このようにすることで、落射位相差観察を行うことができる。すなわち、光源から対物レンズの瞳位置に光学的に共役な位置に配置された開口を通過した照明光は、標本を透過した後に再帰性反射部材において反射されて、同一方向に戻り、標本に再照射されて、標本において回折させられる。標本において回折することなく直進した照明光は位相膜を通過させられることにより位相をずらされる。そして、位相をずらされた直進光と回折光とが干渉させられることにより、透明な標本を明暗によって観察することができる。
また、上記態様においては、前記照明光学系が、ポラライザを備え、前記対物レンズの瞳位置近傍に、前記ポラライザを透過した前記照明光を透過させかつ前記対物レンズにより集光された前記標本からの前記観察光を透過させる複屈折素子を備え、前記検出光学系が、前記複屈折素子を透過した前記標本からの前記観察光を透過させるアナライザを備えていてもよい。
このようにすることで、照明光がポラライザを透過させられることにより偏光方向を一方向に設定され、複屈折素子を透過させられることにより偏光方向の異なる2つの照明光に分けられた後に標本を透過させられる。光路の異なる2つの照明光には標本の厚さが変化している部位を透過する際に光路差が与えられ、再帰性反射部材によって反射された後に、再度標本の同一位置を透過させられて、光路差が再度与えられる。そして、複屈折素子を再度通過させられることにより同じ光路に合成されアナライザを通過させられる。これにより、2つの照明光に光路差が存在すると干渉により明暗のコントラストが発生する。これにより標本を微分干渉像により観察することができる。
また、上記態様においては、前記照明光学系が、前記対物レンズの瞳位置に光学的に共役な位置に配置された開口を備え、前記標本に対して特定の角度で前記照明光を照射してもよい。
このようにすることで、標本に偏斜照明を行って、標本を立体感のある像により観察することができる。
また、上記態様においては、前記検出光学系が、前記対物レンズの前記瞳位置に光学的に共役な位置近傍に減光部材を備えていてもよい。
このようにすることで、減光部材によって開口を通過した直接光の光量が抑えられるので、暗視野観察を行うことができる。
また、上記態様においては、前記照明光学系が、前記標本に前記照明光を照射して蛍光を発生させてもよい。
このようにすることで、照明光学系により、対物レンズを経由して標本に照明光が照射され、標本において発生した蛍光が対物レンズにおいて集光されて検出光学系により検出される。
これにより、標本の蛍光像を観察することができる。この場合において、標本には光源側から照明光が入射した後、再帰性反射部材において反射した光も標本に入射する。これにより、明るい蛍光像を観察することができる。
また、上記態様においては、前記対物レンズの焦点位置と光学的に共役な位置に配置され、前記照明光および前記観察光を透過させる複数のピンホールを備えた共焦点ディスクを備えていてもよい。
このようにすることで、光源からの照明光が共焦点ディスクのピンホールを通過して、対物レンズによって標本上に複数のスポットを形成し、各スポット位置において蛍光物質を励起して蛍光を発生させる。発生した蛍光の内、対物レンズにより集光され共焦点ディスクのピンホールを通過した蛍光が撮影される。この場合に、共焦点ディスクを回転等させることにより、標本上においてスポットを走査させて2次元的な蛍光像を撮影することができる。
この場合において、標本に入射されることにより蛍光を発生させた照明光は、標本を透過し再帰性反射部材によって折り返された後に、再度標本の同じ位置に入射されるので、蛍光を再度発生させることができ、検出される蛍光量を増大させて明るい蛍光像による観察を行うことができる。
また、上記態様においては、前記照明光がレーザ光であり、前記照明光学系が、前記対物レンズを経由して前記標本上で前記レーザ光を走査させるスキャナを備え、前記検出光学系が、前記対物レンズの焦点位置と光学的に共役な位置に配置され、前記標本における前記レーザ光の走査位置において発生し前記対物レンズおよび前記スキャナを介して戻る前記蛍光を通過させるピンホールを備えていてもよい。
このようにすることで、光源からの照明光が対物レンズによって標本上にスポットを形成し、各スポット位置において蛍光物質を励起して蛍光を発生させる。スキャナによってスポットを標本上で移動させることにより標本の2次元的な蛍光像を取得することができる。
この場合において、標本に入射されることにより蛍光を発生させた照明光は、標本を透過し再帰性反射部材によって折り返された後に、再度標本の同じ位置に入射されるので、蛍光を再度発生させることができ、検出される蛍光量を増大させて明るい蛍光像による観察を行うことができる。
また、上記態様においては、前記標本と前記再帰性反射部材との間に配置され、前記標本において発生した前記蛍光を遮断する光学フィルタを備えていてもよい。
このようにすることで、照明光が照射されることにより標本において発生した蛍光の内、再帰性反射部材側に射出された蛍光は光学フィルタによって遮断されるので、再帰性反射部材によって折り返されて標本に再度入射することが防止される。これにより、標本で散乱された蛍光を検出することによるコントラストの低下を防止することができる。
また、上記態様においては、前記照明光が、極短パルスレーザ光であり、前記照明光学系が、前記対物レンズを経由して前記標本上で前記極短パルスレーザ光を走査させるスキャナを備えていてもよい。
このようにすることで、光源からの極短パルスレーザ光が対物レンズによって標本に集光されることにより、集光位置における光子密度が高められて多光子励起効果により蛍光が発生する。スキャナの作動により極短パルスレーザ光の集光位置を変化させることにより、2次元的な蛍光像を取得することができる。
この場合において、標本を透過した極短パルスレーザ光が再帰性反射部材によって折り返されて、標本に再度入射されても多光子励起効果を再度発生させることはできないが、最初の入射によって発生した蛍光の内、対物レンズとは反対側に射出された蛍光が再帰性反射部材によって折り返されて標本を透過し、対物レンズによって集光されるので、検出される蛍光量を増大させることができ、明るい蛍光像による観察を行うことができる。
また、上記態様においては、前記照明光が、極短パルスレーザ光であり、前記照明光学系が、前記対物レンズを経由して前記標本上で前記極短パルスレーザ光を走査させるスキャナを備え、前記標本における前記極短パルスレーザ光の走査位置において高次高調波を発生させてもよい。
このようにすることで、極短パルスレーザ光が標本に照射されると、標本内の特定成分における非線形光学効果により、1/2波長の高調波(SHG)および1/3波長の高調波(THG)が誘起されるので、これを検出することにより、標本を蛍光標識することなく観察することができる。この場合に、発生した高調波は、標本を透過する方向に発生する成分が多いが、再帰性反射部材によって、光源側に折り返すことができる。したがって、極短パルスレーザ光を集光する対物レンズによって、高調波を集光することができ、コンパクトな高次光調波像の観察装置を構成することができる。
本発明によれば、マイクロプレートの各ウェル内で培養されている細胞を、培養液の液面の高さや湾曲状態にかかわらず簡易かつ鮮明に観察することができるという効果を奏する。
本発明の一実施形態に係る観察装置を模式的に示す図である。 図1の観察装置に用いられる再帰性反射部材の一例を示す縦断面図である。 図1の観察装置の作用を説明する図である。 図1の観察装置の第1の変形例を模式的に示す図である。 図1の観察装置の第2の変形例を模式的に示す図である。 図1の観察装置の第3の変形例を模式的に示す図である。 図1の観察装置の第4の変形例を模式的に示す図である。 図1の観察装置の第5の変形例を模式的に示す図である。 図1の観察装置の第6の変形例を模式的に示す図である。 図1の観察装置の第7の変形例を模式的に示す図である。 図1の観察装置の第8の変形例を模式的に示す図である。 図1の観察装置の第9の変形例を模式的に示す図である。
本発明の一実施形態に係る観察装置1について、図面を参照して以下に説明する。
本実施形態に係る観察装置1は、図1に示されるように、レーザ走査型共焦点蛍光顕微鏡であって、光源2からのレーザ光(照明光)を標本Xに照射する照明光学系3と、標本Xにおいて発生した蛍光(観察光)を集光する対物レンズ4と、集光された蛍光を検出する検出光学系5と、標本Xを挟んで対物レンズ4とは反対側に配置された再帰性反射部材6とを備えている。
標本Xは、例えば、多数のウェルを有するマイクロプレート等の培養容器8内に培養液Lと共に収容された透明な細胞である。
照明光学系3は、重力方向において、培養容器8の下側に配置され、光源2からのレーザ光をリレーする2組のリレー光学系9,10と、該リレー光学系9,10の間に配置され、レーザ光を2次元的に走査するガルバノミラーからなるスキャナ11とを備えている。光源2からのレーザ光はリレー光学系9,10によってリレーされ、スキャナ11によって2次元的に走査された後、対物レンズ4により集光されて、培養容器8内に収容されている標本Xに下方から照射されて、標本X内に光スポットを形成するようになっている。
対物レンズ4は、重力方向において、培養容器8の下側に配置されている。
検出光学系5は、対物レンズ4により集光され、リレー光学系10およびスキャナ11を介して戻る標本Xからの蛍光をレーザ光の光路から分岐するダイクロイックミラー12と、分岐された蛍光を集光する結像レンズ13と、結像された蛍光を透過させる共焦点ピンホール(ピンホール)14と、蛍光に含まれるレーザ光を遮断する励起光カットフィルタ15と、光電子増倍管等の光検出器16とを備えている。図中、符号17は、レーザ光および蛍光を反射するミラーである。
再帰性反射部材6は、例えば、図2に示されるように、ベース部材18の表面に反射膜19を挟んで多数の微小の球状のガラスビーズあるいはプリズム等の反射要素20を配列して構成されている。これにより、反射要素20に入射した光が反射膜19によって反射されて入射方向と同一方向に射出されるようになっている。ここで、反射要素20を微小に構成しているので、入射した光をほとんどシフトさせることなく入射方向と全く同一の方向に反射するようになっている。図中、符号21は、剥離フィルムであり、符号22は、剥離フィルム21とベース部材18とを接着させる接着剤である。
このように構成された本実施形態に係る観察装置1の作用について説明する。
本実施形態に係る観察装置1を用いて、培養容器8内の細胞等の透明な標本Xを観察するには、図3に示されるように、光源2からのレーザ光を、照明光学系3および対物レンズ4によって、培養容器8の下方から標本Xに入射させ、標本X内に光スポットを集光させるとともに、照明光学系3のスキャナ11によって光スポットを2次元的に走査させる。
レーザ光の光スポットの各走査位置においては、標本X内に含有されている蛍光物質が励起されて蛍光が発生し、発生した蛍光は各走査位置から全方向に射出される。標本Xの各走査位置から下方に射出された蛍光の一部は培養容器8を透過して対物レンズ4により集光され、スキャナ11を経由してレーザ光の光路を戻る途中でダイクロイックミラー12により分岐され、結像レンズ13、共焦点ピンホール14および励起光カットフィルタ15を通過して光検出器16により検出される。
また、本実施形態に係る観察装置1においては、標本Xが透明であるため、標本Xに下方から入射されたレーザ光の一部は、標本Xをそのまま透過して上方に射出される。そして、上方に射出されたレーザ光は、培養容器8の上方に配置されている再帰性反射部材6によって反射されて、同じ経路を辿って、再度、標本Xに上方から入射される。
この場合において、再帰性反射部材6が多数の微小の反射要素20によって、経路のシフトをほとんど発生させることなく同じ経路を戻すようにレーザ光を反射する。これにより、培養容器8内の液面の高さや液面の曲率等の状態に関わらず、レーザ光の光スポットを最初の走査位置とほぼ同一位置に再度形成することができる。
すなわち、本実施形態に係る観察装置1によれば、同じ走査位置にレーザ光を往復2回にわたって照射するので、各走査位置において発生させる蛍光をほぼ2倍に増大させることができる。これにより、明るい蛍光画像を取得することができるという利点がある。
また、本実施形態に係る観察装置1においては、対物レンズ4および照明光学系3が、標本Xが収容された培養容器8よりも重力方向下側に配置されているので、培養容器8内の培養液の液面が表面張力によって湾曲してレンズ効果を起こしてしまう不都合を防止することができる。
本実施形態に係る観察装置1はレーザ走査型共焦点蛍光顕微鏡なので、標本X内のレーザ光が通過する領域の全てにおいて蛍光が発生するが、対物レンズ4の焦点位置に形成される光スポット以外の領域において発生した蛍光は、共焦点ピンホール14を通過できないため、光検出器16により検出されることはない。
なお、本実施形態においては、ガルバノミラーからなるスキャナ11と共焦点ピンホール14とを備えるレーザ走査型共焦点蛍光顕微鏡を例示したが、これに代えて、図4に示されるように、対物レンズ4の焦点位置と光学的に共役な位置に配置され、励起光および蛍光を透過させる複数のピンホール23を備えた共焦点ディスク24を備え、検出光学系5が複数のピンホール23を通過した蛍光を同時に検出可能なCCD等の撮像素子25を備えるものを採用してもよい。
光源2からの照明光から励起フィルタ26によって励起光が生成され、生成された励起光は共焦点ディスク24を通過させられて集光レンズ27により集光されることによって、標本X内に配置される対物レンズ4の焦点位置に多数の光スポットを形成する。共焦点ディスク24を回転等させることにより、多数の光スポットを標本X内において走査させることができる。
各走査位置において発生した蛍光は、共焦点ディスク24のピンホール23を通過した後、ダイクロイックミラー12によって励起光の光路から分岐され、励起光カットフィルタ15によって励起光が遮断された後に撮像素子25により撮影される。
この場合においても、再帰性反射部材6によって、各光スポットの位置に励起光を2回照射することができるとともに、各光スポットの位置において発生した蛍光も再帰性反射部材6により反射されることによって、当該光スポットから発生した蛍光の一部として検出するので、明るい蛍光画像を取得することができるという利点がある。
また、本実施形態においては、図5に示されるように、光源2として、極短パルスレーザ光を射出するものを用いた多光子励起型顕微鏡を採用してもよい。
図5の観察装置28は、図1の観察装置1と比較して、検出光学系5のダイクロイックミラー12を対物レンズ4の直近に配置し、共焦点ピンホール14をなくしている点で相違している。
光源2からの極短パルスレーザ光はスキャナ11によって走査され、対物レンズ4の焦点位置に集光されることにより、焦点位置における光子密度を増大させて多光子励起効果により、光スポットの位置において限定的に蛍光を発生させる。発生した蛍光の内、対物レンズ4側に射出された蛍光は、対物レンズ4により集光された後、ダイクロイックミラー12によって極短パルスレーザ光の光路から分岐され、励起光カットフィルタ15によってレーザ光成分を除去されて光検出器16によって検出される。これにより、蛍光画像を取得することができる。
レーザ走査型共焦点蛍光顕微鏡と同様にして極短パルスレーザ光は再帰性反射部材6によって反射されるが、再度入射した標本X内の光スポットの位置において波面を分割して反射されることにより、パルス幅が増大するので多光子励起効果は発生しない。したがって、レーザ走査型共焦点蛍光顕微鏡とは異なり、励起光の2回照射による蛍光量の増加効果は得られないが、蛍光を光スポットの位置において限定的に発生させるため、反射要素20による微小なシフトが発生してもフレアを発生させることがない。したがって、再帰性反射部材6側に射出された蛍光を再帰性反射部材6によって標本Xの同じ位置に戻し、対物レンズ4によって集光することができ、通常の落射型の顕微鏡では捨てられている蛍光を回収することで、明るい蛍光画像を取得することができるという利点がある。
また、図5と同様の構成により、多光子励起効果により発生した蛍光に代えて、極短パルスレーザ光が入射されることにより標本Xにおいて誘起される第2次高調波(SHG)および第3次高調波(THG)を検出する観察装置28を採用してもよい。
この場合、光源2としては、例えば、波長1200nmの極短パルスレーザ光を射出する光源を採用し、励起光カットフィルタ15としては、波長1200nmの極短パルスレーザ光を遮断し、波長600nmおよび波長400nmの極短パルスレーザ光を透過するものを採用すればよい。
標本X内の特定の物質によって非線形効果によって発生する高調波を検出することにより、蛍光標識することなく透明な細胞を検出することができる。そして、通常、極短パルスレーザ光の入射方向とは反対側に透過する方向に多く発生する高調波を再帰性反射部材6によって標本X側に戻して、コンパクトな落射型の構成によって検出することができるという利点がある。
また、本実施形態においては、走査型の蛍光顕微鏡等について説明したが、これに代えて、図6に示されるように、光源2からの励起光を対物レンズ4によって標本Xの全体に照射(広視野照明)し、標本X上の各位置において発生した蛍光を対物レンズ4によって集光し、励起光を除去して撮影することにより蛍光画像を取得する顕微鏡に適用してもよい。図中、符号37は絞りである。
この場合、観察装置1は、再帰性反射部材6に近接して配置され蛍光を遮断する光学フィルタ7を備えている。
光学フィルタ7は、レーザ光の照射により標本Xにおいて発生した蛍光のうち、再帰性反射部材6側に射出された蛍光を遮断するようになっている。
散乱の強い標本Xの場合には、標本Xにおいて発生した蛍光が再帰性反射部材6側に射出され、再帰性反射部材6で反射された蛍光が標本Xで再度散乱され、コントラストを低下させることがある。再帰性反射部材6と標本Xとの間に光学フィルタ7を配置することにより、再帰性反射部材6側に射出される蛍光が光学フィルタ7で遮断され、励起光のみが光学フィルタ7を透過し、再帰性反射部材6で反射された励起光が標本Xに再度入射する。これにより、コントラストの低下を防ぎつつ、蛍光強度を2倍にできる。
具体的には、標本Xの各位置を透過した励起光は再帰性反射部材6によって反射されて標本Xの同じ位置に再度入射されるので、標本Xの各位置において約2倍の蛍光を発生させることができる。
これにより、明るい蛍光画像を取得することができる。
この場合において、光源2が点光源ではない場合(例えば、水銀光源)には、軸上の励起光のみならず、軸外の励起光も標本Xに照射される。本実施形態に係る観察装置1によれば、軸上の励起光のみならず軸外の励起光についても、再帰性反射部材6によって同一経路を戻るように反射されるので、上記効果を得ることができる(図6の点線の光線を参照。)。
また、本実施形態と同様の構成を、落射型の微分干渉顕微鏡に適用してもよい。
この場合には、図7に示されるように、照明光学系3が、光源2からの照明光を通過させるポラライザ29を備え、観察装置1が、対物レンズ4の瞳位置近傍に、ポラライザ29を透過した照明光を透過させかつ対物レンズ4により集光された標本Xからの観察光を透過させる複屈折素子30を備え、検出光学系5が、複屈折素子30を透過した標本Xからの観察光を透過させるアナライザ31を備えることとすればよい。
このようにすることで、照明光がポラライザ29を透過させられることにより偏光方向を一方向に設定され、複屈折素子30を透過させられることにより偏光方向の異なる2つの照明光に分けられた後に標本Xを透過させられる。光路の異なる2つの照明光には標本Xの厚さが変化している部位を透過する際に光路差が与えられ、再帰性反射部材6によって反射された後に、再度標本Xの同一位置を透過させられて、光路差が再度与えられる。
そして、複屈折素子30を再度通過させられることにより同じ光路に合成されアナライザ31を通過させられる。これにより、2つの照明光に光路差が存在すると干渉により明暗のコントラストが発生し、標本Xを微分干渉像により観察することができる。
この場合においても、標本Xの各位置を透過した照明光を再帰性反射部材6によって再度同一位置に通過させることにより、複屈折により発生する位相差を2倍にすることができる。
また、本実施形態と同様の構成を位相差顕微鏡に適用してもよい。
この場合には、図8に示されるように、照明光学系3が、対物レンズ4の瞳位置に光学的に共役な位置に配置されたリングスリット(開口)32を備え、検出光学系5が、対物レンズ4の瞳位置または該瞳位置に光学的に共役な位置に配置されリングスリット32の形状に対応するOリング板状の位相膜33を備えていればよい。図中、符号34は、リレー光学系である。
このようにすることで、コンパクトな落射型の構成によって、位相差観察を行うことができる。すなわち、光源2から対物レンズ4の瞳位置に光学的に共役な位置に配置されたリングスリット32を通過した照明光は、標本Xを透過した後に再帰性反射部材6において反射されて、同一方向に戻り、標本Xに再照射されて、標本Xにおいて回折させられる。標本Xにおいて回折することなく直進した照明光は位相膜33を通過させられることにより位相をずらされる。そして、位相をずらされた直進光と回折光とが干渉させられることにより、透明な標本Xを明暗によって観察することができる。
この場合において、標本Xに対して斜め下方から照射される際にも標本Xにおいて回折が発生するが、標本Xの透過率が高く、再帰性反射部材6における反射率が十分に高ければ無視できる程度のノイズとなる。
また、本実施形態と同様の構成を偏斜照明による透過観察に適用してもよい。
この場合には、図9に示されるように、照明光学系3が、対物レンズ4の瞳位置に光学的に共役な位置に、光軸中心から径方向に離れた位置に配置されたリングスリット(開口)32を備えて、標本Xに対して特定の角度で照明光を入射させることとしてもよい。
このようにすることで、標本Xに斜め下方から透過させた照明光を再帰性反射部材6によって反射することにより、標本Xに斜め上方から入射する偏斜照明を生成し、透過した観察光をハーフミラー35によって分岐してCCD等の撮像素子25により撮影することにより、標本Xを立体感のある像により観察することができる。
また、図10に示されるように、検出光学系5が、対物レンズ4の瞳位置に光学的に共役な位置近傍のリングスリット32に対応する位置に減光部材36を備えていてもよい。このようにすることで、偏斜照明として再帰性反射部材6から標本Xを通過した直接光の光量を減光部材36によって抑えることができ、これによって暗視野観察を行うことができる。
また、図11に示されるように、本実施形態と同様の構成を有する明視野観察用の顕微鏡を採用してもよい。図中、符号38は集光レンズである。
標本Xの透過率が低い場合には、照明光の一部が標本Xにおいて反射し、他の部分が標本Xを透過する。対物レンズ4により、下方から標本Xに照射された照明光の一部は標本Xにおいて反射して対物レンズ4により集光されるとともに、標本Xを透過した照明光は再帰性反射部材6によって反射されて再度標本Xに照射され、透過光として対物レンズ4により集光される。これにより、落射型の構成により、落射明視野観察と透過明視野観察とを同時に行うことができる。標本Xの透過率によって変化する明視野像により観察を行うことができるという利点がある。
また、上記実施形態においては、対物レンズ4を経由して照明光を標本Xに照射する場合について説明したが、これに代えて、図12に示されるように、対物レンズ4を経由することなく照明光を照射する場合に適用してもよい。
このようにすることで、照明光学系(暗視野照明光学系)3により、対物レンズ4を経由せずに標本Xに照明光が照射され、標本Xにおける散乱光が対物レンズ4において集光されて検出光学系5により検出される。
これにより、標本Xの暗視野像を観察することができる。この場合において、標本Xにおける散乱は、光源2側から入射した照明光に対する後方散乱および再帰性反射部材6側から入射した照明光に対する前方散乱の両方が検出され、後方散乱よりも前方散乱の方が明るく観察できる。すなわち、標本Xに対して光源2と同じ側に検出光学系5を配置して、反対側の設置スペースを縮小しながら、透過観察と同様の前方散乱による明るい観察光を観察することができる。
また、上記実施形態においては、照明光学系3が、対物レンズ4を経由せずに標本Xに照明光を照射して蛍光を発生させる励起照明光学系であってもよい。
このようにすることで、照明光学系3により、対物レンズ4を経由せずに標本Xに照明光が照射され、標本Xにおいて発生した蛍光が対物レンズ4において集光されて検出光学系5により検出される。
これにより、標本Xの蛍光像を観察することができる。この場合において、標本Xには光源2側から照明光が入射した後、再帰性反射部材6において反射した光も標本Xに入射する。これにより、明るい蛍光像を観察することができる。
なお、本実施形態においては、標本Xを収容した培養容器8の上方に平面上の再帰性反射部材6を略水平に配置したが、これに限定されるものではない。すなわち、再帰性反射部材6は、標本Xを透過する方向に射出された照明光あるいは蛍光等を入射させる位置に配置されてさえいればよく、その高さ方向位置、形状、姿勢等は任意に設定することができる。
例えば、非使用時には円筒状に丸めておき、使用時に広げて湾曲した形態のまま配置してもよいし、非使用時には折りたたんでおき、使用時に広げて凹凸のある形態のまま配置してもよい。また、水平に対して傾いて配置されていてもよい。すなわち、再帰性反射部材6の配置および形態については厳密な精度を要求されないので、任意の形状のものを任意の位置に配置してもよい。標本Xを透過する方向に射出された照明光等が入射する範囲にわたって天井に配置されていてもよい。この場合、再帰性反射部材6への入射範囲を狭めるために培養容器8の上方に集光レンズを配置してもよい。
また、再帰性反射部材6を構成している反射要素20としては、ガラス等の非樹脂材料により構成されていることが好ましい。樹脂材料の多くは自家蛍光を発生するため、自家蛍光を発生しない材質であることが好ましい。
また、再帰性反射部材6の1つの反射要素20の開口サイズdは、使用する光の波長λと一度に照射される再帰性反射部材6の開口径Dを用いて、以下の条件式を満たすことが好ましい。
2λ<d<D/10
これにより照明光を反射する際における回折を防止できるとともに、さほど大きなシフトを発生することなく照明光を同一方向に反射することができる。
1,28 観察装置
2 光源
3 照明光学系(暗視野照明光学系、励起照明光学系)
4 対物レンズ
5 検出光学系
6 再帰性反射部材
7 光学フィルタ
11 スキャナ
14 共焦点ピンホール(ピンホール)
20 反射要素
23 ピンホール
24 共焦点ディスク
29 ポラライザ
30 複屈折素子
31 アナライザ
32 リングスリット(開口)
33 位相膜
36 減光部材
X 標本

Claims (15)

  1. 光源からの照明光を透明な標本に照射する照明光学系と、
    前記標本からの観察光を集光する対物レンズと、
    該対物レンズにより集光された前記観察光を検出する検出光学系と、
    前記標本を挟んで前記対物レンズと反対側に配置され、複数の微小な反射要素を配列してなる再帰性反射部材とを備え、
    前記検出光学系が、前記観察光を撮像する撮像素子を備え、
    重力方向において、前記標本よりも下側に前記対物レンズおよび前記照明光学系が配置され
    前記標本が、培養液と共に容器に収容され、
    前記照明光が、前記培養液液面および前記標本を透過し、前記再帰性反射部材で反射され、再び前記培養液液面および前記標本を透過する観察装置。
  2. 前記照明光学系が、前記対物レンズを経由せずに前記標本に前記照明光を照射する暗視野照明光学系である請求項1に記載の観察装置。
  3. 前記照明光学系が、前記対物レンズを経由せずに前記標本に前記照明光を照射して蛍光を発生させる励起照明光学系である請求項1に記載の観察装置。
  4. 前記照明光学系が、前記対物レンズを経由して前記標本に前記照明光を照射する請求項1に記載の観察装置。
  5. 前記照明光学系が、前記対物レンズの瞳位置に光学的に共役な位置に配置された開口を備え、
    前記検出光学系が、前記対物レンズの瞳位置または該瞳位置に光学的に共役な位置に配置され前記開口の形状に対応する形状を有する位相膜を備える請求項4に記載の観察装置。
  6. 前記照明光学系が、ポラライザを備え、
    前記対物レンズの瞳位置近傍に、前記ポラライザを透過した前記照明光を透過させかつ前記対物レンズにより集光された前記標本からの前記観察光を透過させる複屈折素子を備え、
    前記検出光学系が、前記複屈折素子を透過した前記標本からの前記観察光を透過させるアナライザを備える請求項4に記載の観察装置。
  7. 前記照明光学系が、前記対物レンズの瞳位置に光学的に共役な位置に配置された開口を備え、前記標本に対して特定の角度で前記照明光を照射する請求項4に記載の観察装置。
  8. 前記検出光学系が、前記対物レンズの前記瞳位置に光学的に共役な位置近傍に減光部材を備える請求項7に記載の観察装置。
  9. 前記照明光学系が、前記標本に前記照明光を照射して蛍光を発生させる請求項4に記載の観察装置。
  10. 前記対物レンズの焦点位置と光学的に共役な位置に配置され、前記照明光および前記観察光を透過させる複数のピンホールを備えた共焦点ディスクを備える請求項9に記載の観察装置。
  11. 前記照明光がレーザ光であり、
    前記照明光学系が、前記対物レンズを経由して前記標本上で前記レーザ光を走査させるスキャナを備え、
    前記検出光学系が、前記対物レンズの焦点位置と光学的に共役な位置に配置され、前記標本における前記レーザ光の走査位置において発生し前記対物レンズおよび前記スキャナを介して戻る前記蛍光を通過させるピンホールを備える請求項9に記載の観察装置。
  12. 前記標本と前記再帰性反射部材との間に配置され、前記標本において発生した前記蛍光を遮断する光学フィルタを備える請求項9から請求項11のいずれかに記載の観察装置。
  13. 前記照明光が、極短パルスレーザ光であり、
    前記照明光学系が、前記対物レンズを経由して前記標本上で前記極短パルスレーザ光を走査させるスキャナを備える請求項9に記載の観察装置。
  14. 前記照明光が、極短パルスレーザ光であり、
    前記照明光学系が、前記対物レンズを経由して前記標本上で前記極短パルスレーザ光を走査させるスキャナを備え、前記標本における前記極短パルスレーザ光の走査位置において高次高調波を発生させる請求項4に記載の観察装置。
  15. 前記照明光学系が、複数のウェルを有するマイクロプレートに収容されている透明な前記標本に前記照明光を照射する請求項1から請求項14のいずれかに記載の観察装置。
JP2017037920A 2017-03-01 2017-03-01 観察装置 Active JP7037277B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017037920A JP7037277B2 (ja) 2017-03-01 2017-03-01 観察装置
US15/904,499 US10401292B2 (en) 2017-03-01 2018-02-26 Observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037920A JP7037277B2 (ja) 2017-03-01 2017-03-01 観察装置

Publications (2)

Publication Number Publication Date
JP2018146602A JP2018146602A (ja) 2018-09-20
JP7037277B2 true JP7037277B2 (ja) 2022-03-16

Family

ID=63355068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037920A Active JP7037277B2 (ja) 2017-03-01 2017-03-01 観察装置

Country Status (2)

Country Link
US (1) US10401292B2 (ja)
JP (1) JP7037277B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521890A1 (en) * 2016-09-30 2019-08-07 Olympus Corporation Observation apparatus
JP6951349B2 (ja) 2016-09-30 2021-10-20 オリンパス株式会社 観察装置
WO2018220670A1 (ja) 2017-05-29 2018-12-06 オリンパス株式会社 観察装置
CA3105001A1 (en) * 2018-07-06 2020-01-09 Sapporo Medical University Observation device
EP3887500A2 (en) 2018-11-30 2021-10-06 Corning Incorporated Compact optical imaging system for cell culture monitoring
JP2020150815A (ja) * 2019-03-19 2020-09-24 オリンパス株式会社 培地モニタリング装置
JP2020167959A (ja) * 2019-04-04 2020-10-15 オリンパス株式会社 培地モニタリング装置
US11299701B2 (en) 2019-03-19 2022-04-12 Olympus Corporation Culture-medium-monitoring apparatus
US11719629B2 (en) * 2020-02-28 2023-08-08 Jiangsu University Non-linear optical pumping detection apparatus and non-linear optical absorption cross-section measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174764A (ja) 2004-12-22 2006-07-06 Olympus Corp 透過照明装置、それを備えた顕微鏡、及び透過照明方法
US20120140215A1 (en) 2010-12-07 2012-06-07 Fu-Jen Kao Retro-reflector microarray and application thereof
JP2013511713A (ja) 2009-11-20 2013-04-04 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 向上した蛍光検出及び方法
JP2016041042A (ja) 2014-08-18 2016-03-31 オリンパス株式会社 培養容器、多光子励起顕微鏡、及び観察方法
WO2016185619A1 (ja) 2015-05-20 2016-11-24 オリンパス株式会社 標本観察装置及び標本観察方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774859B2 (ja) * 1984-02-07 1995-08-09 松下電器産業株式会社 マスク観察装置
JPH0760217B2 (ja) 1990-05-23 1995-06-28 浜松ホトニクス株式会社 透過型顕微鏡
JPH09292572A (ja) 1996-04-24 1997-11-11 Nikon Corp 落射型蛍光顕微鏡
JP2000004871A (ja) 1998-06-29 2000-01-11 Olympus Optical Co Ltd 培養容器、及び培養容器内の試料を観察する顕微鏡
JP2000227556A (ja) 1999-02-05 2000-08-15 Japan Science & Technology Corp 顕微鏡
US20040258563A1 (en) * 2003-06-23 2004-12-23 Applera Corporation Caps for sample wells and microcards for biological materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174764A (ja) 2004-12-22 2006-07-06 Olympus Corp 透過照明装置、それを備えた顕微鏡、及び透過照明方法
JP2013511713A (ja) 2009-11-20 2013-04-04 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 向上した蛍光検出及び方法
US20120140215A1 (en) 2010-12-07 2012-06-07 Fu-Jen Kao Retro-reflector microarray and application thereof
JP2016041042A (ja) 2014-08-18 2016-03-31 オリンパス株式会社 培養容器、多光子励起顕微鏡、及び観察方法
WO2016185619A1 (ja) 2015-05-20 2016-11-24 オリンパス株式会社 標本観察装置及び標本観察方法

Also Published As

Publication number Publication date
JP2018146602A (ja) 2018-09-20
US20180252648A1 (en) 2018-09-06
US10401292B2 (en) 2019-09-03

Similar Documents

Publication Publication Date Title
JP7037277B2 (ja) 観察装置
US10690898B2 (en) Light-field microscope with selective-plane illumination
JP6360825B2 (ja) 結像光学系、照明装置および観察装置
JP6378931B2 (ja) 顕微鏡装置及び画像取得方法
JP4670031B2 (ja) 試料内で励起および/または後方散乱を経た光ビームの光学的検出のための装置
US7480046B2 (en) Scanning microscope with evanescent wave illumination
JP3283499B2 (ja) レーザ顕微鏡
US7915575B2 (en) Laser scanning microscope having an IR partial transmission filter for realizing oblique illumination
CN109791275B (zh) 观察装置
JP6241858B2 (ja) 共焦点顕微鏡
JP2011118264A (ja) 顕微鏡装置
JP2011203016A (ja) 観察装置
WO2016052743A1 (ja) 光軸方向走査型顕微鏡装置
JP2008033263A (ja) 蛍光検査用の走査型レーザ顕微鏡
WO2016056651A1 (ja) 結像光学系、照明装置および顕微鏡装置
JP5592108B2 (ja) 干渉共焦点顕微鏡および光源撮像方法
JP6253395B2 (ja) 画像生成システム
JP6153321B2 (ja) 顕微鏡
JP2003344777A (ja) 光ファイバ顕微鏡および内視鏡
US20200379231A1 (en) Observation apparatus
JP6108908B2 (ja) 倒立顕微鏡システム
DK2633357T3 (en) PROCEDURE TO OBSERVE THE EMISSION OF LIGHT FROM A DYNAMIC OPTICAL MICROSCOPY TEST
JPH10253893A (ja) 走査型光学顕微鏡
JP2009086392A (ja) 位相差顕微鏡
JP5136294B2 (ja) 共焦点顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220304

R151 Written notification of patent or utility model registration

Ref document number: 7037277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350