JP7016431B2 - 換気調整装置及び換気調整方法 - Google Patents

換気調整装置及び換気調整方法 Download PDF

Info

Publication number
JP7016431B2
JP7016431B2 JP2020557424A JP2020557424A JP7016431B2 JP 7016431 B2 JP7016431 B2 JP 7016431B2 JP 2020557424 A JP2020557424 A JP 2020557424A JP 2020557424 A JP2020557424 A JP 2020557424A JP 7016431 B2 JP7016431 B2 JP 7016431B2
Authority
JP
Japan
Prior art keywords
ventilation
zone
ventilation volume
manned
unmanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020557424A
Other languages
English (en)
Other versions
JPWO2020110185A1 (ja
Inventor
章吾 玉木
守 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020110185A1 publication Critical patent/JPWO2020110185A1/ja
Application granted granted Critical
Publication of JP7016431B2 publication Critical patent/JP7016431B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Description

本発明は、換気量の制御に関する。
オフィスなどの屋内空間(以下、室内ともいう)の換気及び温度調整を行う空気調和システムでは、屋内空間に複数台の空気調和機器及び換気装置が配置されていることがある。このような空気調和システムでは、室内に所在する人数を検知する人感センサが設置されていることがある。そして、人感センサの検知結果に基づき、室内に人が所在しているか否かに応じて室内環境を調整する技術が存在する(例えば、特許文献1)。
特開2012-26697号公報
特許文献1の設備制御システムは、人感センサの感知信号に基づいて照明設備及び空気調和設備を制御する。つまり、特許文献1の設備制御システムは、人がいないエリアでは照明設備を消灯する。また、特許文献1の設備制御システムは、人がいないエリアでは、空気調和設備を停止させる。このため、特許文献1の技術によれば、省エネルギー効果が得られる。
空気調和における省エネルギー効果を大きくするためには、効率的に換気量を調整することが重要であるが、特許文献1の技術では換気装置の制御は行われていない。
このため、特許文献1の技術では、換気量の調整による空気調和負荷の削減効果が得られておらず、空気調和における省エネルギー効果が十分に得られないという課題がある。
本発明はこのような課題を解決することを主な目的とする。つまり、本発明は、換気量を効率的に調整して空気調和における省エネルギー効果を得ることを主な目的とする。
本発明に係る換気調整装置は、
複数の換気装置が設置されている、換気を要する屋内空間で必要な換気量である必要換気量を算出する必要換気量算出部と、
前記必要換気量に基づき、前記複数の換気装置の換気装置ごとに、各換気装置で発生させる換気量である個別換気量を決定する個別換気量決定部とを有する。
本発明によれば、換気量を効率的に調整することができるため、空気調和における省エネルギー効果を得ることができる。
実施の形態1に係るオフィスのレイアウト例を示す図。 実施の形態1に係る空気調和エリアの例を示す図。 実施の形態1に係る空気調和システムの例を示す図。 実施の形態1に係るシステム制御装置の機能構成例を示す図。 従来技術の換気方法を示す図。 実施の形態1に係る換気方法を示す図。 実施の形態1に係るシステム制御装置の動作例を示すフローチャート。 実施の形態1に係るシステム制御装置の動作例を示すフローチャート。 実施の形態1に係るシステム制御装置のハードウェア構成例を示す図。
以下、本発明の実施の形態について、図を用いて説明する。以下の実施の形態の説明及び図面において、同一の符号を付したものは、同一の部分又は相当する部分を示す。
実施の形態1.
***構成の説明***
図1は、本実施の形態に係るオフィス500のレイアウト例を示す。図1に示すオフィス500は屋内空間の例である。
図1に示すオフィス500では、業務内容別にグループが形成されている。図1では、グループE、グループF、グループG及びグループHという4つのグループが存在する。
グループEでは、グループリーダー席312Eが存在する。グループFでは、グループリーダー席312Fが存在する。グループGでは、グループリーダー席312Gが存在する。グループHでは、グループリーダー席312Hが存在する。
また、グループEでは、担当者席311Aと311Eが存在する。グループFでは、担当者席311Bと311Fが存在する。グループGでは、担当者席311Gが存在する。グループHでは、担当者席311Dと311Hが存在する。なお、担当者席311A~Hは、各々、6つの席で構成される。また、打合せスペース313Cは、打ち合わせのために設けられたスペースである。打合せスペース313Cでは、適宜打ち合わせを行う者が着席する。
また、オフィス500への入退出はドア315Aとドア315Dにより行われる。ドア315Aからドア315Dへの直線部分は通路として利用される。ドア315A及びドア315Dの横には入退出管理装置201が設置されている。入退出管理装置201は、ドア315A、315Dを通過した人数を管理(カウント)することでオフィス500の在室人数を把握している。
次に、図2を用いて、オフィス500での空気調和機器301A-301Hと給気口303A-303Hのレイアウトを説明する。
なお、以下では、空気調和機器301A-301Hを区別する必要が無い場合は、空気調和機器301A-301Hをまとめて空気調和機器301という。給気口303A-303Hを区別する必要が無い場合は、給気口303A-303Hをまとめて給気口303という。
オフィス500は、換気が必要であり、空気調和機器301及び給気口303により換気が行われる。
オフィス500は、空気調和エリア305A-305Hに分かれる。つまり、空気調和の対象は空気調和エリア305A―305Hの8エリアとなる。なお、図2では、各エリアの境界を説明上の理由で破線で示しているが、オフィス500内に壁が設けられているわけではない。以下では、空気調和エリア305A-305Hを区別するが無い場合は、空気調和エリア305A-305Hをまとめて空気調和エリア305という。
図2の例では、各空気調和エリア305には空気調和機器301と給気口303が設けられている。しかしながら、給気口303の位置は図2の例に限定されない。例えば、給気口303Dを削除して、給気口303Cを空気調和エリア305Cと空気調和エリア305Dの間に置き、給気口303Cが二つのゾーンの換気を行うようにしてもよい。また、オフィス500内で必ずしも空気調和機器301の設置数と給気口303の設置数を同じにする必要はない。
また、各空気調和機器301は、システム制御装置101に接続されている。図2では、作図上の理由により、空気調和機器301Dと空気調和機器301Hのみがシステム制御装置101に接続されているが、すべての空気調和機器301がシステム制御装置101に接続されているものとする。システム制御装置101は、後述する各空気調和機器301に搭載されている空気調和機器制御装置121を介して各空気調和機器301を制御する。
また、各給気口303も、システム制御装置101に接続されている。図2では、作図上の理由により、給気口303Aと給気口303Eのみがシステム制御装置101に接続されているが、すべての給気口303システム制御装置101に接続されているものとする。システム制御装置101は、後述する各給気口303に搭載されている換気制御装置141を介して各給気口303を制御する。
システム制御装置101は、換気調整装置に相当する。また、システム制御装置101により行われる動作は、換気調整方法に相当する。システム制御装置101の詳細は後述する。
図3は、本実施の形態1に係る空気調和システム100の接続関係を示す。
図3は、空気調和エリア305B、305Cにおける空気調和システム100のみを示すが、他の空気調和エリア305についても同様の構成となっている。
以下、空気調和エリア305Bについて説明するが、空気調和エリア305C及び他の空気調和エリア305でも同様である。
空気調和機器301Bは、中央より室内空気を吸い込む。また、吸い込まれた室内空気は、空気調和機器301Bを流れる冷媒(図示せず)により冷却(冷房の場合)され、室内に吹き出されることで空気調和エリア305Bの温度調節(冷却)を行う。
また、ダクト306Bより吸入された外気が換気装置302B及びダクト304Bを経由して給気口303Bから室内に導入される。なお、換気装置302は上板にて金具で天井壁に接続され、吊られている。また、室内空気を室外へ排出するための排気口は通常、天井全体に均等に設置されている照明設備309Bの構成品に組み込まれている。照明設備309Bから吸い込まれた室内空気はダクト314Bを経由して換気装置302Bを通過し、その後、ダクト310Bから室外へ放出される。
また、空気調和機器301Bには人感センサ203Bが設置されている。人感センサ203Bは、空気調和機器301Bが据え付けられている空気調和エリア305Bでの人の有無を検出する。以下、人が所在する1つ以上のエリアを有人ゾーンという。一方、人が所在していない1つ以上のエリアを無人ゾーンという。
例えば、空気調和エリア305Aに設置されている人感センサ203A、空気調和エリア305Bに設置されている人感センサ203B、空気調和エリア305Aに設置されている人感センサ203Gが、それぞれ人を検知した場合を考える。この場合は、空気調和エリア305A、305B、305Gが有人ゾーンとして扱われる。一方、空気調和エリア305C、305D、305E、305F、305Hは無人ゾーンとして扱われる。
人感センサ203は、例えば、赤外線センサである。
本実施の形態では、換気装置302の換気ファンはDCモーターを用いて動作する。換気装置302の換気ファンでは、ファン回転数を連続的に選択することができ、ファン回転数を変化させることができる。換気装置302には温度センサ202Bが設けられている。温度センサ202Bは、ダクト306から侵入する外気の温度を検出する外気温度センサと、ダクト314から侵入する室内空気の温度を検出する室内温度センサとして機能する。
空気調和機器301Bには、空気調和機器制御装置121Bが設けられている。空気調和機器制御装置121Bは、例えば、マイクロコンピュータにより構成される。
空気調和機器制御装置121Bは、種々の制御パラメータを演算する。また、空気調和機器制御装置121Bは、空気調和機器301Bの運転モード(冷房運転、送風運転、停止)を制御する。また、空気調和機器制御装置121Bは、システム制御装置101に空気調和機器301Bの現在の運転モードを通知する。また、空気調和機器制御装置121Bは、システム制御装置101からの制御値を受信する。
なお、空気調和機器制御装置121A-Hを区別する必要が無い場合は、空気調和機器制御装置121A-Hをまとめて空気調和機器制御装置121という。
換気装置302Bには、換気制御装置141Bが設けられている。換気制御装置141Bは、例えばマイクロコンピュータにより構成される。
換気制御装置141Bは、種々の制御パラメータを演算する。また、換気制御装置141Bは、換気装置302Bの換気ファンの回転数を制御する。また、換気制御装置141Bは、システム制御装置101に換気ファンの回転数などの動作値を送信する。また、換気制御装置141Bは、システム制御装置101からの制御値を受信する。また、換気制御装置141Bには、回転ファンの回転数「rpm」に対する換気風量値「m3/h」が記憶されている。
図4は、本実施の形態に係るシステム制御装置101の機能構成例を示す。また、図9は、本実施の形態に係るシステム制御装置101のハードウェア構成例を示す。
本実施の形態に係るシステム制御装置101は、コンピュータである。
システム制御装置101は、図9に示すように、ハードウェアとして、プロセッサ901、主記憶装置902、補助記憶装置903及び通信装置904を備える。
また、システム制御装置101は、機能構成として、図4に示すように、システム演算部102、システム制御部103、システム通信部104及びシステム記憶部105を備える。
補助記憶装置903には、システム演算部102、システム制御部103及びシステム通信部104の機能を実現するプログラムが記憶されている。
これらプログラムは、補助記憶装置903から主記憶装置902にロードされる。そして、プロセッサ901がこれらプログラムを実行して、後述するシステム演算部102、システム制御部103及びシステム通信部104の動作を行う。
図4では、プロセッサ901がシステム演算部102、システム制御部103及びシステム通信部104の機能を実現するプログラムを実行している状態を模式的に表している。
システム記憶部105は、例えば、主記憶装置902又は補助記憶装置903により実現される。
システム演算部102は、各種演算を行う。
より具体的には、システム演算部102は、オフィス500を、人が所在している有人ゾーンと人が所在していない無人ゾーンとに区分する。
また、システム演算部102は、オフィス500に要求される必要換気量のうち有人ゾーンで発生させる換気量と無人ゾーンで発生させる換気量とを決定する。また、システム演算部102は、外気温度とオフィス500の室内温度(屋内温度)との関係に応じて、有人ゾーンで発生させる換気量と無人ゾーンで発生させる換気量とを変化させる。より具体的には、外気温度がオフィス500の室内温度を超えている場合に、システム演算部102は、無人ゾーンで発生させる換気量が有人ゾーンで発生させる換気量よりも多くなるように有人ゾーンで発生させる換気量と無人ゾーンで発生させる換気量とを決定する。一方、外気温度がオフィス500の室内温度以下である場合に、システム演算部102は、有人ゾーンで発生させる換気量が無人ゾーンで発生させる換気量よりも多くなるように有人ゾーンで発生させる換気量と無人ゾーンで発生させる換気量とを決定する。更に、外気温度がオフィス500の室内温度よりも低く、規定の室温制御変更温度(閾値)以下である場合に、システム演算部102は、外気温度が低下するにつれて有人ゾーンにおける換気量が減少し、無人ゾーンにおける換気量が増加するように有人ゾーンで発生させる換気量と無人ゾーンで発生させる換気量とを決定する。
システム演算部102は、必要換気量算出部、個別換気量決定部、ゾーン区分部及びゾーン換気量決定部に相当する。
なお、外気温度及び室内温度は、温度センサ202により得られる。
システム制御部103は、空気調和機器制御装置121及び換気制御装置141を制御する。
具体的には、システム制御部103は、有人ゾーンに設置されている換気装置302を後述する室温制御方式により制御する場合に、室温制御方式での目標室内温度を空気調和機器301の現在の設定温度よりも高い温度に設定する。
また、システム制御部103は、室温制御方式での目標室内温度を空気調和機器301の現在の設定温度よりも高い温度に設定した場合に、空気調和機器301の運転モードをサーモオフモード及び送風モードのいずれかに変更する
システム制御部103は、目標温度管理部及びモード管理部に相当する。
システム通信部104は、空気調和機器制御装置121、換気制御装置141及び入退出管理装置201と通信を行う。
システム通信部104は、例えば、空気調和機器301の運転モードの変更を指示する制御値を空気調和機器制御装置121に送信する。
また、システム通信部104は、換気装置302の換気ファンの回転数を指示する制御値を換気制御装置141に送信する。
また、入退出管理装置201において入退出が検出された場合に、システム通信部104は、入退出管理装置201から検出結果を受信する。
システム記憶部105は、設定値、制御値、オフィス500の床面積、オフィス500の在室人数等を記憶する。
なお、各換気装置302の換気制御装置141は、換気ファンの回転数と換気装置302から吹出される換気量とが示される情報を保持している。
また、有人ゾーンの目標室内温度はシステム制御装置101のシステム通信部104が換気制御装置141に通知し、換気制御装置141において記憶される。
***動作の説明***
次に、本実施の形態に係るシステム制御装置101の動作例を説明する。
最初に、図5を参照して、従来の換気方法を説明する。
図5では、図1-図3に示すオフィス500の換気を、システム制御装置101を用いないで行っているものとする。
なお、図5及び後述する図6では、冷房運転が行われるものとする。
換気装置302の換気ファンは換気量制御によって回転数が変更される。換気量制御方式には、換気ファン回転数固定方式(以下、単に回転数固定ともいう)、実負荷制御方式(以下、単に実負荷制御ともいう)、室内温度制御方式(以下、単に室温制御ともいう)の3つがある。
回転数固定とは、ユーザーがリモートコントローラ(図示せず)から設定した値に換気ファンの回転数(又はファンノッチ)を固定する方式である。回転数固定では、通常は換気効果(室内に熱気などが篭らないこと等)を高めるために換気ファンの回転数を高回転数に設定することが多い。
実負荷制御とは、オフィス500に要求される必要換気量によって換気ファンの回転数を制御する方式である。必要換気量はオフィス500の在室人数から求められる、オフィス500に必要な換気量である。必要換気量は、例えば、入退出管理装置201の検出結果から得られる在室人数から算出される。また、必要換気量は、換気装置302に設置されている二酸化炭素センサにて検出される二酸化炭素濃度から算出されるようにしてもよい。この場合は、目標となる二酸化炭素濃度が予め換気装置302に記憶されており、二酸化炭素濃度が目標値となるように必要換気量が決定される。
室温制御とは、換気装置302の温度センサ202で検知された室内温度が空気調和機器301に設定されている設定室内温度となるように換気ファンの回転数を制御する方式である。
回転数固定又は室温制御が行われる場合は、各換気装置302の換気量は各制御により決定される換気量である。実負荷制御が行われる場合は、必要換気量から実負荷制御ではない(つまり、回転数固定と室温制御)が行われる換気装置302における換気量の合計値を差し引き、差し引きにより得られた値を、実負荷制御が行われている換気装置302が有する換気ファンの効率の良い回転数またはファンノッチに基づき実負荷制御が行われる換気装置302の換気量及び換気ファンの回転数が決定される。例えば実負荷制御が行われている換気装置302が4台有り、電力効率が強ノッチの方が弱ノッチより高い場合、単に換気量を台数で除すと(弱、弱、弱、弱)となるところを、(強、強、停止、停止)とする。
図5の(a)は、従来の換気方法における、オフィス500内のエリア1での換気量制御方式を示す。図5の(b)は、従来の換気方法における、オフィス500内のエリア2での換気量制御方式を示す。図5の(a)及び図5の(b)に示すように、従来の換気方法では、オフィス500のいずれのエリアでも、共通に実負荷制御が行われる。つまり、エリア1及びエリア2のいずれでも、在室人数に応じて換気量が調整される。なお、図5では、説明の簡明性の観点から、オフィス500をエリア1とエリア2に区分している。また、従来は、外気温度に関わらず、常に実負荷制御が行われる。
図5の(c)は、エリア1の換気量とエリア2の換気量と、エリア1の換気量とエリア2の換気量との合計と、必要換気量との関係を示す。エリア1とエリア2の換気量は、図5の(c)に示すように同じである。つまり、エリア1とエリア2の換気量は、ともに、オフィス500の必要換気量の半分である。
また、図5の(d)と図5の(e)に示すように、エリア1及びエリア2ともに、室温制御における目標室内温度も、ユーザーに指定された空気調和機器301の設定温度が維持される。
このように、図5に示す従来の方法では、以下のような課題がある。
外気温度が室内温度よりも高いときは、人が所在している有人ゾーンの換気量を少なくすることが冷却効率の点からは望ましい。また、外気温度が室内温度よりも低いときは、有人ゾーンの換気量を多くすることが冷却効率の点からは望ましい。
しかしながら、図5に示す従来の換気制御では、有人ゾーンと無人ゾーンの区別が無い。このため、外気温度と室内温度との関係に応じて、有人ゾーン及び無人ゾーンで換気量を変化させることができない。従って、図5に示す従来の換気制御では、空気調和負荷を最小限にすることができず、省エネルギー性を損なっている。
図6は、本実施の形態に係るシステム制御装置101による換気方法を示す。
本実施の形態では、システム制御装置101は、前述のように、オフィス500を有人ゾーンと無人ゾーンとに区分する。そして、システム制御装置101は、有人ゾーンと無人ゾーンとで別の換気量制御方式を用いる。
外気温度が室内温度よりも高い場合は、外気を無人ゾーンで給気した方が有人ゾーンの空気調和負荷を削減できる。一方で、外気温度が室内温度以下の場合は、外気を有人ゾーンで給気した方が有人ゾーンの空気調和負荷を削減できる。このため、本実施の形態では、有人ゾーンの換気量と無人ゾーンの換気量との合計換気風量をオフィス500の必要換気量に合せるとともに、外気温度と室内温度の関係に応じて、有人ゾーン及び無人ゾーンの換気量を調整することで、空気調和の省エネルギー効果を大きくする。
本実施の形態では、外気温度と室内温度との関係に基づき、領域I-領域IIIの3つの温度領域が設けられている。
領域Iでは、外気温度が室内温度よりも高い。このため、領域Iでは、換気負荷が大きい。つまり、領域Iでは、換気量が多いほど室内の冷房負荷が高くなる。
領域II及び領域IIIでは、外気温度が室内温度以下である。領域IIでは、外気温度が規定の室温制御変更温度(閾値)よりも高く、領域IIIでは、外気温度が室温制御変更温度以下である。領域IIでは、外気を室内に取り込むことによる冷房効果(外気冷房効果)が比較的小さい。一方、領域IIIでは、外気冷房効果が比較的大きい。
図6の(a)は、本実施の形態に係る、有人ゾーンでの換気量制御方式を示す。図6の(b)は、本実施の形態に係る、無人ゾーンでの換気量制御方式を示す。
図6の(a)及び図6の(b)に示すように、本実施の形態では、ゾーンの属性(有人ゾーン/無人ゾーン)と、外気温度と室内温度との関係(領域I/領域II/領域III)に応じて換気量制御方式が変化する。
具体的には、有人ゾーンでは、領域Iにおいて、実負荷制御が行われる。領域Iでは換気による有人ゾーンへの空気調和負荷をできるだけ小さくすることが望ましい。このため、領域Iでは、システム演算部102は、無人ゾーンの換気量制御方式を回転数固定に決定し、無人ゾーンの換気量を多くする。一方、システム演算部102は、有人ゾーンにて実負荷制御とすることで、有人ゾーンの換気量を小さくすることができる。この結果、有人ゾーンの空気調和負荷を抑制することができ、省エネルギー効果が得られる。
一方、領域IIにおいて、有人ゾーンでは回転数固定が行われる。領域IIは外気温度が室温以下であり、換気量が多いほど、外気冷房効果により、室内の冷房負荷が低くなる。領域IIでは、換気量を多くすることによって有人ゾーンへの空気調和負荷をできるだけ小さくすることが望ましい。このため、システム演算部102は、有人ゾーンの換気量制御として回転数固定を用いて換気量を多くする。この結果、外気冷房効果で有人ゾーンの空気調和負荷を小さくすることができる。また、システム演算部102は、無人ゾーンの換気量制御方式として実負荷制御を用いることで、有人ゾーンと無人ゾーンの合計の換気量が必要換気量に達するようにする。このようにすることで、領域IIでも省エネルギー効果が得られる。
また、領域IIIでは、外気冷房効果により室内の温度調整が可能となる。領域IIIでは、システム演算部102は、有人ゾーンの換気量制御方式として室温制御を用いる。一方、システム演算部102は、無人ゾーンの換気量制御方式として実負荷制御を用いる。外気温度が低いほど外気冷房効果が大きくなるので、システム演算部102は、有人ゾーンの換気量は少なくなり、無人ゾーンの換気量は多くなるように制御する。
図6の(c)は、有人ゾーンの換気量と無人ゾーンの換気量と、有人ゾーンの換気量と無人ゾーンの換気量との合計と、必要換気量との関係を示す。有人ゾーンと無人ゾーンの換気量は、図6の(c)に示すように、領域ごとに変化する。
つまり、領域Iでは、システム演算部102は、無人ゾーンの換気量が有人ゾーンの換気量よりも多くなるように有人ゾーンの換気量と無人ゾーンの換気量とを決定する。領域IIと領域IIIでは、システム演算部102は、有人ゾーンの換気量が無人ゾーンの換気量よりも多くなるように有人ゾーンの換気量と無人ゾーンの換気量とを決定する。特に、領域IIIでは、システム演算部102は、外気温度が低下するにつれて有人ゾーンにおける換気量が減少し、無人ゾーンにおける換気量が増加するように有人ゾーンの換気量と無人ゾーンの換気量とを決定する。なお、いずれの領域でも、有人ゾーンの換気量と無人ゾーンの換気量との合計は必要換気量と等しい。
また、図6の(d)は、有人ゾーンでの室温制御における目標室内温度を示す。図6の(e)は、無人ゾーンでの室温制御における目標室内温度を示す。図6の(d)に示すように、システム制御部103が、有人ゾーンの領域IIIでは、空気調和機器301の設定温度よりも1℃高い温度を目標室内温度に設定する。領域IIIでは、有人ゾーンの温度が換気量により調整されるため、有人ゾーンの空気調和機器301の目標室内温度は設定温度から1℃高くなる。このようにすることで、換気装置302の換気によって有人ゾーンの空気温度を設定温度にできているときは、システム制御部103が、空気調和機器301の運転モードをサーモオフモードにする。一方、換気量によって室内の温度を調整できず、室内温度が高くなってきたら、システム制御部103は、空気調和機器301の運転モードをサーモオンモードにする。これにより、室内の温度を調整することができる。なお、システム制御部103は、無人ゾーンでは、全ての領域において空気調和機器301の目標室内温度が設定温度となるようにサーモオン/オフを制御する。
このようにすることで、換気による冷却効果にて温度調整をしつつ、無人ゾーンの換気量の調整により、有人ゾーンの換気量と無人ゾーンの換気量との合計を必要換気量と等しくすることができる。このため、換気動力を低くしつつ、有人ゾーンの空気調和負荷を低くすることができる。
このように、本実施の形態では、有人ゾーン及び無人ゾーンごとに個別に換気制御方式を変更する。また、外気温度によって、換気量制御方法を変更する。本実施の形態では、オフィス500内の二酸化炭素濃度はオフィス500内の位置、在室人数によっては変化しないことを想定している。
このため、本実施の形態では、オフィス500の合計在室人数によってオフィス500に必要となる必要換気量を調整していれば二酸化炭素濃度は適正に保てるという想定を前提としている。また、一方で、本実施の形態では、空気調和負荷はエリアによって異なり、エリアごとに換気量によって空気調和負荷が変化するという想定を前提としている。換言すれば、本実施の形態では、有人ゾーンの空気調和負荷を処理できれば、オフィス500の在室者は快適であるという想定を前提としている。
なお、図6で示す例では、オフィス500の合計在室人数は固定であり、オフィス500の必要換気量は領域I、領域II、領域IIIで同じであることを想定している。
なお、領域IIと領域IIIとの境界となる室温制御変更温度は、例えば冬期の外気温度である15℃とすることが考えられる。外気温度が15℃以下の場合は、通常暖房運転をする外気温度帯となるが、近年では建物の断熱性が向上し、冬期でも冷房運転となるケースが増えてきている。冬期冷房運転時は本実施の形態に係るシステム制御装置101を用いることで少ない消費電力にてオフィス500を冷房することができる。
室温制御変更温度の値は、システム記憶部105で記憶されている。
また、図6の(a)及び(b)に示す、領域ごとの有人ゾーンの換気量制御方式と無人ゾーンの換気量制御方式が定義される情報が制御方式定義情報として、システム記憶部105で記憶されている。
また、図6の(c)に示す、領域ごとの有人ゾーンの換気量と無人ゾーンの換気量との比率が定義される情報が換気量比率情報として、システム記憶部105で記憶されている。
***動作の説明***
次に、本実施の形態に係るシステム制御装置101の動作原理を説明する。
図7は、システム制御装置101の動作原理を示したフローチャート図である。
まず、ステップS101で、システム演算部102が必要換気量を算出する。システム演算部102は、オフィス500の床面積、オフィス500の在室人数から、必要換気量を算出する。必要換気量の算出方法は既存の方法を用いることができる。
前述したように、オフィス500の在室人数は、例えば入退出管理装置201の入退出の検出結果から得られる。
次に、ステップS102で、システム演算部102が、オフィス500内の有人ゾーンと無人ゾーンとを特定する。
システム演算部102は、空気調和エリア305ごとに有人か無人かを判定して、オフィス500を有人ゾーンと無人ゾーンとに区分する。システム演算部102は、例えば、空気調和エリア305ごとに設けられた人感センサ203の感知結果を解析して、空気調和エリア305ごとに有人か無人かを判定する。システム演算部102は、人がいる空気調和エリア305であれば、人数の多寡によらずに、有人ゾーンと判定する。
次に、ステップS103で、システム演算部102が、現在のオフィス500の状態が図6に示す領域I、領域II及び領域IIIのいずれに該当するかを判定する。
つまり、システム演算部102は、現在の室内温度と外気温度との関係から、現在のオフィス500の状態がいずれの領域に該当するかを判定する。
次に、ステップS104で、システム演算部102が、有人ゾーンの換気量と無人ゾーンの換気量とを決定する。
システム演算部102は、有人ゾーンの換気量と無人ゾーンの換気量との合計がステップS101で算出した必要換気量以上となるように有人ゾーンの換気量と無人ゾーンの換気量とを決定する。例えば、システム演算部102は、後述する図8に示すように、有人ゾーンの換気量制御方式と無人ゾーンの換気量制御方式から有人ゾーンの換気量と無人ゾーンの換気量とを決定する。また、システム演算部102は、ステップS101で算出した必要換気量に、換気量比率情報に示される有人ゾーンの換気量の比率と無人ゾーンの換気量の比率とを適用して有人ゾーンの換気量と無人ゾーンの換気量とを決定し、決定した換気量を実現するように、後述する図8のステップS211又はS212の換気ファンの回転数の調整を行ってよい。
図8は、有人ゾーンの換気量と無人ゾーンの換気量の決定方法の具体例を示す。
ステップS201とS202は、図7に示すステップS101とS102と同じである。このため、説明を省略する。
次に、ステップS203で、システム演算部102は、現在のオフィス500の状態が図6に示す領域I、領域II及び領域IIIのいずれに該当するかを判定し、また、有人ゾーンの換気量制御方式と無人ゾーンの換気量制御方式を特定する。具体的には、システム演算部102は、システム記憶部105から制御方式定義情報を読み出し、制御方式定義情報の定義に従って、有人ゾーンの換気量制御方式と無人ゾーンの換気量制御方式を特定する。
次に、ステップS204にて、システム演算部102は、実負荷制御以外の方式で換気を行った場合の換気量を算出する。
例えば、現在のオフィス500の状態が領域Iに該当する場合は、制御方式定義情報では、無人ゾーンの換気量制御方式は回転数固定であるため、システム演算部102は、回転数固定で換気を行った場合の無人ゾーンの換気装置302の換気量を算出する。このように算出された無人ゾーンの換気量は予測無人ゾーン換気量に相当する。
また、現在のオフィス500の状態が領域IIに該当する場合は、制御方式定義情報では、有人ゾーンの換気量制御方式は回転数固定であるため、システム演算部102は、回転数固定で換気を行った場合の有人ゾーンの換気装置302の換気量を算出する。更に、現在のオフィス500の状態が領域IIIに該当する場合は、制御方式定義情報では、有人ゾーンの換気量制御方式は室温制御であるため、システム演算部102は、室温制御で換気を行った場合の有人ゾーンの換気装置302の換気量を算出する。このように算出された有人ゾーンの換気量は予測有人ゾーン換気量に相当する。
次に、ステップS205にて、実負荷制御で換気を行った場合の換気量を算出する。
例えば、現在のオフィス500の状態が領域Iに該当する場合は、制御方式定義情報では、有人ゾーンの換気量制御方式は実負荷制御であるため、システム演算部102は、実負荷制御で換気を行った場合の有人ゾーンの換気装置302の換気量を算出する。このように算出された有人ゾーンの換気量も予測有人ゾーン換気量に相当する。
また、現在のオフィス500の状態が領域II又は領域IIIに該当する場合は、制御方式定義情報では、無人ゾーンの換気量制御方式は実負荷制御であるため、システム演算部102は、実負荷制御で換気を行った場合の無人ゾーンの換気装置302の換気量を算出する。このように算出された無人ゾーンの換気量も予測無人ゾーン換気量に相当する。
次に、ステップS206で、システム演算部102は、ステップS204で得られた換気量とステップS205で得られた換気量とを合計して、合計換気量を得る。
次に、ステップS207で、システム演算部102は、合計換気量と必要換気量とを比較する。
合計換気量が必要換気量以上である場合は、処理がステップS208に進む。一方、合計換気量が必要換気量未満である(つまり、換気量が不足している)場合は、処理がステップS210に進む。
ステップS208では、システム演算部102は、合計換気量と必要換気量の1.2倍とを比較する。
合計換気量が必要換気量の1.2倍以下であれば、処理がステップS209に進む。一方、合計換気量が必要換気量の1.2倍を超えている(つまり、換気量が多すぎる)場合は、処理がステップS210に進む。
ステップS210では、システム演算部102は、無人ゾーンの換気量制御方式が実負荷制御であるか否かを判定する。
無人ゾーンの換気量制御方式が実負荷制御であれば、処理がステップS211に進む。一方、無人ゾーンの換気量制御方式が実負荷制御でなければ、処理がステップS212に進む。
現在のオフィス500の状態が領域Iに該当する場合は、無人ゾーンの換気量制御方式は実負荷制御ではなく回転数固定なので、処理がステップS212に進む。一方、現在のオフィス500の状態が領域II又は領域IIIに該当する場合は、無人ゾーンの換気量制御方式は実負荷制御なので、処理がステップS211に進む。
ステップS211では、システム演算部102は、現在のオフィス500の状態が領域IIIに該当すれば、有人ゾーンの換気量制御方式を回転数固定に変更する。現在のオフィス500の状態が領域IIであれば、有人ゾーンの換気量制御方式は回転数固定であるため、システム演算部102は、有人ゾーンの換気量制御方式を変更しない。
そして、システム演算部102は、有人ゾーンの換気量と無人ゾーンの換気量との合計換気量が必要換気量から必要換気量の1.2倍の範囲に収まるよう、算出条件たる有人ゾーンの換気ファンの回転数(固定値)を決定する。システム演算部102は、例えば、トライアンドエラー方式により換気ファンの回転数を変更しながら、適切な換気ファンの回転数を決定する。
ステップS212では、有人ゾーンの換気量と無人ゾーンの換気量との合計換気量が必要換気量から必要換気量の1.2倍の範囲に収まるよう、算出条件たる無人ゾーンの換気ファンの回転数(固定値)を決定する。システム演算部102は、例えば、トライアンドエラー方式により換気ファンの回転数を変更しながら、適切な換気ファンの回転数を決定する。
ステップS209では、システム演算部102は、換気量制御方式を最終的に決定する。
ステップS208からステップS209に至る場合は、システム演算部102は、制御方式定義情報に定義されている有人ゾーンの換気量制御方式と無人ゾーンの換気量制御方式とを最終的な換気量制御方式に決定する。また、有人ゾーンの換気量は、ステップS204又はステップS205で算出された換気量である。同様に、無人ゾーンの換気量は、ステップS205又はステップS204で算出された換気量である。例えば、現在のオフィス500の状態が領域Iに該当すれば、有人ゾーンの換気量制御方式は実負荷制御であり、無人ゾーンの換気量制御方式は回転数固定である。また、有人ゾーンの換気量は、ステップS205で得られた換気量であり、無人ゾーンの換気量は、ステップS204で得られた換気量である。
また、ステップS211からステップS209に至る場合は、有人ゾーンの換気量制御方式は回転数固定であり、無人ゾーンの換気量制御方式は実負荷制御である。また、有人ゾーンの換気量は、ステップS211で得られた換気量であり、無人ゾーンの換気量は、ステップS205で得られた換気量である。
また、ステップS212からステップS209に至る場合は、有人ゾーンの換気量制御方式は実負荷制御であり、無人ゾーンの換気量制御方式は回転数固定である。また、有人ゾーンの換気量は、ステップS205で得られた換気量であり、無人ゾーンの換気量は、ステップS212で得られた換気量である。
***実施の形態の効果の説明***
以上のように、本実施の形態によれば、換気量を効率的に調整することができるため、空気調和における省エネルギー効果を得ることができる。
また、本実施の形態では、領域I、領域II及び領域IIIのいずれの領域においても、有人ゾーンと無人ゾーンのどちらか一方で実負荷制御が行われ、他方で実負荷制御以外の制御が行われる(必要換気量によらずに換気量を補正する)。これにより、どの領域においても合計換気量が必要換気量から必要換気量の1.2倍の範囲内となる。なお、以上では、必要換気量から必要換気量の1.2倍の範囲を規定範囲としたが、この範囲以外の範囲を規定範囲として用いてもよい。
また、各換気装置302がそれぞれ換気ファンを有し、各ファンの回転数またはファンノッチを変更して換気量を制御することで、電力効率が良い運転を選択できるため、必要とされる換気量が同じでも消費電力を低減させることができる。
***ハードウェア構成の説明***
最後に、システム制御装置101のハードウェア構成の補足説明を行う。
図9に示すプロセッサ901は、プロセッシングを行うIC(Integrated Circuit)である。
プロセッサ901は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)等である。
図9に示す主記憶装置902は、RAM(Random Access Memory)ある。また、図9に示す補助記憶装置903は、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)等である。
図9に示す通信装置904は、データの通信処理を実行する電子回路である。
通信装置904は、例えば、通信チップ又はNIC(Network Interface Card)である。
また、補助記憶装置903には、OS(Operating System)も記憶されている。
そして、OSの少なくとも一部がプロセッサ901により実行される。
プロセッサ901はOSの少なくとも一部を実行しながら、システム演算部102、システム制御部103及びシステム通信部104の機能を実現するプログラムを実行する。
プロセッサ901がOSを実行することで、タスク管理、メモリ管理、ファイル管理、通信制御等が行われる。
また、システム演算部102、システム制御部103及びシステム通信部104の処理の結果を示す情報、データ、信号値及び変数値の少なくともいずれかが、主記憶装置902、補助記憶装置903、プロセッサ901内のレジスタ及びキャッシュメモリの少なくともいずれかに記憶される。
また、システム演算部102、システム制御部103及びシステム通信部104の機能を実現するプログラムは、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD等の可搬記録媒体に格納されていてもよい。
また、システム演算部102、システム制御部103及びシステム通信部104の「部」を、「回路」又は「工程」又は「手順」又は「処理」に読み替えてもよい。
また、システム制御装置101は、処理回路により実現されてもよい。処理回路は、例えば、ロジックIC(Integrated Circuit)、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)である。
なお、本明細書では、プロセッサと処理回路との上位概念を、「プロセッシングサーキットリー」という。
つまり、プロセッサと処理回路とは、それぞれ「プロセッシングサーキットリー」の具体例である。
100 空気調和システム、101 システム制御装置、102 システム演算部、103 システム制御部、104 システム通信部、105 システム記憶部、121 空気調和機器制御装置、141 換気制御装置、201 入退出管理装置、202 温度センサ、203 人感センサ、301 空気調和機器、302 換気装置、303 給気口、304 ダクト、305 空気調和エリア、306 ダクト、309 照明設備、310 ダクト、311 担当者席、312 グループリーダー席、313 打合せスペース、314 ダクト、315 ドア、500 オフィス。

Claims (14)

  1. 換気を要する、複数の換気装置が設定されている屋内空間を、人が所在している有人ゾーンと人が所在していない無人ゾーンとに区分するゾーン区分部と、
    前記複数の換気装置のうちの前記有人ゾーンに設置されている換気装置の換気量制御方式と前記複数の換気装置のうちの前記無人ゾーンに設置されている換気装置の換気量制御方式とが外気温度と前記屋内空間の屋内温度との関係に応じて定義されている制御方式定義情報を参照し、
    前記外気温度と前記屋内温度との関係に応じて、前記有人ゾーンに設置されている換気装置を前記制御方式定義情報で定義されている換気量制御方式で制御した場合に前記有人ゾーンで発生する換気量を予測有人ゾーン換気量として算出し、
    前記外気温度と前記屋内温度との関係に応じて、前記無人ゾーンに設置されている換気装置を前記制御方式定義情報で定義されている換気量制御方式で制御した場合に前記無人ゾーンで発生する換気量を予測無人ゾーン換気量として算出し、
    前記予測有人ゾーン換気量と前記予測無人ゾーン換気量とに基づき、前記有人ゾーンで発生させる換気量と前記無人ゾーンで発生させる換気量とを決定するゾーン換気量決定部とを有する換気調整装置。
  2. 記換気調整装置は、更に、
    前記屋内空間で必要な換気量である必要換気量を算出する必要換気量算出部を有し、
    前記ゾーン換気量決定部は、
    前記有人ゾーンで発生させる換気量と前記無人ゾーンで発生させる換気量との合計値が前記必要換気量以上となるように、前記有人ゾーンで発生させる換気量と前記無人ゾーンで発生させる換気量とを決定する請求項1に記載の換気調整装置。
  3. 前記ゾーン換気量決定部は、
    前記予測有人ゾーン換気量と前記予測無人ゾーン換気量の合計値と、前記屋内空間で必要な換気量である必要換気量とを比較し、
    前記予測有人ゾーン換気量と前記予測無人ゾーン換気量との合計値が前記必要換気量未満である場合及び前記予測有人ゾーン換気量と前記予測無人ゾーン換気量との合計値が規定範囲を超えて前記必要換気量を上回っている場合のいずれかにおいて、前記予測有人ゾーン換気量及び前記予測無人ゾーン換気量のいずれかを、算出条件を変更して新たに算出する請求項に記載の換気調整装置。
  4. 前記ゾーン換気量決定部は、
    前記外気温度が前記屋内温度を超えている場合に、前記無人ゾーンで発生させる換気量が前記有人ゾーンで発生させる換気量よりも多くなるように前記有人ゾーンで発生させる換気量と前記無人ゾーンで発生させる換気量とを決定する請求項に記載の換気調整装置。
  5. 前記ゾーン換気量決定部は、
    前記外気温度が前記屋内温度を超えている場合に、前記有人ゾーンに設置されている換気装置を実負荷制御方式により制御した場合に前記有人ゾーンで発生する換気量を前記予測有人ゾーン換気量として算出し、前記無人ゾーンに設置されている換気装置を換気ファン回転数固定方式により制御した場合に前記無人ゾーンで発生する換気量を前記予測無人ゾーン換気量として算出する請求項に記載の換気調整装置。
  6. 前記ゾーン換気量決定部は、
    前記外気温度が前記屋内温度以下である場合に、前記有人ゾーンで発生させる換気量が前記無人ゾーンで発生させる換気量よりも多くなるように前記有人ゾーンで発生させる換気量と前記無人ゾーンで発生させる換気量とを決定する請求項に記載の換気調整装置。
  7. 前記ゾーン換気量決定部は、
    前記外気温度が前記屋内温度以下である場合に、前記有人ゾーンに設置されている換気装置を換気ファン回転数固定方式及び室内温度制御方式のいずれかにより制御した場合に前記有人ゾーンで発生する換気量を前記予測有人ゾーン換気量として算出し、前記無人ゾーンに設置されている換気装置を実負荷制御方式により制御した場合に前記無人ゾーンで発生する換気量を前記予測無人ゾーン換気量として算出する請求項に記載の換気調整装置。
  8. 換気を要する屋内空間を、人が所在している有人ゾーンと人が所在していない無人ゾーンとに区分するゾーン区分部と、
    気温度が前記屋内空間の屋内温度よりも低く、規定の閾値以下である場合に、前記外気温度が低下するにつれて前記有人ゾーンにおける換気量が減少し、前記無人ゾーンにおける換気量が増加するように前記有人ゾーンで発生させる換気量と前記無人ゾーンで発生させる換気量とを決定するゾーン換気量決定部とを有する換気調整装置。
  9. 前記ゾーン換気量決定部は、
    前記外気温度が前記屋内空間の屋内温度よりも低く、規定の閾値以下である場合に、前記有人ゾーンに設置されている換気装置を室内温度制御方式により制御した場合に前記有人ゾーンで発生する換気量を前記予測有人ゾーン換気量として算出し、前記無人ゾーンに設置されている換気装置を実負荷制御方式により制御した場合に前記無人ゾーンで発生する換気量を前記予測無人ゾーン換気量として算出する請求項に記載の換気調整装置。
  10. 前記屋内空間には空気調和機器が設置されており、
    前記換気調整装置は、更に、
    前記有人ゾーンに設置されている換気装置を前記室内温度制御方式により制御する場合に、前記室内温度制御方式での目標温度を前記空気調和機器の現在の設定温度よりも高い温度に設定する目標温度管理部を有する請求項に記載の換気調整装置。
  11. 前記換気調整装置は、更に、
    前記目標温度管理部により前記室内温度制御方式での目標温度が前記空気調和機器の現在の設定温度よりも高い温度に設定された場合に、前記空気調和機器の運転モードをサーモオフモード及び送風モードのいずれかに変更するモード管理部を有する請求項1に記載の換気調整装置。
  12. 前記必要換気量算出部は、
    前記屋内空間に所在する人数及び前記屋内空間での二酸化炭素濃度のうちの少なくともいずれかに基づき、前記屋内空間に要する必要換気量を算出する請求項2に記載の換気調整装置。
  13. コンピュータが、換気を要する、複数の換気装置が設定されている屋内空間を、人が所在している有人ゾーンと人が所在していない無人ゾーンとに区分し、
    前記コンピュータが、前記複数の換気装置のうちの前記有人ゾーンに設置されている換気装置の換気量制御方式と前記複数の換気装置のうちの前記無人ゾーンに設置されている換気装置の換気量制御方式とが外気温度と前記屋内空間の屋内温度との関係に応じて定義されている制御方式定義情報を参照し、
    前記コンピュータが、前記外気温度と前記屋内温度との関係に応じて、前記有人ゾーンに設置されている換気装置を前記制御方式定義情報で定義されている換気量制御方式で制御した場合に前記有人ゾーンで発生する換気量を予測有人ゾーン換気量として算出し、
    前記コンピュータが、前記外気温度と前記屋内温度との関係に応じて、前記無人ゾーンに設置されている換気装置を前記制御方式定義情報で定義されている換気量制御方式で制御した場合に前記無人ゾーンで発生する換気量を予測無人ゾーン換気量として算出し、
    前記コンピュータが、前記予測有人ゾーン換気量と前記予測無人ゾーン換気量とに基づき、前記有人ゾーンで発生させる換気量と前記無人ゾーンで発生させる換気量とを決定する換気調整方法。
  14. コンピュータが、換気を要する屋内空間を、人が所在している有人ゾーンと人が所在していない無人ゾーンとに区分し、
    外気温度が前記屋内空間の屋内温度よりも低く、規定の閾値以下である場合に、前記コンピュータが、前記外気温度が低下するにつれて前記有人ゾーンにおける換気量が減少し、前記無人ゾーンにおける換気量が増加するように前記有人ゾーンで発生させる換気量と前記無人ゾーンで発生させる換気量とを決定する換気調整方法。
JP2020557424A 2018-11-27 2018-11-27 換気調整装置及び換気調整方法 Active JP7016431B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043470 WO2020110185A1 (ja) 2018-11-27 2018-11-27 換気調整装置及び換気調整方法

Publications (2)

Publication Number Publication Date
JPWO2020110185A1 JPWO2020110185A1 (ja) 2021-05-13
JP7016431B2 true JP7016431B2 (ja) 2022-02-04

Family

ID=70854165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020557424A Active JP7016431B2 (ja) 2018-11-27 2018-11-27 換気調整装置及び換気調整方法

Country Status (5)

Country Link
US (1) US20210356159A1 (ja)
EP (1) EP3889513A4 (ja)
JP (1) JP7016431B2 (ja)
CN (1) CN113039395B (ja)
WO (1) WO2020110185A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3127557A1 (en) * 2019-02-06 2020-08-13 Panasonic Intellectual Property Management Co., Ltd. Air conditioning system and control unit
JP6974779B1 (ja) * 2020-09-30 2021-12-01 ダイキン工業株式会社 空気調和装置
JP7308539B2 (ja) * 2020-10-28 2023-07-14 グローバル電子株式会社 密集対策システム
JP7335289B2 (ja) * 2021-03-31 2023-08-29 株式会社大気社 換気システムおよび換気方法
WO2023276105A1 (ja) * 2021-07-01 2023-01-05 三菱電機株式会社 空調換気システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210234A (ja) 2008-03-06 2009-09-17 Panasonic Corp 換気装置
JP2010255900A (ja) 2009-04-23 2010-11-11 Mitsubishi Electric Corp 空気調和システム
JP2011137595A (ja) 2009-12-28 2011-07-14 Mitsubishi Electric Corp 空気調和システム
JP2011158154A (ja) 2010-01-29 2011-08-18 Sanyo Electric Co Ltd 空調制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2260830B (en) * 1991-10-24 1994-10-19 Norm Pacific Automat Corp Ventilation device adjusted and controlled automatically with movement of human body
JP4225137B2 (ja) * 2003-06-27 2009-02-18 ダイキン工業株式会社 空気調和装置の室内パネル及び空気調和装置
JP2012026697A (ja) 2010-07-27 2012-02-09 Shimizu Corp 人感センサによる設備制御システム
JP5988112B2 (ja) * 2012-03-09 2016-09-07 パナソニックIpマネジメント株式会社 換気扇および換気システム
JP6336269B2 (ja) * 2013-12-13 2018-06-06 株式会社竹中工務店 空調システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210234A (ja) 2008-03-06 2009-09-17 Panasonic Corp 換気装置
JP2010255900A (ja) 2009-04-23 2010-11-11 Mitsubishi Electric Corp 空気調和システム
JP2011137595A (ja) 2009-12-28 2011-07-14 Mitsubishi Electric Corp 空気調和システム
JP2011158154A (ja) 2010-01-29 2011-08-18 Sanyo Electric Co Ltd 空調制御装置

Also Published As

Publication number Publication date
WO2020110185A1 (ja) 2020-06-04
CN113039395B (zh) 2023-01-10
EP3889513A4 (en) 2022-02-16
US20210356159A1 (en) 2021-11-18
EP3889513A1 (en) 2021-10-06
JPWO2020110185A1 (ja) 2021-05-13
CN113039395A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
JP7016431B2 (ja) 換気調整装置及び換気調整方法
US9612024B2 (en) Energy efficient HVAC system
EP2102568B1 (en) Air-conditioning algorithm for water terminal free cooling
WO1997029329A2 (en) Air handler preventing reverse flow through exhaust
KR101915364B1 (ko) 다기종 실내 환경 기기의 통합 제어 방법
JP5304222B2 (ja) 室内設備制御システム
JP6964771B2 (ja) 空気調和システム
JP4864019B2 (ja) 空調システムで所在環境の快適性を制御する方法
KR20180059965A (ko) 재실자를 고려한 다기종 실내 환경 기기의 통합 제어 방법 및 이를 위한 시스템
JP2007271128A (ja) 空調設備
KR101469425B1 (ko) 전열교환 환기장치
JP2018162925A (ja) 空調制御装置、空気調和機、空調システム、空調制御方法およびプログラム
KR102609095B1 (ko) 공기조화기 및 그 제어방법
JPWO2019171461A1 (ja) 空気調和システム
JP2021001699A (ja) 排気グリルおよび換気システム
JP7329332B2 (ja) 空気調和システム及び空気調和システムの制御方法
JP2011106692A (ja) 空調システム
JP2018021714A (ja) 換気装置および給気量調整方法
JP2022085774A (ja) 換気制御装置及び換気制御方法
JP7495772B1 (ja) 空調システム、及び制御方法
KR20020017090A (ko) 쾌적한 공조를 위한 실내 온열환경과 co₂가스농도제어방법
JP2020008246A (ja) 空気調和システム、空気調和システムの機種選定方法、空気調和システムの機種選定装置および空気調和システムの機種選定システム
JP2013036719A (ja) 空調システム
WO2021100098A1 (ja) 換気装置
KR102532030B1 (ko) 가상센서 기반의 건물 자동화 시스템

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220125