JP7022162B2 - 抗体を精製する方法 - Google Patents

抗体を精製する方法 Download PDF

Info

Publication number
JP7022162B2
JP7022162B2 JP2020029547A JP2020029547A JP7022162B2 JP 7022162 B2 JP7022162 B2 JP 7022162B2 JP 2020029547 A JP2020029547 A JP 2020029547A JP 2020029547 A JP2020029547 A JP 2020029547A JP 7022162 B2 JP7022162 B2 JP 7022162B2
Authority
JP
Japan
Prior art keywords
antibody
unnatural
amino acid
antibodies
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020029547A
Other languages
English (en)
Other versions
JP2020099337A (ja
Inventor
バーネット,マシュー,ジェイ.
ムーア,グレゴリー,エル.
デスジャルレイス,ジョン
ラシッド,ルマナ
Original Assignee
ゼンコア インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゼンコア インコーポレイテッド filed Critical ゼンコア インコーポレイテッド
Publication of JP2020099337A publication Critical patent/JP2020099337A/ja
Application granted granted Critical
Publication of JP7022162B2 publication Critical patent/JP7022162B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/72Increased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

関連出願の相互参照 本出願は、2011年10月10日に出願された米国仮特許出願第
61/545,498号、および2012年2月14日に出願された同第61/598,
686号、および2012年2月1日に出願された同第61/593,846号の利益を
主張するものであり、また、2012年8月6日に出願された米国特許出願第13/56
8,028の一部継続出願でもある(参照により、それらの全体が本明細書に組み込まれ
る)。
等電点を調節することによって、混入するホモ二量体抗体変異体から所望のヘテロ二量体
種を精製するための方法を提供する。
抗体は、特定の抗原に結合する免疫学的タンパク質である。ヒトおよびマウスを含むほと
んどの哺乳動物において、抗体は、対になった重鎖および軽鎖のポリペプチドから構築さ
れる。各鎖は、個々の免疫グロブリン(Ig)ドメインで構成され、したがって、そのよ
うなタンパク質には免疫グロブリンという一般名称が用いられる。各鎖は、可変領域およ
び定常領域と称される2つの異なる領域で構成される。軽鎖および重鎖の可変領域は、抗
体間で顕著な配列多様性を示し、標的抗原の結合に関与する。定常領域は、それほど高い
配列多様性は示さず、重要な生化学的事象を誘発する多数の天然タンパク質の結合に関与
する。ヒトには、IgA(サブクラスIgA1およびIgA2を含む)、IgD、IgE
、IgG(サブクラスIgG1、IgG2、IgG3、およびIgG4を含む)、ならび
にIgMを含む、5つの異なるクラスの抗体が存在する。これらの抗体クラス間の顕著な
特徴はそれらの定常領域であるが、V領域にさらに微妙な相違が存在し得る。IgG抗体
は、2本の重鎖および2本の軽鎖からなる四量体タンパク質である。IgG重鎖は、N末
端からC末端に、それぞれ、重鎖可変ドメイン、重鎖定常ドメイン1、重鎖定常ドメイン
2、および重鎖定常ドメイン3を意味するVH-CH1-CH2-CH3の順に連結され
た4つの免疫グロブリンドメインからなる(それぞれ、重鎖可変ドメイン、γ1定常ドメ
イン、γ2定常ドメイン、およびγ3定常ドメインを意味するVH-Cγ1-Cγ2-C
γ3とも称される)。IgG軽鎖は、N末端からC末端に、それぞれ、軽鎖可変ドメイン
および軽鎖定常ドメインを意味するVL-CLの順に連結された2つの免疫グロブリンド
メインからなる。
抗体は、1~3週間の範囲に及ぶin vivo血清半減期を有する。この好ましい特性
は、全長分子のサイズが大きいことに起因する腎臓濾過の除外と、抗体のFc領域と新生
児型Fc受容体FcRnとの相互作用とによるものである。FcRnへの結合により、取
り込まれた抗体がエンドソームから血流へと戻され再利用される(Raghavan e
t al.,1996,Annu Rev Cell Dev Biol 12:181
-220;Ghetie et al.,2000,Annu Rev Immunol
18:739-766(両方とも、参照により全体が組み込まれる))。
抗体の他の特性によって、そのin vivoクリアランス速度(例えば、安定性および
半減期)が決定され得る。抗体のFcRn受容体への結合に加えて、クリアランスおよび
半減期に寄与する他の要因は、血清凝集、血清中の酵素分解、免疫系による除去をもたら
す抗体の固有の免疫原性、抗原媒介性取り込み、FcR(非FcRn)媒介性取り込み、
および(例えば、異なる組織コンパートメントにおける)非血清分布である。
最近、より低い等電点を有する可変領域を有する抗体も、より長い血清半減期を有し得る
ことが提案された(Igawa et al.,2010 PEDS.23(5):38
5-392;米国特許出願公開第2011/0076275号(両方とも、参照により全
体が組み込まれる))。しかしながら、この機序はいまだ十分に理解されておらず、実際
のところ、筆者は、可変領域の改変は、Fc領域の改変の代替であると提案する。さらに
、可変領域は、抗体ごとに異なる。そのため、各可変領域は、結合親和性に大きな影響を
及ぼすことなく変化させなければならない。
したがって、本出願は、荷電状態が抗体の薬物動態に与える影響を定義し、血清半減期を
向上させるための定常領域における新規改変変異体を提供する。
したがって、解決されるべき1つの問題は、定常ドメインを変化させることにより抗体の
血清半減期を増加させ、それによって、同じ定常領域を異なる抗原結合配列、例えば、C
DRを含む可変領域とともに使用できるようにし、免疫原性の変化の可能性を最小限に抑
えることである。このように、抗体に低いpIおよび延長された半減期を有する定常領域
変異体を提供することにより、本明細書に記載されるように、抗体の薬物動態特性を向上
させるためのよりモジュール的な手法を提供する。さらに、本明細書に概説する方法によ
り、著しい免疫原性を導入することなくpIが減少されるように、異なるIgGアイソタ
イプ由来のpI変異体を組み込むことによって、pI変異体によってもたらされる免疫原
性の可能性が著しく減少される。したがって、解決されるべきさらなる問題は、高いヒト
配列含量を有する低pI定常ドメインの解明であり、例えば、いずれの特定の位置におい
ても、非ヒト残基を最小化すること、または回避することである。
解決されるべきさらなる問題は、トランスフェクションおよび標準的なプロテインAクロ
マトグラフィーによる精製の後に得られる混合物から、所望の抗体ヘテロ二量体種を精製
することに係るものである。ヘテロ二量体Fcの突然変異(米国特許出願第2011/0
054151A1号およびGunasekaran et al., 2010 JBC
.285(25):19637-19646に記載されるような)ならびに「ノブインホ
ール」形態(Ridgway et al.,1996 Protein Engine
ering.9(7):617-621;Atwell et al.,1997 JM
B.270,26-35;Merchant et al.,1998 Nature
Biotech.16,677-681)等のヘテロ二量体抗体を作製するための多くの
方法の短所は、これらの形態が相当量の望ましくないホモ二量体の生成をもたらす可能性
があり、特に、混入する種は、それらの特性(分子量等)の多くにおいて所望の種とほぼ
同一であるため、さらなるかつ困難であることが多い精製ステップを必要とすることであ
る。所望のヘテロ二量体種と混入するホモ二量体種との間の等電点の差が増加するように
各鎖を改変することにより、電荷に基づいて精製する方法(例えば、イオン交換クロマト
グラフィー)による高収率で所望の種を得る簡単な方法を使用して、高収率で所望のヘテ
ロ二量体を得ることができる。
したがって、本発明は、第1および第2の単量体を含むヘテロ二量体タンパク質を含む組
成物を提供する。第1の単量体は、第1の変異体重鎖定常領域および第1の融合パートナ
ーを含み、第2の単量体は、第2の変異体重鎖定常領域を第2の融合パートナーとともに
含み、第1および第2の変異体重鎖定常領域のpIは、少なくとも0.5log離れてい
る。
いくつかの実施形態において、融合パートナーは、免疫グロブリン成分、ペプチド、サイ
トカイン、ケモカイン、免疫受容体、および血液因子からなる群から独立してかつ任意選
択的に選択される。好ましい免疫グロブリン成分は、Fab、VH、VL、scFv、s
cFv2、dAb、異なる重鎖可変領域(例えば、より従来的な二重特異性抗体を形成す
るため)、および異なる一本鎖Fv領域からなる群から選択されるものを含む。好ましい
実施形態において、各単量体は、全長重鎖である。
本発明のさらなる態様は、第1および第2の単量体のpIが少なくとも0.5log離れ
ている。代替として、第1および第2の変異体重鎖定常領域のpIは、少なくとも0.5
log離れている。
さらなる態様において、第1および/または第2の単量体にさらなる融合パートナーが加
えられる。
追加の態様において、本発明は、Q196K、P217R、P228R、N276K、H
435RおよびY436Fからなる群から選択されるアミノ酸置換を含む変異体重鎖定常
領域を提供する。さらなる態様において、変異体重鎖定常領域のうちの1つは、S119
E、K133E、K133Q、R133E(IgG2~4の場合)、R133Q(IgG
2~4の場合)、T164E、K205E、K205Q、N208D、K210E、K2
10Q、K274E、K320E、K322E、K326E、K334E、R355E、
K392E、K447の欠失、C末端でのペプチドDEDEの付加、G137E、N20
3D、K274Q、R355Q、K392NおよびQ419E、349A、349C、3
49E、349I、349K、349S、349T、349W、351E、351K、3
54C、356K、357K、364C、364D、364E、364F、364G、3
64H、364R、364T、364Y、366D、366K、366S、366W、3
66Y、368A、368E、368K、368S、370C、370D、370E、3
70G、370R、370S、370V、392D、392E、394F、394S、3
94W、394Y、395T、395V、396T、397E、397S、397T、3
99K、401K、405A、405S、407T、407V、409D、409E、4
11D、411E、411K、439D、349C/364E、349K/351K、3
49K/351K/394F、349K/354C、349K/394F、349K/3
94F/401K、349K/394Y、349K/401K、349K/405A、3
49T/351E/411E、349T/394F、349T/394F/401K、3
49T/394F/411E、349T/405A、349T/411E、351E/3
64D、351E/364D/405A、351E/364E、351E/366D、3
51K/364H/401K、351K/366K、364D/370G、364D/3
94F、364E/405A、364E/405S、364E/411E、364E/4
11E/405A、364H/394F、364H/401K、364H/401K/4
05A、364H/405A、364H/405A/411E、364Y/370R、3
70E/411E、370R/411K、395T/397S/405A、ならびに39
7S/405Aからなる群から選択される変異体をさらに含む。
追加の態様において、ヘテロ二量体抗体は、変異体軽鎖を含む軽鎖を含む。いくつかの態
様において、変異体軽鎖は、K126E、K126Q、K145E、K145Q、N15
2D、S156E、K169E、S202E、K207E、
C末端でのDEDEの付加、R108Q、Q124E、K126Q、N138D、K14
5T、およびQ199Eからなる群から選択されるアミノ酸置換を含む。
いくつかの態様において、第1および第2の変異体重鎖定常領域は、CH2およびCH3
を含む。追加の態様において、それらは、任意選択的なヒンジ領域とともにCH1、CH
2、およびCH3を含む。
さらなる態様において、本発明は、重鎖定常ドメインおよび軽鎖定常ドメインから選択さ
れる定常ドメインにおける非天然アミノ酸による置換を含む、少なくとも6つのアミノ酸
突然変異を導入することにより、抗体の単量体の等電点を調節するための方法を提供し、
変異体抗体の前記等電点が少なくとも0.5log低下するように、置換されたアミノ酸
は天然のアミノ酸よりも低いpIを有する。場合によっては、重鎖定常ドメインのみを変
化させ、場合によっては、軽鎖定常ドメインのみ、また場合によっては、重鎖および軽鎖
両方の定常ドメインを突然変異させたアミノ酸を含む。
別の態様において、方法は、119位の非天然グルタミン酸;131位の非天然システイ
ン;133位の非天然アルギニン、リジン、またはグルタミン;137位の非天然グルタ
ミン酸;138位の非天然セリン;164位の非天然グルタミン酸;192位の非天然ア
スパラギン;193位の非天然フェニルアラニン、196位の非天然リジン、199位の
非天然スレオニン、203位の非天然アスパラギン酸、205位の非天然グルタミン酸ま
たはグルタミン、208位の非天然アスパラギン酸、210位の非天然グルタミン酸また
はグルタミン、214位の非天然スレオニン、217位の非天然アルギニンおよび219
位の非天然システイン、221位の欠失、222位の非天然バリンまたはスレオニン、2
23位の欠失、224位の非天然グルタミン酸、225位の欠失、235位の欠失、27
4位の非天然グルタミンまたはグルタミン酸、296位の非天然フェニルアラニン、30
0位の非天然フェニルアラニン、309位の非天然バリン、320位の非天然グルタミン
酸、322位の非天然グルタミン酸、326位の非天然グルタミン酸、327位の非天然
グリシン、334位の非天然グルタミン酸、339位の非天然スレオニン、355位の非
天然グルタミンまたはグルタミン酸、384位の非天然セリン、392位の非天然アスパ
ラギンまたはグルタミン酸、397位の非天然メチオニン、419位の非天然グルタミン
酸、および447位の欠失または非天然アスパラギン酸(EU番号付け)からなる群から
選択されるアミノ酸突然変異による、これらの変異体の生成を提供する。
さらなる態様において、本発明は、変異体抗体の前記等電点が少なくとも0.5log低
下するように、軽鎖定常ドメインに少なくとも2つのアミノ酸突然変異を導入することに
より抗体の等電点を調節するための方法を提供し、前記変異体抗体は、126位の非天然
グルタミンまたはグルタミン酸、145位の非天然グルタミン、グルタミン酸、またはス
レオニン;152位の非天然アスパラギン酸、156位の非天然グルタミン酸、169位
の非天然グルタミンまたはグルタミン酸、199位の非天然グルタミン酸、202位の非
天然グルタミン酸、および207位の非天然グルタミン酸(EU番号付けを使用)からな
る群から選択される置換を含む。
追加の態様において、本発明は、変異体抗体の前記等電点が少なくとも0.5log低下
するように、a)重鎖定常ドメインに少なくとも6つのアミノ酸突然変異を導入すること
であって、前記変異体抗体は、119位の非天然グルタミン酸;131位の非天然システ
イン;133位の非天然アルギニン、リジン、またはグルタミン;137位の非天然グル
タミン酸;138位の非天然セリン;164位の非天然グルタミン酸;192位の非天然
アスパラギン;193位の非天然フェニルアラニン、196位の非天然リジン、199位
の非天然スレオニン、203位の非天然アスパラギン酸、205位の非天然グルタミン酸
またはグルタミン、208位の非天然アスパラギン酸、210位の非天然グルタミン酸ま
たはグルタミン、214位の非天然スレオニン、217位の非天然アルギニンおよび21
9位の非天然システイン、221位の欠失、222位の非天然バリンまたはスレオニン、
223位の欠失、224位の非天然グルタミン酸、225位の欠失、235位の欠失、2
74位の非天然グルタミンまたはグルタミン酸、296位の非天然フェニルアラニン、3
00位の非天然フェニルアラニン、309位の非天然バリン、320位の非天然グルタミ
ン酸、322位の非天然グルタミン酸、326位の非天然グルタミン酸、327位の非天
然グリシン、334位の非天然グルタミン酸、339位の非天然スレオニン、355位の
非天然グルタミンまたはグルタミン酸、384位の非天然セリン、392位の非天然アス
パラギンまたはグルタミン酸、397位の非天然メチオニン、419位の非天然グルタミ
ン酸、および447位の欠失または非天然アスパラギン酸からなる群から選択される突然
変異を含む、導入することと、b)軽鎖定常ドメインの少なくとも2個の非天然アミノ酸
を置換することであって、前記変異体抗体は、126位の非天然グルタミンまたはグルタ
ミン酸、145位の非天然グルタミン、グルタミン酸、またはスレオニン;152位の非
天然アスパラギン酸、156位の非天然グルタミン酸、169位の非天然グルタミンまた
はグルタミン酸、199位の非天然グルタミン酸、202位の非天然グルタミン酸、およ
び207位の非天然グルタミン酸(EU番号付けを使用)からなる群から選択される置換
を含む、置換することによって、抗体の等電点を調節するための方法を提供する。
さらなる態様において、本発明は、変異体重鎖定常ドメインをコードする核酸および/ま
たは変異体軽鎖定常ドメインをコードする核酸を含む、抗体をコードする核酸を提供する
。また、核酸を含む宿主細胞および抗体を生成する方法も含まれる。
追加の態様において、本発明は、以下の式を有する変異体重鎖定常ドメインを有する抗体
を提供する:
A-X119-T-K-G-P-S-V-F-P-L-A-P-X131-S-X133
-S-T-S-X137-X138-T-A-A-L-G-C-L-V-K-D-Y-F
-P-E-P-V-T-V-S-W-N-S-G-A-L-X164-S-G-V-H-
T-F-P-A-V-L-Q-S-S-G-L-Y-S-L-S-S-V-V-T-V-
P-S-S-X192-X193-G-T-X196-T-Y-X199-C-N-V-
203-H-X205-P-S-X208-T-X210-V-D-K-X214-V
-E-X217-K-X219-C-X221-X222-X223-X224-X22
-C-P-P-C-P-A-P-X233-X234-X235-X236-G-P-
S-V-F-L-F-P-P-K-P-K-D-T-L-M-I-S-R-T-P-E-
V-T-C-V-V-V-D-V-S-H-E-D-P-E-V-X274-F-N-W
-Y-V-D-G-V-E-V-H-N-A-K-T-K-P-R-E-E-Q-X29
-N-S-T-X300-R-V-V-S-V-L-T-V-X309-H-Q-D-
W-L-N-G-K-E-Y-X320-C-X322-V-S-N-X326-X32
-L-P-A-P-I-E-X334-T-I-S-K-X339-K-G-Q-P-
R-E-P-Q-V-Y-T-L-P-P-S-X355-E-E-M-T-K-N-Q
-V-S-L-T-C-L-V-K-G-F-Y-P-S-D-I-A-V-E-W-E
-S-X384-G-Q-P-E-N-N-Y-X392-T-T-P-P-X397
L-D-S-D-G-S-F-F-L-Y-S-K-L-T-V-D-K-S-R-W-
Q-X419-G-N-V-F-S-C-S-V-X428-H-E-A-L-H-X
34-H-Y-T-Q-K-S-L-S-L-S-P-G-X447
式中、X119は、SおよびEからなる群から選択され、
式中、X131は、SおよびCからなる群から選択され、
式中、X133は、K、R、E、およびQからなる群から選択され、
式中、X137は、GおよびEからなる群から選択され、
式中、X138は、GおよびSからなる群から選択され、
式中、X164は、TおよびEからなる群から選択され、
式中、X192は、SおよびNからなる群から選択され、
式中、X193は、LおよびFからなる群から選択され、
式中、X196は、QおよびKからなる群から選択され、
式中、X199は、IおよびTからなる群から選択され、
式中、X203は、NおよびDからなる群から選択され、
式中、X205は、K、E、およびQからなる群から選択され、
式中、X208は、NおよびDからなる群から選択され、
式中、X210は、K、E、およびQからなる群から選択され、
式中、X214は、KおよびTからなる群から選択され、
式中、X217は、PおよびRからなる群から選択され、
式中、X219は、SおよびCからなる群から選択され、
式中、X220は、C、PLG、およびGからなる群から選択され、
式中、X221は、Dおよび欠失からなる群から選択され、
式中、X222は、K、V、およびTからなる群から選択され、
式中、X223は、Tおよび欠失からなる群から選択され、
式中、X224は、HおよびEからなる群から選択され、
式中、X225は、Tおよび欠失からなる群から選択され、
式中、X233は、EおよびPからなる群から選択され、
式中、X234は、LおよびVからなる群から選択され、
式中、X235は、L、A、および欠失からなる群から選択され、
式中、X236は、G、A、および欠失からなる群から選択され、
式中、X274は、K、Q、およびEからなる群から選択され、
式中、X296は、YおよびFからなる群から選択され、
式中、X300は、YおよびFからなる群から選択され、
式中、X309は、LおよびVからなる群から選択され、
式中、X320は、KおよびEからなる群から選択され、
式中、X322は、KおよびEからなる群から選択され、
式中、X326は、KおよびEからなる群から選択され、
式中、X327は、AおよびGからなる群から選択され、
式中、X334は、KおよびEからなる群か
ら選択され、
式中、X339は、AおよびTからなる群から選択され、
式中、X355は、R、Q、およびEからなる群から選択され、
式中、X384は、NおよびSからなる群から選択され、
式中、X392は、K、N、およびEからなる群から選択され、
式中、X397は、VおよびMからなる群から選択され、
式中、X419は、QおよびEからなる群から選択され、
式中、X428は、MおよびLからなる群から選択され、
式中、X434は、NおよびSからなる群から選択され、
式中、X447は、K、DEDE、および欠失から選択され、
式中、前記変異体重鎖定常ドメインは、配列番号2と比較して少なくとも6つの置換を含
み、前記変異体は配列番号3ではない。
さらなる態様において、本発明は、配列番号2と比較して少なくとも10個または15個
の置換を含む変異体重鎖定常ドメインを提供する。
追加の態様において、本発明は、以下の式を有する変異体軽鎖定常ドメインを有する抗体
を提供する:
108-T-V-A-A-P-S-V-F-I-F-P-P-S-D-E-X124
L-X126-S-G-T-A-S-V-V-C-L-L-N-X138-F-Y-P-
R-E-A-X145-V-Q-W-K-V-D-X152-A-L-Q-X156-G
-N-S-Q-E-S-V-T-E-Q-D-S-X169-D-S-T-Y-S-L-
S-S-T-L-T-L-S-K-A-D-Y-E-K-H-K-V-Y-A-C-E-
V-T-H-X199-G-L-X202-S-P-V-T-X207-S-F-N-R
-G-E-X214
式中、X108は、RおよびQからなる群から選択され、
式中、X124は、QおよびEからなる群から選択され、
式中、X126は、K、E、およびQからなる群から選択され、
式中、X138は、NおよびDからなる群から選択され、
式中、X145は、K、E、Q、およびTからなる群から選択され、
式中、X152は、NおよびDからなる群から選択され、
式中、X156は、SおよびEからなる群から選択され、
式中、X169は、K、E、およびQからなる群から選択され、
式中、X199は、QおよびEからなる群から選択され、
式中、X202は、SおよびEからなる群から選択され、
式中、X207は、KおよびEからなる群から選択され、
式中、X214は、CおよびCDEDEからなる群から選択され、
式中、前記変異体軽鎖定常ドメインは、配列番号112と比較して少なくとも2つの置換
を含む。
本明細書において使用される野生型定常領域のアミノ酸配列である。 重鎖CH1ドメインの改変である。4つのIgGアイソタイプに関するCH1残基、露出の割合、およびpIを低下させるために行うことができる置換の例の一覧表である。番号付けは、EUインデックスに従っている。 軽鎖CKドメインの改変である。CK残基、露出の割合、およびpIを低下させるために行うることができる置換の一覧表である。番号付けは、EUインデックスに従っている。 pIを改変した定常領域IgG1-CH1-pI(6)およびCK-pI(6)のアミノ酸配列である。 本発明において使用される野生型抗VEGFのVHおよびVL可変領域のアミノ酸配列である。 本発明において使用されるpIを改変した抗VEGF抗体XENP9493 IgG1-CH1-pI(6)-CK-pI(6)の重鎖および軽鎖のアミノ酸配列である。 XENP9493 IgG1-CH1-pI(6)-CK-pI(6)におけるpIを低下させる突然変異の位置を示す抗体のFabドメインの構造である。 高い純度を示す、Agilent Bioanalyzer上のpIを改変した抗VEGF変異体の分析である。 高い純度を示す、SEC上のpIを改変した抗VEGF変異体の分析である。 変異体が変化したpIを有することを示す、IEFゲル上のpIを改変した抗VEGF変異体の分析である。 VEGFに結合するベバシズマブおよびpIを改変した抗VEGFの結合アッセイ(Biacore)である。 高い熱安定性を示す、CH1およびCKのpIを改変した抗VEGFのDSC分析である。 huFcRnマウスにおけるベバシズマブ変異体のPKである。pIを改変したCH1およびCKドメインを有する9493変異体は、in vivo半減期を延長する。 huFcRnマウスにおける4つの別個のin vivo試験における、ベバシズマブの天然IgG1型のPKである。平均IgG1半減期は3.2日であった。 huFcRnマウスにおけるベバシズマブの天然IgG2型のPKである。 様々な定常鎖を有する抗体変異体の半減期と等電点(pI)との間の相関関係である。 IgGサブクラスのアミノ酸配列アラインメントである。四角で囲まれた残基は、IgG間でのアイソタイプの違いを示す。より高いpIに寄与する残基(K、R、およびH)またはより低いpIに寄与する残基(DおよびE)が太字で強調されている。pIを低下させるかまたはエピトープを伸長するように設計された置換はグレーで示されている。 CKおよびCλ定常軽鎖のアミノ酸配列である。より高いpIに寄与する残基(K、R、およびH)またはより低いpIに寄与する残基(DおよびE)が太字で強調されている。pIを低下させるために修飾することができる好ましい位置はグレーで示されている。 pIを改変した変異体重鎖のアミノ酸配列である。 pIを改変した変異体軽鎖のアミノ酸配列である。 huFcRnマウスにおけるpIを改変した変異体ベバシズマブ抗体のPKの結果である。 pIを改変した修飾を、FcRnへの結合を増強するFc修飾と組み合わせた変異体のPKの結果である。 天然ベバシズマブ抗体、低いpIを有するpIを改変した変異型、ならびにヒトFcRnへの結合を向上させるFc修飾を組み込んだ、天然型およびpI改変型、の半減期と等電点(pI)との間の相関関係である。 IgGサブクラスを有する新規アイソタイプIgG-pI-Iso3のアミノ酸配列アラインメントである。青色は、pI-Iso3と、IgG1、IgG2、IgG3、およびIgG4の4つの天然IgGにおける残基との間のマッチを意味する。四角で囲まれた残基は、pIを低下させるIgG-pI-Iso3に組み込まれたIgGアイソタイプの違いを示す。 ヒンジおよびFc領域におけるIgG1とIgG-pI-Iso3との間の違いである。 CH1領域におけるIgG1とIgG-pI-Iso3との間の違いである。 CK-pI(4)変異体のアミノ酸を示す。赤色は、天然CK定常軽鎖と比較した、リジンからグルタミン酸への荷電置換を示す。 pIを改変した定常重鎖および定常軽鎖のアミノ酸配列である。 露出の割合と、WT残基のエネルギーに対して正規化されたGluへの置換のために計算されたエネルギーとを示す、抗体のFc領域における塩基性残基の分析である。高い露出の割合と、Gluへの置換に有利なΔEとを有する塩基性残基が、pIを低下させるための電荷交換突然変異の標的である。 電荷交換突然変異が抗体のpIに与える効果を示すプロットである。pIが低下するにつれて、1回の電荷交換当たりのpIの変化が減少する。 huFcRnマウスにおける、pIを改変したアイソタイプ変異体ベバシズマブ抗体(IgG-pI-Iso3)と、置換N434Sとの組み合わせのPKの結果である。 huFcRnマウスにおける、pIを改変したアイソタイプ変異体ベバシズマブ抗体と、置換N434Sとの組み合わせのPKの結果である。 huFcRnマウスにおける、pIを改変したアイソタイプ変異体ベバシズマブ抗体と、置換N434Sとの組み合わせのPKの結果の散布図である。各点は、試験からの1匹のマウスを表す。これらのpI抗体の各々には428L置換も加えることができることに留意されたい。 pIを改変した変異体pIと半減期(t1/2)との間の相関関係を示すプロットである。 CKおよびCλドメインの構造アラインメントである。 20個のアミノ酸の文献によるpIである。列挙したpIは、遊離アミノ酸として計算されていることに留意されたい。タンパク質に関連して任意の側鎖の実際のpIは異なり、よって、この一覧表は、本発明の目的のために、絶対数ではなく、pIの傾向を示すために使用される。 以下を列挙する、例となるpIを改変した変異体のデータ表
Figure 0007022162000001
個々の鎖の等電点を調節するように改変することにより、混入するホモ二量体種の混合物から所望のヘテロ二量体抗体種を精製する方法の概要である。 ヘテロ二量体構築物および二重特異性構築物を含む、pIを改変した変異体の配列である。 陰イオン交換クロマトグラフィーによるホモ二量体種からのpIを改変した変異体XENP10653のヘテロ二量体種の精製を示すIEFゲルである。レーン3を見ると分かるように、所望のヘテロ二量体が高純度で得られる。 個々の鎖の等電点を調節するように改変することにより、混入するホモ二量体種の混合物から所望のヘテロ二量体の二重特異性mAb-Fvを精製する方法の概要である。 個々の鎖の等電点を調節するように改変することにより、混入するホモ二量体種の混合物から所望のヘテロ二量体の二重特異性二重scFv-Fcを精製する方法の概要である。 ヒトIgG1の重鎖および軽鎖の残基、ならびに露出表面積の割合の一覧表である。番号付けはEUインデックスに従っている。 ヘテロ二量体種の容易な精製を促進するために、重鎖において行うことができる酸性置換の例である。ゼロ置換ホモ二量体(IgG1/IgG1)、1置換でpIを改変したヘテロ二量体(pI/IgG1)、および2置換でpIを改変したホモ二量体(pI/pI)について、ベバシズマブに関連してpI計算値が列挙される。ホモ二量体とヘテロ二量体とのpIにおける平均差(ΔpI)も列挙する。 ヘテロ二量体種の容易な精製を促進するために、重鎖において行うことができる塩基性から中性置換の例である。ゼロ置換ホモ二量体(IgG1/IgG1)、1置換でpIを改変したヘテロ二量体(pI/IgG1)、および2置換でpIを改変したホモ二量体(pI/pI)について、ベバシズマブに関連してpI計算値が列挙される。ホモ二量体とヘテロ二量体とのpIにおける平均差(ΔpI)も列挙する。 ヘテロ二量体種の容易な精製を促進するために、重鎖において行うことができる塩基性置換の例である。ゼロ置換ホモ二量体(IgG1/IgG1)、1置換でpIを改変したヘテロ二量体(pI/IgG1)、および2置換でpIを改変したホモ二量体(pI/pI)について、ベバシズマブに関連してpI計算値が列挙される。ホモ二量体とヘテロ二量体とのpIにおける平均差(ΔpI)も列挙する。 ヘテロ二量体種の容易な精製を促進するために、重鎖において行うことができる酸性から中性置換の例である。ゼロ置換ホモ二量体(IgG1/IgG1)、1置換でpIを改変したヘテロ二量体(pI/IgG1)、および2置換でpIを改変したホモ二量体(pI/pI)について、ベバシズマブに関連してpI計算値が列挙される。ホモ二量体とヘテロ二量体とのpIにおける平均差(ΔpI)も列挙する。 ヘテロ二量体種の容易な精製を促進するために、軽鎖において行うことができる酸性置換の例である。ゼロ置換ホモ二量体(IgG1/IgG1)、1置換でpIを改変したヘテロ二量体(pI/IgG1)、および2置換でpIを改変したホモ二量体(pI/pI)について、ベバシズマブに関連してpI計算値が列挙される。ホモ二量体とヘテロ二量体とのpIにおける平均差(ΔpI)も列挙する。 ヘテロ二量体種の容易な精製を促進するために、軽鎖において行うことができる塩基性から中性置換の例である。ゼロ置換ホモ二量体(IgG1/IgG1)、1置換でpIを改変したヘテロ二量体(pI/IgG1)、および2置換でpIを改変したホモ二量体(pI/pI)について、ベバシズマブに関連してpI計算値が列挙される。ホモ二量体とヘテロ二量体とのpIにおける平均差(ΔpI)も列挙する。 ヘテロ二量体種の容易な精製を促進するために、軽鎖において行うことができる塩基性置換の例である。ゼロ置換ホモ二量体(IgG1/IgG1)、1置換でpIを改変したヘテロ二量体(pI/IgG1)、および2置換でpIを改変したホモ二量体(pI/pI)について、ベバシズマブに関連してpI計算値が列挙される。ホモ二量体とヘテロ二量体とのpIにおける平均差(ΔpI)も列挙する。 ヘテロ二量体種の容易な精製を促進するために、軽鎖において行うことができる酸性から中性置換の例である。ゼロ置換ホモ二量体(IgG1/IgG1)、1置換でpIを改変したヘテロ二量体(pI/IgG1)、および2置換でpIを改変したホモ二量体(pI/pI)について、ベバシズマブに関連してpI計算値が列挙される。ホモ二量体とヘテロ二量体とのpIにおける平均差(ΔpI)も列挙する。 同一の重鎖定常ドメイン(IgG1、IgG2、IgG3、IgG4、iso1、iso2、iso3、ISO(-)、ISO(+RR)、ISO(+)を含む)の配列アラインメントである。IgG1、IgG2、IgG3、およびIgG4について、IgG1配列との違いがグレーで強調されている。アイソタイプpI変異体について、IgG1との違いを白抜き文字とともに黒で示している。 ISO(-)、ISO(+)、ISO(+RR)、抗VEGF ISO(-)重鎖、抗VEGF ISO(+)重鎖、および抗VEGF ISO(+RR)重鎖の配列である。 XENP10783、抗VEGF ISO(-)×IgG1(WT)の配列である。予想される3つの種と、トランスフェクションおよびプロテインA精製後のそれらの各pIも列挙する。 XENP10784、抗VEGF ISO(+RR)×IgG1(WT)の配列である。予想される3つの種と、トランスフェクションおよびプロテインA精製後のそれらの各pIも列挙する。 XENP10896、抗VEGF ISO(-)×ISO(+RR)の配列である。予想される3つの種と、トランスフェクションおよびプロテインA精製後のそれらの各pIも列挙する。 XENP10901、抗VEGF ISO(-)×ISO(+)の配列である。予想される3つの種と、トランスフェクションおよびプロテインA精製後のそれらの各pIも列挙する。 IgG1、IgG2、IgG3、およびIgG4のアイソタイプの置換から作製された、全ての考えられるpIの低い変異体の一覧表である。予想される3つの種のpI値と、変異体重鎖をIgG1-WT重鎖でトランスフェクトした時に存在するヘテロ二量体と2つのホモ二量体種との間の平均ΔpIを示す。 IgG1、IgG2、IgG3、およびIgG4のアイソタイプの置換から作製された、全ての考えられるpIの高い変異体の一覧表である。予想される3つの種のpI値と、変異体重鎖をIgG1-WT重鎖でトランスフェクトした時に存在するヘテロ二量体と2つのホモ二量体種との間の平均ΔpIを示す。 抗VEGF ISO(-)、IgG1-WT、および抗VEGF WT軽鎖を一緒にトランスフェクトした時に存在するヘテロ二量体種の精製を実証するクロマトグラムおよびIEFゲルである。50mM MES(pH6.0)を使用してHiTrap SP HP陽イオン交換カラムで精製を行い、NaClの直線勾配(0~130mM)を用いて溶出した。 抗VEGF ISO(+RR)、IgG1-WT、および抗VEGF WT軽鎖を一緒にトランスフェクトした時に存在するヘテロ二量体種の精製を実証するクロマトグラムおよびIEFゲルである。50mM MES(pH6.0)を使用してHiTrap SP HP陽イオン交換カラムで精製を行い、NaClの直線勾配(0~180mM)を用いて溶出した。 抗VEGF ISO(-)、ISO(+RR)、および抗VEGF WT軽鎖を一緒にトランスフェクトした時に存在するヘテロ二量体種の精製を実証するクロマトグラムおよびIEFゲルである。50mM MES(pH6.0)を使用してHiTrap SP HP陽イオン交換カラムで精製を行い、NaClの直線勾配(0~180mM)を用いて溶出した。 抗VEGF ISO(-)、ISO(+)、および抗VEGF WT軽鎖を一緒にトランスフェクトした時に存在するヘテロ二量体種の精製を実証するクロマトグラムおよびIEFゲルである。50mM MES(pH6.0)を使用してHiTrap SP HP陽イオン交換カラムで精製を行い、NaClの直線勾配(0~180mM)を用いて溶出した。 一般的なpIを改変したヘテロ二量体免疫グロブリン変異体の構造および配列である。白色または黒色で塗りつぶされたドメインは、pIが改変され得る。 図64に示した、考えられるpIを改変したヘテロ二量体免疫グロブリン変異体を構築するために使用することができるVHおよびVL領域の例である。相補性決定領域(CDR)に下線が引かれている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3 mAb-Fvの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3 scFv2-Fcの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3 DART-Fcの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3二重scFv-Fcの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3 mAb-scFvの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3 mAb-dAbの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3 Fv-Fab-Fcの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3共通軽鎖mAbの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD3の1アームmAbの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3 Fab-Fv-Fcの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3 Fv-Fv-Fcの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には一価性抗CD3mAbの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3中心mAb-Fvの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3 Fab-Fab-Fcの一例の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変され得るドメインが、白色または黒色で塗りつぶされている。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3二重scFv-Fcである、XENP11355の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変されるドメインが、白色(ISO(-))または黒色(ISO(+RR))で塗りつぶされている。 所望のXENP11355ヘテロ二量体種の精製(ピークおよびレーンB)を実証するクロマトグラム(パネルA、B)およびLonza IEF pH3~10ゲルプレート(パネルC)である。緩衝液A=50mM MES(pH6.0)と、緩衝液B=50mM MES(pH6.0)および1M NaClとを使用して、HiTrap SP HP 陽イオン交換カラム(5mL)で精製を行う。直線勾配(10~35%緩衝液B)を用いて、平衡化(0%緩衝液B)および高塩洗浄(100%緩衝液B)ステップに加えて所望の溶出に影響を与えた。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD32b二重scFv-Fcである、XENP11139の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変されるドメインが、白色(ISO(-))または黒色(ISO(+))で塗りつぶされている。 所望のXENP11139ヘテロ二量体種の精製(ピークおよびレーンB)を実証するクロマトグラム(パネルA、B)およびLonza IEF pH3~10ゲルプレート(パネルC)である。緩衝液A=50mM MES(pH6.0)と、緩衝液B=50mM MES(pH6.0)および1M NaClとを使用して、HiTrap SP HP 陽イオン交換カラム(1mL)で精製を行う。直線勾配(0~15%緩衝液B)を用いて、平衡化(0%緩衝液B)および高塩洗浄(100%緩衝液B)ステップに加えて所望の溶出に影響を与えた。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD19×抗CD3二重scFv-Fcである、XENP11338の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変されるドメインが、白色(ISO(-))または黒色(ISO(+))で塗りつぶされている。 所望のXENP11338ヘテロ二量体種の精製(ピークおよびレーンB)を実証するクロマトグラム(パネルA、B)およびLonza IEF pH3~10ゲルプレート(パネルC)である。緩衝液A=50mM MES(pH6.0)と、緩衝液B=50mM MES(pH6.0)および1M NaClとを使用して、HiTrap SP HP 陽イオン交換カラム(1mL)で精製を行う。直線勾配(10~40%緩衝液B)を用いて、平衡化(0%緩衝液B)および高塩洗浄(100%緩衝液B)ステップに加えて所望の溶出に影響を与えた。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には一価性抗CD40mAbである、XENP11233の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変されるドメインが、白色(ISO(-))または黒色(ISO(+))で塗りつぶされている。 所望のXENP11233ヘテロ二量体種の分離(矢印で示される)を実証するLonza IEF pH3~10ゲルプレートである。 pIを改変したヘテロ二量体免疫グロブリン変異体、具体的には抗CD40の1アームmAbである、XENP11238の構造および配列である。所望のヘテロ二量体種および混入するホモ二量体種のpI計算値が列挙される。pIが改変されるドメインが、白色(ISO(+))または黒色(ISO(-))で塗りつぶされている。 所望のXENP11238ヘテロ二量体種の分離(矢印で示される)を実証するLonza IEF pH3~10ゲルプレートである。 以下を列挙する例となる、pIを改変した変異体のデータ表
Figure 0007022162000002
識別因子の名称、タンパク質の名称、ならびにHCおよびLCの名称の相関関係。 図89のHC pI変異体の配列 図89のLC pI変異体の配列
I.概要 抗体技術における継続的な問題は、一般に、2つの異なる抗原に同時に結合し
て、異なる抗原を近接させ、新しい機能性および新しい治療薬をもたらす「二重特異性」
抗体への要望である。一般に、これらの抗体は、各重鎖および軽鎖の遺伝子を宿主細胞に
含めることによって作製される。これにより、通常、所望のヘテロ二量体(A-B)なら
びに2つのホモ二量体(A-AおよびB-B)が形成される。しかしながら、多重特異性
抗体の形成における大きな障害は、ホモ二量体抗体からヘテロ二量体抗体を精製する際の
困難性である。
本発明は、概して、ヘテロ二量体抗体およびヘテロ二量体融合タンパク質を含む多重特異
性ヘテロ二量体タンパク質の作製を対象とする。二量体の各タンパク質は、後述するよう
に、抗体の変異体重鎖定常領域の全てまたは一部と、融合パートナーとを含む。当該技術
分野で既知のように、2つの重鎖定常領域は、会合して重鎖の二量体を形成する。一般に
、ヘテロ二量体を形成する能力は、ホモ二量体(A-AおよびB-B)からヘテロ二量体
(A-B)を容易に精製できるように、二量体(AおよびB)の各タンパク質の重鎖定常
領域にアミノ酸変異体を組み込む機能である。これは、通常、二量体の各タンパク質のp
Iを互いから離れるように変化させるアミノ酸変化を用いて、本明細書に概説されるよう
に行われ、ひいては、タンパク質の異なるpIを用いて(例えば、イオン交換カラムまた
はゲル上で)ヘテロ二量体とホモ二量体の分離を可能にする。後に概説するように、これ
らの変異体は、一方または両方の単量体ポリペプチドに導入することができる:すなわち
、単量体の一方(本明細書では単純に「単量体A」と称される)のpIを単量体Bから離
れるように改変することができるか、または、単量体AのpIを増加させ、単量体Bのp
Iを低下させて、単量体AおよびBの両方を変更することができる。同様に、いずれかま
たは両方の単量体のpIの変化は、荷電残基を除去もしくは付加することによって(例え
ば、中性アミノ酸が、正または負に荷電するアミノ酸残基によって、例えば、グリシンか
らグルタミン酸に、置き換えられる)、荷電残基を正電荷もしくは負電荷から反対の電荷
に変更することによって(アスパラギン酸からリジンに)、または荷電残基を中性残基に
変更することによって(例えば、電荷の損失:リジンからセリンに)行うことができる。
このように、本発明は、ホモ二量体からヘテロ二量体を分離することができるように、単
量体のうちの少なくとも1つに十分なpIの変化をもたらすことを提供する。当業者には
理解されるように、また後に詳述するように、これは、「野生型」重鎖定常領域と、pI
を増加または低下させるように改変された変異体領域(wtA-+BもしくはwtA--
B)とを用いることによって、あるいは、一方の領域を増加させ、他方の領域を低下させ
ることによって(A+-B-)行うことができる。
よって、一般に、本発明は、アミノ酸置換(「pI変異体」または「pI置換」)を一方
または両方の単量体に組み込むことにより、二量体タンパク質の(両方ではないにせよ)
少なくとも1つの単量体の等電点(pI)を変化させて「pIヘテロ二量体」(タンパク
質が抗体の場合、これらは「pI抗体」と称される)を形成することを対象とする。本明
細書に示されるように、2つのホモ二量体からのヘテロ二量体の分離は、2つの単量体の
pIが最低pH0.1単位だけ異なる場合に達成することができ、0.2、0.3、0.
4、および0.5またはそれ以上であれば、全て本発明に用いられる。
重鎖の定常領域を用いることによって、抗体を含む多重特異性タンパク質を設計および精
製するための、よりモジュール的な手法を提供する。
さらに、本発明の多くの実施形態は、あるIgGアイソタイプから別のIgGアイソタイ
プへの、特定の位置におけるよりpIの低いアミノ酸の「組み込み」に依存しており、そ
うすることで、不要な免疫原性が変異体に導入される可能性を減少させるかまたは排除す
る。すなわち、高いエフェクター機能を含む様々な理由のために、IgG1が、治療用抗
体のための一般的なアイソタイプである。しかしながら、IgG1の重鎖定常領域は、I
gG2の重鎖定常領域よりも高いpIを有する(8.10対7.31)。IgG1骨格の
特定の位置にIgG2残基を導入することにより、結果として得られるタンパク質のpI
が低下し、付加的により長い血清半減期を示す。例えば、IgG1は137位にグリシン
(pI5.97)を有し、IgG2はグルタミン酸(pI3.22)を有する:グルタミ
ン酸を組み込むことは、結果として得られるタンパク質のpIに影響を与える。後述する
ように、多くのアミノ酸置換は、通常、変異体抗体のpIに著しい影響を与えることが要
求される。しかしながら、後述するように、たとえIgG2分子における変化であっても
血清半減期の増加を可能にすることに留意されたい。よって、解決されるべきさらなる問
題は、高いヒト配列含量を有する低pI定常ドメインの解明であり、例えば、いずれの特
定の位置においても、非ヒト残基を最小化すること、または回避することである。
また、このpIの改変に伴って生じる可能性のある付随的な利益は、血清半減期の延長お
よびFcRnの結合の増加でもある。すなわち、米国特許出願第13/194,904(
参照によりその全体が組み込まれる)に記載されるように、抗体定常ドメイン(抗体およ
びFc融合体に見出されるものを含む)のpIを低下させることにより、in vivo
での血清滞留時間をより長くすることができる。血清半減期の増加のためのこれらのpI
変異体はまた、精製のためにpIの変化も促進する。よって、いくつかの実施形態におい
て、血清半減期を増加させるpI半減期変異体も、精製中に重鎖を分離する能力に寄与す
る。これらのpI半減期変異体は、後述するような「pI変異体」の定義に含まれ、任意
のpI変異体および後述するような変異体の「ノブとホール」セットとともに用いること
ができる。
pIを変化させるアミノ酸変化に加えて、ヘテロ二量体の形成に有利であり、かつホモ二
量体の形成に不利な立体効果を生じるアミノ酸改変に依存する以前の研究も、任意選択的
に用いることができる;これは、時に「ノブとホール」と称される。ここでも、「ノブと
ホール」の変異体を、任意選択的にかつ独立して、pI半減期変異体を含むpI変異体と
組み合わせることができる。
さらに、後述するように、Fc受容体への結合を変化させるFc変異体、親和性成熟のた
めに行われるアミノ酸置換等の、他の機能性のためのさらなるアミノ酸置換が本発明のp
I抗体に含まれてもよい。
変異体重鎖定常ドメインの全てまたは一部に加えて、一方または両方の単量体は、ヘテロ
二量体が多価タンパク質を形成するように、1つまたは2つの融合パートナーを含んでも
よい。図に一般的に示すように、融合パートナーは、A、B、C、およびDと表され、あ
らゆる組み合わせが可能である。一般に、A、B、C、およびDは、ヘテロ二量体がさら
なるタンパク質と相互作用する能力において少なくとも二重特異性または二価性であるよ
うに選択される。
当業者には理解されるように、また後に詳述するように、本発明のヘテロ二量体融合タン
パク質は、図に一般的に示すような様々な構成をとることができる。いくつかの図は、分
子の一方の「アーム」にある種の特異性が存在し、他方の「アーム」には異なる特異性が
存在する「シングルエンド」構成を示している。他の図は、分子の「上部」に少なくとも
1種類の特異性が存在し、分子の「下部」に1つ以上の異なる特異性が存在する「デュア
ルエンド」構成を示している。さらに図示されるように、これらの2つの構成を組み合わ
せることができ、特定の組み合わせに基づいて3通りまたは4通りの特異性が存在し得る
。よって、本発明は、多重特異性
抗体を含む「多重特異性」結合タンパク質を提供する。
II.本発明の説明 ここには、いくつかの定義を記載する。そのような定義は、文法上
の均等物を包含することが意図される。
本明細書において使用される「ADCC」または「抗体依存性細胞介在性細胞傷害」は、
FcγRを発現する非特異的細胞傷害性細胞が標的細胞上の結合抗体を認識し、続いて標
的細胞の溶解を引き起こす細胞介在反応を意味する。
本明細書において使用される「ADCP」または抗体依存性細胞介在性ファゴサイトーシ
スは、FcγRを発現する非特異的細胞傷害性細胞が標的細胞上の結合抗体を認識し、続
いて標的細胞のファゴサイトーシスを引き起こす細胞介在反応を意味する。
本明細書において使用される「アミノ酸」および「アミノ酸識別」は、天然に存在する2
0個のアミノ酸のうちの1つ、または特定の定義された位置に存在し得る任意の非天然の
類似体を意味する。
本明細書において使用される「CDC」または「補体依存性細胞傷害」は、1つ以上の補
体タンパク質成分が標的細胞上の結合抗体を認識し、続いて標的細胞の溶解を引き起こす
反応を意味する。
本明細書において使用される「エフェクター機能」は、抗体のFc領域とFc受容体また
はリガンドとの相互作用によってもたらされる生化学的事象を意味する。エフェクター機
能は、ADCC、ADCP等のFcγR媒介性エフェクター機能、およびCDC等の補体
媒介性エフェクター機能を含む。さらに、エフェクター機能は、抑制機能(例えば、B細
胞応答、例えば、体液性免疫応答の下方制御、低下、抑制等)等のFcγRIIb媒介性
エフェクター機能を含む。
本明細書において使用される「エフェクター細胞」は、1つ以上のFcおよび/または補
体受容体を発現し、1つ以上のエフェクター機能を媒介する、免疫系の細胞を意味する。
エフェクター細胞は、単球、マクロファージ、好中球、樹状細胞、好酸球、マスト細胞、
血小板、B細胞、大顆粒リンパ球、ランゲルハンス細胞、ナチュラルキラー(NK)細胞
、およびγδT細胞を含むがこれらに限定されず、ヒト、マウス、ラット、ウサギ、およ
びサルを含む限定されない、いずれの生物に由来してもよい。
本明細書において使用される「Fab」または「Fab領域」は、V_H、CH1、V_
H、およびC_Lの免疫グロブリンドメインを含むポリペプチドを意味する。Fabは、
この領域を単独で指してもよいか、または、全長抗体もしくは抗体断片に関連してこの領
域を指してもよい。
本明細書において使用される「Fc」または「Fc領域」または「Fcドメイン」は、最
初の定常領域免疫グロブリンドメインを除く抗体の定常領域を含むポリペプチド、また場
合によってはヒンジの一部を意味する。したがって、Fcは、IgA、IgD、およびI
gGの最後の2つの定常領域免疫グロブリンドメイン、ならびにIgEおよびIgMの最
後の3つの定常領域免疫グロブリンドメイン、ならびにこれらのドメインのN末端の柔軟
なヒンジを意味する。IgAおよびIgMの場合、Fcは、J鎖を含み得る。IgGの場
合、Fcは、免疫グロブリンドメインCガンマ2およびCガンマ3(Cγ2およびCγ3
)、ならびにCガンマ1(Cγ1)とCガンマ2(Cγ2)との間のヒンジを含む。Fc
領域の境界は異なり得るが、ヒトIgG重鎖Fc領域は、通常、残基C226またはP2
30からそのカルボキシル末端までを含むと定義され、番号付けは、Kabatに記載さ
れるようなEUインデックスに従う。Fcは、単離されたこの領域、または、後述するよ
うにFcポリペプチドに関連してこの領域を意味してもよい。
本明細書において使用される「Fcポリペプチド」は、Fc領域の全てまたは一部を含む
ポリペプチドを意味する。Fcポリペプチドは、抗体、Fc融合体、単離されたFc、お
よびFc断片を含む。免疫グロブリンは、Fcポリペプチドであり得る。
本明細書において使用される「Fc融合体」は、1つ以上のポリペプチドが、Fcドメイ
ン、特に変異体Fcドメインに、操作可能に連結されたタンパク質を意味する。従来技術
(Chamow et al.,1996,Trends Biotechnol 14
:52-60;Ashkenazi et al.,1997,Curr Opin I
mmunol 9:195-200(両方とも、参照により全体が本明細書に組み込まれ
る))において使用されているように、Fc融合体は、本明細書において、用語「イムノ
アドヘシン」、「Ig融合体」、「Igキメラ」、および「受容体グロブリン」(ダッシ
ュを伴う場合もある)と同義であることを意味する。Fc融合体は、免疫グロブリンのF
c領域を、一般に、いずれのタンパク質、ポリペプチド、または小分子であってもよい融
合パートナーと組み合わせる。Fc融合体の非Fc部分(本発明のほとんどの場合、pI
ドメイン)、すなわち融合パートナーの役割は、標的結合を媒介することであり、したが
って、それは抗体の可変領域に機能的に類似する。事実上、いずれのタンパク質または小
分子もFcに連結してFc融合体を形成してもよい。タンパク質融合パートナーは、限定
されないが、受容体の標的結合領域、接着分子、リガンド、酵素、サイトカイン、ケモカ
イン、またはいくつかの他のタンパク質もしくはタンパク質ドメインを含んでもよい。小
分子融合パートナーは、Fc融合体を治療標的に誘導する任意の治療剤を含んでもよい。
そのような標的は、任意の分子、例えば、疾患に関与する細胞外受容体であってもよい。
本明細書において使用される「Fcガンマ受容体」または「FcγR」は、IgG抗体の
Fc領域に結合し、実質的にFcγR遺伝子によってコードされる、タンパク質のファミ
リーの任意のメンバーを意味する。ヒトにおいて、このファミリーは、限定されないが、
アイソフォームFcγRIa、FcγRIb、およびFcγRIcを含むFcγRI(C
D64);アイソフォームFcγRIIa(アロタイプH131およびR131を含む)
、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)、ならびにF
cγRIIcを含むFcγRII(CD32);アイソフォームFcγRIIIa(アロ
タイプV158およびF158を含む)ならびにFcγRIIIb(アロタイプFcγR
IIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD
16)(Jefferis et al.,2002,Immunol Lett 82
:57-65(参照により全体が組み込まれる)、そして任意の未発見のヒトFcγRま
たはFcγRアイソフォームまたはアロタイプを含む。FcγRは、限定されないが、ヒ
ト、マウス、ラット、ウサギ、およびサルを含む、いずれの生物に由来してもよい。マウ
スFcγRは、限定されないが、FcγRI(CD64)、FcγRII(CD32)、
FcγRIII(CD16)、およびFcγRIII-2(CD16-2)、ならびに任
意の未発見のマウスFcγRまたはFcγRアイソフォームまたはアロタイプを含む。
本明細書において使用される、「Fcリガンド」または「Fc受容体」は、抗体のFc領
域に結合してFc-リガンド複合体を形成する任意の生物からの分子、例えば、ポリペプ
チドを意味する。Fcリガンドは、限定されないが、FcγR、FcγR、FcγR、F
cRn、C1q、C3、マンナン結合レクチン、マンノース受容体、ブドウ球菌プロテイ
ンA、連鎖球菌プロテインG、およびウイルス性FcγRを含む。Fcリガンドはまた、
FcγRと相同なFc受容体の1ファミリーであるFc受容体相同体(FcRH)も含む
(Davis et al.,2002,Immunological Reviews
190:123-136)。Fcリガンドは、Fcに結合する未発見の分子を含んでも
よい。
本明細書における「修飾」は、タンパク質、ポリペプチド、抗体、または免疫グロブリン
の物理的、化学的、または配列特性の変化を意味する。本明細書に記載される修飾は、ア
ミノ酸修飾およびグリコフォーム修飾を含む。
本明細書における「アミノ酸修飾」は、ポリペプチド配列におけるアミノ酸の置換、挿入
、および/または欠失を意味する。本明細書における「アミノ酸置換」または「置換」は
、親ポリペプチド配列の特定の位置にあるアミノ酸を、別の異なるアミノ酸で置き換える
ことを意味する。明確にするために述べると、「アミノ酸置換」は、置換される位置に親
アミノ酸とは異なるアミノ酸を必要とする。例えば、置換S267Eは、変異体ポリペプ
チド、この場合、267位のセリンがグルタミン酸で置き換えられた定常重鎖変異体を指
す。本明細書において使用される「アミノ酸挿入」または「挿入」は、親ポリペプチド配
列の特定の位置でのアミノ酸の付加を意味する。本明細書において使用される「アミノ酸
欠失」または「欠失」は、親ポリペプチド配列の特定の位置でのアミノ酸の除去を意味す
る。
本明細書において使用される「グリコフォーム修飾」または「修飾されたグリコフォーム
」または「改変されたグリコフォーム」は、タンパク質、例えば、抗体に共有結合的に付
着した炭水化物組成物を意味し、前記炭水化物組成物は、親タンパク質と化学的に異なる
。修飾されたグリコフォームは、典型的には、異なる炭水化物またはオリゴ糖を指し、し
たがって、例えば、Fc変異体は、修飾されたグリコフォームを含み得る。代替として、
修飾されたグリコフォームは、異なる炭水化物またはオリゴ糖を含むFc変異体を指して
もよい。
本明細書において使用される「親ポリペプチド」、「親タンパク質」、「親免疫グロブリ
ン」「前駆体ポリペプチド」、「前駆体タンパク質」、または「前駆体免疫グロブリン」
とは、本明細書に記載される少なくとも1つのアミノ酸修飾の鋳型および/または基盤と
しての役割を果たす変異体、例えば、任意のポリペプチド、タンパク質、または免疫グロ
ブリンを生成するように後に修飾される、未修飾のポリペプチド、タンパク質、または免
疫グロブリンを意味する。親ポリペプチドは、天然に存在するポリペプチドであってもよ
いか、または天然に存在するポリペプチドの変異体もしくは改変型であってもよい。親ポ
リペプチドは、ポリペプチド自体、親ポリペプチドを含む組成物、またはそれをコードす
るアミノ酸配列を指してもよい。したがって、本明細書において使用される「親Fcポリ
ペプチド」は、変異体Fcポリペプチドを生成するように修飾されるFcポリペプチドを
意味し、本明細書において使用される「親抗体」は、変異体抗体を生成するように修飾さ
れる抗体を意味する(例えば、親抗体は、限定されないが、天然に存在するIgの定常領
域を含むタンパク質を含み得る)。
本明細書において使用される「位置」は、タンパク質の配列における場所を意味する。位
置は、順に番号付けされてもよいか、確立された形式、例えば、Kabatに記載される
ようなEUインデックスに従ってもよい。例えば、位置297は、ヒト抗体IgG1にお
ける位置である。
本明細書において使用される「ポリペプチド」または「タンパク質」は、タンパク質、ポ
リペプチド、オリゴペプチド、およびペプチドを含む、少なくとも2つの共有結合的に付
着したアミノ酸を意味する。
本明細書において使用される「残基」は、タンパク質おける位置およびその関連するアミ
ノ酸の識別を意味する。例えば、アスパラギン297(Asn 297とも称され、また
N297とも称される)は、ヒト抗体IgG1における残基である。
本明細書において使用される「標的抗原」は、所与の抗体の可変領域によって結合される
分子、またはFc融合物の融合パートナーを意味する。標的抗原は、タンパク質、炭水化
物、脂質、または他の化学化合物であってもよい。抗体またはFc融合物は、標的抗原に
対して親和性を有することに基づいて、所与の標的抗原に「特異
的」であると言われる。様々な標的抗原を後に列挙する。
本明細書において使用される「標的細胞」は、標的抗原を発現する細胞を意味する。
本明細書において使用される「可変領域」は、それぞれ、κ遺伝子座、λ遺伝子座、およ
び重鎖免疫グロブリン遺伝子座を構成するVk、Vλ、および/またはVH遺伝子のいず
れかによって実質的にコードされる、1つ以上のIgドメインを含む免疫グロブリンの領
域を意味する。
本明細書において使用される「変異体ポリペプチド」、「ポリペプチド変異体」、または
「変異体」は、少なくとも1つのアミノ酸修飾のために親ポリペプチド配列とは異なるポ
リペプチド配列を意味する。親ポリペプチドは、天然に存在するポリペプチドもしくは野
生型(WT)ポリペプチドであってもよいか、またはWTポリペプチドの修飾型であって
もよい。変異体ポリペプチドは、ポリペプチド自体、ポリペプチドを含む組成物、または
それをコードするアミノ酸を指してもよい。いくつかの実施形態において、本明細書に開
示される変異体ポリペプチド(例えば、免疫グロブリン)は、親ポリペプチドと比較して
少なくとも1つのアミノ酸修飾、例えば、約1~約10個のアミノ酸修飾、約1~約5個
のアミノ酸修飾等を有してもよい。変異体ポリペプチド配列は、親ポリペプチド配列と少
なくとも約80%の相同性、例えば、少なくとも約90%の相同性、95%の相同性等を
有し得る。したがって、本明細書において使用される「Fc変異体」または「変異体Fc
」は、少なくとも1つのアミノ酸修飾のために親Fc配列と異なるFc配列を意味する。
Fc変異体は、Fc領域のみを包含してもよいか、または抗体、Fc融合体、単離された
Fc、Fc断片、もしくは実質的にFcによってコードされる他のポリペプチドに関連し
て存在してもよい。Fc変異体は、Fcポリペプチド自体、Fc変異体ポリペプチドを含
む組成物、またはそれをコードするアミノ酸配列を指してもよい。本明細書において使用
される「Fcポリペプチド変異体」または「変異体Fcポリペプチド」は、少なくとも1
つのアミノ酸修飾のために親Fcポリペプチドと異なるFcポリペプチドを意味する。本
明細書において使用される「タンパク質変異体」または「変異体タンパク質」は、少なく
とも1つのアミノ酸修飾のために親タンパク質と異なるタンパク質を意味する。本明細書
において使用される「抗体変異体」または「変異体抗体」は、少なくとも1つのアミノ酸
修飾のために親抗体と異なる抗体を意味する。本明細書において使用される「IgG変異
体」または「変異体IgG」は、少なくとも1つのアミノ酸修飾のために親IgGと異な
る抗体を意味する。本明細書において使用される「免疫グロブリン変異体」または「変異
体免疫グロブリン」は、少なくとも1つのアミノ酸修飾のために親免疫グロブリン配列と
異なる免疫グロブリン配列を意味する。
本明細書における「野生型」または「WT」は、対立遺伝子を含む、天然に見出されるア
ミノ酸配列またはヌクレオチド配列を意味する。WTタンパク質、ポリペプチド、抗体、
免疫グロブリン、IgG等は、意図的に修飾されていないアミノ酸配列またはヌクレオチ
ド配列を有する。
B.抗体 本発明は、抗体、通常は治療用抗体のpI変異体の生成に関する。後述するよ
うに、用語「抗体」は一般的に使用される。本発明において使用される抗体は、従来の抗
体、ならびに後述する抗体の誘導体、断片、および模倣物を含む、本明細書に記載される
ような多くの形式をとることができる。一般に、本発明の目的のための用語「抗体」は、
限定されないが、CH1、CH2、CH3、およびCLを含む、少なくとも1つの定常ド
メインを含む任意のポリペプチドを含む。すなわち、定常領域のpIの改変は、多重特異
性抗体を形成するための可変領域等の「従来の」抗体技術とともに用いることができるか
、または該技術は、二重特異性結合タンパク質を作製するための融合パートナーとともに
用いることができる。別途記載のない限り、「抗体」は、可変領域を含む融合パートナー
を含む多重特異性タンパク質を作製するための、pIを改変した定常領域の使用を含む。
一般に、本明細書は、「CH1-Fcドメイン」とも称される場合があるCH1-ヒンジ
-CH2-CH3成分(例えば、重鎖可変ドメインを有しない)を含む「重鎖定常ドメイ
ン」に言及する。しかしながら、場合によっては、pI変異体は、Fc領域のみを用いて
作製される。
従来の抗体の構造単位は、典型的には、四量体を含む。各四量体は、典型的には、2対の
同一なポリペプチド鎖で構成され、各対が、1つの「軽」鎖(典型的には、約25kDa
の分子量を有する)と、1つの「重」鎖(典型的には、約50~70kDaの分子量を有
する)とを有する。ヒトの軽鎖は、κ軽鎖およびλ軽鎖に分類される。本発明は、限定さ
れないが、IgG1、IgG2、IgG3、およびIgG4を含むいくつかのサブクラス
を有するIgGクラスを対象とする。よって、本明細書において使用される「アイソタイ
プ」は、それらの定常領域の化学的および抗原的な特徴によって定義される免疫グロブリ
ンのサブクラスのうちのいずれかを意味する。治療用抗体はまた、アイソタイプおよび/
またはサブクラスのハイブリッドも含むことができることを理解されたい。例えば、本明
細書に示されるように、本発明は、IgG1/G2ハイブリッドのpIの改変を包含する
各鎖のアミノ末端部分は、通常、当該技術分野および本明細書において「Fvドメイン」
または「Fv領域」と称される、主として抗原認識に関与する約100~110個または
それ以上のアミノ酸の可変領域を含む。可変領域では、重鎖および軽鎖のVドメインの各
々に3つのループが集まり、抗原結合部位を形成する。ループの各々は、相補性決定領域
(これ以降「CDR」と称される)と称され、そこではアミノ酸配列の変動が最も顕著で
ある。「可変」とは、可変領域のある特定のセグメントが、抗体間で配列が広範囲に異な
るという事実を意味する。可変領域内の可変性は、均一に分布していない。代わりに、V
領域は、15~30個のアミノ酸のフレームワーク領域(FR)と称される比較的不変の
一続きの領域からなり、それらは、各々9~15アミノ酸長またはそれより長い「超可変
領域」と称される極端な可変性のより短い領域によって分離される。
いくつかの実施形態において、本発明の異種タンパク質が、第1の抗原に対する結合特異
性を示す第1のscFvを有する第1のpIを改変した定常鎖と、第2の抗原に対する結
合特異性を示す第2のscFvを有する第2のpIを改変した定常鎖とを含むように、p
Iを改変した定常領域を一本鎖Fv(「scFv」)領域に結合することができる。代替
の形式も図中に見られ、本明細書に記載される。
各VHおよびVLは、アミノ末端からカルボキシ末端にFR1-CDR1-FR2-CD
R2-FR3-CDR3-FR4の順に整列した、3つの超可変領域(「相補性決定領域
」、「CDR」)と4つのFRとからなる。
超可変領域は、通常、軽鎖可変領域のアミノ酸残基24~34(LCDR1:「L」は軽
鎖を示す)、50~56(LCDR2)、および89~97(LCDR3)あたりと、重
鎖可変領域の31~35B(HCDR1:「H」は重鎖を示す)、50~65(HCDR
2)、および95~102(HCDR3)あたりのアミノ酸残基(Kabat et a
l.,SEQUENCES OF PROTEINS OF IMMUNOLOGICA
L INTEREST,5th Ed.Public Health Service,
National Institutes of Health,Bethesda,M
d.(1991))、ならびに/または超可変ループを形成する残基(例えば、軽鎖可変
領域の残基26~32(LCDR1)、50~52(LCDR2)、および91~96(
LCDR3)と、重鎖可変領域の26~32(HCDR1)、53~55(HCDR2)
、および96~101(HCDR3)(Chothia and Lesk(1987)
J.Mol.Biol.196:901~917)を包含する。本発明の特定のCDRに
ついては後に記載する。
本明細書を通して、可変ドメインの残基(およそ、軽鎖可変領域の残基1~107、およ
び重鎖可変領域の残基1~113)に言及する場合、通常、Kabatの番号付けシステ
ムが使用される(例えば、Kabat et al.、上記参照(1991))。
CDRは、抗原結合、より具体的には、抗体のエピトープ結合部位の形成に寄与する。「
エピトープ」は、パラトープとしてとして知られる、抗体分子の可変領域内の特定の抗原
結合部位と相互作用する決定基を指す。エピトープは、アミノ酸または糖側鎖等の分子の
集まったものであり、通常、特定の構造特性および特定の電荷特性を有する。単一の抗原
が1つより多くのエピトープを有する場合もある。
エピトープは、結合に直接関与するアミノ酸残基(エピトープの免疫優勢成分とも称され
る)と、結合に直接関与していない他のアミノ酸残基、例えば、特異的な抗原結合ペプチ
ドによって効果的にブロックされるアミノ酸残基とを含んでもよい:換言すると、アミノ
酸残基は、特異的抗原結合ペプチドのフットプリント内にある。
エピトープは、立体構造的または線状のいずれかであり得る。立体構造的エピトープは、
線状ポリペプチド鎖の異なるセグメントからの空間的に並置されたアミノ酸によって生成
される。線状エピトープは、ポリペプチド鎖内の隣接するアミノ酸残基によって生成され
るエピトープである。立体構造的または非立体構造的エピトープは、変性溶媒の存在下に
おいて、前者との結合は失われるが、後者との結合は失われないという点において区別さ
れる。
エピトープは、特有の空間的配置において、典型的には少なくとも3つ、より一般的には
、少なくとも5個または8~10個のアミノ酸を含む。同じエピトープを認識する抗体は
、ある抗体が、別の抗体の標的抗原への結合をブロックする能力を示す単純なイムノアッ
セイ(例えば「ビニング」)において確認することができる。
各鎖のカルボキシ末端部分は、主としてエフェクター機能に関与する定常領域を画定する
。Kabatらは、重鎖および軽鎖の可変領域の多数の一次配列を収集した。配列の保存
の程度に基づいて、彼らは、個々の一次配列をCDRとフレームワークとに分類し、その
リストを作成した(SEQUENCES OF IMMUNOLOGICAL INTE
REST,5th edition,NIH publication,No.91-3
242,E.A.Kabat et al.(参照により全体が組み込まれる)を参照の
こと)。
免疫グロブリンのIgGサブクラスには、重鎖にいくつかの免疫グロブリンドメインが存
在する。本明細書における「免疫グロブリン(Ig)ドメイン」は、明確な三次構造を有
する免疫グロブリンの領域を意味する。本発明において興味深いのは、重鎖定常(CH)
ドメインおよびヒンジドメインを含む重鎖ドメインである。IgG抗体に関連して、Ig
Gアイソタイプは、各々3つのCH領域を有する。したがって、IgGに関連する「CH
」ドメインは、以下の通りである:「CH1」は、Kabatに記載されるようなEUイ
ンデックスによる118~220位を指す。「CH2」は、Kabatに記載されるよう
なEUインデックスによる237~340位を指し、「CH3」は、Kabatに記載さ
れるようなEUインデックスによる341~447位を指す。ここに示したように、また
後に記載するように、pI変異体は、CH領域および後述のヒンジ領域のうちの1つ以上
に存在することができる。
本明細書に示される配列は、CH1領域、すなわち118位で開始し、記載されている場
合を除いて可変領域が含まれていないことに留意されたい。例えば、
配列番号2の最初アミノ酸は、配列表では「1」位と表されていても、EU番号付けに従
うとCH1領域の118位に対応する。
重鎖の別の種類のIgドメインは、ヒンジ領域である。本明細書における「ヒンジ」また
は「ヒンジ領域」または「抗体ヒンジ領域」または「免疫グロブリンヒンジ領域」は、抗
体の第1の定常ドメインと第2の定常ドメインとの間にアミノ酸を含む柔軟なポリペプチ
ドを意味する。構造的には、IgGのCH1ドメインはEU位置220で終端し、IgG
のCH2ドメインは残基のEU位置237で開始する。よって、IgGの場合、抗体ヒン
ジは、221位(IgG1のD221)~236(IgG1のG236)を含むものと本
明細書において定義され、番号付けは、Kabatに記載されるようなEUインデックス
に基づくものとする。いくつかの実施形態において、たとえば、Fc領域に関連して、下
側のヒンジが含まれ、この「下側のヒンジ」は、通常、226位または230位を指す。
本明細書に記載されるように、pI変異体は、ヒンジ領域において作製することもできる
軽鎖は、通常、軽鎖可変ドメイン(軽鎖CDRを含み、重鎖可変ドメインと一緒になって
Fv領域を形成する)と、軽鎖定常領域(CLまたはCκと称されることが多い)の2つ
のドメインを含む。
後に概説する、さらなる置換の対象となる別の領域はFc領域である。本明細書において
使用される「Fc」または「Fc領域」または「Fcドメイン」は、最初の定常領域免疫
グロブリンドメインを除く抗体の定常領域を含むポリペプチド、また場合によってはヒン
ジの一部を意味する。したがって、Fcは、IgA、IgD、およびIgGの最後の2つ
の定常領域免疫グロブリンドメイン、IgEおよびIgMの最後の3つの定常領域免疫グ
ロブリンドメイン、ならびにこれらのドメインのN末端の柔軟なヒンジを意味する。Ig
AおよびIgMの場合、Fcは、J鎖を含み得る。IgGの場合、Fcドメインは、免疫
グロブリンドメインCγ2およびCγ3(Cγ2およびCγ3)、ならびにCγ1(Cγ
1)とCγ2(Cγ2)との間の下側ヒンジ領域を含む。Fc領域の境界は異なり得るが
、ヒトIgG重鎖Fc領域は、通常、残基C226またはP230からそのカルボキシル
末端までを含むと定義され、番号付けは、Kabatに記載されるようなEUインデック
スに従う。いくつかの実施形態において、後により詳細に記載するように、例えば、1つ
以上のFcγR受容体またはFcRn受容体への結合を変化させるために、Fc領域に対
してアミノ酸修飾が行われる。
いくつかの実施形態において、抗体は全長である。本明細書における「全長抗体」は、本
明細書に概説するような1つ以上の修飾を含む可変領域および定常領域を含む、抗体の天
然の生物学的形態を構成する構造を意味する。
代替として、抗体は、限定されないが、抗体断片、モノクローナル抗体、多重特異性抗体
(本明細書に記載されるように、二重特異性、三重特異性、および四重特異性抗体を含む
)、ミニボディ、ドメイン抗体、合成抗体(本明細書では時に「抗体模倣物」と称される
)、キメラ抗体、ヒト化抗体、抗体融合体(時に「抗体コンジュゲート」と称される)、
および各々の断片をそれぞれ含む、様々な構造であってもよい。
一実施形態において、pIを改変することができる少なくとも1つの定常ドメインを含む
限り、抗体は、抗体断片である。特定の抗体断片は、限定されないが、(i)VL、VH
、CL、およびCH1ドメインからなるFab断片、(ii)VHおよびCH1ドメイン
からなるFd断片、(iii)2つの連結されたFab断片を含む二価の断片であるF(
ab’)2断片、(vii)2つのドメインを会合させて抗原結合部位の形成させるペプ
チドリンカーによってVHドメインおよびVLドメインが連結される一本鎖Fv分子(s
cFv)(Bird et al.,1988,Science 242:423-42
6,Huston et al.,1988,Proc.Natl.Acad.Sci.
U.S.A.85:5879-5883(参照により全体が組み込まれる))、(iv)
遺伝子融合によって構築される多価または多特異性断片である「二重特異性抗体」または
「三重特異性抗体」(Tomlinson et.al.,2000,Methods
Enzymol.326:461-479;WO94/13804;Holliger
et al.,1993,Proc.Natl.Acad.Sci.U.S.A.90:
6444-6448(全て、参照により全体が組み込まれる))を含む。
使用することができる他の抗体断片は、pIを改変した本発明のCH1、CH2、CH3
、ヒンジ、およびCLドメインのうちの1つ以上を含む断片を含む。例えば、Fc融合体
は、別のタンパク質に融合されたFc領域(CH2およびCH3、任意選択的にヒンジ領
域を含む)の融合体である。多くのFc融合体が当該技術分野で既知であり、本発明のp
I変異体の付加によって改善することができる。本発明の場合、CH1;CH1,CH2
およびCH3;CH2;CH3;CH2およびCH3;CH1およびCH3を含む抗体融
合体を作製することができ、これらのいずれかまたは全ては、本明細書に記載されるpI
変異体の任意の組み合わせを利用して、任意選択的にヒンジ領域を用いて作製することが
できる。
B.キメラおよびヒト化抗体 いくつかの実施形態において、抗体は、異なる種からの混
合体、例えば、キメラ抗体および/またはヒト化抗体であってもよい。一般に、「キメラ
抗体」および「ヒト化抗体」の両方は、1つより多くの種に由来する領域を組み合わせた
抗体を指す。例えば、「キメラ抗体」は、従来、マウス(または場合によってはラット)
由来の可変領域(複数可)と、ヒト由来の定常領域(複数可)とを含む。「ヒト化抗体」
は、通常、可変ドメインフレームワーク領域を、ヒト抗体に見られる配列と交換した非ヒ
ト抗体を指す。通常、ヒト化抗体では、CDRを除く全抗体が、ヒト由来のポリヌクレオ
チドによってコードされるか、またはそのCDR内を除いて、そのような抗体と同一であ
る。非ヒト生物に由来する核酸によって一部または全部がコードされるCDRを、ヒト抗
体可変領域のベータシートフレームワーク内に移植して抗体を作製し、移植されたCDR
によってその特異性が決定される。そのような抗体の作製は、例えば、国際公開第WO9
2/11018号、Jones,1986、Nature 321:522-525、V
erhoeyen et al、1988,Science 239:1534-153
6(全て、参照により全体が組み込まれる)に記載されている。最初の移植構築物におい
て失われた親和性を回復するために、選択されたアクセプターフレームワーク残基の対応
するドナー残基への「逆変異」が必要であることが多い(米国特許第5530101号、
同第5585089号、同第5693761号、同第5693762号、同第61803
70号、同第5859205号、同第5821337号、同第6054297号、同第6
407213号(全て、参照により全体が組み込まれる))。ヒト化抗体は、免疫グロブ
リンの定常領域(典型的にはヒト免疫グロブリンの定常領域である)の少なくとも一部も
含むことが最適であり、よって、典型的にはヒトFc領域を含む。また、ヒト化抗体は、
遺伝子組み換えした免疫系を有するマウスを用いて生成することもできる。Roque
et al.,2004,Biotechnol.Prog.20:639-654(参
照により全体が組み込まれる)。非ヒト抗体をヒト化および再形成するための様々な技術
および方法が、当該技術において周知である(Tsurushita & Vasque
z, 2004, Humanization of Monoclonal Anti
bodies Molecular Biology of B Cells,533-
545,Elsevier Science (USA)、およびその中に引用される参
考文献(全て、参照により全体が組み込まれる)を参照のこと)。ヒト化方法は、限定さ
れないが、Jones et al.,1986,Nature 321:522-52
5;Riechmann et al.,1988;Nature332:323-32
9;Verhoeyen et al.,1988,Science,239:1534
-1536;Queen et al.,1989,Proc Natl Acad S
ci,USA 86:10029-33;He et al.,1998,J.Immu
nol.160:1029-1035;Carter et al.,1992,Pro
c Natl Acad Sci USA 89:4285-9,Presta et
al.,1997,Cancer Res.57(20):4593-9;Gorman
et al.,1991,Proc.Natl.Acad.Sci.USA 88:4
181-4185;O’Connor et al.,1998,Protein En
g 11:321-8(全て、参照により全体が組み込まれる)に記載される方法を含む
。ヒト化方法、または非ヒト抗体の可変領域の免疫原性を減少させる他の方法は、例えば
、Roguska et al.,1994,Proc.Natl.Acad.Sci.
USA 91:969-973(参照により全体が組み込まれる)に記載されるような表
面再処理方法を含み得る。一実施形態において、親抗体は、当該技術分野において周知の
ように、親和性成熟されている。ヒト化および親和性成熟には、たとえば米国特許出願第
11/004,590号に記載されるような構造に基づく方法が利用されてもよい。限定
されないが、Wu et al.,1999,J.Mol.Biol.294:151-
162;Baca et al.,1997,J.Biol.Chem.272(16)
:10678-10684;Rosok et al.,1996,J.Biol.Ch
em.271(37):22611-22618;Rader et al.,1998
,Proc.Natl.Acad.Sci.USA 95:8910-8915;Kra
uss et al.,2003,Protein Engineering16(10
):753-759(全て、参照により全体が組み込まれる)に記載される方法を含む選
択に基づく方法を利用して、抗体の可変領域をヒト化および/または親和性成熟させても
よい。限定されないが、米国特許出願第09/810,510;Tan et al.,
2002,J.Immunol.169:1119-1125;De Pascalis
et al.,2002,J.Immunol.169:3076-3084(全て、
参照により全体が組み込まれる)に記載される方法を含む他のヒト化方法は、CDRの一
部分のみの移植を伴う場合がある。
一実施形態において、抗体はミニボディである。ミニボディは、CH3ドメインに結合し
たscFvを含む最小化された抗体様タンパク質である。Hu et al., 199
6, Cancer Res.56:3055-3061(参照により全体が組み込まれ
る)。本発明において、CH3ドメインは、pIを改変することができる。場合によって
は、scFvは、Fc領域に結合されてもよく、ヒンジ領域の一部または全部を含んでも
よい。
本発明の抗体は、通常、単離されるかまたは組み替えられる。本明細書に開示される種々
のポリペプチドを説明するために使用される場合、「単離された」は、特定および分離さ
れた、かつ/またはそれが発現された細胞もしくは細胞培養物から回収された、ポリペプ
チドを意味する。通常、単離されたポリペプチドは、少なくとも1つの精製ステップによ
って調製される。「単離された抗体」は、異なる抗原特異性を有する他の抗体を実質的に
含まない抗体を指す。
特定の抗原またはエピトープに対する「特異的結合」または「特異的に
結合する」または「特異的である」とは、非特異的な相互作用とは測定可能な程度に異な
る結合を意味する。特異的結合は、例えば、通常は結合活性を有しない類似する構造の分
子である対照分子の結合と比較して分子の結合を確認することにより測定することができ
る。例えば、特異的結合は、標的に類似する対照分子との競合によって確認することがで
きる。
特定の抗原またはエピトープに対する特異的結合は、例えば、少なくとも約10-4M、
少なくとも約10-5M、少なくとも約10-6M、少なくとも約10-7M、少なくと
も約10-8M、少なくとも約10-9M、代替として、少なくも約10-10M、少な
くとも約10-11M、少なくとも約10-12M、またはそれよりも高い、抗原または
エピトープに対するKDを有する抗体によって示されてもよい:KDは、特定の抗体-抗
原相互作用の解離速度を意味する。典型的には、抗原に特異的に結合する抗体は、抗原ま
たはエピトープに対する対照分子より20倍、50倍、100倍、500倍、1000倍
、5,000倍、10,000倍、またはそれ以上高いKDを有する。
また、例えば、対照と比較して少なくとも20倍、50倍、100倍、500倍、100
0倍、5,000倍、10,000倍、またはそれ以上高い抗原またはエピトープに対す
るKAまたはKaを有する抗体によって、特定の抗原またはエピトープに対する特異的結
合が示される可能性もある(KAまたはKaは、特定の抗体-抗原相互作用の会合速度を
意味する)。
C.pI変異体 したがって、本発明は、第1のドメインとして変異体重鎖定常領域を含
む単量体の使用に基づいて、ヘテロ二量体タンパク質を提供する。本明細書における「単
量体」は、ヘテロ二量体タンパク質の半分を意味する。抗体は、実際には四量体(2つの
重鎖および2つの軽鎖)であることに留意されたい。本発明の文脈において、1セットの
重鎖-軽鎖が「単量体」であるとみなされる。同様に、一本鎖Fv領域(scFv)を有
する重鎖定常領域もまた「単量体」であるとみなされる。Fv領域が一方の融合パートナ
ー(例えば、重鎖および軽鎖)であり、非抗体タンパク質がもう一方の融合パートナーで
ある場合、各「半分」が「単量体」であるとみなされる。
変異体重鎖定常領域は、全長構築物、CH1-ヒンジ-CH2-CH3、または例えばC
H2-CH3を含むその一部を含む、重鎖定常領域の全てまたは一部を含むことができる
。さらに、各単量体の重鎖領域は、同じ骨格(CH1-ヒンジ-CH2-CH3またはC
H2-CH3)であってもよいかまたは異なってもよい。NおよびC末端の切断および付
加もまた、この定義に含まれる:例えば、いくつかのpI変異体は、重鎖ドメインのC末
端への荷電アミノ酸の付加を含む(例えば、(DE)n(nは1、2、3等であってもよ
い))。
さらに、本明細書に概説するpI置換に加えて、重鎖領域は、後述するようなFc結合を
変化させるための変更を含む、さらなるアミノ酸置換も含み得る。
一般に、当業者には理解されるように、pI変異体には2つの一般的なカテゴリーが存在
する。すなわちタンパク質のpIを増加させるもの(塩基変化)およびタンパク質のpI
を低下させるもの(酸変化)である。本明細書に記載されるように、これらの変異体の全
ての組み合わせを行うことができる。すなわち一方の単量体は、野生型であるか、または
野生型と著しく異なるpIを示さない変異体であってもよく、他方の単量体は、より塩基
性またはより酸性であり得る。代替として、各単量体を、より塩基性に、またより酸性に
、変化させる。
さらに、後により詳細に概説するように、いくつかの単量体は、変異体重鎖定常領域と融
合パートナーとの間にリンカーを用いることができる。グリシンおよびセリンの柔軟なリ
ンカーを含む従来のペプチドリンカーが使用されてもよい。場合によっては、単量体の成
分として使用されるリンカーは、ADC構築物について後に定義されるものとは異なり、
多くの実施形態において(プロテアーゼの影響を受けやすいもの等の)切断可能なリンカ
ーではないが、いくつかの実施形態において切断可能なリンカーが使用される場合がある
したがって、本発明は、抗体のpI変異体の生成に関する。「pI」は、分子(個々のア
ミノ酸および抗体の両方を含む)の等電点を意味し、特定の分子または表面が正味電荷を
持たないpHである。さらに、本発明は、本明細書において、pH7でのタンパク質の「
荷電状態」における変化について言及することがある。すなわち、IgG1の野生型重鎖
定常領域は+6の荷電状態を有し、IgG2の重鎖定常領域は0の荷電状態を有する。変
異体9493(配列番号193の重鎖定常ドメインおよび配列番号117の軽鎖定常ドメ
インを有する)は、重鎖および軽鎖の定常領域に12個の置換を有し、-30の荷電状態
をもたらす。
本発明は、「pI抗体」を形成するための抗体のpI変異体の生成に関する。pI変異体
は、親分子にアミノ酸突然変異を導入することによって作製される。この文脈における「
突然変異」は、通常、アミノ酸置換であるが、本明細書に示されるように、アミノ酸の欠
失および挿入も行うことができ、よって、突然変異として定義される。
本明細書における「pI変異体」または「等電点変異体」または「pI置換」またはその
文法上の均等物は、出発タンパク質とは異なるアミノ酸を有し、結果的にその位置でpI
を変化させる変異体を意味する。これは、特定の位置における、元の(例えば、野生型)
アミノ酸よりも低いpIを有するアミノ酸置換(複数可)を含む。いくつかの実施形態に
おいて、これは、高いpIを有するアミノ酸を欠失させること(構造がそれに耐えられる
場合)、またはより低いpIを有するアミノ酸、例えば、後述する低pI「尾部」を挿入
することも意味し得る。同様に、これらのpI変異体は、特定の位置における、元の(例
えば、野生型)アミノ酸よりも高いpIを有するアミノ酸置換(複数可)を含むことがで
きる。いくつかの実施形態において、これは、低いpIを有するアミノ酸を欠失させるこ
と(構造がそれに耐えられる場合)、またはより高いpIを有するアミノ酸、例えば、後
述するC末端の高pI「尾部」を挿入することも意味し得る。
図36に示すように、異なるアミノ酸は異なるpIを有し、この図は、アミノ酸のpIを
タンパク質に関連してではなく、むしろ個々の組成物として示しているが、その傾向は同
一である。本発明の文脈におけるpI変異体は、タンパク質、この場合、IgG抗体の少
なくとも重鎖定常ドメインもしくは軽鎖定常ドメインまたはその両方のpIの減少に寄与
するように作製される。本明細書に概説されるアミノ酸突然変異のうちの1つ以上を含む
ように改変される抗体も、本明細書において「pI抗体」と称されることがある。
一般に、「pI変異体」は、タンパク質のpIの変化をもたらす1つ以上のアミノ酸修飾
を指す。これは、異なるpIを有するアミノ酸で置換すること、アミノ酸(複数可)を欠
失させること、またはアミノ酸(複数可)を挿入することを含む、いくつかの方法で行う
ことができ、よって抗体の全体的なpIを変化させる。例えば、一方の重鎖がそのpIを
低下するように変化させられる場合、pIの高いアミノ酸をpIのより低いもしくは中性
のアミノ酸と置き換えることができるか、または中性アミノ酸をpIのより低いアミノ酸
と置き換えることができる(およびこれらの全ての組み合わせ)。pIの高い鎖の改変に
ついても同様である。(後に記載されるように、pI変異体を構造的に補完するために、
しばしばさらなる非pI変異体が付加され、安定性の増加等がもたらされる)。pIのよ
り低いまたはより高いアミノ酸を用いた変化のために定常ドメインの位置を選択する際に
、アミノ酸の溶媒露出度が考慮に入れられるが、一般的に、それが唯一の要因ではない。
すなわち、IgG分子の既知の構造に基づいて、図2に示すように、各位置は、完全に露
出されるか、完全に遮蔽されるか(例えば、分子の内側において)、または部分的に露出
されるかのいずれかである。この評価は、CH1ドメインおよびCκ軽鎖における各残基
の「露出の割合」として図2に示される。いくつかの実施形態において、異なるpIのア
ミノ酸を用いた置換の候補位置は、少なくとも50%露出されており、60、70、80
超%を超える露出度、および効率的に100%露出される残基が本発明において用いられ
る。
示されてはいないが、露出のパーセンテージを計算するための標準的な市販のプログラム
を使用して、ヒンジ領域、重鎖のCH2およびCH3、ならびに軽鎖のCLドメインにつ
いて同じ計算を行うことができる。
pIの低下は、pIのより高いアミノ酸(例えば、正の荷電状態)を中性のpIで置き換
えること、pIのより高いアミノ酸をpIのより低いもしくは低いアミノ酸で置き換える
こと、または中性のpIのアミノ酸をpIの低いアミノ酸で置き換えることのいずれかで
あるいくつかの方法のうちの1つで行うことができる。場合によっては、構造上可能であ
る場合、1つ以上のアミノ酸の欠失または挿入、例えば、pIの高いアミノ酸の欠失また
は1つ以上のpIの低いアミノ酸の挿入も行うことができる。よって、例えば、アルギニ
ン(pI11.15)は、リジン(pI9.59、なおも高いがアルギニンよりは低い)
、グリシンもしくはセリン等のより中性のアミノ酸、またはアスパラギン酸もしくはグル
タミン酸等の低pI変異体によって置き換えることができる。
pIの上昇は、pIのより低いアミノ酸(例えば、負の荷電状態)を中性のpIで置き換
えること、pIのより低いアミノ酸をpIのより高いもしくは高いアミノ酸で置き換える
こと、または中性のpIのアミノ酸をpIの高いアミノ酸で置き換えることのいずれかで
ある同様の様式で行うことができる。場合によっては、構造上可能である場合、1つ以上
のアミノ酸の欠失または挿入、例えば、pIの低いアミノ酸の欠失または1つ以上のpI
の高いアミノ酸の挿入も行うことができる。よって、例えば、リジン(pI9.59)を
、アルギニン(pI11.15)で、またはグリシンもしくはセリン等のより中性のアミ
ノ酸によって、またはアルギニンおよびリジン等のpIの高い変異体によって置き換える
ことができる。
pI変異体は、野生型IgG定常ドメイン(本明細書に概説するように、重鎖もしくは軽
鎖のいずれか、またはその両方)であることが多い出発配列または親配列との比較によっ
て変異体として定義される。すなわち、野生型の特定の位置にあるアミノ酸は「天然」ア
ミノ酸と称され、この位置のアミノ酸置換(または欠失または挿入)は「非天然」アミノ
酸と称される。例えば、本明細書の多くの実施形態は、pI突然変異が作製される親配列
としてIgG1重鎖定常領域を使用する。よって、いくつかの実施形態において、「非天
然」アミノ酸は、IgG1配列と比較されたものである。例えば、119位では、IgG
1がセリンを有するため、置換することができる非天然アミノ酸はグルタミン酸である。
よって、配列番号193は、119位に非天然グルタミン酸を有する。同様に、IgG2
定常ドメイン(複数可)から開始する場合、天然および非天然アミノ酸は、野生型IgG
2配列と比較される。
当業者には理解されるように、ハイブリッドIgGの教示のために、参照によりその全体
が本明細書に組み込まれる米国特許出願公開第2006/0134150号に記載される
ように、種々のIgG分子から融合体またはハイブリッドを作製することが可能である。
よって、例えば、配列番号28はハイブリッドIgG1/G2分子であり、配列番号16
4はハイブリッドIgG2/G1分子である。この文脈において、「非天然」または「非
野生型」置換は、問題となる位置にある
アミノ酸が、その位置が由来する親の野生型配列とは異なることを意味する:すなわち、
N末端がIgG1に由来し、CがIgG2に由来するように、クロスオーバーポイントが
アミノ酸100と101との間である場合、90位の「非天然」アミノ酸がIgG1配列
と比較される。
よって、非野生型IgGドメイン、例えば、既に変異体を有するIgGドメインを出発分
子または親分子として用いることが可能である。これらの場合、上記のように、野生型配
列に戻らない限り、置換は「非天然」である。
重鎖pI変異体 本明細書に記載されるように、本発明のいくつかの実施形態は、2つの
異なる重鎖pI変異体、例えば、一緒になって、ホモ二量体のいずれかと異なるpIを有
するヘテロ二量体を形成する、2つの異なる単量体の使用を含む。
いくつかの実施形態において、本発明のヘテロ二量体pI抗体の形成を可能にするように
、pI変異体は、IgG抗体の重鎖ドメインの少なくともCH1領域において作製される
。この実施形態において、突然変異は、119、131、133、137、138、16
4、192、193、196、199、203、205、208、210、214、21
7、および219位から独立してかつ任意選択的に選択することができる。これらの17
個の位置の全ての可能な組み合わせを作製することができる:例えば、pI抗体の単量体
は、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16
、または17個のCH1のpI置換を有してもよい。さらに、本明細書に記載されるよう
に、いずれの単一のまたは組み合わせたCH1変異体(複数可)が、いずれのCH2、C
H3、ヒンジおよび/もしくはLC変異体(複数可)とも任意選択的にかつ独立して組み
合わされてもよく、かつ/または、後にさらに記載されるように、Fc改変変異体と独立
してかつ任意選択的にいずれの組み合わせでも組み合わされてもよい。
さらに、図2に示すように、121、124、129、132、134、126、152
、155、157、159、101、161、162、165、176、177、178
、190、191、194、195、197、212、216、および218位でのアス
パラギン酸またはグルタミン酸の置換を行うことができる。
CH1ドメインのpIを低下させる際に使用される特定の置換は、限定されないが、11
9位の非天然グルタミン酸;131位の非天然システイン;133位の非天然アルギニン
、リジン、またはグルタミン;137位の非天然グルタミン酸;138位の非天然セリン
;164位の非天然グルタミン酸;192位の非天然アスパラギン;193位の非天然フ
ェニルアラニン、196位の非天然リジン、199位の非天然スレオニン、203位の非
天然アスパラギン酸、205位の非天然グルタミン酸またはグルタミン、208位の非天
然アスパラギン酸、210位の非天然グルタミン酸またはグルタミン、214位の非天然
スレオニン、217位の非天然アルギニンおよび219位の非天然システインを含む。本
明細書で論じられるように、これらの置換は、配列番号表に示されるおよび後述する好ま
しい組み合わせを用いて、独立してかつ任意の組み合わせにおいて行うことができる。場
合によっては、CH1ドメインにおいて唯一のpI置換が行われ、他の場合は、これらの
置換(複数可)は、他のドメインの他のpI変異体に任意の組み合わせで付加される。
特にヒトIgG1に関して、変異体重鎖定常ドメインを含む1つの単量体がより正に作製
される(例えば、pIを低下させる)場合、以下の置換のうちの1つ以上を行うことがで
きる:S119E、K133E、K133Q、T164E、K205E、K205Q、N
208D、K210E、K210Q、K274E、K320E、K322E、K326E
、K334E、R355E、K392E、K447の欠失、C末端におけるペプチド(D
E)nの付加(nは1、2、または3である)(例えば、DE、DEDE、およびDED
EDE)、G137E、N203D、K274Q、R355Q、K392N、およびQ4
19E。他のアイソタイプも同様に変化させることができる。重鎖定常ドメインがIgG
2~4に由来する場合、R133EおよびR133Qも使用することができる。
さらに、変異体重鎖定常ドメインを含む1つの単量体がより負に作製される(例えば、p
Iを増加させる)場合、以下の置換のうちの1つ以上を行うことができる(ヒトIgG1
野生型に言及しているが、他のアイソタイプも同様に行うことができる):Q196K
P217R、P228R、N276K、およびH435R。本明細書に概説するように、
また図中に示すように、これらの変化はIgG1に関連して示されているが、全てのアイ
ソタイプ、およびアイソタイプのハイブリッドをこのように変化させることができる。こ
れらの変化は、任意の変異体において、個々にかつ任意選択的に包含または除外すること
ができる。
いくつかの実施形態において、221、222、223、224、225、233、23
4、235、および236位を含むヒンジドメインに突然変異を作製する。233~23
6における変更は、(327Aと共に)IgG2骨格におけるエフェクター機能を増加さ
せるために行うことができることに留意されたい。よって、pIの突然変異、特に置換は
、221~225位のうちの1つ以上において行うことができ、1、2、3、4、または
5つの突然変異が本発明において使用される。ここでも同様に、単独で、または他のドメ
インの他のpI変異体とともに、全ての可能な組み合わせが企図される。
ヒンジドメインのpIを低下させる際に使用される特定の置換は、限定されないが、22
1位の欠失、222位の非天然バリンまたはスレオニン、223位の欠失、224位の非
天然グルタミン酸、225位の欠失、235位の欠失、および236位の欠失または非天
然アラニンを含む。ここでも上述のように、これらの突然変異は、配列番号表に示される
および後述する好ましい組み合わせを用いて、独立してかつ任意の組み合わせにおいて行
うことができる。場合によっては、ヒンジドメインにおいて唯一のpI置換が行われ、他
の場合は、これらの置換(複数可)は、他のドメインの他のpI変異体に任意の組み合わ
せで加えられる。
いくつかの実施形態において、274、296、300、309、320、322、32
6、327、334、および339位を含むCH2領域内に突然変異を作製することがで
きる。ここでも同様に、これらの10個の位置の全ての可能な組み合わせを作製すること
ができる:例えば、pI抗体は、1、2、3、4、5、6、7、8、9、または10個の
CH2のpI置換を有してもよく、それらのいずれかまたは全てを、任意選択的にかつ独
立して他のpI変異体と組み合わせることができる
CH2ドメインのpIを低下させる際に使用される特定の置換は、限定されないが、27
4位の非天然グルタミンまたはグルタミン酸、296位の非天然フェニルアラニン、30
0位の非天然フェニルアラニン、309位の非天然バリン、320位の非天然グルタミン
酸、322位の非天然グルタミン酸、326位の非天然グルタミン酸、327位の非天然
グリシン、334位の非天然グルタミン酸、339位の非天然スレオニン、ならびにCH
2内および他のドメインの全ての可能な組み合わせを含む。
この実施形態において、突然変異は、355、384、392、397、419、および
447位から独立してかつ任意選択的に選択することができる。これらの6個の位置の全
ての可能な組み合わせを作製することができる:例えば、pI抗体は、1、2、3、4、
5、または6個のCH1のpI突然変異を有してもよい。さらに、本明細書に記載される
ように、いずれの単一のまたは組み合わせたCH3変異体(複数可)が、後に詳述するよ
うに、いずれのCH2、CH1、ヒンジおよび/またはLC変異体(複数可)と任意選択
的にかつ独立して組み合わされてもよい。
CH3ドメインのpIを低下させる際に使用される特定の置換は、限定されないが、35
5位の非天然グルタミンまたはグルタミン酸、384位の非天然セリン、392位の非天
然アスパラギンまたはグルタミン酸、397位の非天然メチオニン、419位の非天然グ
ルタミン酸、および447位の欠失または非天然アスパラギン酸を含む。
よって、総合すると、以下の重鎖定常ドメインの突然変異の可能な組み合わせを作製する
ことができ、各突然変異は、任意選択的に、以下を包含または除外する:119位の非天
然グルタミン酸;131位の非天然システイン;133位の非天然アルギニン、リジン、
またはグルタミン;137位の非天然グルタミン酸;138位の非天然セリン;164位
の非天然グルタミン酸;192位の非天然アスパラギン;193位の非天然フェニルアラ
ニン、196位の非天然リジン、199位の非天然スレオニン、203位の非天然アスパ
ラギン酸、205位の非天然グルタミン酸またはグルタミン、208位の非天然アスパラ
ギン酸、210位の非天然グルタミン酸またはグルタミン、214位の非天然スレオニン
、217位の非天然アルギニンおよび219位の非天然システイン、221位の欠失、2
22位の非天然バリンまたはスレオニン、223位の欠失、224位の非天然グルタミン
酸、225位の欠失、235位の欠失、221位の欠失、222位の非天然バリンまたは
スレオニン、223位の欠失、224位の非天然グルタミン酸、225位の欠失、および
235位の欠失、274位の非天然グルタミンまたはグルタミン酸、296位の非天然フ
ェニルアラニン、300位の非天然フェニルアラニン、309位の非天然バリン、320
位の非天然グルタミン酸、322位の非天然グルタミン酸、326位の非天然グルタミン
酸、327位の非天然グリシン、334位の非天然グルタミン酸、339位の非天然スレ
オニン、355位の非天然グルタミンまたはグルタミン酸、384位の非天然セリン、3
92位の非天然アスパラギンまたはグルタミン酸、397位の非天然メチオニン、419
位の非天然グルタミン酸、および447位の欠失または非天然アスパラギン酸。
総合すると、0(pIの改変が軽鎖定常ドメインのみにおいて行われる場合)、1、2、
3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18
、19、20、22、23、26、27、28、および29個の突然変異(IgG1と比
較して)を有する変異体重鎖ドメインを利用するいくつかの実施形態は、図37に示すよ
うに作製することができる。
好ましい実施形態は、「ISO(-)」の2つの異なる重鎖pI変異体の任意の組み合わ
せを含むヘテロ二量体を含む。「ISO(+RR)」、および「ISO(+)」は、本明
細書に記載されるような任意選択的なさらなる変異体とともに図52に示される。
軽鎖pI変異体 いくつかの実施形態において、pI変異体は、IgG抗体の少なくとも
軽鎖ドメインにおいて作製される。この実施形態において、突然変異は、126、145
、152、156、169、199、202、および207位から独立してかつ任意選択
的に選択することができる。これらの8個の位置の全ての可能な組み合わせを作製するこ
とができる。例えば、pI抗体は、1、2、3、4、5、6、7個の軽鎖定常ドメインの
pI突然変異を有してもよい。さらに、本明細書に記載されるように、任意の単一のまた
は組み合わせたCLドメイン突然変異を、任意の重鎖定常ドメインpI変異体と組み合わ
せることができる。
軽鎖定常ドメインのpIを低下させる際に使用される特定の突然変異は、限定されないが
、126位の非天然グルタミンまたはグルタミン酸、145位の非天然グルタミン、グル
タミン酸、またはスレオニン;152位の非天然アスパラギン酸、156位の非天然グル
タミン酸、169位の非天然グルタミン
またはグルタミン酸、199位の非天然グルタミン酸、202位の非天然グルタミン酸、
および207位の非天然グルタミン酸を含む。
抗体に基づくヘテロ二量体の場合、例えば、単量体のうちの少なくとも1つが、重鎖ドメ
インの他に軽鎖を含む場合、pI変異体も軽鎖に作製することができる。軽鎖のpIを低
下させるためのアミノ酸置換は、限定されないが、K126E、K126Q、K145E
、K145Q、N152D、S156E、K169E、S202E、K207E、および
軽鎖のC末端でのペプチドDEDEの付加を含む。λ軽鎖定常領域に基づくこのカテゴリ
ーにおける変更は、R108Q、Q124E、K126Q、N138D、K145T、お
よびQ199Eでの1つ以上の置換を含む。さらに、軽鎖のpIの増加も行うことができ
る。
総合すると、0(pIの改変が重鎖定常ドメインのみにおいて行われる場合)、1、2、
3、4、5、6、または10個の突然変異(Cκと比較して)を有する変異体軽鎖ドメイ
ンを利用するいくつかの実施形態は、図37に示すように作製することができる。
アイソタイプ変異体 さらに、本発明の多くの実施形態は、あるIgGアイソタイプから
別のIgGアイソタイプへの、特定の位置におけるよりpIアミノ酸の「組み込み」に依
存しており、そうすることで、不要な免疫原性が変異体に導入される可能性を減少させる
かまたは排除する。すなわち、高いエフェクター機能を含む様々な理由のために、IgG
1は、治療用抗体のための一般的なアイソタイプである。しかしながら、IgG1の重鎖
定常領域は、IgG2の重鎖定常領域よりも高いpIを有する(8.10対7.31)。
IgG1骨格の特定の位置にIgG2残基を導入することにより、結果として得られる単
量体のpIが低下し(または増加し)、付加的により長い血清半減期を示す。例えば、I
gG1は137位にグリシン(pI5.97)を有し、IgG2はグルタミン酸(pI3
.22)を有する:グルタミン酸を組み込むことは、結果として得られるタンパク質のp
Iに影響を与える。後述するように、多くのアミノ酸置換が、通常、変異体抗体のpIに
著しい影響を与えることが要求される。しかしながら、後述するように、たとえIgG2
分子における変化であっても血清半減期の増加を可能にすることに留意されたい。
他の実施形態において、結果として得られるタンパク質の全体的な荷電状態を減少させる
ために(例えば、より高いpIのアミノ酸をより低いpIのアミノ酸に変更することによ
り)、または後に詳述するように、安定性等のための構造に適応できるように、非アイソ
タイプのアミノ酸変化を生じさせる。
さらに、重鎖および軽鎖の両方の定常ドメインのpIを改変することにより、ヘテロ二量
体の各単量体に著しい変化を見ることができる。本明細書で論じられるように、2つの単
量体のpIを少なくとも0.5異ならせることにより、分離が可能となる。
pIの計算 各単量体のpIは、変異体重鎖定常ドメインのpIと、変異体重鎖定常ドメ
インおよび融合パートナーを含む全単量体のpIとに依存し得る。よって、いくつかの実
施形態において、pIの変化は、図中のチャートを使用して、変異体重鎖定常ドメインに
基づいて計算される。代替として、各単量体のpIを比較することもできる。
重鎖および軽鎖pI変異体 図37に示すように、多くのpI抗体が、重鎖および軽鎖の
pI変異体を用いて作製された。本明細書に概説されるように、また本発明に含まれるこ
とが具体的に意図されるように、図37および配列表に示される任意のpIを改変した重
鎖を、野生型軽鎖定常ドメインまたはpIを改変軽鎖定常ドメインのいずれとも組み合わ
せることができる。同様に、たとえ図37に具体的に示されていない場合であっても、p
Iを改変した軽鎖定常ドメインを、野生型重鎖定常ドメインまたはpIを改変した重鎖定
常ドメインのいずれとも組み合わせることができる。すなわち、「HCの名称」および「
LCの名称」のカラムは、全ての可能な組み合わせを含むマトリックスを形成することを
意味する。
よって、総合すると、以下の重鎖定常ドメインの突然変異と軽鎖定常ドメインとのいずれ
の可能な組み合わせも作製することができ、各突然変異が任意選択的に包含または除外さ
れる:a)重鎖:119位の非天然グルタミン酸;131位の非天然システイン;133
位の非天然アルギニン、リジン、またはグルタミン;137位の非天然グルタミン酸;1
38位の非天然セリン;164位の非天然グルタミン酸;192位の非天然アスパラギン
;193位の非天然フェニルアラニン、196位の非天然リジン、199位の非天然スレ
オニン、203位の非天然アスパラギン酸、205位の非天然グルタミン酸またはグルタ
ミン、208位の非天然アスパラギン酸、210位の非天然グルタミン酸またはグルタミ
ン、214位の非天然スレオニン、217位の非天然アルギニンおよび219位の非天然
システイン、221位の欠失、222位の非天然バリンまたはスレオニン、223位の欠
失、224位の非天然グルタミン酸、225位の欠失、235位の欠失、221位の欠失
、222位の非天然バリンまたはスレオニン、223位の欠失、224位の非天然グルタ
ミン酸、225位の欠失、および235位の欠失、274位の非天然グルタミンまたはグ
ルタミン酸、296位の非天然フェニルアラニン、300位の非天然フェニルアラニン、
309位の非天然バリン、320位の非天然グルタミン酸、322位の非天然グルタミン
酸、326位の非天然グルタミン酸、327位の非天然グリシン、334位の非天然グル
タミン酸、339位の非天然スレオニン、355位の非天然グルタミンまたはグルタミン
酸、384位の非天然セリン、392位の非天然アスパラギンまたはグルタミン酸、39
7位の非天然メチオニン、419位の非天然グルタミン酸、および447位の欠失または
非天然アスパラギン酸;ならびにb)軽鎖:126位の非天然グルタミンまたはグルタミ
ン酸、145位の非天然グルタミン、グルタミン酸、またはスレオニン;152位の非天
然アスパラギン酸、156位の非天然グルタミン酸、169位の非天然グルタミンまたは
グルタミン酸、199位の非天然グルタミン酸、202位の非天然グルタミン酸、および
207位の非天然グルタミン酸。
同様に、重鎖および軽鎖定常ドメインの好適な対において生成することができる、1~3
7に及ぶ突然変異の数を図37に示す(「合計突然変異数」カラム)。
本発明のpI抗体の特性 本発明のpI抗体は、変化したpIを有する異なる重鎖ドメイ
ンを有するため、結果としてヘテロ二量体抗体の精製がしやすい。一般に、少なくとも0
.1~0.5logの差(例えば、pHポイントの10%~半分に相当する)がこの精製
の利点を可能にし、少なくとも約1、1.5、2、2.5、および3の変化が本発明にお
いて特に使用される。当該技術分野で周知のように、pIは、計算することができるか、
または経験的に決定することができるかのいずれかである。さらに、5.0~5.5~6
の範囲に及ぶpIを有するpI抗体が、良好な長期の血清半減期を示すと考えられる。当
業者には理解されるように、また図30に示すように、これよりも低いpIを達成するこ
とは、ますます多くの突然変異が必要であり、物理的限界に達するため、困難である。
いくつかの実施形態において、本発明のpI抗体は、血清半減期の増加を示す。図に示す
ように、驚くべきことに、調べた全てのpI抗体が、出発分子と比較して半減期の増加を
示した。半減期は、Fv部分を含む多くの要因によって影響を受けるが、本発明のpI抗
体を使用すると、25、50、75、100、150、200、および250%またはそ
れ以上の増加を得ることができる。図34に示すように、pI変異体は、約4日~15日
超、半減期を増加させることができる。
さらに、本明細書におけるいくつかの変異体は、安定性を増加させるように作製される。
本明細書に記載するように、抗体の多くの特性は、in vivoでのクリアランス速度
(例えば、半減期の安定性)に影響を与える。FcRn受容体に結合する抗体に加えて、
クリアランスおよび半減期に寄与する他の要因は、血清凝集、血清中の酵素分解、免疫系
による除去をもたらす抗体の固有の免疫原性、抗原媒介性取り込み、FcR(非FcRn
)媒介性取り込み、および(例えば、異なる組織コンパートメントにおける)非血清分布
である。
したがって、これらの特性のうちの1つ以上をもたらす、いくつかのさらなるアミノ酸置
換を行うことができる。図37に示すように、これは、限定されないが、222K、27
4K、296Y、300Y、339A、355R、384N、392K、397V、41
9Q、296Y/300Y、384N/392K/397V、137G、138G、19
2S、193L、199I、203N、214K、137G/138G、192S/19
3G、199I/203N、214K/222K、138G/192S/193L、およ
び137G/138G/192S/193Lを含む。
III.他のアミノ酸置換当業者には理解されるように、本発明のpI抗体は、pI変異
体に加えてさらなるアミノ酸置換を含むことができる。
いくつかの実施形態において、アミノ酸置換は、pI変異体に適応するように、中性の荷
電状態またはさらには荷電状態の増大にもかかわらず、1つのアイソタイプからpI抗体
に組み込まれる。これらは、「非pIアイソタイプ変異体」または「適応変異体」と称さ
れることもある。例えば、IgG1の133位にある天然リジンをIgG2由来のアルギ
ニンで置き換えることは、そのような変化であり、196位のIgG1にある天然グルタ
ミンをIgG2リジンで置き換えること、217位の天然IgG1プロリンをIgG2ア
ルギニンで置き換えることも同様である。この場合、上述のように、pI変異体は、13
3位でも作製することができ、133位の非天然グルタミン酸またはグルタミンの代わり
となることに留意されたい。
ヒンジ領域(233~236位)において、エフェクター機能を増加させるための変更を
行うことができる。すなわち、IgG2はエフェクター機能が低く、その結果として、P
VA(欠失)からのこれらの位置におけるアミノ酸置換をELLGに変更することができ
、さらなるG327A変異体も生成される。
CH3領域において、例えば、非天然セリンを置換する、384位の突然変異を作製する
ことができる。
作製することができるさらなる突然変異は、(抗体または融合抗体の構造に依存して)N
もしくはC末端のいずれかの「尾部」または1つ以上のpIの低いもしくは高いアミノ酸
の配列を付加することを含み、例えば、グルタミン酸およびアスパラギン酸を、CH3の
C末端またはアルギニンまたはリジンに加えることができる:通常、1~5個のアミノ酸
が加えられ、1、2、および4個が特に有用である。
いくつかの実施形態において、例えば、CD3に対する1つの結合部位と、腫瘍抗原に対
する1つの結合部位(Micrometの「BiTE」に観念的に類似する)とを用いる
実施形態の場合、エフェクター機能を減少させるかまたは排除するために、Fcガンマ受
容体に対するFc領域の全ての結合をノックアウトすることが望ましいかもしれない。こ
の実施形態において、236Rおよび328Rのいずれかまたは両方の組み込みは、本明
細書に概説する変異体の任意の組み合わせで、任意選択的かつ独立して包含または除外す
ることができる。
「ノブとホール」ヘテロ二量体変異体 上述のpI変異体に加えて、立体変異体の付加に
より、ヘテロ二量体の形成を促進することができる。すなわち、各重鎖においてアミノ酸
を変更することにより、異なる重鎖は、同じFcアミノ酸配列を有するホモ二量体を形成
するよりも、ヘテロ二量
体構造を形成するために会合する確率が高い。よって、ここでも同様に、pI精製変異体
の場合、これらの変異体は、「対」または「セット」として使用されることが意図され、
1つの重鎖は、1セットの置換を含むように変更され、他方の鎖は、対応するセットを含
むように変更される。
よって、上述のpI変異体に加えて、一方または両方の変異体重鎖領域は、任意選択的に
、以下の変異体のうちの1つ以上も含むことができる。本発明の一実施形態において、前
記変異体Fc領域は、349、351、354、356、357、364、366、36
8、370、392、394、395、396、397、399、401、405、40
7、409、411、および439位からなる群から選択される位置に少なくとも1つの
置換を含む(番号付けは、Kabatに記載されるようなEUインデックスに従う)。好
ましい実施形態において、前記変異体Fc領域は、349A、349C、349E、34
9I、349K、349S、349T、349W、351E、351K、354C、35
6K、357K、364C、364D、364E、364F、364G、364H、36
4R、364T、364Y、366D、366K、366S、366W、366Y、36
8A、368E、368K、368S、370C、370D、370E、370G、37
0R、370S、370V、392D、392E、394F、394S、394W、39
4Y、395T、395V、396T、397E、397S、397T、399K、40
1K、405A、405S、407T、407V、409D、409E、411D、41
1E、411K、および439Dからなる群から選択される少なくとも1つの置換を含む
いくつかの実施形態において、本明細書に概説する立体変異体を、任意選択的にかつ独立
して、任意のpI変異体とともに単量体に組み込むことができる。
いくつかの実施形態において、ヘテロ二量体の各単量体は、1つ以上の立体変異体を含む
ように改変される:すなわち、下の表1および2、ならびに参照により組み込まれる米国
特許出願第12/897,015号の図5~7に示すように、一方の単量体が少なくとも
1つの変異体を含み、他方の単量体が異なる変異体を含む。
野生型のFc領域と比較してヘテロ二量体の含量を増加させた変異体Fc領域が好ましい
。調べた変異体を表1に示す。好ましい変異体対を表2に提供する。
Figure 0007022162000003
Figure 0007022162000004
IV.任意選択的かつ付加的なFcの改変FcRnの修飾 いくつかの実施形態において
、本発明のpI変異体は、FcRn結合ドメインのアミノ酸置換と組み合わせることがで
きる。驚くべきことに、本発明は、pI変異体を、良好な二重特異性の形成、FcRn受
容体へのより高い結合性、および半減期の増加をもたらすFc変異体と、独立してかつ任
意選択的に組み合わせることができることを示す。
本明細書において使用される「FcRn」または「新生児型Fc受容体」とは、IgG抗
体のFc領域に結合し、FcRn遺伝子によって少なくとも部分的にコードされるタンパ
ク質を意味する。FcRnは、限定されないが、ヒト、マウス、ラット、ウサギ、および
サルを含む、いずれの生物に由来してもよい。当該技術分野で既知のように、機能的Fc
Rnタンパク質は、しばしば重鎖および軽鎖と称される2つのポリペプチドを含む。軽鎖
はβ-2-ミクログロブリンであり、重鎖はFcRn遺伝子によってコードされる。本明
細書に別途記載されない限り、FcRnまたはFcRnタンパク質は、FcRn重鎖とβ
-2-ミクログロブリンとの複合体を指す。場合によっては、FcRn変異体は、ヒトF
cRn受容体に結合するか、または、臨床試験を行いやすくするために、それに加えてげ
っ歯類もしくは霊長類の受容体にも結合する変異体を設計することが望ましい場合がある
様々なそのような置換が知られており、米国特許出願第12/341,769号(その全
体が本明細書に組み込まれ、具体的には、FcRnの結合/または血清半減期を増加させ
る特定の変異体の引用のために本明細書に組み込まれる)に記載されている。いくつかの
実施形態において、pI抗体は、以下の置換のいずれをも、単独でまたは組み合わせて含
むように改変することができる:436I、436V、311I、311V、428L、
434S、428L/434S、259I、308F、259I/308F、259I/
308F/428L、307Q/434S、434A、434H、250Q/428L、
M252Y/S254T/T256E、307Q/434A、307Q//380A/4
34A、および308P/434A。番号付けは、Kabatに記載されるようなEUで
あり、置換は出発分子に対して非天然であることを理解されたい。以前に示したように、
これらのFcRn置換は、IgG1、IgG2、およびIgG1/G2ハイブリッド骨格
において作用し、具体的には、IgG3およびIgG4骨格、ならびに任意のIgGアイ
ソフォームの誘導体にも含まれる。
いくつかの実施形態において、米国特許出願公開第2011/0076275号(参照に
より、明示的に本明細書に組み込まれる)に一般的に記載されるように、フレームワーク
またはCDRのいずれかの可変領域に対してpIの改変を行うことも可能である。
他の実施形態において、抗体の可変領域(複数可)にpI変異体は作製されず、例えば、
ある位置のアミノ酸または全タンパク質のpIを意図的に減少させるアミノ酸置換は行わ
れない。これは、抗体のその抗原に対する結合親和性を増加させるように行われるが、加
えられるアミノ酸のpIを結果的に低下させる場合がある可変領域(複数可)における親
和性成熟による置換と区別されるべきである。可変領域(複数可)のpI変異体は、概し
て、結合親和性に関して顕著に「サイレント」である。
Fcの改変 FcRnへの結合親和性を増加させるためおよび/または血清半減期を増加
させるために行われる置換に加えて、概してFcγR受容体への結合を変化させるように
Fc領域において他の置換を行うことができる。
本明細書において使用される「Fcガンマ受容体」または「FcγR」または「Fcガン
マR」とは、IgG抗体のFc領域に結合し、FcγR遺伝子によってコードされるタン
パク質のファミリーの任意のマンバーを意味する。ヒトにおいて、このファミリーは、限
定されないが、アイソフォームFcγRIa、FcγRIb、およびFcγRIcを含む
FcγRI(CD64);アイソフォームFcγRIIa(アロタイプH131およびR
131を含む)、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む
)、ならびにFcγRIIcを含むFcγRII(CD32);アイソフォームFcγR
IIIa(アロタイプV158およびF158を含む)ならびにFcγRIIIb(アロ
タイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγ
RIII(CD16)(Jefferis et al.,2002,Immunol
Lett 82:57-65(参照により、全体が本明細書に組み込まれる)、そして任
意の未発見のヒトFcγRまたはFcγRアイソフォームまたはアロタイプを含む。
FcγR受容体のうちの1つ以上への結合を変化させるように作製することができる多く
の有用なFc置換が存在する。結合の増加および結合の減少をもたらす置換が有用であり
得る。例えば、FcγRIIIaへの結合の増加は、通常、ADCC(抗体依存性細胞介
在性細胞傷害、FcγRを発現する非特異的細胞傷害性細胞が標的細胞上の結合抗体を認
識し、続いて標的細胞の溶解を引き起こす細胞介在反応)の増加をもたらすことが分かっ
ている。同様に、特定の状況において、FcγRIIb(阻害受容体)への結合の減少も
有益であり得る。本発明において用いられるアミノ酸置換は、米国特許出願第11/12
4,620号(特に図41)、同第11/174,287号、同11/396,495号
、同11/538,406号(これらは全て、参照によりそれらの全体が明示的に本明細
書に組み込まれ、具体的には、その中に開示される変異体のために本明細書に組み込まれ
る)に列挙されるものを含む。用いられる特定の変異体は、限定されないが次の通りであ
る:236A、239D、239E、332E、332D、239D/332E、267
D、267E、328F、267E/328F、236A/332E、239D/332
E/330Y、239D、332E/330L、および299T。
V.他の抗体修飾親和性成熟 いくつかの実施形態において、アミノ酸修飾は、抗体のC
DRのうちの1つ以上において行われる。一般に、いずれか1つのCDRにおいて、1個
または2個または3個のアミノ酸のみが置換され、通常、CDRのセット内で多くても4
、5、6、7、8、9、または10個の変更が行われる。しかしながら、いずれのCDR
においても、ゼロ個の置換、1個、2個、または3個の置換の任意の組み合わせが、いず
れの他の置換とも独立してかつ任意選択的に組み合わされてもよいことを認識されたい。
場合によっては、CDRにおけるアミノ酸修飾は、「親和性成熟」と称される。「親和性
成熟」抗体とは、1つ以上のCDRに1つ以上の変化(複数可)を有する抗体であり、そ
れらの変化(複数可)を有しない親抗体と比較して、抗原に対する抗体の親和性を向上さ
せる。場合によっては、まれではあるが、抗体のその抗原への親和性を低下させることが
望ましい場合があるものの、通常、これは好ましくない。
親和性成熟は、抗体の抗原に対する結合親和性を、「親」抗体と比較して少なくとも約1
0%から50~100~150%もしくはそれ以上、または1~5倍増加するために行う
ことができる。好ましい親和性成熟抗体は、標的抗原に対して、ナノモルの、またはさら
にはピコモルの親和性を有する。親和成熟抗体は、既知の手順によって生成される。例え
ば、可変重鎖(VH)および可変軽鎖(VL)ドメインのシャッフリングによる親和性成
熟について記載するMarks et al.,1992,Biotechnology
10:779-783を参照されたい。CDRおよび/またはフレームワーク残基のラ
ンダム突然変異誘発は、例えば、Barbas,et al.1994,Proc.Na
t.Acad.Sci,USA 91:3809-3813;Shier et al.
,1995,Gene 169:147-155;Yelton et al.,199
5,J.Immunol.155:1994-2004;Jackson et al.
,1995,J.Immunol.154(7):3310-9;およびHawkins
et al,1992,J.Mol.Biol.226:889-896に記載されて
いる。
代替として、本発明の抗体のCDRのうちの1つ以上において、例えば、抗原に対する抗
体の親和性を著しく変化させない「サイレント」なアミノ酸修飾を行うことができる。こ
れらは、(本発明の抗体をコードする核酸に対して行われ得るように)発現を最適化する
ことを含む多くの理由のために行うことができる。
よって、本発明のCDRおよび抗体の定義には、変異体CDR
および抗体が含まれる:すなわち、本発明の抗体は、Ab79およびAb19のCDRの
うちの1つ以上にアミノ酸修飾を含むことができる。さらに、後に概説するように、アミ
ノ酸修飾は、フレームワークおよび定常領域を含むCDR以外の任意の領域において、独
立してかつ任意選択的に行うことができる。
ADCの修飾 いくつかの実施形態において、本発明のpI抗体は、抗体-薬物コンジュ
ゲート(ADC)を形成するように薬物と複合体化される。一般に、ADCは、腫瘍学用
途において用いられ、細胞傷害性剤または細胞静止剤を局所送達するための抗体-薬物コ
ンジュゲートの使用により、薬物部分の腫瘍への標的送達が可能となり、より高い有効性
、より低い細胞毒性等を実現することができる。この技術の概要は、Ducry et
al.,Bioconjugate Chem.,21:5-13(2010)、Car
ter et al.,Cancer J.14(3):154(2008)、およびS
enter,Current Opin.Chem.Biol.13:235-244(
2009)(これは全て、参照によりそれらの全体が本明細書に組み込まれる)に提供さ
れる。
よって、本発明は、薬物に複合体化されたpI抗体を提供する。通常、複合体化は、後に
詳述するように抗体への共有結合的な付着によって行われ、通常、リンカー、大抵はペプ
チド結合(後述するように、標的部位でのプロテアーゼによる切断に対して感受性を示す
ようにまたは示さないように設計することができる)に依存する。さらに、上述のように
、リンカー-薬物単位(LU-D)の結合は、抗体内のシステインへの付着によって行う
ことができる。当業者には理解されるように、抗体当たりの薬物部分の数は、反応条件に
応じて変化する可能性があり、薬物:抗体が1:1~10:1まで変化し得る。当業者に
は理解されるように、実際の数は平均である。
よって、本発明は、薬物に複合体化されたpI抗体を提供する。後述のように、ADCの
薬物は、任意の数の薬剤であってもよく、限定されないが、化学療法剤を含む細胞傷害性
剤、増殖阻害剤、毒素(例えば、細菌、真菌、植物、もしくは動物由来の酵素的に活性な
毒素、またはその断片)、あるいは放射性同位元素(すなわち、放射性コンジュゲート)
が提供される。他の実施形態において、本発明は、ADCを使用する方法をさらに提供す
る。
本発明において使用される薬物は、細胞障害性薬物、特に、癌の治療に使用されるものを
含む。そのような薬物は、一般に、DNA傷害剤、代謝拮抗薬、天然物およびそれらの類
似体を含む。例示的な細胞傷害性剤のクラスとして、ジヒドロ葉酸還元酵素阻害剤および
チミジル酸合成酵素阻害剤等の酵素阻害剤、DNA介入物質、DNA切断剤、トポイソメ
ラーゼ阻害剤、アントラサイクリンファミリーの薬物、ビンカ薬物、マイトマイシン、ブ
レオマイシン、細胞毒性ヌクレオシド、プテリジンファミリーの薬物、ジイネン、ポドフ
ィロトキシン、ドラスタチン、メイタンシノイド、分化誘導剤、およびタキソールが挙げ
られる。
これらのクラスのメンバーは、例えば、メトトレキサート、メトプテリン、ジクロロメト
トレキサート、5-フルオロウラシル、6-メルカプトプリン、シトシンアラビノシド、
メルファラン、リューロシン、リューロシダイン、アクチノマイシン、ダウノルビシン、
ドキソルビシン、マイトマイシンC、マイトマイシンA、カルミノマイシン、アミノプテ
リン、タリソマイシン、ポドフィロトキシンおよびポドフィロトキシン誘導体、例えば、
エトポシドまたはリン酸エトポシド、ビンブラスチン、ビンクリスチン、ビンデシン、タ
キサン(タキソール、タキソテールレチノイン酸を含む)、酪酸、N8-アセチルスペル
ミジン、カンプトテシン、カリチアマイシン、エスペラマイシン、エン-ジイン、デュオ
カルマイシンA、デュオカルマイシンSA、カリチアマイシン、カンプトテシン、メイタ
ンシノイド(DM1を含む)、モノメチルアウリスタチンE(MMAE)、モノメチルア
ウリスタチンF(MMAF)、ならびにメイタンシノイド(DM4)およびそれらの類似
体を含む。
毒素は、抗体-毒素コンジュゲートとして使用されてもよく、ジフテリア毒素等の細菌性
毒素、リシン等の植物毒素、小分子毒素、例えばゲルダナマイシン(Mandler e
t al(2000)J.Nat.Cancer Inst.92(19):1573-
1581;Mandler et al(2000)Bioorganic &Med.
Chem.Letters 10:1025-1028;Mandler et al(
2002)Bioconjugate Chem.13:786-791)、メイタンシ
ノイド(EP1391213;Liu et al.,(1996)Proc.Natl
.Acad.Sci.USA 93:8618-8623)、およびカリチアマイシン(
Lode et al(1998)Cancer Res.58:2928;Hinma
n et al(1993)Cancer Res.53:3336-3342)を含む
。毒素は、チュブリン結合、DNA結合、またはトポイソメラーゼ阻害を含む機構によっ
て、それらの細胞傷害作用および細胞静止作用を発揮することができる。
pI抗体と、1つ以上の小分子毒素、例えば、メイタンシノイド、ドラスタチン、アウリ
スタチン、トリコテシン、カリチアマイシン、およびCC1065、ならびにこれらの毒
素の毒素活性を有する誘導体とのコンジュゲートが企図される。
メイタンシノイド メイタンシノイド薬物部分として使用するのに好適なメイタンシン化
合物は、当該技術分野で周知であり、既知の方法に従って天然の源から単離することがで
き、遺伝子工学技術を用いて生成することができる(Yu et al(2002)PN
AS99:7968-7973を参照)か、または既知の方法に従って合成的に調製され
たメイタンシノールおよびメイタンシノール類似体であってもよい。後述するように、薬
物は、抗体への複合体化のために、チオールまたはアミン基等の機能的に活性な基の組み
込みによって修飾されてもよい。
例となるメイタンシノイド薬物部分は、修飾された芳香環を有するもの、例えば、C-1
9-デクロロ(米国特許第4,256,746号)(アンサマイトシンP2の水酸化リチ
ウムアルミニウム還元により調製されるP2);C-20-ヒドロキシ(またはC-20
-出メチル)+/-C-19-デクロロ(米国特許第4,361,650号および同第4
,307,016号)(ストレプトマイセスもしくはアクチノマイセスを用いた脱メチル
化、またはLAHを用いた脱塩素によって調製される);およびC-20-デメトキシ、
C-20-アシルオキシ(--OCOR)、+/-デクロロ(米国特許第4,294,7
57号)(アシルクロリドを用いたアシル化によって調製される)、ならびに他の位置に
修飾を有するものを含む。
例となるメイタンシノイド薬物部分はまた、修飾を有するもの、例えば、C-9-SH(
米国特許第4,424,219号)(メイタンシノールとH2SまたはP2S5との反応
によって調製される);C-14-アルコキシメチル(デメトキシ/CH2OR)(米国
特許第4,331,598号);C-14-ヒドロキシメチルまたはアシルオキシメチル
(CH2OHまたはCH2OAc)(米国特許第4,450,254号)(ノカルジアか
ら調製される);C-15-ヒドロキシ/アシルオキシ(米国特許第4,364,866
号)(ストレプトマイセスによるメイタンシノールの変換によって調製される);C-1
5-メトキシ(米国特許第4,313,946号および同第4,315,929号)(ト
レウィアヌドルフローラから単離される);C-18-N-デメチル(米国特許第4,3
62,663号および同第4,322,348号)(ストレプトマイセスによるメイタン
シノールの脱メチル化によって調製される);ならびに4,5-デオキシ(米国特許第4
,371,533号)(メイタンシノールの三塩化チタン/LAH還元によって調製され
る)も含む。
特に利用されるのは、DM1(参照により組み込まれる米国特許第5,208,020号
に開示される)およびDM4(参照により組み込まれる米国特許第7,276,497号
に開示される)である。5,416,064号、国際公開第WO/01/24763号、
同第7,303,749号、同第7,601,354号、米国特許出願第12/631,
508号、国際公開第WO02/098883号、同第6,441,163号、同第7,
368,565号、国際公開第WO02/16368号、および国際公開第WO04/1
033272号(これらは全て、参照によりそれらの全体が明示的に組み込まれる)に記
載される多くのさらなるメイタンシノイド誘導体および方法も参照されたい。
メイタンシノイドを含むADC、それを作製する方法、およびそれらの治療的用途は、例
えば、米国特許第5,208,020号;同第5,416,064号;同第6,441,
163号、および欧州特許第EP0 425 235 B1号に開示され、これらの開示
は、参照により明示的に本明細書に組み込まれ得る。Liu et al.,Proc.
Natl.Acad.Sci.USA 93:8618-8623(1996)は、ヒト
結腸直腸癌を標的とするモノクローナル抗体C242に結合させたDM1と表されるメイ
タンシノイドを含むADCについて記載した。コンジュゲートは、培養された結腸癌細胞
に対して高度に細胞毒性を示すことが見出され、in vivo腫瘍増殖アッセイにおい
て抗腫瘍活性を示した。
Chari et al.,Cancer Research 52:127-131(
1992)は、ヒト結腸癌細胞株上の抗原に結合するマウス抗体A7、またHER-2/
neu癌遺伝子に結合する別のマウスモノクローナル抗体TA.1に、ジスフィルドリン
カーを介してメイタンシノイドが複合体化されたADCについて記載している。細胞当た
り3×105のHER-2表面抗原を発現するヒト乳癌細胞株SK-BR-3において、
in vitroでTA.1-メイタンシノイドコンジュゲートの細胞毒性を調べた。薬
物コンジュゲートは、抗体分子当たりのメイタンシノイド分子の数を増加させることによ
って増加可能である遊離メイタンシノイド薬と同様の細胞毒性の程度を達成した。A7-
メイタンシノイドコンジュゲートは、マウスにおいて低い全身性の細胞毒性を示した。
アウリスタチンおよびドラスタチン いくつかの実施形態において、ADCは、ドラスタ
チンまたはドラスタチンペプチド類似体および誘導体であるアウリスタチンと複合体化さ
れたpI抗体を含む(米国特許第5,635,483号;同第5,780,588号)。
ドラスタチンおよびアウリスタチンは、微小管の動態、GTP加水分解、ならびに核およ
び細胞の分裂に干渉すること(Woyke et al(2001)Antimicro
b.Agents and Chemother.45(12):3580-3584)
、抗癌活性(米国特許第5,663,149号)および抗真菌活性(Pettit et
al (1998)Antimicrob.Agents Chemother.42
:2961-2965)を有することが示されている。ドラスタチンまたはアウリスタチ
ン薬物部分は、ペプチド薬物部分のN(アミノ)末端またはC(カルボキシル)末端を介
して抗体に付着してもよい(国際公開第WO02/088172号)。
例となるアウリスタチンの実施形態は、’’Senter et al,Proceed
ings of the American Association for Can
cer Research, Volume 45,Abstract Number
623,presented Mar.28,2004に開示され、米国特許公開200
5/0238648号(
その開示は、参照によりその全体が明示的に組み込まれる)に記載される、N末端で連結
されたモノメチルアウリスタチン薬物部分DEおよびDFを含む。
例となるアウリスタチンの実施形態は、MMAEである(図10に示す:波形の線は、抗
体薬物コンジュゲートのリンカー(L)への共有結合的な付着を意味している。参照によ
りその全体が明示的に組み込まれる米国特許第6,884,869号を参照のこと)。
別の例となるアウリスタチンの実施形態は、図10に示すMMAFであり、波形の線は、
抗体薬物コンジュゲートのリンカー(L)への共有結合的な付着を意味している(参照に
より、それらの全体が明示的に組み込まれる米国特許出願第2005/0238649号
、同第5,767,237号、および同第6,124,431号)。
MMAEまたはMMAFおよび種々のリンカー成分(本明細書において詳述する)を含む
さらなる例となる実施形態は、次の構造および省略形を有する(Abは抗体を意味し、p
は1~約8である)。
典型的には、ペプチドに基づく薬物部分は、2つ以上のアミノ酸および/またはペプチド
断片の間にペプチド結合を形成することによって調製することができる。そのようなペプ
チド結合は、例えば、ペプチド化学の分野で周知の液相合成方法(E.Schroede
rおよびK.Luebke、「The Peptides」,volume1,pp76
-136,1965,Academic Pressを参照)に従って調製することがで
きる。アウリスタチン/ドラスタチン薬物部分は、米国特許第5,635,483号;米
国特許第5,780,588号;Pettit et al(1989)J.Am.Ch
em.Soc.111:5463-5465;Pettit et al(1998)抗
Cancer Drug Design13:243-277;Pettit,G.R.
,et al.Synthesis,1996,719-725;Pettit et
al(1996)J.Chem.Soc.Perkin Trans.1 5:859-
863;およびDoronina(2003)Nat Biotechnol 21(7
):778-784に従って調製されてもよい。
カリチアマイシン 他の実施形態において、ADCは、1つ以上のカリチアマイシン分子
と複合体化された本発明の抗体を含む。例えば、Mylotargは、最初に市販された
ADC薬物であり、カリチアマイシンγ1をペイロードとして用いる(参照によりその全
体が組み込まれる米国特許第4,970,198号を参照のこと)。さらなるカリチアマ
イシン誘導体は、米国特許第5,264,586号、同第5,384,412号、同第5
,550,246号、同第5,739,116号、同第5,773,001号、同第5,
767,285号、同第5,877,296号(参照により全て明示的に組み込まれる)
に記載される。カリチアマイシンファミリーの抗生物質は、ピコモル濃度未満で二本鎖D
NAの切断を生じさせることができる。カリチアマイシンファミリーのコンジュゲートの
調製については、米国特許第5,712,374号、同第5,714,586号、同第5
,739,116号、同第5,767,285号、同第5,770,701号、同第5,
770,710号、同第5,773,001号、同第5,877,296号(全てAme
rican Cyanamid Company)を参照のこと。使用され得るカリチア
マイシンの構造的類似体は、限定されないが、γ1I、α2I、α2I、N-アセチル-
γ1I、PSAG、およびθI1を含む(Hinman et al.,Cancer
Research 53:3336-3342(1993),Lode et al.,
Cancer Research 58:2925-2928(1998)およびAme
rican Cyanamidに対する前述の米国特許)。抗体を複合体化させることが
できる別の抗腫瘍薬は、葉酸代謝拮抗剤であるQFAである。カリチアマイシンおよびQ
FAは、どちらも細胞内の作用部位を有し、形質膜を容易に横断しない。したがって、抗
体媒介性の内部移行によるこれらの薬剤の細胞取込みは、これらの細胞毒性効果を大きく
増強する。
デュオカルマイシン CC-1065(参照により組み込まれる4,169,888を参
照)およびデュオカルマイシンは、ADCに用いられる抗腫瘍性抗生物質のファミリーの
メンバーである。これらの抗生物質は、副溝内のアデニンのN3でDNAを配列選択的に
アルキル化し、アポトーシスを引き起こす事象のカスケードを開始することによって作用
すると考えられる。
デュオカルマイシンの重要なメンバーは、デュオカルマイシンA(参照により組み込まれ
る米国特許第4,923,990号)およびデュオカルマイシンSA(参照により組み込
まれる米国特許第5,101,038号)、ならびに米国特許第7,517,903号、
同第7,691,962号、同第5,101,038号;同第5,641,780号;同
第5,187,186号;同第5,070,092号;同第5,070,092号;同第
5,641,780号;同第5,101,038号;同第5,084,468号、同第5
,475,092号、同第5,585,499号、同第5,846,545号、国際公開
第WO2007/089149号、同第WO2009/017394A1号、同第5,7
03,080号、同第6,989,452号、同第7,087,600号、同第7,12
9,261号、同第7,498,302号、および同第7,507,420号(これらは
全て、参照により明示的に組み込まれる)に記載されるような多数の類似体を含む。
VI.他の細胞傷害性剤 本発明の抗体と複合体化させることができる他の抗腫瘍剤は、
BCNU、ストレプトゾイシン、ビンクリスチン、および5-フルオロウラシル、米国特
許第5,053,394号、同第5,770,710号に記載される集合的にLL-E3
3288複合体として知られる薬剤のファミリー、ならびにエスペラミシン(米国特許第
5,877,296号)を含む。
使用することができる酵素的に活性な毒素およびその断片は、ジフテリアA鎖、ジフテリ
ア毒素の非結合活性断片、外毒素A鎖(緑膿菌由来)、リシンA鎖、アブリンA鎖、モデ
シンA鎖、α-サルシン、シナアブラギリタンパク質、ジアンチンタンパク質、ヨウシュ
ヤマゴボウタンパク質(PAPI、PAPII、およびPAP-S)、ニガウリ阻害剤、
クルシン、クロチン、サボンソウ阻害剤、ゲロニン、ミトゲリン、リストリクトシン、フ
ェノマイシン、エノマイシン、およびトリコテセンを含む。例えば、1993年10月2
8日に公開された国際公開第WO93/21232号を参照のこと。
本発明は、抗体と、核酸分解活性を有する化合物(例えば、リボヌクレアーゼまたはDN
Aリボヌクレアーゼ(デオキシリボヌクレアーゼDNase等))との間に形成されるA
DCをさらに企図する。
腫瘍の選択的破壊のために、抗体は、放射性の高い原子を含んでもよい。様々な放射性同
位元素が、放射性コンジュゲート抗体の生成のために利用可能である。例として、At2
11、I131、I125、Y90、Re186、Re188、Sm153、Bi212
、P32、Pb212、およびLuの放射性同位元素が挙げられる。
放射性方式または他の標識が、既知の方法でコンジュゲートに組み込まれてもよい。例え
ば、ペプチドは、生合成されてもよいか、または例えば、水素の代わりにフッ素-19を
含む好適なアミノ酸前駆体を用いた化学的アミノ酸合成によって合成されてもよい。Tc
99mまたはI123、Re186、Re188、およびIn111等の標識は、ペプチ
ド中のシステイン残基を介して付着させることができる。イットリウム-90は、リジン
残基を介して付着させることができる。ヨウ素-123を組み込むために、IODOGE
N法(Fraker et al(1978)Biochem.Biophys.Res
.Commun.80:49-57)が使用されてもよい。「Monoclonal A
ntibodies in Immunoscintigraphy」(Chatal,
CRC Press 1989)は、他の方法を詳細に記載している。
複数の抗体を含む組成物の場合、薬物負荷は、抗体当たりの薬物分子の平均数pによって
表される。薬物負荷は、抗体当たり1~20個の範囲の薬物(D)であってもよい。複合
体化反応物の調製における抗体当たりの薬物の平均数は、質量分析法、ELISAアッセ
イ、およびHPLC等の従来の方法によって特徴付けることができる。pの観点からの抗
体-薬物-コンジュゲートの定量的分布もまた決定することができる。
ある場合において、pが、他の薬物負荷を有する抗体-薬物-コンジュゲートからの特定
の値である場合、均一な抗体-薬物-コンジュゲートの分離、精製、および性質決定は、
逆相HPLCまたは電気泳動法等の手段によって達成され得る。例示的な実施形態におい
て、pは、2、3、4、5、6、7、もしくは8、またはその分数である。
抗体-薬物コンジュゲート化合物の生成は、当業者に既知のいずれの技術によっても達成
することができる。端的に述べると、抗体-薬物コンジュゲート化合物は、抗体単位とし
てのpI抗体、薬物、および任意選択的に、薬物と結合剤とを結合するリンカーを含むこ
とができる。
薬物および/またはリンカーの結合剤への共有結合的な付着には、多くの異なる反応が利
用可能である。これは、結合剤、例えば、抗体分子のアミノ酸残基(リジンのアミン基、
グルタミン酸およびアスパラギン酸の遊離カルボン酸基、システインのスルフヒドリル基
、および芳香族アミノ酸の種々の部分を含む)の反応によって達成することができる。一
般的に用いられる共有結合的な付着の非特異的な方法は、化合物のカルボキシ(またはア
ミノ)基を抗体のアミノ(またはカルボキシ)基に結合するカルボジイミド反応である。
また、ジアルデヒドまたはイミドエステル等の二官能性物質が、化合物のアミノ基を抗体
分子のアミノ基に結合するために用いられている。
また、シッフ塩基反応も、薬物の結合剤への付着に利用可能である。この方法は、グリコ
ールまたはヒドロキシ基を含む薬物を過ヨウ素酸酸化することを伴い、よってアルデヒド
を形成し、次いでそれを結合剤と反応させる。付着は、結合剤のアミノ基を用いたシッフ
塩基の形成を介して生じる。結合剤に薬物を共有結合的に付着させるためのカップリング
剤として、イソチオシアネートも使用することができる。他の技術は、当業者に既知であ
り、本発明の範囲内である。
いくつかの実施形態において、リンカーの前駆物質である中間体を、適切な条件下で薬物
と反応させる。他の実施形態において、反応性の基が、薬物および/または中間体に対し
て用いられる。薬物と中間体との反応の生成物、または誘導体化薬物を、その後、適切な
条件下で本発明のpI抗体と反応させる。
また、化合物の反応を、本発明のコンジュゲートを調製する目的により都合のよいものに
するために、所望の化合物に対して化学修飾が行われてもよいことを理解されたい。例え
ば、官能基、例えば、アミン、ヒドロキシル、またはスルフヒドリルが、薬物の活性また
は他の特性に対する最小限のまたは許容可能な作用を有する位置で、薬物に付加されても
よい。
VII.リンカー単位 典型的には、抗体-薬物コンジュゲート化合物は、薬物単位と抗
体単位との間にリンカー単位を含む。いくつかの実施形態において、リンカーの切断によ
り、適切な環境において抗体から薬物単位が放出されるように、リンカーは、細胞内また
は細胞外条件下で切断可能である。例えば、特定のプロテアーゼを分泌する固体腫瘍は、
切断可能なリンカーの標的として機能し得、他の実施形態において、細胞内プロテアーゼ
が用いられる。さら
に他の実施形態において、リンカー単位は切断可能ではなく、薬物は、例えば、リソソー
ムにおける抗体の分解によって放出される。
いくつかの実施形態において、リンカーは、細胞内環境(例えば、リソソームまたはエン
ドソームまたはカベオラ内)に存在する切断剤によって切断可能である。リンカーは、例
えば、細胞内ペプチダーゼまたはプロテアーゼ酵素(限定されないが、リソソームプロテ
アーゼもしくはエンドソームプロテアーゼを含む)によって切断されるペプチジルリンカ
ーであり得る。いくつかの実施形態において、ペプチジルリンカーは、少なくとも2アミ
ノ酸長または少なくとも3アミノ酸長またはそれ以上である。
切断剤は、限定されないが、カテプシンBおよびカテプシンDならびにプラスミンを含む
ことができ、これらの全ては、標的細胞内で活性薬物の放出をもたらすジペプチド薬物誘
導体を加水分解することが知られている(例えば、Dubowchik and Wal
ker,1999,Pharm.Therapeutics 83:67-123を参照
)。CD38を発現する細胞に存在する酵素によって切断可能なペプチジルリンカー。例
えば、癌組織において高度に発現される、チオール依存性プロテアーゼであるカテプシン
-Bによって切断可能なペプチジルリンカーを使用することができる(例えば、Phe-
LeuまたはGly-Phe-Leu-Glyリンカー(配列番号X))。そのようなリ
ンカーの他の例は、例えば、米国特許第6,214,345号(参照により、その全体が
全ての目的のために本明細書に組み込まれる)に記載される。
いくつかの実施形態において、細胞内プロテアーゼによって切断可能なペプチジルリンカ
ーは、Val-CitリンカーまたはPhe-Lysリンカーである(例えば、val-
citリンカーを用いたドキソルビシンの合成について記載する米国特許第6,214,
345号を参照のこと)。
他の実施形態において、切断可能なリンカーはpH感受性であり、すなわち、特定のpH
値での加水分解に感受性である。典型的には、pH感受性リンカーは、酸性条件下で加水
分解が可能である。例えば、リソソームにおいて加水分解が可能な酸不安定性リンカー(
例えば、ヒドラゾン、セミカルバゾン、チオセミカルバゾン、cis-アコニットアミド
、オルトエステル、アセタール、ケタール等)が、使用され得る。(例えば、米国特許第
5,122,368号;同第5,824,805号;同第5,622,929号;Dub
owchik and Walker,1999,Pharm.Therapeutic
s 83:67-123;Neville et al.,1989,Biol.Che
m.264:14653-14661を参照のこと。)そのようなリンカーは、例えば、
血液中の条件等の中性pH条件下では比較的安定であるが、およそリソソームのpHであ
るpH5.5または5.0未満では不安定である。特定の実施形態において、加水分解が
可能なリンカーは、チオエーテルリンカー(例えば、アシルヒドラゾン結合を介して治療
剤に結合したチオエーテル等)である(例えば、米国特許第5,622,929号を参照
のこと)。
さらに他の実施形態において、リンカーは、還元条件下で切断可能である(例えば、ジス
フィルドリンカー)。例えば、SATA(N-スクシンイミジル-5-アセチルチオアセ
テート)、SPDP(N-スクシンイミジル-3-(2-ピリジルジチオ)プロピオネー
ト)、SPDB(N-スクシンイミジル-3-(2-ピリジルジチオ)ブチレート)、お
よびSMPT(N-スクシンイミジル-オキシカルボニル-α-メチル-α-(2-ピリ
ジル-ジチオ)トルエン)、SPDBおよびSMPTを用いて形成することができるもの
を含む、様々なジスフィルドリンカーが当該技術分野で既知である。(例えば、Thor
pe et al.,1987,Cancer Res.47:5924-5931;W
awrzynczak et al.,In Immunoconjugates:An
tibody Conjugates in Radioimagery and Th
erapy of Cancer(C.W.Vogel ed.,Oxford U.P
ress,1987を参照。また、米国特許第4,880,935も参照のこと)
他の実施形態において、リンカーは、マロネートリンカー(Johnson et al
.,1995,Anticancer Res.15:1387-93)、マレイミドベ
ンゾイルリンカー(Lau et al.,1995,Bioorg-Med-Chem
.3(10):1299-1304)、または3’-N-アミド類似体(Lau et
al.,1995,Bioorg-Med-Chem.3(10):1305-12)で
ある。
さらに他の実施形態において、リンカー単位は切断可能ではなく、薬物は抗体の分解によ
って放出される(参照により、その全体が全ての目的のために本明細書に組み込まれる米
国特許出願公開第2005/0238649号を参照のこと)。
多くの実施形態において、リンカーは自壊性である。本明細書において使用される場合、
用語「自壊的スペーサー」は、2つの離れた化学部分と一緒に共有結合して3成分分子を
形成することができる二官能性の化学部分を指す。該スペーサーは、第1の部分への結合
が切断されると、第2の化学部分から自発的に分離する。例えば、薬物と切断可能な基質
とが自壊的リンカーによって任意選択的に連結される薬物切断可能な基質コンジュゲート
を対象とする国際公開第WO2007059404A2号、同第WO06110476A
2号、同第WO05112919A2号、同第WO2010/062171号、同第WO
09/017394号、同第WO07/089149号、同第WO07/018431号
、同第WO04/043493号、および同第WO02/083180(これらは全て、
参照により明示的に組み込まれる)を参照のこと。
リンカーは、細胞外環境に対して実質的に感受性ではないことが多い。本明細書において
使用される場合、リンカーに関して「細胞外環境に対して実質的に感受性でない」とは、
抗体-薬物コンジュゲート化合物が細胞外環境に(例えば、血漿中に)存在する場合、抗
体-薬物コンジュゲート化合物の試料中で、リンカーが約20%、15%、10%、5%
、3%以下、または約1%を超えて切断されないことを意味する。
リンカーが細胞外環境に対して実質的に感受性でないかどうかは、例えば、抗体-薬物コ
ンジュゲート化合物を所定の時間(例えば、2時間、4時間、8時間、16時間、または
24時間)血漿とともにインキュベートし、次いで、血漿中に存在する遊離薬物の量を定
量化することによって確認することができる。
他の相互排他的ではない実施形態において、リンカーは、細胞内部移行を促進する。特定
の実施形態において、リンカーは、治療剤と複合体化された時に(すなわち、本明細書に
記載される抗体-薬物コンジュゲート化合物のリンカー-治療剤部分の環境において)、
細胞内部移行を促進する。さらに他の実施形態において、リンカーは、アウリスタチン化
合物および本発明のpI抗体の両方と複合体化された時に細胞内部移行を促進する。
本発明の組成物および方法とともに使用することができる様々な例示的なリンカーが、国
際公開第WO2004-010957号、米国特許出願公開第2006/0074008
号、米国特許出願公開第20050238649、および米国特許出願公開第2006/
0024317号(これらは各々、参照によりその全体が全ての目的のために本明細書に
組み込まれる)に記載されている。
VIII.薬物負荷 薬物負荷は、pによって表され、分子中の抗体当たりの薬物部分の
平均数である。薬物負荷(「p」)は、抗体当たり1、2、3、4、5、6、7、8、9
、10、11、12、13、14、15、16、17、18、19、20個またはそれ以
上の部分(D)であり得るが、平均数は高い頻度で分数または小数である。通常、1~4
の薬物負荷が有用であることが多く、また1~2も有用である。本発明のADCは、1~
20個に及ぶ薬物部分と複合体化された抗体の集合を含む。複合体化反応からのADCの
調製における抗体当たりの薬物部分の平均数は、質量分析法およびELISAアッセイ等
の従来の手段によって特徴付けることができる。
Pの観点からのADCの定量的分布もまた確認することができる。いくつかの場合におい
て、pが、他の薬物負荷を有するADCからの特定の値である場合、均一なADCの分離
、精製、および性質決定は、電気泳動法等の手段によって達成され得る。
いくつかの抗体-薬物コンジュゲートの場合、pは、抗体上の付着部位の数によって限定
され得る。例えば、付着部がシステインチオールである場合、前述の例示的な実施形態の
ように、抗体は、唯一のもしくはいくつかのシステインチオール基を有してもよいか、ま
たはそれを介してリンカーが付着することができる唯一のもしくはいくつかの十分に反応
性のチオール基を有してもよい。特定の実施形態において、より高い薬物負荷、例えば、
p>5は、特定の抗体-薬物コンジュゲートの凝縮、不溶性、毒性、または細胞透過性の
損失を引き起こし得る。ある特定の実施形態において、本発明のADCの薬物負荷は、1
~8、約2~6、約3~5、約3~4、約3.1~3.9、約3.2~3.8、約3.2
~3.7、約3.2~3.6、約3.3~3.8、または約3.3~3.7の範囲である
。実際に、特定のADCの場合、抗体当たりの薬物部分の最適な比率は、8未満であって
もよく、また約2~5であってもよいことが示されている。米国特許出願第2005-0
238649 A1号(参照によりその全体が本明細書に組み込まれる)を参照のこと。
特定の実施形態において、複合体化反応の間に、薬物部分の最大理論値よりも少ない薬物
部分が抗体と複合体化される。抗体は、後述するように、例えば、薬物-リンカー中間体
またはリンカー試薬と反応しないリジン残基を含んでもよい。一般に、抗体は、薬物部分
に連結し得る多くの遊離および反応性システインチオール基を含まない:実際には、抗体
にあるほとんどのシステインチオール残基はジスルフィド架橋として存在する。特定の実
施形態において、反応性システインチオール基を作製するために、部分的または完全な還
元条件下で、ジチオスレイトール(DTT)またはトリカルボニルエチルホスフィン(T
CEP)等の還元剤を用いて抗体が還元されてもよい。特定の実施形態において、リジン
またはシステイン等の反応性求核基を曝露するために、抗体が変性条件に供される。
ADCの負荷(薬物/抗体の比率)は、様々な方法で、例えば、(i)抗体に対するモル
過剰な薬物-リンカー中間体またはリンカー試薬を制限することによって、(ii)複合
体化反応の時間または温度を制限することによって、(iii)システインチオール修飾
のための部分的または限定的な還元条件によって、(iv)リンカー-薬物付着部の数お
よび/または位置を制御するためにシステイン残基の数および位置が調節されるように、
組み換え技術によって抗体のアミノ酸配列を改変することによって(本明細書および国際
公開第WO2006/034488号(参照によりその全体が本明細書に組み込まれる)
に開示されるように調製されるチオMabまたはチオFab)制御することができる。
1つ以上の求核基が、薬物-リンカー中間体またはリンカー試薬と反応し、次いで薬物部
分試薬と反応する場合、結果として得られる生成物は、抗体に付着した1つ以上の薬物部
分が分布するADC化合物の混合物であることを理解されたい。抗体当たりの薬物の平均
数は、抗体に特異的かつ薬物に特異的なデュアルELISA抗体アッセイによって混合物
から計算することができる。個々のADC分子は、質量分析法によって混合物中
で同定し、HPLC、例えば、疎水性相互作用クロマトグラフィーによって分離してもよ
い。
いくつかの実施形態において、単一の負荷値を有する均一なADCを、電気泳動またはク
ロマトグラフィーによって複合体化混合物から単離してもよい。
ADCの細胞傷害作用を確認する方法 薬物または抗体-薬物コンジュゲートが、細胞に
対して細胞静止作用および/または細胞傷害作用を発揮するかどうかを確認する方法は既
知である。一般に、抗体薬物コンジュゲートの細胞傷害活性または細胞静止活性は、抗体
薬物コンジュゲートの標的タンパク質を発現する哺乳類細胞を細胞培養培地に曝露し、約
6時間~約5日の期間細胞を培養し、細胞生存率を測定することによって測定することが
できる。細胞ベースのin vitroアッセイを用いて、生存率(増殖)、細胞傷害性
、および抗体薬物コンジュゲートのアポトーシスの誘導(カスパーゼ活性化)を測定する
ことができる。
体薬物コンジュゲートが細胞静止作用を発揮するかどうかを確認するために、チミジン組
み込みアッセイが用いられてもよい。例えば、96ウェルプレートに5,000細胞/1
ウェルの密度で標的抗原を発現する癌細胞を72時間の期間にわたって培養し、72時間
の期間の最後の8時間の間に0.5μCiのH-チミジンに曝露することができる。
H-チミジンの培養細胞への組み込みは、抗体薬物コンジュゲートの存在下および非存在
下で測定される。
細胞傷害性を確認するために、壊死またはアポトーシス(プログラム細胞死)を測定する
ことができる。壊死は、典型的には、原形質膜の透過性の増加、細胞の膨張、および原形
質膜の破裂によって達成される。アポトーシスは、典型的には、膜小胞形成、細胞質の凝
集、および内因性エンドヌクレアーゼの活性化によって特徴付けられる。癌細胞に対する
これらの作用のいずれかが確認されるということは、抗体薬物コンジュゲートが癌の治療
に有用であることを意味する。
細胞生存率は、ニュートラルレッド、トリパンブルー、またはALAMAR(商標)ブル
ー等の色素の取り込みを細胞において確認することによって測定することができる(例え
ば、例えば、Page et al.,1993,Intl.J.Oncology 3
:473-476を参照のこと)。このようなアッセイでは、色素を含む培地中で細胞を
インキュベートし、細胞を洗浄し、色素の細胞取り込みを反映する残留色素を分光光度的
に測定する。また、タンパク質結合色素スルホローダミンB(SRB)を使用して細胞傷
害性を測定することもできる(Skehan et al.,1990,J.Natl.
Cancer Inst.82:1107-12)。
代替として、生細胞を検出するが死滅細胞は検出しないことによる哺乳類細胞の生存およ
び増殖に関する比色分析アッセイに、MTT等のテトラゾリウム塩が用いられる(例えば
、Mosmann,1983,J.Immunol.Methods 65:55-63
を参照のこと)。
アポトーシスは、例えば、DNA断片化を測定することによって定量することができる。
DNA断片化をin vitroで定量的に決定するための商業的な測光法が利用可能で
ある。TUNEL(断片化されたDNAにおける標識ヌクレオチドの組み込みを検出する
)およびELISAベースのアッセイを含む、このようなアッセイの例は、Bioche
mica,1999,no.2,pp.34-37(Roche Molecular
Biochemicals)に記載されている。
アポトーシスはまた、細胞における形態学的変化を測定することによって確認することも
できる。例えば、壊死と同様に、原形質膜の完全性の喪失は、特定の色素(例えば、蛍光
色素、例えば、アクリジンオレンジまたは臭化エチジウム等)の取り込みを測定すること
によって確認することができる。アポトーシス細胞数を測定するための方法は、Duke
and Cohen,Current Protocols in Immunolo
gy(Coligan et al.eds.,1992,pp.3.17.1-3.1
7.16)に記載されている。また、DNA色素(例えば、アクリジンオレンジ、臭化エ
チジウム、またはヨウ化プロピジウム)で細胞を標識し、クロマチンの凝集および核内膜
に沿った辺縁趨向について細胞を観察することもできる。アポトーシスを確認するために
測定することができる他の形態学的変化は、例えば、細胞質の凝集、膜小胞形成の増加、
および細胞の収縮を含む。
アポトーシス細胞の存在は、培養物の付着区画および「浮遊」区画の両方において測定す
ることができる。例えば、どちらの区画とも、上清を除去し、付着した細胞をトリプシン
処理し、遠心分離による洗浄ステップ(例えば、2000rpmで10分)の後に調製物
を組み合わせ、(例えば、DNA断片化を測定することによって)アポトーシスを検出す
ることによって、収集することができる。(例えば、Piazza et al.,19
95,Cancer Research 55:3110-16を参照されたい)。
in vivoにおいて、本発明のpI抗体の治療用組成物の効果は、好適な動物モデル
において評価することができる。例えば、異種癌モデルを使用することができ、癌外植片
または継代された異種移植片組織が、ヌードマウスまたはSCIDマウス等の免疫不全動
物に導入される(Klein et al.,1997,Nature Medicin
e 3:402-408)。有効性は、腫瘍形成の阻害、腫瘍の退縮または転移等を測定
するアッセイを用いて予測することができる。
上述の方法の実施において使用される治療用組成物は、所望の送達方法に好適な担体を含
む薬学的組成物に製剤化することができる。好適な担体は、治療用組成物と組み合わせた
時に、治療用組成物の抗腫瘍機能を保持し、かつ概して患者の免疫系に非反応性である、
任意の材料を含む。例として、限定されないが、滅菌リン酸緩衝食塩水溶液、静菌水等を
含む多くの標準的な薬学的担体のいずれかが挙げられる(一般的に、Remington
’s Pharmaceutical Sciences 16th Edition,
A.Osal.,Ed.,1980を参照のこと)。
グリコシル化 別の種類の共有結合修飾は、グリコシル化における変化である。別の実施
形態において、本明細書に開示される抗体は、1つ以上の改変されたグリコフォームを含
むように修飾することができる。本明細書において使用される「改変されたグリコフォー
ム」は、抗体に共有結合的に付着した炭水化物組成物を意味し、前記炭水化物組成物は、
親抗体の組成物とは化学的に異なる。改変されたグリコフォームは、限定されないが、エ
フェクター機能の増強または低減を含む、様々な目的に有用であり得る。改変されたグリ
コフォームの好ましい形態は脱フコシル化であり、恐らくはFcγRIIIa受容体への
より密接な結合によって、ADCC機能の増加と相関することが示されている。この文脈
において、「脱フコシル化」とは、宿主細胞において生成される抗体の大半が実質的にフ
コースに欠けており、例えば、生成された抗体の90-95-98%が、抗体の炭水化物
部分(通常、Fc領域のN297に付着する)の成分として認識できるフコースを有しな
いことを意味する。機能的に定義すると、脱フコシル化された抗体は、通常、FcγRI
IIa受容体に対して少なくとも50%またはそれよりも高い親和性を示す。
改変されたグリコフォームは、当該技術分野で既知の様々な方法によって生成することが
できる(Umana et al.,1999,Nat Biotechnol 17:
176-180;Davies et al.,2001,Biotechnol Bi
oeng 74:288-294;Shields et al.,2002,J Bi
ol Chem 277:26733-26740;Shinkawa et al.,
2003,J Biol Chem 278:3466-3473;米国特許第6,60
2,684号;米国特許出願第10/277,370号;米国特許出願第10/113,
929号;国際公開特許PCT WO00/61739A1号;国際公開特許PCT W
O01/29246A1号;国際公開特許PCT WO02/31140A1号;国際公
開特許PCT WO02/30954A1号(全て、参照により全体が組み込まれる);
(Potelligent(登録商標)技術[Biowa,Inc.,Princeto
n,NJ];GlycoMAb(登録商標)グリコシル化改変技術[Glycart B
iotechnology AG,Zurich,Switzerland])。これら
の技術の多くは、例えば、改変されたまたは別様の種々の生物または細胞株(例えばLe
c-13CHO細胞またはラットハイブリドーマYB2/0細胞)においてIgGを発現
させることによって、グリコシル化経路に関与する酵素(例えばFUT8[α1,6-フ
コシルトランスフェラーゼ]および/またはβ1-4-N-アセチルグルコサミン転移酵
素III[GnTIII])を制御することによって、またはIgGが発現された後に炭
水化物(複数可)を修飾することによって、フコシル化のレベルを制御することおよび/
またはFc領域に共有結合的に付着するオリゴ糖を二分することに基づいている。例えば
、Seattle Geneticsの「糖改変された抗体」または「SEA技術」は、
生成中のフコシル化を阻害する修飾糖類を加えることによって機能する:例えば、参照に
よりその全体が本明細書に組み込まれる20090317869を参照のこと。改変され
たグリコフォームは、典型的には、異なる炭水化物またはオリゴ糖を指す:よって、抗体
は、改変されたグリコフォームを含むことができる。
代替として、改変されたグリコフォームは、異なる炭水化物またはオリゴ糖を含むIgG
変異体を指してもよい。当該技術分野で既知であるように、グリコシル化のパターンは、
タンパク質の配列(例えば、後述する特定のグリコシル化アミノ酸残基の有無)、または
タンパク質が産生される宿主細胞もしくは生物の両方に依存し得る。具体的な発現系につ
いては後に記載する。
ポリペプチドのグリコシル化は、典型的にはN結合またはO結合のいずれかである。N結
合は、アスパラギン残基の側鎖への炭水化物部分の結合を指す。トリペプチド配列のアス
パラギン-X-セリンおよびアスパラギン-X-スレオニン(Xは、プロリン以外の任意
のアミノ酸である)は、アスパラギン側鎖への炭水化物部分の酵素的付着のための認識配
列である。よって、ポリペプチドにおけるこれらのトリペプチド配列のいずれかの存在が
潜在的なグリコシル化部位を形成する。O結合グリコシル化は、ヒドロキシアミノ酸、最
も一般的にはセリンまたはスレオニンへの、糖類であるN-アセチルガラクトサミン、ガ
ラクトース、またはキシロースのうちの1つの結合を指すが、5-ヒドロキシプロリンま
たは5-ヒドロキシリジンが用いられてもよい。
抗体へのグリコシル化部位の付加は、上述のトリペプチド配列のうちの1つ以上を含むよ
うにアミノ酸配列を変化させることによって共有結合的に達成される(N結合グリコシル
化部位の場合)。変化はまた、出発配列への1つ以上のセリンもしくはスレオニン残基の
付加によって、または置換によって行われてもよい(O結合グリコシル化部位の場合)。
容易にするために、特に、所望のアミノ酸に翻訳するコドンが生成されるように、予め選
択された塩基で標的ポリペプチドをコードするDNAを突然変異させることによって、D
NAレベルでの変化を通して抗体のアミノ酸配列を変化させることが好ましい。
抗体の炭水化物部分の数を増加させる別の手段は、タンパク質へのグリコシドへの化学的
または酵素カップリングによるものである。これらの手順
は、N結合およびO結合グリコシル化のためにグリコシル化能力を有する宿主細胞におけ
るタンパク質の生成を必要としないという点で有利である。使用されるカップリング様式
に依存して、糖(複数可)は、(a)アルギニンおよびヒスチジン、(b)遊離カルボキ
シル基、(c)システインのもの等の遊離スルフヒドリル基、(d)セリン、スレオニン
、もしくはヒドロキシプロリンのもの等の遊離ヒドロキシル基、(e)フェニルアラニン
、チロシン、もしくはトリプトファンのもの等の芳香族残基、または(f)グルタミンの
アミド基に付着させてもよい。これらの方法は、国際公開第WO87/05330号およ
びAplin and Wriston,1981,CRC Crit.Rev.Bio
chem.,pp.259-306に記載されており、両方とも、参照により全体が組み
込まれる。
(例えば、翻訳後に)出発抗体に存在する炭水化物部分の除去は、化学的または酵素的に
達成され得る。化学的な脱グリコシルは、化合物トリフルオロメタンスルホン酸または等
価化合物へのタンパク質の曝露を必要とする。この処理は、結合糖(N-アセチルグルコ
サミンまたはN-アセチルガラクトサミン)を除く大部分または全ての糖の切断をもたら
す一方で、ポリペプチドを無傷なままで残す。化学的脱グリコシル化は、Hakimud
din et al.,1987,Arch.Biochem.Biophys.259
:52によって、およびEdge et al.,1981,Anal.Biochem
.118:131によって記載されており、両方とも、参照により全体が組み込まれる。
ポリペプチドの炭水化物部分の酵素切断は、Thotakura et al.,198
7,Meth.Enzymol.138:350(参照により、全体が組み込まれる)に
よって記載されるような様々なエンドグリコシダーゼおよびエキソグリコシダーゼの使用
によって達成することができる。可能性のあるグリコシル化部位でのグリコシル化は、D
uskin et al.,1982,J.Biol.Chem.257:3105(参
照により、全体が組み込まれる)によって記載されるような化合物ツニカマイシンの使用
により防止することができる。ツニカマイシンは、タンパク質-N-グリコシド結合の形
成を阻止する。
抗体の別の種類の共有結合修飾は、例えば、Nektar Therapeuticsの
2005-2006 PEG Catalog(Nektarウェブサイトで入手可能)
、米国特許第4,640,835号、同第4,496,689号、同第4,301,14
4号、同第4,670,417号、同第4,791,192号、または同第4,179,
337(全て、参照により全体が組み込まれる)に記載される様式で、限定されないが、
ポリエチレングリコール、ポリプロピレングリコール、またはポリオキシアルキレン等の
種々のポリオールを含む種々の非タンパク質性ポリマーに抗体を結合させることを含む。
さらに、当該技術分野で既知であるように、PEG等のポリマーの付加を容易にするため
に、抗体内の種々の位置にアミノ酸置換が行われてもよい。例えば、米国特許出願公開第
2005/0114037A1(参照により全体が組み込まれる)を参照のこと。
核酸および宿主細胞 本発明には、本発明のpI抗体をコードする核酸が含まれる。重鎖
および軽鎖の両方の定常ドメインがpI抗体に含まれる場合、通常、これらは、四量体構
造の抗体を生成するために標準的な宿主細胞(例えば、CHO細胞等)内に組み合わされ
る、各々をコードする核酸を用いて作製される。唯一のpIを改変した定常ドメインが作
製される場合、単一の核酸のみが用いられる。
標識 当業者には理解されるように、多様な抗原結合ドメイン、例えば、Fv領域が、本
発明において使用されてもよい。限定されないが、サイトカイン等の可溶性因子および膜
結合因子の両方を含む以下に列挙する標的抗原に属する、タンパク質、サブ単位、ドメイ
ン、部分、および/またはエピトープを含む、実質的にいずれの抗原がIgG変異体によ
って標的とされてもよい:膜貫通受容体:17-IA、4-1BB、4Dc、6-ケト-
PGF1a、8-イソ-PGF2a、8-オキソ-dG、A1アデノシン受容体、A33
、ACE、ACE-2、アクチビン、アクチビンA、アクチビンAB、アクチビンB、ア
クチビンC、アクチビンRIA、アクチビンRIA ALK-2、アクチビンRIB A
LK-4、アクチビンRIIA、アクチビンRIIB、ADAM、ADAM10、ADA
M12、ADAM15、ADAM17/TACE、ADAM8、ADAM9、ADAMT
S、ADAMTS4、ADAMTS5、アドレシン、aFGF、ALCAM、ALK、A
LK-1、ALK-7、α-1-アンチトリプシン、α-V/β-1アンタゴニスト、A
NG、Ang、APAF-1、APE、APJ、APP、APRIL、AR、ARC、A
RT、アルテミン、抗Id、ASPARTIC、心房性ナトリウム利尿因子、av/b3
インテグリン、Axl、b2M、B7-1、B7-2、B7-H、Bリンパ球刺激因子(
BlyS)、BACE、BACE-1、Bad、BAFF、BAFF-R、Bag-1、
BAK、Bax、BCA-1、BCAM、Bcl、BCMA、BDNF、b-ECGF、
bFGF、BID、Bik、BIM、BLC、BL-CAM、BLK、BMP、BMP-
2 BMP-2a、BMP-3オステオゲニン、BMP-4 BMP-2b、BMP-5
、BMP-6 Vgr-1、BMP-7(OP-1)、BMP-8(BMP-8a、OP
-2)、BMPR、BMPR-IA(ALK-3)、BMPR-IB(ALK-6)、B
RK-2、RPK-1、BMPR-II(BRK-3)、BMPs、b-NGF、BOK
、ボンベシン、骨由来神経栄養因子、BPDE、BPDE-DNA、BTC、補体因子3
(C3)、C3a、C4、C5、C5a、C10、CA125、CAD-8、カルシトニ
ン、cAMP、癌胎児抗原(CEA)、癌関連抗原、カテプシンA、カテプシンB、カテ
プシンC/DPPI、カテプシンD、カテプシンE、カテプシンH、カテプシンL、カテ
プシンO、カテプシンS、カテプシンV、カテプシンX/Z/P、CBL、CCI、CC
K2、CCL、CCL1、CCL11、CCL12、CCL13、CCL14、CCL1
5、CCL16、CCL17、CCL18、CCL19、CCL2、CCL20、CCL
21、CCL22、CCL23、CCL24、CCL25、CCL26、CCL27、C
CL28、CCL3、CCL4、CCL5、CCL6、CCL7、CCL8、CCL9/
10、CCR、CCR1、CCR10、CCR10、CCR2、CCR3、CCR4、C
CR5、CCR6、CCR7、CCR8、CCR9、CD1、CD2、CD3、CD3E
、CD4、CD5、CD6、CD7、CD8、CD10、CD11a、CD11b、CD
11c、CD13、CD14、CD15、CD16、CD18、CD19、CD20、C
D21、CD22、CD23、CD25、CD27L、CD28、CD29、CD30、
CD30L、CD32、CD33(p67タンパク質)、CD34、CD38、CD40
、CD40L、CD44、CD45、CD46、CD49a、CD52、CD54、CD
55、CD56、CD61、CD64、CD66e、CD74、CD80(B7-1)、
CD89、CD95、CD123、CD137、CD138、CD140a、CD146
、CD147、CD148、CD152、CD164、CEACAM5、CFTR、cG
MP、CINC、ボツリヌス菌毒素、ウェルシュ菌毒素、CKb8-1、CLC、CMV
、CMV UL、CNTF、CNTN-1、COX、C-Ret、CRG-2、CT-1
、CTACK、CTGF、CTLA-4、CX3CL1、CX3CR1、CXCL、CX
CL1、CXCL2、CXCL3、CXCL4、CXCL5、CXCL6、CXCL7、
CXCL8、CXCL9、CXCL10、CXCL11、CXCL12、CXCL13、
CXCL14、CXCL15、CXCL16、CXCR、CXCR1、CXCR2、CX
CR3、CXCR4、CXCR5、CXCR6、サイトケラチン腫瘍関連抗原、DAN、
DCC、DcR3、DC-SIGN、崩壊促進因子、des(1-3)-IGF-I(脳
IGF-1)、Dhh、ジゴキシン、DNAM-1、デオキシリボヌクレアーゼ、Dpp
、DPPIV/CD26、Dtk、ECAD、EDA、EDA-A1、EDA-A2、E
DAR、EGF、EGFR(ErbB-1)、EMA、EMMPRIN、ENA、エンド
セリン受容体、エンケファリナーゼ、eNOS、Eot、エオタキシン1、EpCAM、
エフリンB2/EphB4、EPO、ERCC、E-セレクチン、ET-1、ファクター
IIa、ファクターVII、ファクターVIIIc、ファクターIX、線維芽細胞活性化
タンパク質(FAP)、Fas、FcR1、FEN-1、フェリチン、FGF、FGF-
19、FGF-2、FGF3、FGF-8、FGFR、FGFR-3、フィブリン、FL
、FLIP、Flt-3、Flt-4、卵胞刺激ホルモン、フラクタルカイン、FZD1
、FZD2、FZD3、FZD4、FZD5、FZD6、FZD7、FZD8、FZD9
、FZD10、G250、Gas6、GCP-2、GCSF、GD2、GD3、GDF、
GDF-1、GDF-3(Vgr-2)、GDF-5(BMP-14、CDMP-1)、
GDF-6(BMP-13、CDMP-2)、GDF-7(BMP-12、CDMP-3
)、GDF-8(ミオスタチン)、GDF-9、GDF-15(MIC-1)、GDNF
、GDNF、GFAP、GFRa-1、GFR-α1、GFR-α2、GFR-α3、G
ITR、グルカゴン、Glut4、糖タンパク質IIb/IIIa(GP IIb/II
Ia)、GM-CSF、gp130、gp72、GRO、成長ホルモン放出因子、ハプテ
ン(NP-capもしくはNIP-cap)、HB-EGF、HCC、HCMV gB外
被糖タンパク質、HCMV)gH外被糖タンパク質、HCMV UL、造血成長因子(H
GF)、Hep B gp120、ヘパラナーゼ、Her2、Her2/neu(Erb
B-2)、Her3(ErbB-3)、Her4(ErbB-4)、単純ヘルペスウイル
ス(HSV)gB糖タンパク質、HSV gD糖タンパク質、HGFA、高分子量メラノ
ーマ関連抗原(HMW-MAA)、HIV gp120、HIV IIIB gp120
V3ループ、HLA、HLA-DR、HM1.24、HMFG PEM、HRG、Hrk
、ヒト心筋ミオシン、ヒトサイトメガウイルス(HCMV)、ヒト成長ホルモン(HGH
)、HVEM、I-309、IAP、ICAM、ICAM-1、ICAM-3、ICE、
ICOS、IFNg、Ig、IgA受容体、IgE、IGF、IGF結合タンパク質、I
GF-1R、IGFBP、IGF-I、IGF-II、IL、IL-1、IL-1R、I
L-2、IL-2R、IL-4、IL-4R、IL-5、IL-5R、IL-6、IL-
6R、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、IL-
18、IL-18R、IL-23、インターフェロン(INF)-α、INF-β、IN
F-γ、インヒビン、iNOS、インスリンA鎖、インスリンB鎖、インスリン様成長因
子1、インテグリンα2、インテグリンα3、インテグリンα4、インテグリンα4/β
1、インテグリンα4/β7、インテグリンα5(αV)、インテグリンα5/β1、イ
ンテグリンα5/β3、インテグリンα6、インテグリンβ1、インテグリンβ2、イン
ターフェロンγ、IP-10、I-TAC、JE、カリクレイン2、カリクレイン5、カ
リクレイン6、、カリクレイン11、カリクレイン12、カリクレイン14、カリクレイ
ン15、カリクレインL1、カリクレインL2、カリクレインL3、カリクレインL4、
KC、KDR、ケラチノサイト増殖因子(KGF)、ラミニン5、LAMP、LAP、L
AP(TGF-1)、潜在型
TGF-1、潜在型TGF-1 bp1、LBP、LDGF、LECT2、レフティー、
ルイス-Y抗原、ルイス-Y関連抗原、LFA-1、LFA-3、Lfo、LIF、LI
GHT、リポタンパク質、LIX、LKN、Lptn、L-セレクチン、LT-a、LT
-b、LTB4、LTBP-1、肺表面活性剤、黄体ホルモン、リンホトキシンβ受容体
、Mac-1、MAdCAM、MAG、MAP2、MARC、MCAM、MCAM、MC
K-2、MCP、M-CSF、MDC、Mer、METALLOプロテアーゼ、MGDF
受容体、MGMT、MHC(HLA-DR)、MIF、MIG、MIP、MIP-1-α
、MK、MMAC1、MMP、MMP-1、MMP-10、MMP-11、MMP-12
、MMP-13、MMP-14、MMP-15、MMP-2、MMP-24、MMP-3
、MMP-7、MMP-8、MMP-9、MPIF、Mpo、MSK、MSP、ムチン(
Muc1)、MUC18、ミュラー管抑制因子、Mug、MuSK、NAIP、NAP、
NCAD、N-カドヘリン、NCA90、NCAM、NCAM、ネプリライシン、ニュー
ロトロフィン-3,-4、または-6、ニュールツリン、神経成長因子(NGF)、NG
FR、NGF-β、nNOS、NO、NOS、Npn、NRG-3、NT、NTN、OB
、OGG1、OPG、OPN、OSM、OX40L、OX40R、p150、p95、P
ADPr、副甲状腺ホルモン、PARC、PARP、PBR、PBSF、PCAD、P-
カドヘリン、PCNA、PDGF、PDGF、PDK-1、PECAM、PEM、PF4
、PGE、PGF、PGI2、PGJ2、PIN、PLA2、胎盤性アルカリホスファタ
ーゼ(PLAP)、PlGF、PLP、PP14、プロインスリン、プロレラキシン、プ
ロテインC、PS、PSA、PSCA、前立腺特異的膜抗原(PSMA)、PTEN、P
THrp、Ptk、PTN、R51、RANK、RANKL、RANTES、RANTE
S、レラキシンA鎖、レラキシンB鎖、レニン、呼吸器多核体ウイルス(RSV)F、R
SV Fgp、Ret、リウマトイド因子、RLIP76、RPA2、RSK、S100
、SCF/KL、SDF-1、SERINE、血清アルブミン、sFRP-3、Shh、
SIGIRR、SK-1、SLAM、SLPI、SMAC、SMDF、SMOH、SOD
、SPARC、Stat、STEAP、STEAP-II、TACE、TACI、TAG
-72(腫瘍関連糖タンパク質-72)、TARC、TCA-3、T-cell受容体(
例えば、T細胞受容体α/β)、TdT、TECK、TEM1、TEM5、TEM7、T
EM8、TERT、精巣PLAP様アルカリホスファターゼ、TfR、TGF、TGF-
α、TGF-β、TGF-β汎特異的、TGF-β RI(ALK-5)、TGF-β
RII、TGF-β RIIb、TGF-β RIII、TGF-β1、TGF-β2、
TGF-β3、TGF-β4、TGF-β5、トロンビン、胸腺Ck-1、甲状腺刺激ホ
ルモン、Tie、TIMP、TIQ、組織因子、TMEFF2、Tmpo、TMPRSS
2、TNF、TNF-α、TNF-αβ、TNF-β2、TNFc、TNF-RI、TN
F-RII、TNFRSF10A(TRAIL R1 Apo-2、DR4)、TNFR
SF10B(TRAIL R2 DR5、KILLER、TRICK-2A、TRICK
-B)、TNFRSF10C(TRAIL R3 DcR1、LIT、TRID)、TN
FRSF10D(TRAIL R4 DcR2、TRUNDD)、TNFRSF11A(
RANK ODF R、TRANCE R)、TNFRSF11B(OPG OCIF、
TR1)、TNFRSF12(TWEAK R FN14)、TNFRSF13B(TA
CI)、TNFRSF13C(BAFF R)、TNFRSF14(HVEM ATAR
、HveA、LIGHT R、TR2)、TNFRSF16(NGFR p75NTR)
、TNFRSF17(BCMA)、TNFRSF18(GITR AITR)、TNFR
SF19(TROY TAJ、TRADE)、TNFRSF19L(RELT)、TNF
RSF1A(TNF RI CD120a、p55-60)、TNFRSF1B(TNF
RII CD120b、p75-80)、TNFRSF26(TNFRH3)、TNF
RSF3(LTbR TNF RIII、TNFC R)、TNFRSF4(OX40
ACT35、TXGP1 R)、TNFRSF5(CD40 p50)、TNFRSF6
(Fas Apo-1、APT1、CD95)、TNFRSF6B(DcR3 M68、
TR6)、TNFRSF7(CD27)、TNFRSF8(CD30)、TNFRSF9
(4-1BB CD137、ILA)、TNFRSF21(DR6)、TNFRSF22
(DcTRAIL R2 TNFRH2)、TNFRST23(DcTRAIL R1
TNFRH1)、TNFRSF25(DR3 Apo-3、LARD、TR-3、TRA
MP、WSL-1)、TNFSF10(TRAIL Apo-2リガンド、TL2)、T
NFSF11(TRANCE/RANKリガンドODF、OPGリガンド)、TNFSF
12(TWEAK Apo-3リガンド、DR3リガンド)、TNFSF13(APRI
L TALL2)、TNFSF13B(BAFF BLYS、TALL1、THANK、
TNFSF20)、TNFSF14(LIGHT HVEMリガンド、LTg)、TNF
SF15(TL1A/VEGI)、TNFSF18(GITRリガンドAITRリガンド
、TL6)、TNFSF1A(TNF-aコネクチン、DIF、TNFSF2)、TNF
SF1B(TNF-b LTa、TNFSF1)、TNFSF3(LTb TNFC、p
33)、TNFSF4(OX40リガンド gp34、TXGP1)、TNFSF5(C
D40リガンド CD154、gp39、HIGM1、IMD3、TRAP)、TNFS
F6(Fasリガンド Apo-1リガンド、APT1リガンド)、TNFSF7(CD
27リガンド CD70)、TNFSF8(CD30リガンド CD153)、TNFS
F9(4-1BBリガンド CD137リガンド)、TP-1、t-PA、Tpo、TR
AIL、TRAIL R、TRAIL-R1、TRAIL-R2、TRANCE、トラン
スフェリン受容体、TRF、Trk、TROP-2、TSG、TSLP、腫瘍関連抗原
CA 125、腫瘍関連抗原を発現するルイスY関連炭水化物、TWEAK、TXB2、
Ung、uPAR、uPAR-1、ウロキナーゼ、VCAM、VCAM-1、VECAD
、VE-カドヘリン、VE-カドヘリン-2、VEFGR-1(flt-1)、VEGF
、VEGFR、VEGFR-3(flt-4)、VEGI、VIM、ウイルス抗原、VL
A、VLA-1、VLA-4、VNRインテグリン、フォン・ヴィルブランド因子、WI
F-1、WNT1、WNT2、WNT2B/13、WNT3、WNT3A、WNT4、W
NT5A、WNT5B、WNT6、WNT7A、WNT7B、WNT8A、WNT8B、
WNT9A、WNT9A、WNT9B、WNT10A、WNT10B、WNT11、WN
T16、XCL1、XCL2、XCR1、XCR1、XEDAR、XIAP、XPD、な
らびにホルモンおよび成長因子の受容体。
改変のための抗体 いくつかの実施形態において、本明細書に記載されるpIの改変は、
治療用抗体に対して行われる。臨床試験または開発における使用が承認されている多くの
抗体は、本発明のpI変異体の恩恵を受け得る。これらの抗体は、本明細書において「臨
床用製品および候補」と称される。よって、好ましい実施形態において、本発明のpIを
改変した定常領域(複数可)は、幅広い臨床用製品および候補に用いることができる。例
えば、CD20を標的とする多くの抗体は、本発明のpIの改変の恩恵を受け得る。例え
ば、本発明のpI変異体は、非ホジキンリンパ腫を治療するために承認されたキメラ抗C
D20抗体であるリツキシマブ(Rituxan(登録商標)、IDEC/Genent
ech/Roche)(例えば米国特許第5,736,137号を参照のこと);Gen
mabが現在開発中の抗CD20であるHuMax-CD20、米国特許第5,500,
362号に記載される抗CD20抗体、AME-133(Applied Molecu
lar Evolution)、hA20(Immunomedics,Inc.)、H
umaLYM(Intracel)、およびPRO70769(国際公開特許PCT/米
国特許出願第2003/040426号、表題「Immunoglobulin Var
iants and Uses Thereof」)と実質的に同様の抗体に使用され得
る。EGFR(ErbB-1)、Her2/neu(ErbB-2)、Her3(Erb
B-3)、Her4(ErbB-4)を含む上皮成長因子受容体のファミリーのメンバー
を標的とする多くの抗体は、本発明のpIを改変した定常領域(複数可)の恩恵を受け得
る。例えば、本発明のpIを改変した定常領域(複数可)は、トラスツズマブ(Herc
eptin(登録商標)、Genentech)(例えば米国特許第5,677,171
号を参照)、乳癌を治療するために承認されたヒト化抗Her2/neu抗体;Gene
ntechが現在開発中のペルツズマブ(rhuMab-2C4、Omnitarg(商
標);米国特許第4,753,894号に記載の抗Her2抗体;セツキシマブ(Erb
itux(登録商標)、Imclone)(米国特許第4,943,533号;国際公開
特許PCT WO96/40210号)、様々な癌について臨床治験中のキメラ抗EGF
R抗体;Abgenix-Immunex-Amgenが現在開発中のABX-EGF(
米国特許第6,235,883)号;Genmabが現在開発中のHuMax-EGFr
(米国特許出願第10/172,317);425、EMD55900、EMD6200
0、およびEMD72000(Merck KGaA)(米国特許第5,558,864
号;Murthy et al.1987,Arch Biochem Biophys
.252(2):549-60;Rodeck et al.,1987,J Cell
Biochem.35(4):315-20;Kettleborough et a
l.,1991,Protein Eng.4(7):773-83);ICR62(I
nstitute of Cancer Research)(国際公開特許PCT W
O95/20045号;Modjtahedi et al.,1993,J.Cell
Biophys.1993,22(1-3):129-46;Modjtahedi
et al.,1993,Br J Cancer.1993,67(2):247-5
3;Modjtahedi et al,1996,Br J Cancer,73(2
):228-35;Modjtahedi et al,2003,Int J Can
cer,105(2):273-80);TheraCIM hR3(YM Biosc
iences,Canada and Centro de Immunologia
Molecular,Cuba(米国特許第5,891,996号;米国特許第6,50
6,883号;Mateo et al,1997,Immunotechnology
,3(1):71-81);mAb-806(Ludwig Institue for
Cancer Research,Memorial Sloan-Ketterin
g)(Jungbluth et al.2003,Proc Natl Acad S
ci USA.100(2):639-44);KSB-102(KS Biomedi
x);MR1-1(IVAX、National Cancer Institute)
(国際公開特許PCT WO0162931A2号);およびSC100(Scance
ll)(国際公開特許PCT WO01/88138号)に実質的に類似する抗体に使用
され得る。別の好まし
い実施形態において、本発明のpIを改変した定常領域(複数可)は、B細胞慢性リンパ
性白血病の治療のために現在承認されているヒト化モノクローナル抗体であるアレムツズ
マブ(Campath(登録商標)、Millenium)に使用され得る。本発明のp
Iを改変した定常領域(複数可)は、限定されないが、Ortho Biotech/J
ohnson&Johnsonによって開発された抗CD3抗体であるムロモナブ-CD
3(Orthoclone OKT3(登録商標))、IDEC/Schering A
Gによって開発された抗CD20抗体であるイブリツモマブチウキセタン(Zevali
n(登録商標))、Celltech/Wyethによって開発された抗CD33(p6
7タンパク質)抗体であるゲムツズマブオゾガマイシン(Mylotarg(登録商標)
)、Biogenによって開発された抗LFA-3Fc融合体であるアレファセプト(A
mevive(登録商標))、Centocor/Lillyによって開発されたアブシ
キ(ReoPro(登録商標))、Novartisによって開発されたバシリキシマブ
(Simulect(登録商標))、MedImmuneにより開発されたパリビズマブ
(Synagis(登録商標))、Centocorによって開発された抗TNFα抗体
であるインフリキシマブ(Remicade(登録商標))、Abbottによって開発
された抗TNFα抗体であるアダリムマブ(Humira(登録商標))、Cellte
chによって開発された抗TNFα抗体であるHumicade(商標)、Immune
x/Amgenによって開発された抗TNFα Fc融合体であるエタネルセプト(En
brel(登録商標))、Abgenixが開発中の抗CD147抗体であるABX-C
BL、Abgenixが開発中の抗IL8抗体であるABX-IL8、Abgenixが
開発中の 抗MUC18抗体であるABX-MA1、Antisomaが開発中の抗MU
C1であるペンツモマブ(R1549、90Y-muHMFG1)、Antisomaが
開発中の抗MUC1抗体であるTherex(R1550)、Antisomaが開発中
のAngioMab(AS1405)、Antisomaが開発中のHuBC-1、An
tisomaが開発中のThioplatin(AS1407)、Biogenが開発中
の抗α-4-β-1(VLA-4)およびα-4-β-7であるAntegren(登録
商標)(ナタリズマブ)、Biogenが開発中の抗VLA-1インテグリン抗体である
VLA-1 mAb、Biogenが開発中の抗リンホトキシンβ受容体(LTBR)抗
体であるLTBR mAb、Cambridge Antibody Technolo
gyが開発中の抗TGF-β2抗体であるCAT-152、Cambridge Ant
ibody TechnologyおよびAbbottが開発中の抗IL-12抗体であ
るJ695、Cambridge Antibody Technology and
Genzymeが開発中の抗TGFβ1抗体であるCAT-192、Cambridge
Antibody Technologyが開発中の抗Eotaxin1抗体であるC
AT-213、Cambridge Antibody TechnologyおよびH
uman Genome Sciences Inc.が開発中の抗Blys抗体である
LymphoStat-B(商標)、Cambridge Antibody Tech
nologyおよびHuman Genome Sciences,Inc.が開発中の
抗TRAIL-R1抗体であるTRAIL-R1mAb、Genentechが開発中の
抗VEGF抗体であるAvastin(商標)(ベバシズマブ、rhuMAb-VEGF
)、Genentechが開発中の抗HER受容体ファミリー抗体、Genentech
が開発中の抗組織因子抗体である抗組織因子(ATF)、Genentechが開発中の
抗IgE抗体であるXolair(商標)(オマリズマブ)、Genentech an
d Xomaが開発中の抗CD11a抗体であるRaptiva(商標)(Efaliz
umab)、Genentech and Millenium Pharmaceut
icalsが開発中のMLN-02抗体(以前はLDP-02であった)、Genmab
が開発中の抗CD4抗体であるHuMax CD4、GenmabおよびAmgenが開
発中の抗IL15抗体であるHuMax-IL15、GenmabおよびMedarex
が開発中のHuMax-Inflam、GenmabおよびMedarexおよびOxf
ord GcoSciencesが開発中の抗ヘパラナーゼI抗体であるHuMax-C
ancer、GenmabおよびAmgenが開発中のHuMax-Lymphoma、
Genmabが開発中のHuMax-TAC、IDEC Pharmaceutical
sが開発中の抗CD40L抗体であるIDEC-131、IDEC Pharmaceu
ticalsが開発中の抗CD4抗体であるIDEC-151(Clenolixima
b)、IDEC Pharmaceuticalsが開発中の抗CD80抗体であるID
EC-114、IDEC Pharmaceuticalsが開発中の抗CD23である
DEC-152、IDEC Pharmaceuticalsが開発中の抗マクロファー
ジ遊走因子(MIF)抗体、Imcloneが開発中の抗イディオタイプ抗体であるBE
C2、Imcloneが開発中の抗KDR抗体であるIMC-1C11、Imclone
が開発中の抗flk-1抗体であるDC101、Imcloneが開発中の抗VEカドヘ
リン抗体、Immunomedicsが開発中n抗癌胎児抗原(CEA)抗体であるCE
A-Cide(商標)(ラベツズマブ)、Immunomedicsが開発中の抗CD2
2抗体であるLymphoCide(商標)(エプラツズマブ)、Immunomedi
csが開発中のAFP-Cide、Immunomedicsが開発中のMyeloma
Cide、Immunomedicsが開発中のLkoCide、Immunomedi
csが開発中のProstaCide、Medarexが開発中の抗CTLA4抗体であ
るMDX-010、Medarexが開発中の抗CD30抗体であるMDX-060、M
edarexが開発中のMDX-070、Medarexが開発中のMDX-018、M
edarexおよびImmuno-Designed Moleculesが開発中の抗
Her2抗体であるOsidem(商標)(IDM-1)、MedarexおよびGen
mabが開発中の抗CD4抗体であるHuMax(商標)-CD4、Medarexおよ
びGenmabが開発中の抗IL15抗体であるHuMax-IL15、Medarex
およびCentocor/J&Jが開発中の抗TNFα抗体であるCNTO 148、C
entocor/J&Jが開発中の抗サイトカイン抗体であるCNTO 1275、Mo
rphoSysが開発中の抗細胞間接着分子接着分子-1(ICAM-1)(CD54)
抗体であるMOR101およびMOR102、MorphoSysが開発中の抗線維芽細
胞成長因子受容体3(FGFR-3)抗体であるMOR201、Protein Des
ign Labsが開発中の抗CD3抗体であるNuvion(登録商標)(ビシリズマ
ブ)、Protein Design Labsが開発中の抗γインターフェロン抗体で
あるHuZAF(商標)、Protein Design Labsが開発中の抗α5β
1インテグリン、Protein Design Labsが開発中の抗IL-12、X
omaが開発中の抗Ep-CAM抗体であるING-1、ならびにXomaが開発中の抗
β2インテグリン抗体であるMLN01、Seattle Geneticsが開発中の
pI-ADC抗体(この段落において上に引用した参考文献の全ては、参照により明示的
に本明細書に組み込まれる)を含む、他の臨床用製品および候補に実質的に類似する様々
な抗体において使用され得る。
IX.In Vivo投与のための抗体組成物 治療における本発明のpI抗体の使用は
、抗原結合成分に依存する:例えば、標準的な全長治療用抗体の場合、抗体のFvが結合
する抗原に依存する。すなわち、当業者には理解されるように、特定の疾患の治療は、分
子の多重特異性および/または半減期の増加といったさらなる利益を伴って行うことがで
きる。これにより、限定されないが、新規治療処置および機序、投薬頻度の減少(より良
好な患者コンプライアンスにつながる可能性がある)、用量の減少、ならびに生産コスト
の削減を含む様々な利益をもたらすことができる。
別の実施形態において、本発明のpIの低い変異体は、限定されないが、VEGF、An
g-2、および補体C3およびC5タンパク質(またはそれらの切断生成物C3aおよび
C5a)を含む、様々な標的に対する抗体の眼内/硝子体内投与に用いることができる。
目のpHはほぼ中性であるため、注入された治療用抗体の初期濃度が高いことと相まって
、抗体のpIが眼内環境におけるpHのpIに近づくと、溶解性が低くなる一般的なリス
クがある。この実施形態において、ヘテロ二量体は、好ましい場合もまたはそうではない
場合もある:すなわち、pIがより低いかまたはより高い重鎖のホモ二量体を使用するこ
とができ、よって投与されると高い溶解性を促進する。
本発明に従って使用される抗体の製剤は、所望の程度の純度を有する抗体を、任意選択的
な薬学的に許容される担体、賦形剤、または安定剤と混合することによって、凍結乾燥製
剤または水溶液の形態での保存向けに調製される(Remington’s Pharm
aceutical Sciences 16th edition,Osol,A.E
d.[1980])。許容される担体、賦形剤、または安定剤は、用いられる投与量およ
び濃度ではレシピエントに無毒であり、緩衝剤(リン酸、クエン酸、および他の有機酸等
);抗酸化剤(アスコルビン酸およびメチオンを含む);保存剤(オクタデシルジメチル
ベンジル塩化アンモニウム;塩化ヘキサメトニウム;塩化ベンザルコニウム、塩化ベンゼ
トニウム;フェノール、ブチルアルコールもしくはベンジルアルコール;アルキルパラベ
ン(メチルバラベンもしくはプロピルパラベン等);カテコール;レゾルシノール;シク
ロヘキサノール;3-ペンタノール;およびm-クレゾール等);低分子量(約10未満
の残基)ポリペプチド;タンパク質(血清アルブミン、ゼラチン、もしくは免疫グロブリ
ン等);親水性ポリマー(ポリビニルビロリドン等);アミノ酸(グリシン、グルタミン
、アスパラギン、ヒスチジン、アルギニン、もしくはリジン等)、単糖類、二糖類、およ
び他の炭水化物(グルコース、マンノース、もしくはデキストリンを含む);キレート化
剤(EDTA等);糖類(ショ糖、マンニトール、トレハロース、もしくはソルビトール
等);塩形成対イオン(ナトリウム等);金属錯体(例えばZn-タンパク質錯体);な
らびに/または非イオン界面活性剤(TWEEN(商標)、PLURONICS(商標)
、もしくはポリエチレングリコール(PEG)等)を含む。
本明細書における製剤はまた、治療される特定の適応症に必要な1つより多くの活性化合
物、好ましくは、互いに有害な影響を与えない相補的活性を有するものを含んでもよい。
例えば、他の特異性を有する抗体を提供することが望ましい場合がある。代替的にまたは
付加的に、組成物は、細胞傷害性剤、サイトカイン、成長阻害剤および/または小分子ア
ンタゴニストを含んでもよい。そのような分子は、意図する目的に効果的な量の組み合わ
せで好適に存在する。
活性成分はまた、例えば、コアセルベーション法によってまたは界面重合によって調製さ
れるマイクロカプセル、例えば、コロイド薬物送達系(例えば、リポソーム、アルブミン
ミクロスフェア、マイクロエマルション、ナノ粒子、およびナノカプセル)中またはマク
ロエマルション中の、ヒドロキシメチルセルロース
マイクロカプセルもしくはゼラチンマイクロカプセルおよびポリ-(メタクリル酸メチル
)マイクロカプセル中に、それぞれ封入してもよい。そのような技術は、Remingt
on’s Pharmaceutical Sciences 116th editi
on,Osol,A.Ed.(1980)に開示されている。
in vivo投与に使用される製剤は無菌またはほぼ無菌でなければならない。これは
、無菌濾過膜を通した濾過によって容易に達成される。
徐放性剤を調製してもよい。徐放性剤の好適な例として、抗体を含む固体疎水性ポリマー
の半透性マトリックスが挙げられ、該マトリックスは、成形された物品、例えばフィルム
またはマイクロカプセルの形態である。徐放性マトリックスの例として、ポリエステル、
ハイドロゲル(例えば、ポリ(2-ヒドロキシエチル-メタクリレート)、またはポリ(
ビニルアルコール))、ポリ乳酸(米国特許第3,773,919号)、L-グルタミン
酸とγエチル-L-グルタメートとのコポリマー、非分解性エチレン-酢酸ビニル、分解
性乳酸-グリコール酸コポリマー(例えば、LUPRON DEPOT(商標)(乳酸-
グリコール酸コポリマーおよびロイプロリド酢酸塩からなる注射用ミクロスフェア等)、
ならびにポリ-D-(-)-3-ヒドロキシ酪酸が挙げられる。エチレン-酢酸ビニルお
よび乳酸-グリコール酸等のポリマーは、100日間以上にわたって分子を放出すること
ができる一方で、特定のハイドロゲルは、より短い期間タンパク質を放出する。
被包された抗体が体内に長時間残存すると、37℃で湿気に曝露された結果として変性ま
たは凝集する場合があり、生物活性の喪失および免疫原性の可能性のある変化をもたらす
。関与する機構に応じて、安定化のための合理的なストラテジーを想到することができる
。例えば、凝集機構が、チオ-ジスフィド交換による分子間S--S結合の形成であるこ
とが分かった場合、スルフヒドリル残基を修飾し、酸性溶液から凍結乾燥させ、含水量を
制御し、適切な添加剤を使用し、特定のポリマーマトリックス組成物を開発することによ
って、安定化を達成することができる。
X.投与様式 本発明の抗体および化学療法剤は、既知の方法に従って、例えば、ボーラ
スとしての静脈内投与、または、筋肉内、腹腔内、脳脊髄内、皮下、関節内、滑膜内、髄
腔内、経口、局部、もしくは吸入経路による一定期間にわたる連続注入によって、対象に
投与される。抗体の静脈内投与または皮下投与が好ましい。
XI.治療様式 本発明の方法において、疾患または状態に対して好ましい治療効果を提
供するために治療が用いられる。「好ましい治療効果」とは、疾患もしくは状態における
改善、および/または疾患もしくは状態に付随する症状の改善を意味する。例えば、好ま
しい治療効果は、以下の疾患における改善のうちの1つ以上を指す:(1)腫瘍細胞数の
減少、(2)腫瘍細胞死の増加、(3)腫瘍細胞生存の阻害、(5)腫瘍増殖の阻害(す
なわち、ある程度の減速、好ましくは停止)、(6)患者生存率の増加、および(7)疾
患または状態に付随する1つ以上の症状のある程度の緩和。
任意の所与の疾患または状態における好ましい治療効果は、その疾患または状態に特有の
標準化された効果判定基準によって判定される。腫瘍の反応は、磁気共鳴画像(MRI)
走査、X線画像、コンピュータ断層撮影(CT)走査、骨スキャン画像、内視鏡検査、な
らびに骨髄穿刺(BMA)および循環する腫瘍細胞計数を含む腫瘍生検試料採取等のスク
リーニング技術を用いて、腫瘍の形態(すなわち、全体的な腫瘍負荷、腫瘍サイズ等)に
おける変化について評価することができる。
これらの好ましい治療効果に加えて、治療を受ける対象は、疾患に付随する症状の改善の
有益な効果を経験し得る。
よって、B細胞腫瘍の場合、対象は、いわゆるB症状、すなわち、寝汗、発熱、体重減少
、および/または蕁麻疹の軽減を経験し得る。前癌状態の場合、pI治療剤を用いる治療
は、関連する悪性腫瘍状態の発生、例えば、意義不明の単クローン性高ガンマグロブリン
血症(MGUS)に罹患する患者に多発性骨髄腫が発生するのを阻止し得、かつ/または
発生するまでの時間を延長し得る。
疾患における改善は、完全寛解として特徴付けることができる。「完全寛解」とは、任意
の以前の異常な放射線学的検査、骨髄および脳脊髄液(CSF)、または骨髄腫の場合は
異常なモノクローナル蛋白が正常化され、臨床的に検出可能な疾患が存在しないことを意
味する
そのような寛解は、本発明の方法に従った治療の後に、少なくとも4~8週間、または時
には6~8週間持続し得る。代替として、疾患における改善は、部分的寛解として分類さ
れてもよい。「部分的寛解」とは、新しい病変が存在しない状態で、全ての測定可能な腫
瘍負荷(すなわち、対象に存在する悪性細胞の数、または測定されたバルク腫瘍量もしく
は異常なモノクローナル蛋白の量)の少なくとも約50%の減少が、4~8週間、または
6~8週間持続し得ることを意味する。
本発明に従った治療は、使用される薬物の「治療有効量」を含む。「治療有効量」は、必
要な投与量および期間で、所望の治療結果を達成するために効果のある量を指す。
治療有効量は、固体/個人の病態、年齢、性別、および体重、ならびに固体において所望
の反応を誘導する薬物の能力等の要因に従って変化し得る。治療有効量はまた、治療的に
有益な作用が、抗体または抗体部分の任意の毒性または有害作用を上回る量でもある。
腫瘍治療の「治療有効量」はまた、疾患の進行を安定化する能力によっても測定すること
ができる。化合物が癌を阻害する能力は、ヒト腫瘍における有効性を予測する動物モデル
システムにおいて評価されてもよい。
代替として、組成物のこの特性は、当業者に既知のin vitroアッセイにより、化
合物が細胞増殖を阻害する能力またはアポトーシスを誘導する能力を調べることによって
評価されてもよい。治療用化合物の治療有効量は、腫瘍サイズを減少させることができる
か、またはさもなければ、対象の症状を改善することができる。当業者は、対象のサイズ
、対象の症状の重症度、および選択される特定の組成物または投与経路等の要因に基づい
て、そのような量を決定することができるであろう。
投薬計画は、最適な所望の反応(例えば、治療効果)を提供するように調節される。例え
ば、単回ボーラスを投与してもよいか、いくつかに分割した用量を経時的に投与してもよ
いか、または、治療状況の要件によって示される通りに用量を比例的に減少または増加し
てもよい。非経口的組成物は、投与の簡便性および投薬量の均一性のために、投薬単位剤
形に製剤化してもよい。本明細書において使用される投薬単位剤形は、治療を受ける対象
の単位投与量として適した物理的に個別の単位を指す:各単位は、必要な薬学的担体とと
もに所望の治療的効果を生じさせるように計算された所定の量の活性化合物を含む。
本発明の投薬単位剤形の規格は、(a)活性化合物に特有の特徴および達成されるべき特
定の治療的効果、ならびに(b)固体の感受性の治療に関する、そのような活性化合物を
配合する技術に固有の限界によって決定され、かつこれらに直接依存する。
本発明において使用されるpI抗体の効率的な投薬量および投薬計画は、治療される疾患
または状態に依存し、当業者によって決定され得る。
本発明において使用されるpI抗体の治療有効量の例示的な非限定的範囲は、約0.1~
100mg/kg(約0.1~50mg/kg等)、例えば約0.1~20mg/k(約
0.1~10mg/kg等)、例えば約0.5(約0.3等)、約1、または約3mg/
kgである。別の実施形態において、抗体は、1mg/kg以上の用量(1~20mg/
kgの用量等)、例えば、5~20mg/kgの用量、例えば、8mg/kgの用量で投
与される。
当該技術分野において通常の技術を有する医療従事者は、必要とされる薬学的組成物の有
効量を容易に決定し、処方することができる。例えば、医師または獣医師は、薬学的組成
物中に用いられる薬物の出発用量を、所望の治療的効果を達成するために必要なレベルよ
りも低いレベルで開始して、所望の効果を達成するまで徐々に投与量を増加することがで
きる。
一実施形態において、pI抗体は、10~500mg/kg、例えば、200~400m
g/kg等の週投与量で注入によって投与される。そのような投与は、例えば、1~8回
、例えば、3~5回等、繰り返されてもよい。投与は、2~24時間、例えば、2~12
時間等の期間にわたる持続注入によって行われてもよい。
一実施形態において、毒性を含む副作用を低減することが必要である場合、pI抗体は、
24時間超等の長期間にわたる緩徐な持続注入によって投与される。
一実施形態において、pI抗体は、250mg~2000mg、例えば、300mg、5
00mg、700mg、1000mg、1500mg、または2000mgの週投与量で
、最高8回、例えば4~6回等投与される。投与は、2~24時間、例えば2~12時間
等の期間にわたる持続注入によって行われてもよい。そのような治療計画は、例えば、6
ヶ月または12か月後に、必要に応じて1回以上繰り返されてもよい。投与量は、例えば
、生体試料を採取し、pI抗体の抗原結合領域を標的とする抗イディオタイプ抗体を使用
して、投与時に血中の本発明の化合物の量を測定することにより決定または調節されても
よい。
さらなる実施形態において、pI抗体は、2~12週間、例えば3~10週間等、例えば
4~8週間等に1回投与される。
一実施形態において、pI抗体は、維持療法によって、例えば、6ヶ月以上の期間の間週
に1回等投与される。
一実施形態において、pI抗体は、1回の抗体の注入後、放射性同位元素と複合体化され
たpI抗体の注入を含む治療計画によって投与される。治療計画は、例えば、7~9日後
に繰り返されてもよい。
非限定的な例として、本発明による治療は、単回用量、または24、12、8、6、4、
もしくは2時間ごとに分割した用量、またはそれらの任意の組み合わせを用いて、治療開
始後1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16
、17、18、19、20、21、22、23、24、25、26、27、28、29、
30、31、32、33、34、35、36、37、38、39、もしくは40日目の内
の少なくとも1つに、または代替として、1、2、3、4、5、6、7、8、9、10、
11、12、13、14、15、16、17、18、19、もしくは20週目のうちの少
なくとも1つに、約0.1~100mg/kg、例えば、1日当たり0.5、0.9、1
.0、1.1、1.5、2、3、4、5、6、7、8、9、10、11、12、13、1
4、15、16、17、18、19、20、21、22、23、24、25、26、27
、28、29、30、40、45、50、60、70、80、90、もしくは100mg
/kgの量で、またはそれらの任意の組み合わせで、抗体の1日投与量として提供されて
もよい。
いくつかの実施形態において、そのpI抗体分子は、1つ以上のさらなる治療剤、例えば
、化学療法剤と組み合わせて使用される。DNA損傷性化学療法剤の非限定的な例として
、トポイソメラーゼI阻害剤(例えば、イリノテカン、トポテカン、カンプトテシン、お
よびその類似体または代謝物、ならびにドキソルビシン);トポイソメラーゼII阻害剤
(例えば、エトポシド、テニポシド、およびダウノルビシン);アルキル化剤(例えば、
メルファラン、クロラムブシル、ブスルファン、チオテパ、イホスファミド、カルムスチ
ン、ロムスチン、セムスチン、ストレプトゾシン、ダカルバジン、メトトレキサ
ート、マイトマイシンC、およびシクロホスファミド);DNA介入物質(例えば、シス
プラチン、オキサリプラチン、およびカルボプラチン);DNA介入物質およびブレオマ
イシン等のフリーラジカルジェネレーター;ヌクレオシド模倣物(例えば、5-フルオロ
ウラシル、カペシタビン、ゲムシタビン、フルダラビン、シタラビン、メルカプトプリン
、チオグアニン、ペントスタチン,およびヒドロキシウレア)が挙げられる。
細胞の複製を妨害する化学療法剤は、パクリタキセル、ドセタキセル、および関連する類
似体;ビンクリスチン、ビンブラスチン、および関連する類似体;サリドマイド、レナリ
ドミド、および関連する類似体(例えば、CC-5013およびCC-4047);タン
パク質チロシンキナーゼ阻害剤(例えば、イマチニブメシル酸塩およびゲフィチニブ);
プロテアソーム阻害剤(例えば、ボルテゾミブ);IκBキナーゼの阻害剤を含むNF-
κB阻害剤;癌において過剰発現されるタンパク質に結合し、それによって細胞の複製を
下方制御する抗体(例えば、トラスツズマブ、リツキシマブ、セツキシマブ、およびベバ
シズマブ);ならびに癌において上方制御、過剰発現、または活性化されることが分かっ
ており、その阻害が細胞の複製を下方制御する、タンパク質または酵素の他の阻害剤を含
む。
いくつかの実施形態において、本発明の抗体は、Velcade(登録商標)(ボルテゾ
ミブ)を用いた治療の前、治療と同時に、または治療の後に、使用することができる。
本発明を例示説明するために、以下に実施例を提供する。これらの実施例は、本発明をい
ずれか特定の用途または動作理論に拘束することを意味するものではない。本発明におい
て論じられる全ての定常領域について、番号付けはKabatに記載されるようなEUイ
ンデックス(Kabat et al.,1991,Sequences of Pro
teins of Immunological Interest,5th Ed.,
United States Public Health Service,Nati
onal Institutes of Health,Bethesda(参照により
全体が組み込まれる))に従うものとする。抗体の技術分野の当業者は、この慣習が、免
疫グロブリン配列の特定の領域における不連続な番号付けから構成され、免疫グロブリン
ファミリーの保存された位置に対する正規化参照を可能にすることを認識するであろう。
したがって、EUインデックスによって定義されるような任意の所与の免疫グロブリンの
位置は、必ずしもその連続的な配列に対応しない。
実施例1.pIを低下させるための非天然荷電置換の設計 定常ドメインにおいて置換を
改変することにより、より低いpIを有するように抗体の定常鎖を修飾した。pIの低下
は、塩基性アミノ酸(KまたはR)から酸性アミノ酸(DまたはE)に置換を行うことに
より改変することができ、それによりpIの最も大幅な低下がもたらされる。また、塩基
性アミノ酸から中性アミノ酸へ、および中性アミノ酸から酸性アミノ酸への突然変異によ
っても、pIの低下がもたらされる。アミノ酸のpK値の一覧は、Bjellqvist
et al.,1994,Electrophoresis 15:529-539の
表1に見出だすことができる。
Fc領域とは異なり、抗体の薬理学的特性に影響を及ぼす天然リガンドと相互作用しない
ため、抗体のCH1(Cγ1)およびCL(CκまたはCK)領域(配列を図1に示す)
において置換を検討することを選択した。どの位置を突然変異させるかを決定する際に、
置換または置換のセットが構造および/または機能に及ぼす影響を最小限に抑えるために
、周囲環境およびWTアミノ酸がその周辺構造と接触する回数を考慮に入れた。各CH1
およびCKの位置の溶媒露出度または露出の割合は、抗体Fabドメインの関連する結晶
構造を用いて計算した。Cγ1およびCKについての結果を、それぞれ図2および3に示
す。免疫グロブリンのアイソタイプ(IgG1、IgG2、IgG3、およびIgG4)
間のアイソタイプである位置についてCH1およびCLドメインを調べることにより、さ
らに設計を誘導した。そのような変動は自然に起こるため、そのような位置は置換を受け
入れられることが予測される。この分析に基づいて、pIを低下させるが、ドメインの生
物物理学的特性には最小限の影響を及ぼすことが予測される、多くの置換を特定した。
実施例2.より低いpIを有する改変CH1およびCK領域を有する抗VEGF抗体 抗
体のpIを低下させるために、IgG1抗体のCH1およびCKドメインにおいてアミノ
酸修飾を改変した。上記分析に基づいて、重鎖CH1のために選択された置換は、119
E、133E、164E、205E、208D、および210Eであり、軽鎖Cκの置換
のための置換は、126E、145E、152D、156E、169E、および202E
であった。これらの変異体定常鎖は、それぞれ、IgG1-CH1-pI(6)およびC
K-pI(6)と称され、これらのアミノ酸配列を図4に提供する。
血管内皮増殖因子(VEGF)を標的とする抗体に関連して、CH1およびCK変異体を
改変した。重鎖および軽鎖可変領域(VHおよびVL)は、ベバシズマブ(Avasti
n(登録商標))とも称される抗体A4.6.1のヒト化型のものであり、様々な癌の治
療のために承認されている。これらの可変領域配列を図5に提供する。低pI置換を含む
抗VEGF抗体変異体は、XENP9493ベバシズマブ-IgG1-CH1-pI(6
)-CK-pI(6)と称され、この抗体の重鎖および軽鎖のアミノ酸配列を図6に提供
する。CH1-pI(6)の6つの置換およびCK-pI(6)の6つの置換を示すFa
bドメインの構造モデルを図7に示す。WT抗VEGF(ベバシズマブ)のpI計算値は
8.14である。改変された抗VEGFのCH1変異体のpI計算値は6.33であり、
抗VEGFのCK変異体では6.22である。重鎖および軽鎖のpIを改変した抗VEG
F変異体をコトランスフェクトする場合、全長抗VEGF mAbは、5.51のpI計
算値を有する。
哺乳動物発現ベクターpTT5に、抗VEGF抗体の重鎖および軽鎖をコードする遺伝子
を構築した。IMAGEクローンからヒトIgG1定常鎖遺伝子を入手し、pTT5ベク
ターにサブクローニングした。抗VEGF抗体をコードするVHおよびVL遺伝子を商業
的に合成し(Blue Heron Biotechnologies、Bothell
WA)、適切なCLおよびIgG1定常鎖をコードするベクターにサブクローニングし
た。QuikChange(登録商標)部位特異的変異誘発法(Stratagene、
La Jolla CA)を使用する部位特異的変異誘発を用いてアミノ酸修飾を構築し
た。全てのDNAを配列決定して配列の忠実度を確認した。
リポフェクタミン(Invitrogen、Carlsbad CA)を使用して、重鎖
遺伝子(VH-Cγ1-Cγ2-Cγ3)を含むプラスミドを軽鎖遺伝子(VL-Cκ)
を含むプラスミドとともに293E細胞にコトランスフェクトし、FreeStyle
293培地(Invitrogen、Carlsbad CA)中で増殖させた。増殖か
ら5日後、MabSelect樹脂(GE Healthcare)を使用して、プロテ
インAの親和性により培養上清から抗体を精製した。ビシンコニン酸(BCA)アッセイ
(Pierce)により抗体濃度を決定した。
Agilent Bioanalyzer上のSDS PAGE(図8)、分子ふるいク
ロマトグラフィー(SEC)(図9)、等電点電気泳動(IEF)ゲルを用いた電気泳動
(図10)、Biacoreによる抗原VEGFへの結合(図11)、および示差走査熱
量測定(DSC)(図12)によって、pIを改変した抗VEGF mAbを特徴付けた
。全てのmAbは、SDS-PAGEおよびSECで高い純度を示した。IEFゲルは、
各変異体が設計された等電点を有することを示した。BiacoreでのVEGF結合分
析は、pIを改変した抗VEGFがベバシズマブと同様の親和性でVEGFに結合したこ
とを示し、設計された置換がmAbの機能を乱さなかったことが示された。DSCは、C
H1およびCLの両方に改変された置換を有する抗VEGF変異体が、Tm 71.9℃
の高い熱安定性を有することを示した。
マウスFcRnのホモ接合ノックアウト、およびヒトFcRnのヘテロ接合ノックイン(
mFcRn-/-、hFcRn)であるB6マウス(本明細書においてhFcRnまた
はhFcRnマウスと称される)において薬物動態実験を行った(Petkova e
t al.,2006,Int Immunol 18(12):1759-69(参照
により全体が組み込まれる))。調べた試料は、親IgG1/2定常領域、IgG1_C
H-CL_pI_engと称されるpI5.51のpIを改変した変異体、およびヒトF
cRnに対する親和性を向上させる置換N434Sを含むIgG1/2のFc変異型を含
んでいた。
体重(20~30gの範囲)によって無作為割り当てした4~7匹のメスマウスの群に、
抗VEGF抗体の単回静脈内尾静脈注射(2mg/kg)を行った。各時点で眼窩叢から
血液(約50ul)を採血し、血清に処理し、分析まで-80℃で保存した。抗体濃度は
ELISAアッセイを用いて決定した。抗体の血清濃度は、組換えVEGF(VEGF-
165、PeproTech、Rocky Hill,NJ)を捕捉試薬として使用して
測定し、検出は、ビオチン化抗ヒトκ抗体およびユーロピウムで標識したストレプトアビ
ジンを用いて実行した。時間分解蛍光シグナルを収集した。WinNonLin(Pha
rsight Inc、Mountain View CA)を使用した非コンパートメ
ントモデルを用いて、個々のマウスについてPKパラメータを決定した。均一な重み付け
時点で、公称時間および用量を使用した。
結果を図13に示す。血清からの抗体の除去を特徴付けるβ相を意味する適切な半減期(
t1/2)の値を表1に示す。CH1およびCLにpIを減少させる置換を含むpIを改
変した変異体は、半減期を7.4日に延長し、IgG1/2と比較して約2.6倍向上し
た。pIを改変した変異体は、Fc変異型N434Sに相当する半減期を有していた。抗
体およびFc融合体の半減期を延長するために、pIを減少させ、FcRnに対する親和
性を向上させる抗体変異体の組み合わせが企図される。
Figure 0007022162000005
実施例3.IgG定常領域のPK分析 上述のように、huFcRnマウスにおいてベバ
シズマブのIgG1およびIgG2アイソタイプ型のPK試験を実行した。4つの別個の
PK試験からのIgG1の結果を図14に示す。4つの試験からの半減期は、3.0、3
.9、2.8、および2.9日であり、平均半減期は3.2日であった。IgG2試験か
らのPKの結果を図15に示す。IgG2の半減期は5.9日であった。
IgG1およびIgG2のPKの結果を、IgG1/2およびベバシズマブのpI改変型
からの結果を用いて分析した。表2は、抗体の半減期とともにそれらのpI計算値を示す
。これらのデータを図16にプロットする。
Figure 0007022162000006
抗体の半減期とpIとの間に相関関係が観察された。これらのデータは、等電点の低下の
ための重鎖および軽鎖定常領域を含む抗体の定常鎖の改変が、可能性として、抗体および
Fc融合体の血清半減期を延長するための一般化できる新規手法であることをさらに示唆
するものである。
実施例4.定常領域のpI改変への改変手法 抗体またはタンパク質のpIの低下は、様
々な手法を用いて実行することができる。最も基本的なレベルでは、高いpKaを有する
残基(リジン、アルギニン、またある程度のヒスチジン)が中性または陰性の残基で置き
換えられ、かつ/または中性残基がpKaの低い残基(アスパラギン酸およびグルタミン
酸)で置き換えられる。特定の置き換えは、構造内の位置、機能における役割、および免
疫原性を含む様々な要因に依存し得る。
免疫原性が懸案事項であるため、pIを低下させる置換が免疫原性を誘発するリスクを最
小限に抑えるための努力を行うことができる。リスクを最小限に抑えるための1つの方法
は、変異体の変異負荷を最小限に抑えること、すなわち、最小限の数の突然変異を用いて
pIを低下させることである。K、R、またはHがDまたはEで置き換えられる電荷交換
突然変異は、pIの低下に最も大きな影響を与えるため、これらの置換が好ましい。免疫
原性のリスクを最小限に抑える一方でpIを低下させるための別の手法は、相同なヒトタ
ンパク質からの置換を用いることである。よって、抗体の定常鎖の場合、IgGのサブク
ラス(IgG1、IgG2、IgG3、およびIgG4)間のアイソタイプの違いが、リ
スクの低い置換を提供する。免疫認識は局所的な配列レベルで起こるため、すなわち、M
HC IIおよびT細胞受容体が典型的には9残基長のエピトープを認識するため、pI
を変化させる置換は、配列において近接するアイソタイプの置換によって達成することが
できる。このように、天然のアイソタイプにマッチするようにエピトープを伸長すること
ができる。よって、そのような置換は、他のヒトIgGアイソタイプに存在するエピトー
プを構成し、寛容化されることが予想される。
図17は、IgGサブクラスのアミノ酸配列アラインメントを示す。四角く囲った残基は
、IgG間でのアイソタイプの違いを示す。より高いpIに寄与する残基(K、R、およ
びH)またはより低いpIに寄与する残基(DおよびE)が太字で強調されている。pI
を低下させるか、または天然のアイソタイプにマッチするようにエピトープを伸長させる
かのいずれかである、設計された置換をグレーで示す。
図18は、CKおよびCλ定常軽鎖のアミノ酸配列を示す。CκとCλとの間の相同性は
、IgGサブクラス間ほど高くない。それにもかかわらず、置換を誘導するためにアライ
ンメントが用いられてもよい。より高いpIに寄与する残基(K、R、およびH)または
より低いpIに寄与する残基(DおよびE)が太字で強調されている。グレーは、等電点
を低下させるために、好ましくはアスパラギン酸またはグルタミン酸で置換されてもよい
リジン、アルギニン、およびヒスチジンを示唆する。
タンパク質および抗体をより低いpIに改変する別の手法は、負荷電残基をNまたはC末
端に融合することである。よって、例えば、主にアスパラギン酸およびグルタミン酸から
なるペプチドを、抗体の重鎖、軽鎖、または両方のN末端またはC末端に融合してもよい
。N末端は、構造的に抗原結合部位に近いため、C末端が好ましい。
記載した改変手法に基づいて、抗体の重鎖および軽鎖の両方の等電点を低下させるために
多くの変異体を設計した。重鎖変異体は、アイソタイプの置換およびC末端負荷電ペプチ
ドの様々な組み合わせを含む。陰性IgG1と比較して、変異体は、G137E、G13
8S、S192N、L193F、I199T、N203D、K214T、K222Tから
なる群から1つ以上のアイソタイプの置換、221~225DKTHTのVE、H268
Q、K274Q、R355Q、N384S、K392N、V397M、Q419Eへの置
換、およびK447の欠失(K447#と称される)を含む:番号付けはEUインデック
スに従う。軽鎖変異体は、非アイソタイプの置換およびC末端負荷電ペプチドの様々な組
み合わせを含む。Cκ変異体は、K126E、K145E、N152D、S156E、K
169E、およびS202Eからなる群からの1つ以上の置換を含む:番号付けはEUイ
ンデックスに従う。
変異体重鎖の配列を図19に提供し、変異体軽鎖の配列を図20に提供する。表3は、定
常重鎖、定常軽鎖のpI計算値、および抗VEGF抗体ベバシズマブの可変領域(Fv)
を含む全長モノクローナル抗体(mAb)のpIとともに、構築した変異体を列挙する。

Figure 0007022162000007
Bev=抗VEGF抗体ベバシズマブの可変領域mAb pI=ベバシズマブのF
vを含む全長モノクローナル抗体のpI
実施例5.pI改変の電荷依存性の決定およびFcRnへの結合を強化するFc変異体と
の潜在的な組み合わせ pIの低さと半減期の伸長との間の関係の2つの局面を調べるた
めに、一連の新しいpIを改変した変異体を生成した。最初に、9493 IgG1-p
I(12)変異体に基づいて、制御された変異体のセットを作製することにより、電荷の
パラメータを調べた。これらの変異体、10017、10018、および10019を、
それらのpI、ならびにベバシズマブIgG1 WTと比較した正荷電残基および負荷電
残基における違いとともに表4に記載する。
Figure 0007022162000008
CH1-pI(6)=S119E K133E T164E K205E N208D
K210ECk-pI(6)=K126E K145E N152D S156E K1
69E S202EFv=ベバシズマブで計算したpI
本明細書にける実験的根拠は次の通りである。半減期の改善のための全ての機構が正電荷
の除去に基づいている場合、10018および10019は9493と同じくらい良好で
あるべきであり、一方では10017が伸長されないであろう。機構が負電荷の増加に基
づいている場合、10018は伸長せず、一方では10017および10019は、Ig
G1と比較すると伸長されるが、9493よりは短い、同等の半減期を有する。全体的な
pI(または荷電状態)が基本である場合、結果は9493>10019>10017=
10018となる。
半減期改善の2つの機構、荷電状態、およびFcRnが適合するかどうかを調べるために
、電荷制御変異体セットに加えて、9493 IgG1-pI(12)変異体を、pH6
.0でFcRnへの結合を向上させる置換と組み合わせた。これらの変異体9992 I
gG1-pI(12)-N434Sおよび9993 IgG1-pI(12)-M428
L/N434Sを表4に列挙する。
上述のような分子生物学技術を使用して、ベバシズマブの可変領域を用いて抗体変異体を
構築した。上述のように抗体を発現させ、精製し、性質決定した。上述のように、huF
cRnマウスにおいて変異体および対照抗体のPK試験を実行した。血清濃度の群平均を
、適合するデータから得られた半減期とともに図21および22にプロットする。
結果は、正電荷の減少および負電荷の増加の両方が半減期の改善に寄与することを示した
。さらに、結果は、半減期をさらに一層向上させるために、改変されたより低いpIとF
cRnへの結合の増加を組み合わせて用いることができることを示した。huFcRnマ
ウスにおいて調べた同等のFv(ベバシズマブ)の変異体および天然IgGについて、半
減期対pIの関係のプロットを図23に提供する。グラフは、ここでも同様に、半減期と
pIとの間の反比例関係、およびより低いpIのために改変された変異体とFcRnへの
結合を向上させるFc変異体との組み合わせ性を示す。
実施例6. pIを改変した新しい構築物 上述のように、IgGのサブクラス(IgG
1、IgG2、IgG3、およびIgG4)間のアイソタイプの違いを利用することによ
り、pIを低下させる置換が免疫原性を誘発するリスクを最小限に抑えるための努力を行
うことができる。この原理に基づいて新規アイソタイプの新しいセットを設計した。ここ
でも同様に、免疫認識が局所的な配列レベルで起こるため、すなわち、MHC IIおよ
びT細胞受容体が典型的には9残基長のエピトープを認識するため、pIを変化させる置
換が、配列内で近接するアイソタイプの置換を伴った。このように、天然のアイソタイプ
にマッチするようにエピトープを伸長した。よって、そのような置換は、他のヒトIgG
アイソタイプに存在するエピトープを構成し、寛容化されることが予想される。
IgG-pI-Iso2、IgG-pI-Iso2-SL、IgG-pI-Iso2-電
荷のみ、IgG-pI-Iso3、IgG-pI-Iso3-SL、およびIgG-pI
-Iso3-電荷のみと称される設計した低pIアイソタイプを、それらのpIおよびエ
フェクター機能特性とともに表5に記載する。図24は、天然のIgGアイソタイプとと
もにIgG-pI-Iso3の配列アラインメントを提供し、残基同一性、および天然I
gGアイソタイプのうちの1つ以上と比較してpIを低下させる残基を示す。図25およ
び26は、IgG1とIgG-pI-Iso3との間の構造上の違いを示す。IgG-p
I-Iso2、IgG-pI-Iso2-SL、およびIgG-pI-Iso2-電荷の
みは、ヒンジ(233P、234V、235A)およびCH2ドメイン(327G)中の
IgG2様残基によって確認されるように、低い(弱い)エフェクター機能を有するよう
に設計した。IgG-pI-Iso3、IgG-pI-Iso3-SL、およびIgG-
pI-Iso3-電荷のみは、ヒンジ(233E、234L、235L、236G)およ
びCH2ドメイン(327A)中のIgG1様残基によって確認されるように、高い(強
い)エフェクター機能を有するように設計した。「SL」と指定されたアイソタイプの低
pI変異体は、これらの変異体が192Sおよび193Lを有することによりIgG-p
I-Iso2およびIgG-pI-Iso3と異なることを示唆する。これらの位置のセ
リンおよびロイシンは、IgG1およびIgG2に存在する周辺残基における違いのため
に、192N/193Fよりも適合性が高いことが分かった。「電荷のみ」と表される低
pIアイソタイプ変異体は、電荷に影響を与えるアイソタイプの置換を含むが、周辺の電
荷を変化させない置換は含まない。新規アイソタイプは、天然の軽鎖定常領域(Cκもし
くはCλ)、またはpIをさらに低下させるための置換を用いて改変された変異型と組み
合わせることができる。pIを改変した定常軽鎖の例は、図27に概略的に示される、C
K-pI(4)と称される新しい変異体である。さらに、新規アイソタイプは、FcRn
に対する親和性を向上させるFc変異体を用いてFcすることができ、それによってさら
に半減期を延長することができる。そのようなFc変異体は、例えば、表5に記載される
ような434Sもしくは428L/434S、または本明細書に記載されるような他のF
c変異体を含んでもよい。IgG-pI-Iso2、IgG-pI-Iso2-SL、I
gG-pI-Iso2-電荷のみ、IgG-p
I-Iso3、IgG-pI-Iso3-SL、IgG-pI-Iso3-電荷のみ、お
よびCK-pI(4)のアミノ酸配列を図28に提供する。
Figure 0007022162000009
SL=192S/193LCK-pI(4)=K126E/K145E/K169E/K
207EFv=ベバシズマブで計算したpI
新規改変アイソタイプを他のFc変異体と組み合わせて、延長された半減期および他の改
善された特性を有する抗体またはFc融合体を生成することができる。例えば、強化され
たエフェクター機能または免疫調節特性を提供するために、IgG-pI-Iso2-S
Lおよび/またはIgG-pI-Iso3-SLに、FcγRへの結合を調節する変異体
239D、332E、267E、および/または328Fを組み込んでもよい。新規アイ
ソタイプは、例えば、428L、428L/434S、T250Q/M428L、M25
2Y/S254T/T256E、およびN434A/T307Qを含む、FcRnへの結
合を向上させる他のFc変異体と組み合わされてもよく、それによって可能性としてin
vivo 半減期をさらに延長する。例示的な重鎖を表6に記載する。そのような変異
体は、天然の定常軽鎖(CKもしくはCλ)を有する軽鎖、または、例えば、本明細書に
記載される改変された定常軽鎖(例えばCK-pI(4)を含む)のうちのいずれかを含
む、pIを低下させる定常軽鎖修飾を組み込んだ軽鎖を用いて発現させてもよい。
Figure 0007022162000010
pIをさらに低下させるために、電荷交換突然変異(すなわち、KおよびRが、上述のよ
うにDまたはEで置き換えられた)を導入することにより変異負荷を最小限に抑えるよう
に、低いpIを有するさらなる変異体定常重鎖を設計した。これらの変異体の設計を補助
するために、露出の割合、ならびにFc領域内の各KおよびR残基について、Gluに置
換した時のエネルギーの変化を計算した(図29)。これらの新しい変異体は、pI(7
)およびpI(11)と称される。pI(7)には、アミノ酸修飾K133E、K205
E、K210E、K274E、R355E、K392Eと、447でのLysの欠失とを
組み込み、pI(11)には、アミノ酸修飾K133E、K205E、K210E、K2
74E、K320E、K322E、K326E、K334E、R355E、K392Eと
、447でのLysの欠失とを組み込んだ。これらの修飾を定常重鎖に導入し、強いエフ
ェクター機能を有する抗体IgG1-pI(7)およびIgG1-pI(11)と、弱い
エフェクター機能を有する抗体IgG1/2-pI(7)およびIgG1/2-pI(1
1)とを生じさせた。図30を見ると分かるように、mAbのpIが低くなると、pIを
さらに低下させるためにより多数の電荷交換置換が必要となる。これらのpIを改変した
変異体を表7に記載し、アミノ酸配列を図28に提供する。
Figure 0007022162000011
IgG1-pI(7)=K133E/K205E/K210E/K274E/R355E
/K392E/K447#IgG1-pI(11)=K133E/K205E/K210
E/K274E/K320E/K322E/K326E/K334E/R355E/K3
92E/K447#IgG1/2-pI(7)=K133E/K205E/K210E/
Q274E/R355E/K392E/K447#IgG1/2-pI(11)=K13
3E/K205E/K210E/Q274E/K320E/K322E/K326E/K
334E/R355E/K392E/K447#CK-pI(4)=K126E/K14
5E/K169E/K207EFv=ベバシズマブで計算したpI
上述のような分子生物学技術を使用して、ベバシズマブの可変領域を用いて抗体変異体を
構築した。上述のように抗体を発現させ、精製し、性質決定した。上述のように、huF
cRnマウスにおいて変異体および対照抗体のPK試験を実行した。血清濃度の群平均を
、適合するデータから得られた半減期とともに図31および32にプロットする。個々の
マウスについて半減期を図33にプロットする。図34に示すような半減期対pIのプロ
ットによって示されるように、データは、アイソタイプpI変異体からの低いpIおよび
N434S置換からのFcRn結合の強化の相加性を明らかに実証している。
実施例7.アイソタイプ軽鎖定常領域変異体 (図18に示すように)CKとCλとの間
の相同性は、IgGサブクラス間ほど高くないが、配列および存在する構造上の相同性は
、アイソタイプ低pI軽鎖定常領域を作製するための置換を誘導するためになおも使用さ
れ得る。図18では、より高いpIに寄与する残基(K、R、およびH)またはより低い
pIに寄与する残基(DおよびE)を有する位置が太字で強調されている。グレーは、等
電点を低下させるために、好ましくは、アスパラギン酸またはグルタミン酸で置換されて
もよいリジン、アルギニン、およびヒスチジンを示す。いくつかのCK/Cλアイソタイ
プ変異体を作製するためのガイドとして、CKおよびCλの構造アラインメントを構築し
(図35)、配列アラインメントとともに使用した。これらのpIを改変した変異体を表
8に記載し、アミノ酸配列を図28に提供する。
Figure 0007022162000012
上述のような分子生物学技術を使用して、ベバシズマブの可変領域を用いて抗体変異体を
構築した。上述のように抗体を発現させ、精製し、性質決定した。上述のように、huF
cRnマウスにおいて変異体および対照抗体のPK試験を実行した。血清濃度の群平均、
およびこれらの変異体(XENP10519-IgG-pI-Iso3-SL-434S
-CK-Iso(5))のうちの1つについて適合するデータから得られた半減期を図3
2にプロットし、個々のマウスについての半減期を図33にプロットした。この変異体は
、図34に示される相関プロットにも含まれる。CK-Iso(5)軽鎖に起因するより
低いpIの利点が明らかに示されている。
実施例8.調節した等電点を有する抗体変異体の混合物の精製 分析および精製を容易に
するために、抗体の等電点を調節する置換が、抗体変異体の1つ以上の鎖の中に導入され
てもよい。例えば、米国特許出願第2011/0054151A1号に記載されるもの等
のヘテロ二量体抗体は、1つの鎖の等電点を調節することによって精製することができ、
そのため、発現後およびプロテインAの精製後に存在する複数の種を、イオン交換クロマ
トグラフィー等の電荷の違いに基づいてタンパク質を分離する方法によって精製すること
ができる。2つの異なる重鎖―1つは未修飾のIgG1であり、1つは調節された等電点
を有する―を使用するプロセスの概要を図38に示す。
一例として、WT-IgG1-HC、低pI-HC、およびWT-LCを293E細胞に
トランスフェクトした時に、3つの種の間の電荷の違いが、陰イオン交換クロマトグラフ
ィーによる精製を容易にするのに十分大きくなるように、ベバシズマブの重鎖を、その等
電点を低下させるための置換を導入することにより修飾した。上述のようにクローンを作
製し、トランスフェクションおよびプロテインAクロマトグラフィーによる最初の精製も
上述の通りである。3つの鎖の配列を「XENP10653の重鎖1」、「XENP10
653の重鎖2」、および「XENP10653の軽鎖」として図39に列挙する。プロ
テインAの精製後、ほぼ同一の分子量を有するが、異なる電荷を有する3つの種が得られ
る。これらは、WT-IgG1-HC/WT-IgG1-HCホモ二量体(pI=8.1
2)、WT-IgG1-HC/低pI-HCヘテロ二量体(pI=6.89)、および低
pI-HC/低pI-HCホモ二量体(pI=6.20)である。混合物を20mM T
ris(pH7.6)中のGE HiTrap Q HPカラムに負荷し、同じTris
緩衝液中の50mM、100mM、そして最後に200mMのNaClからなるNaCl
の段階的勾配を用いて溶出した。A280により溶出を監視し、Novex泳動用緩衝液
を用いてInvitrogen pH 3-10 IEFゲル上で各画分を分析し、これ
らの結果を図40に示す。WT-IgG1-HC/WT-IgG1-HCホモ二量体は、
pH7.6の陰イオン交換カラムには結合せず、したがってフロースルーおよび洗浄液に
存在する(レーン1~2)。所望のヘテロ二量体は、50mM NaClで溶出し(レー
ン3)、低pI-HC/low-pI-HCホモ二量体は、100mM(レーン4)およ
び200mM(レーン5)のNaClで最も密接に結合して溶出する。このように、他の
2つの種と分子量が類似しているために他の手段による精製が困難である所望のヘテロ二
量体変異体が、1つの鎖に低pI置換を導入することによって容易に精製される。各鎖の
等電点を改変することによって抗体を精製するこの方法は、図41および図42に概要が
示されるように、種々の二重特異性抗体構築物を精製する方法に適用することができる。
この方法は、混合物中の所望の種が同様の分子量および他の特性を有するため、通常の精
製技術では所望の種を高収率で分離することができない場合に、特に有用である。容易な
精製のために改変された等電点を有する特定のヘテロ二量体構築物および/または二重特
異性構築物と配列を、表9および10、ならびに図39にそれぞれ示す。
Figure 0007022162000013
Figure 0007022162000014
実施例9.pIを変化させるための非天然荷電置換の設計 定常ドメインにおいて置換を
改変することにより、抗体の定常鎖のpIを変化させた。pIの低下は、塩基性アミノ酸
(KまたはR)から酸性アミノ酸(DまたはE)に置換を行うことにより改変することが
でき、最も大幅なpIの低下がもたらされる。また、塩基性アミノ酸から中性アミノ酸へ
、および中性アミノ酸から酸性アミノ酸への突然変異によっても、pIの低下がもたらさ
れる。反対に、pIの増加は、酸性アミノ酸(DまたはE)から塩基性アミノ酸(Kまた
はR)に置換を行うことにより改変することができ、最も大幅なpIの増加がもたらされ
る。酸性アミノ酸から中性アミノ酸へ、および中性アミノ酸から塩基性アミノ酸への突
然変異によっても、pIの増加がもたらされる。アミノ酸のpK値の一覧は、Bjell
qvist et al.,1994,Electrophoresis 15:529
-539の表1に見出だすことができる。
どの位置を突然変異させるかを決定する際に、置換または置換のセットが構造および/ま
たは機能に及ぼす影響を最小限に抑えるために、周囲環境およびWTアミノ酸がその周辺
構造と接触する回数を考慮に入れた。各定常領域の位置の溶媒露出度または露出の割合は
、関連する結晶構造を用いて計算した。その結果を図43に示す。この分析に基づいて、
pIを低下または増加が、ドメインの生物物理学的特性には最小限の影響を及ぼすことが
予測される、多くの置換を特定した。ベバシズマブに関連して概念実証の結果を図44~
47(重鎖)および図48~51(軽鎖)に示す。
次のようにタンパク質のpIの計算を行った。最初に、D、E、C、H、K、R、および
Yアミノ酸の数、ならびにタンパク質中に存在するNおよびC末端の数を数えた。次に、
タンパク質が全体としてゼロの電荷を有するpHを特定することによりpIを計算した。
これは、多くの試験pH値でタンパク質の正味電荷を計算することにより行った。試験p
H値は、タンパク質の電荷がゼロに達するかまたはゼロを超えるまで、低いpH0から高
いpH14まで0.001ずつ漸増して反復的に設定した。次の式を用いて、所与のpH
でのタンパク質の正味電荷を計算した:
Figure 0007022162000015
式中、
Figure 0007022162000016
は、所与のpHでのタンパク質の正味電荷であり、
Figure 0007022162000017
は、タンパク質中に存在するアミノ酸
Figure 0007022162000018
(またはNもしくはC末端)の数であり、
Figure 0007022162000019
は、アミノ酸
Figure 0007022162000020
(またはNもしくはC末端)のpKである。
実施例10.アイソタイプ定常領域変異体 上記のように、IgGのサブクラス(IgG
1、IgG2、IgG3、およびIgG4)間のアイソタイプの違いを利用することによ
り、pIを増加または低下させる置換が免疫原性を誘発するリスクを最小限に抑えるため
の努力を行うことができる。この原理に基づいて新規アイソタイプの新しいセットを設計
した。可能な場合、pIを変化させる置換には、配列内で近接するアイソタイプの置換を
付随させた。このようにして、天然のアイソタイプにマッチするようにエピトープを伸長
した。よって、そのような置換は、他のヒトIgGアイソタイプに存在するエピトープを
構成し、寛容化されることが予想される。これらの新しい変異体は、ISO(-)、IS
O(+)、およびISO(+RR)と称される。ISO(-)は低いpIを有し、一方、
ISO(+)およびISO(+RR)は高いpIを有する。IgG1、IgG2、IgG
3、およびIgG4におけるアイソタイプ変異体、ならびに新しいアイソタイプpI変異
体の配列を示す配列アラインメントを図52に示す。また、これらの新しい変異体の配列
を、単独で、かつ抗VEGF抗体に関連して示す(図53~57)。IgG1、IgG2
、IgG3、およびIgG4に由来するpIを低下させるアイソタイプ突然変異の全ての
可能な組み合わせを図58に示す。pIを増加させるアイソタイプ突然変異の全ての可能
な組み合わせを図59に示す。
実施例11.調節した等電点を有する抗体変異体の混合物の精製。 前述のように、分析
および精製を容易にするために、抗体の等電点を調節する置換が抗体変異体の1つ以上の
鎖の中に導入されてもよい。これは、ヘテロ二量体とホモ二量体との混合物を生成するヘ
テロ二量体構築物および/または二重特異性構築物の場合のように、非常に類似する種の
混合物を含む抗体を調製する時に特に有用である。対応するホモ二量体からの、ほぼ同一
の抗体ヘテロ二量体種の精製を実証するために、我々は、抗体ベバシズマブに関連して、
アイソタイプのpI変異体を構築した。2つの異なる重鎖DNA(ISO(-)、ISO
(+)、ISO(+RR)、またはIgG1(WT))をベバシズマブの軽鎖でトランス
フェクトすることにより変異体を構築した。変異体は、最初にプロテインAにより精製し
、次いで、50mM MES(pH6.0)中のGE Healthcare HiTr
ap SP HP陽イオン交換カラムに負荷し、NaClの勾配で溶出した。溶出後、各
ピークからの画分を分析のためにLonza IsoGel IEFプレート(pH範囲
7~11)に負荷した。図60~63にデータを示す。各場合において中央のpIヘテロ
二量体の分離が達成され、ヘテロ二量体がホモ二量体とのより大きいpI差を有する場合
に分離が向上した。
実施例12.調節した等電点を有する免疫グロブリン変異体の混合物の設計。 各鎖の等
電点を改変することによって抗体を精製するこの方法は、種々の二重特異性抗体構築物を
精製する方法に適用することができる。この方法は、混合物中の所望の種が同様の分子量
および他の特性を有するため、通常の精製技術では所望の種を高収率で分離することがで
きない場合に、特に有用である。一般的なヘテロ二量体免疫グロブリン変異体の略図を図
64に示す。ヘテロ二量体免疫グロブリン変異体は、それらの鎖のうちの1つ以上にVH
またはVL可変領域を含んでもよい。ヘテロ二量体免疫グロブリン変異体の構築に使用す
ることができるVHおよびVL領域のいくつかの例を図65に列挙する。容易な精製のた
めに改変された等電点を有する特定のヘテロ二量体構築物および/または二重特異性構築
物と配列を図66~79に示す。
実施例13.調節した等電点を有する二重特異性免疫グロブリン変異体の混合物の精製.
対応するホモ二量体からの、ほぼ同一の二重特異性ヘテロ二量体種の精製をさらに実証
するために、我々は、抗CD19×抗CD3二重scFv-Fc(XENP11355、
図80を参照)、抗CD19×抗CD32b二重scFv-Fc(XENP11139、
図82を参照)、および第2の抗CD19×抗CD3二重scFv-Fc(XENP11
338、図84を参照)に関連して、アイソタイプpI変異体を構築した。変異体は、2
つの異なる重鎖DNA(ISO(-)、ISO(+)、またはISO(+RR))を共ト
ランスフェクトすることにより構築した。変異体は、最初にプロテインAにより精製し、
次いで50mM MES(pH6.0)中のGE Healthcare HiTrap
SP HP陽イオン交換カラムに負荷し、NaClの勾配で溶出した。溶出後、各ピー
クからの画分を分析のためにLonza IsoGel IEFプレート(pH範囲3~
10)に負荷した。図81、83、および85にデータを示す。データから分かるように
、各場合において中央のpIヘテロ二量体の効率的な分離が達成されている。
実施例14.調節した等電点を有する単一特異性一価免疫グロブリン変異体の混合物の精
製 対応するホモ二量体からの、ほぼ同一の単一特異性一価ヘテロ二量体種の精製をさら
に実証するために、我々は、一価性抗CD40mAb(XENP11233、図86を参
照)および1アーム抗CD40mAb(XENP11238、図88を参照)に関連して
、アイソタイプpI変異体を構築した。変異体は、2つの異なる重鎖DNA(ISO(-
)、ISO(+)、またはISO(+RR))をコトランスフェクトすることにより構築
した。変異体は、最初にプロテインAにより精製し、次いで分析のためにLonza I
soGel IEFプレート(pH範囲3~10)に負荷した。図86および88にデー
タを示す。データから分かるように、各場合において中央のpIヘテロ二量体の効率的な
分離が達成されている。

Claims (8)

  1. a)第1のヒトIgG1重鎖定常ドメインを含む第1のモノマーであって、前記第1のヒトIgG1重鎖定常ドメインが、Kabatに記載のEUインデックスによるK274Q、R355Q、Q419EおよびK447delのアミノ酸置換を含む変異体ヒトIgG1重鎖定常ドメインである、第1のモノマーと;
    b)第2のヒトIgG1重鎖定常ドメインを含む第2のモノマーと;
    を含
    前記第1のモノマーと、前記第2のモノマーのpIが、少なくとも0.1log離れている、ヘテロ二量体タンパク質。
  2. 前記第2の重鎖定常ドメインが、野生型の重鎖定常ドメインである、請求項に記載のヘテロ二量体タンパク質。
  3. 前記第2の重鎖定常ドメインが野生型の親重鎖定常ドメインと比較してアミノ酸修飾を含む変異体重鎖定常ドメインである、請求項に記載のヘテロ二量体タンパク質。
  4. 前記第1および第2の重鎖定常ドメインが、さらに428Lおよび434Sのアミノ酸置換を含む、請求項に記載のヘテロ二量体タンパク質。
  5. 前記第1および第2の重鎖定常ドメインの各々が、CH-ヒンジ-CH-CHドメインを含む、請求項1~のいずれか一項に記載のヘテロ二量体タンパク質。
  6. 前記第1および第2の重鎖定常ドメインの各々が、CH-CHドメインを含む、請求項1~のいずれか一項に記載のヘテロ二量体タンパク質。
  7. 請求項1~のいずれか一項に記載のヘテロ二量体タンパク質をコードする核酸。
  8. 請求項に記載の核酸を含む宿主細胞。
JP2020029547A 2011-10-10 2020-02-25 抗体を精製する方法 Active JP7022162B2 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201161545498P 2011-10-10 2011-10-10
US61/545,498 2011-10-10
US201261593846P 2012-02-01 2012-02-01
US61/593,846 2012-02-01
US201261598686P 2012-02-14 2012-02-14
US61/598,686 2012-02-14
US201213568028A 2012-08-06 2012-08-06
US13/568,028 2012-08-06

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018049804A Division JP6667562B2 (ja) 2011-10-10 2018-03-16 抗体を精製する方法

Publications (2)

Publication Number Publication Date
JP2020099337A JP2020099337A (ja) 2020-07-02
JP7022162B2 true JP7022162B2 (ja) 2022-02-17

Family

ID=47146686

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014535821A Expired - Fee Related JP6310394B2 (ja) 2011-10-10 2012-10-10 抗体を精製する方法
JP2018049804A Active JP6667562B2 (ja) 2011-10-10 2018-03-16 抗体を精製する方法
JP2020029547A Active JP7022162B2 (ja) 2011-10-10 2020-02-25 抗体を精製する方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2014535821A Expired - Fee Related JP6310394B2 (ja) 2011-10-10 2012-10-10 抗体を精製する方法
JP2018049804A Active JP6667562B2 (ja) 2011-10-10 2018-03-16 抗体を精製する方法

Country Status (6)

Country Link
EP (2) EP2766392B1 (ja)
JP (3) JP6310394B2 (ja)
AU (4) AU2012323287B2 (ja)
CA (2) CA3182462A1 (ja)
DK (1) DK2766392T3 (ja)
WO (1) WO2013055809A1 (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
AU2011283694B2 (en) 2010-07-29 2017-04-13 Xencor, Inc. Antibodies with modified isoelectric points
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
AU2012323287B2 (en) 2011-10-10 2018-02-01 Xencor, Inc. A method for purifying antibodies
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US10738132B2 (en) * 2013-01-14 2020-08-11 Xencor, Inc. Heterodimeric proteins
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
WO2014113510A1 (en) 2013-01-15 2014-07-24 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
US20140302037A1 (en) 2013-03-15 2014-10-09 Amgen Inc. BISPECIFIC-Fc MOLECULES
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
EP3421495A3 (en) 2013-03-15 2019-05-15 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
CN105377889B (zh) 2013-03-15 2020-07-17 Xencor股份有限公司 异二聚体蛋白
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
BR112016022385A2 (pt) 2014-03-28 2018-06-19 Xencor, Inc anticorpos específicos que se ligam a cd38 e cd3
CN106459191B (zh) * 2014-06-12 2021-12-10 豪夫迈·罗氏有限公司 选择具有修饰的FcRn相互作用的抗体的方法
CN110894240B (zh) 2014-11-26 2022-04-15 森科股份有限公司 结合cd3和肿瘤抗原的异二聚体抗体
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
AU2015353416C1 (en) 2014-11-26 2022-01-27 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CD38
WO2016105450A2 (en) 2014-12-22 2016-06-30 Xencor, Inc. Trispecific antibodies
WO2016141387A1 (en) 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
JP7058219B2 (ja) 2015-12-07 2022-04-21 ゼンコア インコーポレイテッド Cd3及びpsmaに結合するヘテロ二量体抗体
CA3026151A1 (en) 2016-06-14 2017-12-21 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
EP3475304B1 (en) 2016-06-28 2022-03-23 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
JP7219705B2 (ja) * 2016-10-05 2023-02-08 アクセルロン ファーマ インコーポレイテッド ALK4:ActRIIBヘテロ多量体およびその使用
PE20191034A1 (es) 2016-10-14 2019-08-05 Xencor Inc Proteinas de fusion heterodimericas biespecificas que contienen proteinas de fusion fc il-15/il-15r y fragmentos de anticuerpo pd-1
EP3586872A4 (en) 2017-02-24 2020-12-30 Chugai Seiyaku Kabushiki Kaisha PHARMACEUTICAL COMPOSITION, ANTIG-BINDING MOLECULES, TREATMENT METHODS AND SCREENING METHODS
AU2018291497A1 (en) 2017-06-30 2020-01-16 Xencor, Inc. Targeted heterodimeric Fc fusion proteins containing IL-15/IL-15Ra and antigen binding domains
EP3706793A1 (en) 2017-11-08 2020-09-16 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-pd-1 sequences
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
JP2021506291A (ja) 2017-12-19 2021-02-22 ゼンコア インコーポレイテッド 改変されたil−2 fc融合タンパク質
CA3096052A1 (en) 2018-04-04 2019-10-10 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
US11524991B2 (en) 2018-04-18 2022-12-13 Xencor, Inc. PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof
CA3097741A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Tim-3 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and tim-3 antigen binding domains
KR102584675B1 (ko) 2018-05-23 2023-10-05 화이자 인코포레이티드 GUCY2c에 특이적인 항체 및 이의 용도
JP7523349B2 (ja) * 2018-08-29 2024-07-26 中外製薬株式会社 抗体半分子、および抗体半分子のホモ二量体形成を抑制する方法
BR112021004436A2 (pt) * 2018-09-10 2021-05-25 Genentech, Inc. sistema e método para separar proteínas de múltiplas subunidades em uma amostra, método para isolar uma proteína alvo em uma mistura de amostra e ligante de eletroforese capilar de afinidade
SG11202103192RA (en) 2018-10-03 2021-04-29 Xencor Inc Il-12 heterodimeric fc-fusion proteins
MA53862A (fr) 2018-10-12 2022-01-19 Xencor Inc Protéines de fusion fc d'il-15/il-15ralpha ciblant pd-1 et utilisations dans des polythérapies faisant intervenir celles-ci
CN113438961A (zh) 2018-12-20 2021-09-24 Xencor股份有限公司 含有IL-15/IL-15Rα和NKG2D抗原结合结构域的靶向异二聚体Fc融合蛋白
JP2022523946A (ja) 2019-03-01 2022-04-27 ゼンコア インコーポレイテッド Enpp3およびcd3に結合するヘテロ二量体抗体
TW202108613A (zh) * 2019-05-09 2021-03-01 荷蘭商美勒斯公司 用於多聚化蛋白質及其分離的變異區域
CN112010978B (zh) * 2019-05-30 2022-04-08 广东东阳光药业有限公司 TrkA的抗体及其应用
TW202128756A (zh) * 2019-10-02 2021-08-01 德商百靈佳殷格翰國際股份有限公司 用於癌症治療之多重專一性結合蛋白
TW202128757A (zh) 2019-10-11 2021-08-01 美商建南德克公司 具有改善之特性的 PD-1 標靶 IL-15/IL-15Rα FC 融合蛋白
WO2021231976A1 (en) 2020-05-14 2021-11-18 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (psma) and cd3
JP2023538891A (ja) 2020-08-19 2023-09-12 ゼンコア インコーポレイテッド 抗cd28組成物
AU2022232375A1 (en) 2021-03-09 2023-09-21 Xencor, Inc. Heterodimeric antibodies that bind cd3 and cldn6
KR20230154311A (ko) 2021-03-10 2023-11-07 젠코어 인코포레이티드 Cd3 및 gpc3에 결합하는 이종이량체 항체

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114325A1 (ja) 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha 二重特異性抗体を精製するための抗体改変方法
WO2009041613A1 (ja) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗体定常領域改変体

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
CU22545A1 (es) 1994-11-18 1999-03-31 Centro Inmunologia Molecular Obtención de un anticuerpo quimérico y humanizado contra el receptor del factor de crecimiento epidérmico para uso diagnóstico y terapéutico
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4307016A (en) 1978-03-24 1981-12-22 Takeda Chemical Industries, Ltd. Demethyl maytansinoids
US4256746A (en) 1978-11-14 1981-03-17 Takeda Chemical Industries Dechloromaytansinoids, their pharmaceutical compositions and method of use
JPS55102583A (en) 1979-01-31 1980-08-05 Takeda Chem Ind Ltd 20-acyloxy-20-demethylmaytansinoid compound
JPS55162791A (en) 1979-06-05 1980-12-18 Takeda Chem Ind Ltd Antibiotic c-15003pnd and its preparation
JPS6023084B2 (ja) 1979-07-11 1985-06-05 味の素株式会社 代用血液
JPS5645483A (en) 1979-09-19 1981-04-25 Takeda Chem Ind Ltd C-15003phm and its preparation
EP0028683A1 (en) 1979-09-21 1981-05-20 Takeda Chemical Industries, Ltd. Antibiotic C-15003 PHO and production thereof
JPS5645485A (en) 1979-09-21 1981-04-25 Takeda Chem Ind Ltd Production of c-15003pnd
WO1982001188A1 (en) 1980-10-08 1982-04-15 Takeda Chemical Industries Ltd 4,5-deoxymaytansinoide compounds and process for preparing same
US4450254A (en) 1980-11-03 1984-05-22 Standard Oil Company Impact improvement of high nitrile resins
US4315929A (en) 1981-01-27 1982-02-16 The United States Of America As Represented By The Secretary Of Agriculture Method of controlling the European corn borer with trewiasine
US4313946A (en) 1981-01-27 1982-02-02 The United States Of America As Represented By The Secretary Of Agriculture Chemotherapeutically active maytansinoids from Trewia nudiflora
JPS57192389A (en) 1981-05-20 1982-11-26 Takeda Chem Ind Ltd Novel maytansinoid
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
US4496689A (en) 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US4753894A (en) 1984-02-08 1988-06-28 Cetus Corporation Monoclonal anti-human breast cancer antibodies
US4943533A (en) 1984-03-01 1990-07-24 The Regents Of The University Of California Hybrid cell lines that produce monoclonal antibodies to epidermal growth factor receptor
US4970198A (en) 1985-10-17 1990-11-13 American Cyanamid Company Antitumor antibiotics (LL-E33288 complex)
EP0206448B1 (en) 1985-06-19 1990-11-14 Ajinomoto Co., Inc. Hemoglobin combined with a poly(alkylene oxide)
WO1987005330A1 (en) 1986-03-07 1987-09-11 Michel Louis Eugene Bergh Method for enhancing glycoprotein stability
WO1987006265A1 (en) 1986-04-17 1987-10-22 Kyowa Hakko Kogyo Co., Ltd. Novel compounds dc-88a and dc-89a1 and process for their preparation
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
US4880935A (en) 1986-07-11 1989-11-14 Icrf (Patents) Limited Heterobifunctional linking agents derived from N-succinimido-dithio-alpha methyl-methylene-benzoates
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
US5770701A (en) 1987-10-30 1998-06-23 American Cyanamid Company Process for preparing targeted forms of methyltrithio antitumor agents
US5606040A (en) 1987-10-30 1997-02-25 American Cyanamid Company Antitumor and antibacterial substituted disulfide derivatives prepared from compounds possessing a methyl-trithio group
US5053394A (en) 1988-09-21 1991-10-01 American Cyanamid Company Targeted forms of methyltrithio antitumor agents
WO1989006692A1 (en) 1988-01-12 1989-07-27 Genentech, Inc. Method of treating tumor cells by inhibiting growth factor receptor function
FI102355B1 (fi) 1988-02-11 1998-11-30 Bristol Myers Squibb Co Menetelmä yhdistävän välikappaleen omaavien antrasykliini-immunokonjugaattien valmistamiseksi
US5084468A (en) 1988-08-11 1992-01-28 Kyowa Hakko Kogyo Co., Ltd. Dc-88a derivatives
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
JP2598116B2 (ja) 1988-12-28 1997-04-09 協和醗酵工業株式会社 新規物質dc113
JP2510335B2 (ja) 1989-07-03 1996-06-26 協和醗酵工業株式会社 Dc―88a誘導体
US5187186A (en) 1989-07-03 1993-02-16 Kyowa Hakko Kogyo Co., Ltd. Pyrroloindole derivatives
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
CA2026147C (en) 1989-10-25 2006-02-07 Ravi J. Chari Cytotoxic agents comprising maytansinoids and their therapeutic use
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
EP0530225A4 (en) 1990-05-07 1993-09-22 Scripps Clinic And Research Foundation Intermediates in the formation of the calicheamicin and esperamicin oligosaccharides
CZ282603B6 (cs) 1991-03-06 1997-08-13 Merck Patent Gesellschaft Mit Beschränkter Haftun G Humanizované a chimerické monoklonální protilátky
WO1992022653A1 (en) 1991-06-14 1992-12-23 Genentech, Inc. Method for making humanized antibodies
WO1994004679A1 (en) 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
US5264586A (en) 1991-07-17 1993-11-23 The Scripps Research Institute Analogs of calicheamicin gamma1I, method of making and using the same
US5622929A (en) 1992-01-23 1997-04-22 Bristol-Myers Squibb Company Thioether conjugates
EP0563475B1 (en) 1992-03-25 2000-05-31 Immunogen Inc Cell binding agent conjugates of derivatives of CC-1065
ZA932522B (en) 1992-04-10 1993-12-20 Res Dev Foundation Immunotoxins directed against c-erbB-2(HER/neu) related surface antigens
US5736137A (en) 1992-11-13 1998-04-07 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
US5635483A (en) 1992-12-03 1997-06-03 Arizona Board Of Regents Acting On Behalf Of Arizona State University Tumor inhibiting tetrapeptide bearing modified phenethyl amides
WO1994013804A1 (en) 1992-12-04 1994-06-23 Medical Research Council Multivalent and multispecific binding proteins, their manufacture and use
US5780588A (en) 1993-01-26 1998-07-14 Arizona Board Of Regents Elucidation and synthesis of selected pentapeptides
US6214345B1 (en) 1993-05-14 2001-04-10 Bristol-Myers Squibb Co. Lysosomal enzyme-cleavable antitumor drug conjugates
AU689131B2 (en) 1993-10-01 1998-03-26 Teikoku Hormone Mfg. Co., Ltd. Novel peptide derivative
GB9401182D0 (en) 1994-01-21 1994-03-16 Inst Of Cancer The Research Antibodies to EGF receptor and their antitumour effect
DE69533277T2 (de) 1994-04-22 2005-07-21 Kyowa Hakko Kogyo Co., Ltd. Dc-89 derivat
JPH07309761A (ja) 1994-05-20 1995-11-28 Kyowa Hakko Kogyo Co Ltd デュオカルマイシン誘導体の安定化法
US5773001A (en) 1994-06-03 1998-06-30 American Cyanamid Company Conjugates of methyltrithio antitumor agents and intermediates for their synthesis
US5550246A (en) 1994-09-07 1996-08-27 The Scripps Research Institute Calicheamicin mimics
US5663149A (en) 1994-12-13 1997-09-02 Arizona Board Of Regents Acting On Behalf Of Arizona State University Human cancer inhibitory pentapeptide heterocyclic and halophenyl amides
US5712374A (en) 1995-06-07 1998-01-27 American Cyanamid Company Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates
US5714586A (en) 1995-06-07 1998-02-03 American Cyanamid Company Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates
CA2222231A1 (en) 1995-06-07 1996-12-19 Imclone Systems Incorporated Antibody and antibody fragments for inhibiting the growth of tumors
JP2000503639A (ja) 1995-12-22 2000-03-28 ブリストル―マイヤーズ スクイブ カンパニー 分枝ヒドラゾンのリンカー類
US6235883B1 (en) 1997-05-05 2001-05-22 Abgenix, Inc. Human monoclonal antibodies to epidermal growth factor receptor
DK2180007T4 (da) 1998-04-20 2017-11-27 Roche Glycart Ag Glycosyleringsteknik for antistoffer til forbedring af antistofafhængig cellecytotoxicitet
EP2275541B1 (en) 1999-04-09 2016-03-23 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
US6939545B2 (en) 1999-04-28 2005-09-06 Genetics Institute, Llc Composition and method for treating inflammatory disorders
AU775373B2 (en) 1999-10-01 2004-07-29 Immunogen, Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
US7303749B1 (en) 1999-10-01 2007-12-04 Immunogen Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
US7504256B1 (en) 1999-10-19 2009-03-17 Kyowa Hakko Kogyo Co., Ltd. Process for producing polypeptide
AU2001239857B9 (en) 2000-02-25 2006-07-27 Duke University Anti-EGFRvIII SCFVS with improved cytotoxicity and yield, immunotoxins based thereon, and methods of use thereof
KR100480985B1 (ko) 2000-05-19 2005-04-07 이수화학 주식회사 표피 성장 인자 수용체에 대한 사람화된 항체
US6333410B1 (en) 2000-08-18 2001-12-25 Immunogen, Inc. Process for the preparation and purification of thiol-containing maytansinoids
EP1333032A4 (en) 2000-10-06 2005-03-16 Kyowa Hakko Kogyo Kk METHOD FOR PURIFYING ANTIBODIES
EA013224B1 (ru) 2000-10-06 2010-04-30 Киова Хакко Кирин Ко., Лтд. Клетки, продуцирующие композиции антител
US6977085B2 (en) 2000-12-22 2005-12-20 Baxter International Inc. Method for preparing submicron suspensions with polymorph control
EP1243276A1 (en) 2001-03-23 2002-09-25 Franciscus Marinus Hendrikus De Groot Elongated and multiple spacers containing activatible prodrugs
US6884869B2 (en) 2001-04-30 2005-04-26 Seattle Genetics, Inc. Pentapeptide compounds and uses related thereto
AU2002303929B9 (en) 2001-05-31 2007-01-25 E. R. Squibb & Sons, L.L.C. Cytotoxins, prodrugs, linkers and stabilizers useful therefor
US6441163B1 (en) 2001-05-31 2002-08-27 Immunogen, Inc. Methods for preparation of cytotoxic conjugates of maytansinoids and cell binding agents
US7659241B2 (en) 2002-07-31 2010-02-09 Seattle Genetics, Inc. Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease
EP1391213A1 (en) 2002-08-21 2004-02-25 Boehringer Ingelheim International GmbH Compositions and methods for treating cancer using maytansinoid CD44 antibody immunoconjugates and chemotherapeutic agents
JP2006507322A (ja) 2002-11-14 2006-03-02 シンタルガ・ビーブイ 多重自己脱離放出スペーサーとして構築されたプロドラッグ
US7610156B2 (en) 2003-03-31 2009-10-27 Xencor, Inc. Methods for rational pegylation of proteins
WO2004103272A2 (en) 2003-05-20 2004-12-02 Immunogen, Inc. Improved cytotoxic agents comprising new maytansinoids
US7276497B2 (en) 2003-05-20 2007-10-02 Immunogen Inc. Cytotoxic agents comprising new maytansinoids
FR2855046B1 (fr) 2003-05-23 2005-07-22 Oreal Composition tinctoriale comprenant au moins un precurseur de colorant et un coplolymere sequence amphiphile
BR122018071808B8 (pt) 2003-11-06 2020-06-30 Seattle Genetics Inc conjugado
US7691962B2 (en) 2004-05-19 2010-04-06 Medarex, Inc. Chemical linkers and conjugates thereof
JP4806680B2 (ja) 2004-05-19 2011-11-02 メダレックス インコーポレイテッド 自己犠牲リンカー及び薬剤複合体
CA2580141C (en) 2004-09-23 2013-12-10 Genentech, Inc. Cysteine engineered antibodies and conjugates
US7714016B2 (en) 2005-04-08 2010-05-11 Medarex, Inc. Cytotoxic compounds and conjugates with cleavable substrates
AU2006277117B2 (en) 2005-08-05 2013-01-10 Syntarga B.V. Triazole-containing releasable linkers and conjugates comprising the same
CA2627190A1 (en) 2005-11-10 2007-05-24 Medarex, Inc. Duocarmycin derivatives as novel cytotoxic compounds and conjugates
AU2007210377B2 (en) 2006-02-02 2012-08-09 Georg-August-Universitat Gottingen Stiftung Offentlichen Rechts (Ohne Bereich Humanmedizin) Water-soluble CC-1065 analogs and their conjugates
CA2695297C (en) 2007-08-01 2017-03-21 Syntarga B.V. Substituted cc-1065 analogs and their conjugates
CN101874042B9 (zh) * 2007-09-26 2019-01-01 中外制药株式会社 利用cdr的氨基酸取代来改变抗体等电点的方法
BRPI0921687A8 (pt) 2008-11-03 2022-11-08 Syntarga Bv Composto , conjugado , uso de um composto , composição farmacêutica, processo para preparar uma composição famacêutica , método para tratar um mamífero em necessidade do mesmo ,e, método para tratar ou prevenir um tumor em um mamífero.
EP2233500A1 (en) * 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
US10817851B2 (en) 2009-12-23 2020-10-27 Aristocrat Technologies Australia Pty Limited System and method for cashless gaming
AU2011283694B2 (en) * 2010-07-29 2017-04-13 Xencor, Inc. Antibodies with modified isoelectric points
RS59589B1 (sr) * 2010-11-05 2019-12-31 Zymeworks Inc Dizajniranje stabilnog heterodimernog antitela sa mutacijama u fc domenu
AU2012323287B2 (en) 2011-10-10 2018-02-01 Xencor, Inc. A method for purifying antibodies
US11392902B2 (en) 2017-06-06 2022-07-19 United Parcel Service Of America, Inc. Systems, methods, apparatuses and computer program products for providing notification of items for pickup and delivery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114325A1 (ja) 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha 二重特異性抗体を精製するための抗体改変方法
WO2009041613A1 (ja) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗体定常領域改変体

Also Published As

Publication number Publication date
AU2012323287B2 (en) 2018-02-01
AU2018202978A1 (en) 2018-05-17
EP3611187A1 (en) 2020-02-19
DK2766392T3 (da) 2019-10-07
AU2023270275A1 (en) 2024-02-08
JP2018088938A (ja) 2018-06-14
AU2020207803A1 (en) 2020-08-06
JP6310394B2 (ja) 2018-04-11
AU2012323287A1 (en) 2014-05-29
CA3182462A1 (en) 2013-04-18
CA2851534A1 (en) 2013-04-18
JP2015500002A (ja) 2015-01-05
JP6667562B2 (ja) 2020-03-18
CA2851534C (en) 2023-02-14
WO2013055809A1 (en) 2013-04-18
AU2018202978B2 (en) 2020-04-23
EP2766392B1 (en) 2019-07-17
JP2020099337A (ja) 2020-07-02
EP2766392A1 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP7022162B2 (ja) 抗体を精製する方法
US20210284754A1 (en) HETERODIMERIC HUMAN IgG1 POLYPEPTIDES WITH ISOELECTRIC POINT MODIFICATIONS
US20210163577A1 (en) Fc VARIANTS THAT IMPROVE FcRn BINDING AND/OR INCREASE ANTIBODY HALF-LIFE
US9605061B2 (en) Antibodies with modified isoelectric points
US8546543B2 (en) Fc variants that extend antibody half-life
US20160068588A1 (en) Antibodies with modified isoelectric points and immunofiltering

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220204

R150 Certificate of patent or registration of utility model

Ref document number: 7022162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150